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We introduce the class of P-critical integral unit forms q : Zn → Z
containing the critical forms in the sense of Ovsienko [13]. Several

characterisations of P-critical forms are given. In particular, it is

proved thatq isP-critical if andonly if there is auniquelydetermined

extended Dynkin diagram � ∈ {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8} and a special

group isomorphism T : Zn → Zn such that q ◦ T is the quadratic

form q� : Zn → Z, n = |�0|, of the diagram�. A correspondence

between positive forms p : Zn−1 → Z with a sincere root and

P-critical formsq : Zn → Z is describedandefficient linear algebra

algorithms for computing P-critical unit forms and positive forms

are constructed.
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1. Introduction

Throughout, we denote by N the set of non-negative integers and by Z the ring of integers. We

view Zn, with n� 1, as a free abelian group. We denote by e1, . . . , en the standard Z-basis of Zn. By

an integral quadratic form (more precisely, a homogeneous Z-quadratic mapping) we mean a map

q : Zn −→ Z, n� 1, defined by the formula

�
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q(x) = q(x1, . . . , xn) = q11x
2
1 + · · · + qnnx

2
n +

∑
i<j

qijxixj, (1.1)

where qij ∈ Z, for i, j ∈ {1, . . . , n}. If q11 = · · · = qnn = 1, we call q a unit form. Given j ∈ {1, . . . , n},
we denote by q(j) : Zn−1→ Z the jth restriction of q defined by the formula

q(j)(x1, . . . , xj−1, xj+1, . . . , xn) = q(x)|xj=0 = q(x1, . . . , xj−1, 0, xj+1, . . . , xn).
Following [13], we call q positive (resp. weakly positive), if q(v) > 0, for all non-zero vectors

v ∈ Zn (resp. for all non-zero vectors v ∈ Nn). We call q non-negative (resp. weakly non-negative),

if q(v) � 0, for all vectors v ∈ Zn (resp. for all vectors v ∈ Nn).

A vector v ∈ Zn is said to be a q-root (of unity), if q(v) = 1. The root v is called positive if the

coordinates of v1, . . . , vn are non-negative. We denote by

Rq = {v ∈ Zn; q(v) = 1} ⊃ R+q = {v ∈ Nn; q(v) = 1}
thesetofq-rootsandpositiveq-roots, respectively, seealso [1, SectionVII.3].Avectorv = (v1, . . . , vn) ∈
Zn is said to be sincere, if v1 /= 0, . . . , vn /= 0.We say that v is positive, if v /= 0 and v1 � 0, . . . , vn � 0.

We recall from [13], that q is defined to be critical if q is not weakly positive, and each of the

restrictions q(1), . . . , q(n) : Zn−1→ Z of q, is weakly positive, see also [21, Section XIV.1]. Following

Bondarenko and Polishchuk [3], we introduce the contept of a P-critical unit form, where P means,

“with respect to the positivity".

Definition 1.2. Theunit formq : Zn −→ Z, n� 1, (1.1) is defined tobeP-critical ifq is notpositive,

and each of the restrictions q(1), . . . , q(n) : Zn−1→ Z of q is positive.

It is clear that the class of critical forms is a subclass of the class of P-critical forms. The inverse

inclusion does not hold, because there is a lot of weakly positive unit forms that are P-critical. For

example, the weakly positive form q(x1, x2, x3) = x21 + x22 + x23 + x1x2 + x1x3 − x2x3 is P-critical, its

kernel is generated by the sincere vector h = (−1, 1, 1), and is not critical.

The aim of the paper is to give several characterisations of P-critical unit forms. In particular, we

show in Theorem 2.3 that the classification of P-critical unit forms reduces to the classification of

the critical ones, and we prove that, given a unit form q : Zn −→ Z, with n� 3, the following four

conditions are equivalent.

(a) q is P-critical.

(b) q is non-negative and the free abelian group Ker q = {v ∈ Zn, q(v) = 0} is infinite cyclic and is

generatedbya sincerevectorh = (h1, . . . , hn), such that1� |hj|� 6, for all j ∈ {1, . . . , n}, and |hs| = 1,

for some s ∈ {1, . . . , n}.
(c) The set of roots of q is infinite, and each of the restrictions q(1), . . . , q(n) : Zn→ Z of q has only

finitely many roots.

(d) There exist an extended Dynkin diagram � ∈ {Ãn, n� 1, D̃n, n� 4, Ẽ6, Ẽ7, Ẽ8} (see [1, p. 252],

[18,21]) and a group isomorphism T : Zn→ Zn such that q ◦ T is the quadratic form q� : Zn→
Z, n = |�0|, of the diagram � and T carries a sincere vector h′ ∈ Ker q� to a sincere vector.

Forn� 3, a correspondencebetweenpositive formsp : Zn−1→ Zwitha sincere root andP-critical

forms q : Zn→ Z is described in Section 3. The P-critical form q constructed from p may be viewed

as a one-point extension of p, compare with [15] and [21]. The correspondence is successfully applied

in producing a class of P-critical unit forms.

In Section 4, we present two algorithms that compute positive unit forms and P-critical unit

forms, for any n� 3. We describe in Corollaries 4.9 and 4.10 all positive unit forms for n = 2, 3, 4, 5,

and all P-critical unit forms for n = 3, 4, 5, up to permutation of variables and up to the operation

q(x1, . . . , xn) �→ q(ε1x1, . . . , εnxn), with ε1, , . . . , εn ∈ {−1, 1}.
In the proof of our main results we follow the ideas of Ovsienko [13] and von Höhne [12] applied in

the study of critical forms and their classification. If we apply our theorem and its proof to the forms

that are not weakly positive, we get the result of Ovsienko [13] extended by some useful equivalent

conditions, see Corollary 2.7.
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Usingmain results of this paper and recent results by Bondarenko-Polishchuk [3] and Bondarenko-

Styopochkina [4,5], we will prove in a subsequent paper [14] that if I is a one-peak finite posets such

that the Tits quadratic form q̂I [19] is P-critical (resp. positive) then there exists an extended Dynkin

quiver Q (resp. Dynkin quiver Q ) such that the Z-bilinear Tits form b̂I : ZI × ZI → Z of I (see [19]) is

Z-bilinear equivalent to the Z-bilinear Euler form bQ : ZQ × ZQ → Z of Q .

Ourmotivation for the study theP-critical forms comes fromthe fact that critical formsareP-critical

and the critical forms (and their positive roots) have a lot of important applications in the study of tame

algebras, tame vector space categories and tame bimodule matrix problems, see [6,8,11,15–17,21]. It

follows from the results of Happel [9,10] that positive unit forms, the P-critical unit forms and their

roots (not necessarily positive) provide with useful combinatorial tools for the study of tame derived

categories Db(A) of finite dimensional algebras A and their Auslander-Reiten quivers, see also [18]. We

shall discuss the problem in a subsequent paper.

2. Main results

The quadratic form q (1.1) is uniquely determined by the symmetric GrammatrixGq = 1
2
[Ǧq + Ǧtr

q ]
of q, where

Ǧq =

⎡⎢⎢⎢⎣
q1 1 q1 2 . . . q1 n

0 q2 2 . . . q2 n

...
...

. . .
...

0 0 . . . qn n

⎤⎥⎥⎥⎦ ∈Mn(Z) (2.1)

is the non-symmetric Gram matrix of q (see [18]) and Ǧtr
q means the transpose of Ǧq. Note that

q(x) = x · Ǧq · xtr = x · Gq · xtr . We often use the symmetric Z-bilinear polar form

bq : Zn × Zn→ 1

2
· Z

of q defined by the formula bq(x, y) = x · Gq · ytr = 1
2
[q(x + y)− q(x)− q(y)], where the vectors

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Zn are viewed as one-row matrices. We recall that the kernel

Ker q = {v ∈ Zn; q(v) = 0} of q is a subgroup of Zn, if q is non-negative. Following [20], we call the

form q : Zn −→ Z principal if q is non-negative and the subgroup Ker q of Zn is infinite cyclic.

In the proof of our main results we use the following key lemma.

Lemma 2.2. Assume that q : Zn −→ Z is a unit form, n� 3, and h = (h1, . . . , hn) ∈ Zn is a non-zero

vector such that q(h) � 0, and the norm ||h||:=|h1| + · · · + |hn| is minimal.
(a) If q is P-critical or q is critical and h is positive, the form q is non-negative, Ker q = Z · h and h is

sincere. The vector h is positive, if q is critical.
(b) If q is P-critical, the following three conditions are equivalent:
(b1) q is weakly positive,

(b2) the sincere vectors h and−h are not positive,

(b3) q is not critical.

Proof. Herewe follow an idea of Ovsienko in [13], see also [15] and [21, Section XIV.1]. Throughout the

proof, givenavectorv = (v1, . . . , vn) ∈ Zn andany j ∈ {1, . . . , n},wesetv(j) = (v1, . . . , vj−1, vj+1, . . . ,
vn) ∈ Zn−1. Let bq be the bilinear polar form of q.

Assume that n� 3, q is the unit form (1.1), h = (h1, . . . , hn) ∈ Zn is non-zero such that q(h) � 0,

and the norm ||h|| is minimal. Since q(h) = q(−h), without loss of generality, we can assume that

there exits s ∈ {1, . . . , n} such that h1 � 1, . . . , hs � 1 and hs+1 � 0, . . . , hn � 0.

1◦: To show that the vector h is sincere we assume, to the contrary, that hj = 0, for some j � n. If

q is P-critical, the forms q(1), . . . , q(n) are positive, n� 3, h /= 0 and we get the contradiction

0 < q(j)(h(j)) = q(h) � 0. If q is critical and h is positive, the forms q(1), . . . , q(n) are weakly positive,

s = n, and we get the contradiction 0 < q(j)(h(j)) = q(h) � 0.
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It follows that h1 � 1, . . . , hs � 1, hs+1 �−1, . . . , hn �−1, ||h|| = h1 + · · · + hs − (hs+1 + · · · +
hn), and s = n, if h is positive.

2◦: Now we show that q(h− ei) � 1 and q(h+ ej) � 1, for all i ∈ {1, . . . , s} and j ∈ {s+ 1, . . . , n}.
Assume that q is P-critical. If hi = 1 or hj = −1, we have h− ei /= 0, h+ ej /= 0, q(h− ei) =

q(i)(h(i)) > 0 and q(h+ ej) = q(j)(h(j)) > 0, because the forms q(1), . . . , q(n) are positive. If hi > 1 or

hj < −1, we have ||h− ei|| < ||h||, ||h+ ej|| < ||h|| and, hence q(h− ei) > 0 and q(h+ ej) > 0,

by the minimality of ||h||.
Assume that q is critical andh is positive. Then s = n, and, if hi = 1we get q(h− ei) = q(i)(h(i)) >

0, because h(i) is positive and q(i) is weakly positive. If hi > 1, we have q(h− ei) > 0, because of

||h− ei|| < ||h|| and the minimality of ||h||.
3◦: Next we show that h ∈ Ker q. For, we note that 2◦ yields

1� q(h− ei) = q(h)+ q(ei)− 2bq(h, ei), for any i ∈ {1, . . . , s},
1� q(h+ ej) = q(h)+ q(ej)+ 2bq(h, ej), for any j ∈ {s+ 1, . . . , n}.

Since q(ei) = 1, we get 2bq(h, ei) < q(h)+ 1, for i � s, −2bq(h, ej) < q(h)+ 1, for j � s+ 1, and

consequently we have

2bq(h, ei) � q(h) � 0, if hi � 1, and − 2bq(h, ej) � q(h) � 0, if hj � 1, (∗)
because 2bq(h, e1), . . . , 2bq(h, en), q(h) are integers. Since h1 � 1, . . . , hs � 1 and hs+1 �−1, . . . , hn
�−1, the formula (∗) yields

2hj · bq(h, ej) � hj · q(h), if hj > 0, and 2hj · bq(h, ej) � −hj · q(h), if hj � 0, (∗∗)
and we get the inequalities

2q(h) = 2bq(h, h) = 2bq(h,
∑n

j=1 hj · ej) =
∑n

j=1 2hj · bq(h, ej)
�h1 · q(h)+ · · · + hs · q(h)− hs+1 · q(h)− · · · − hn · q(h)
= (h1 + · · · + hs − hs+1 − · · · − hn) · q(h) = ||h|| · q(h).

Consequently,we have 2q(h) � ||h|| · q(h). It follows that q(h) = 0, because q(h) � 0 and the inequal-

ities 2q(h) � ||h|| · q(h), q(h) < 0 yield the contradiction 2� ||h||� n� 3.

4◦:Nextweshowthatbq(h,−) = 0. For,wenote that3◦ yields0 = q(h) = bq(h, h) = h1 · bq(h, e1)+ h2 · bq(h, e2)+ · · · + hn · bq(h, en) � 0, because q(h) = 0 and we have hr · bq(h, er) � 0, for r ∈
{1, . . . , n}, by (∗∗). Since h1 /= 0, . . . , hn /= 0, we get the equalities bq(h, e1) = 0, . . . , bq(h, en) = 0,

and consequently bq(h,−) = 0.

5◦: Finally we show that q is non-negative and Ker q = Z · h by proving that any vector w =
(w1, . . . , wn) ∈ Zn satisfying q(w) � 0 lies inZ · h. Assume that q is P-critical. Then q(1) is positive and,

givenw ∈ Zn such that q(w) � 0, the vector v :=h1w − w1h has v1 = 0 and we have 0� q(1)(v(1)) =
q(v) = q(h1 · w − w1 · h) = q(h1 · w)+ q(w1 · h)− 2 · h1 · w1 · bq(w, h) = h21 · q(w)+ w2

1 · q(h)

− 2 · h1 · w1 · bq(z, h) = h21 · q(w) � 0. Hence q(1)(v(1)) = 0 and the positivity of q(1) yields v(1) = 0

and v = 0, that is, w = w1

h1
· h. Hence, if q is P-critical, the statement 5◦ follows, because one easily

checks that
w1

h1
is an integer, see [21, p. 230]. Since the proof of 5◦ is analogous in case q is critical, the

proof of (a) is complete.

(b) By (a), q is non-negative and Ker q = Z · h. Hence (b) follows. �
Given ε = (ε1, . . . , εn), with ε1, . . . , εn ∈ {−1, 1} and a unit form q : Zn −→ Z(1.1), we define

the unit for q ∗ ε : Zn −→ Z by the formula (q ∗ ε)(x1, . . . , xn) = q(ε1x1, . . . , εnxn).
Now we are able to prove the main result of the paper.

Theorem 2.3. Let n� 2 and let q : Zn −→ Z be a unit form (1.1).
1◦: The following conditions are equivalent.

(a) The form q is P-critical.
(b) q is either critical, or it is P-critical and weakly positive.
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(c) There exists ε = (ε1, . . . , εn), with ε1, . . . , εn ∈ {−1, 1}, such that the form q ∗ ε is critical.
(d) One of the following two exclusive conditions is satisfied:

(d1) q is not weakly positive, the set R+q is infinite, and R+
q(1) , . . . ,R+q(n) are finite,

(d2) q is weakly positive, the set Rq is infinite, and Rq(1) , . . . ,Rq(n) are finite.

2◦: If n = 2 then each of the conditions (a)–(d) is equivalent to the following one:
(a′) Either q is not weakly positive and q12 �−2, or q is weakly positive and q12 � 2.
3◦: If n� 3 then each of the conditions (a)–(d) is equivalent to each of the following four equivalent

conditions.
(e) The form q is non-negative and the group Ker q is infinite cyclic generated by a sincere vector.
(e′) The form q is principal and there exist a sincere vector h = (h1, . . . , hn) ∈ Zn and s ∈ {1, . . . , n}

such that Ker q = Z · h, hs ∈ {−1, 1} and−6� hj � 6, for all j ∈ {1, . . . , n}.
(e
′′
) The form q is non-negative, there exists a sincere vector h such that Ker q = Z · h, with h1 � 1, and

we have

• q is not weakly positive (i.e. q is critical) if and only if h is positive, and

• q is weakly positive (i.e. q is not critical) if and only if h is not positive.

(f) There exist an extended Dynkin diagram � ∈ {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8} (see [1, p. 252], [18,21]) and a

group isomorphism T : Zn→ Zn such that q ◦ T is the quadratic form q� : Zn→ Z, n = |�0|, of
the diagram � and T carries a sincere vector h′ ∈ Ker q� to a sincere one.

If q is non-negative and h = (h1, . . . , hn) is a sincere vector such that Ker q = Z · h then 1� |hj|� 6,

for all j ∈ {1, . . . , n}, and hs ∈ {−1, 1}, for some s ∈ {1, . . . , n}.

Proof. First we assume that n = 2. Then q(x1, x2) = x21 + x22 + q12x1x2, the forms q(1)(x2) = x22 ,

q(2)(x1) = x21 are obviously positive and |Rq(1) | = |Rq(2) | = 2, |R+
q(1) | = |R+q(2) | = 1. Hence easily

follows that

(i) q is P-critical if and only if |q12|� 2, and

(ii) q is critical if and only if q12 �−2.
Hence the equivalences (a)⇔ (b)⇔ (a′)⇔ (c) easily follow.

To prove the implication (b) ⇒ (d) for n = 2, assume that q is P-critical and weakly positive. By

(i), we have |q12|� 2 and it follows that the set Rq contains the infinite sequencew(0), w(1), w(2), . . . ,

w(m), . . . defined by the recursive formula:

w(m) =
⎧⎨⎩
(1, 0), for m = 0,

(q12,−1), for m = 1,

q12 · w(m−1) − w(m−2), for m� 2.

Indeed, a simple calculation shows that q(w(0)) = q(1, 0) = 1, q(w(1)) = q(q12,−1) = 1 and

q(w(2)) = 1, because w(2) = (q212 − 1,−q12). Hence, by induction on m� 3, easily follows that

q(w(m)) = 1, for any m� 3. Since the vectors w(0), w(1), w(2), . . . , w(m), . . . are pairwise different,

the set Rq is infinite and (d2) follows.

Nowassume that q is critical andweakly positive. By (ii),wehave q12 �−2 and it follows that the set

R+q contains the infinite sequenceu(0), u(1), u(2), . . . , u(m), . . .definedby the formulau(m) = w(2m), for

m� 0, that is, we take for {u(m)} the even part of the infinite sequence w(0), w(1), w(2), . . . , w(m), . . .

defined earlier. Note that the vectors u(0) = (1, 0) and u(1) = w(2) = (q212 − 1,−q12) are positive,

because q12 �−2. Hence, by the induction on m� 2, follows that the vector u(m) is positive, for any

m� 2. This shows that the set R+q is infinite, and (b1) follows.
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To prove the implication (d)⇒ (b) for n = 2, assume that (d2) holds, that is, the set Rq is infinite.

It follows that |q12|� 2 (and hence (b) follows), because otherwise q12 ∈ {−1, 0, 1} and a direct cal-

culation shows that |Rq| = 4, if q12 = 0, |Rq| = 6, if |q12| = 1, and we get a contradiction. Since the

implication (d1)⇒ (b) follows in a similar way, the implication (d)⇒ (b) is proved, for n = 2.

Next we assume that n� 3. To prove the implication (a)⇒ (e), assume that q is P-critical. Then q

is not positive, there is a non-zero vector h such that q(h) � 0 and (e) follows by applying Lemma 2.2.

(e)⇒ (a) Assume that q is non-negative and Ker q = Z · h, where h is sincere. It follows that the

forms q(1), . . . , q(n) are non-negative and q is not positive, because q(h) = 0. To show that the forms

are positive, it remains to prove that Ker q(j) = 0, for any j ∈ {1, . . . , n}.
Assume that (v1, . . . , vj−1, vj+1, . . . vn) ∈ Zn−1 and q(j)(v1, . . . , vj−1, vj+1, . . . vn) = 0. Then 0 =

q(j)(v1, . . . , vj−1, vj+1, . . . vn) = q(̂v), where v̂ = (v1, . . . , vj−1, 0, vj+1, . . . vn), and hence v̂ ∈ Ker q =
Z · h. It follows that v̂ = 0 and (v1, . . . , vj−1, vj+1, . . . vn) = 0, because h is sincere. Consequently, the

forms q(1), . . . , q(n) are positive and q is P-critical.

(e)⇒ (b) Assume that q is non-negative and Ker q = Z · h, where h is sincere and h1 > 0. If h

is positive then q is not weakly positive and, by the arguments applied in the proof of (e)⇒ (a), the

forms q(1), . . . , q(n) are weakly positive and q is critical.

Ifh isnotpositive, there is s� 2such thaths < 0. Toprove thatq isweaklypositive, assumethat there

is a non-zero vector v ∈ Nn such that q(v) = 0. Then v ∈ Ker q = Z · h and we get a contradiction,

because h1 > 0 and hs < 0. This finishes the proof of (e)⇒ (b).
(b)⇒ (e) Assume that q is critical. Then q is not weakly positive, there is a positive vector h such

that q(h) � 0 and (e) follows by applying Lemma 2.2. If q is P-critical, the implication (a)⇒ (e) yields
(b)⇒ (e).

The implication (c)⇒ (e) is obvious. To prove the implication (e)⇒ (c), assume that q is non-

negative and Ker q = Z · h, where h /= 0 is sincere. We define ε = (ε1, . . . , εn) by setting εj = 1, if

hj > 0, and εj = −1, if hj < 0. Obviously the form q ∗ ε is non-negative and Ker(q ∗ ε) is generated by

the sincerepositive vectorh∗ε = (ε1h1, . . . , εnhn). Oneeasily shows, as in theproof of the implication

(e)⇒ (b), that the form q ∗ ε is critical.

(e)⇒ (e′)Obviously (e) implies thatq isprincipal and thereexists a sincerevectorh = (h1, . . . , hn)∈ Zn such that Ker q = Z · h. It is shown in the proof of the implication (e)⇒ (c) that there exists

ε = (ε1, . . . , εn), with ε1, . . . , εn ∈ {−1, 1} such that the form q ∗ ε is critical and Ker(q ∗ ε) is

generated by the sincere positive vector h ∗ ε = (ε1h1, . . . , εnhn). By [12, Corollary 1.3] and [13],

we have 1� ε1h1 � 6, . . . , 1� εnhn � 6. Moreover, by [12, Remark 2] and [13], there exists s such that

εshs = 1. Hence, hs ∈ {−1, 1},−6� hj � 6, for all j ∈ {1, . . . , n}, and (e′) follows.

The implication (e′)⇒ (e) is obvious.

(e′)⇒ (e
′′
) Apply the equivalences (b)⇔ (e)⇔ (e′) and their proofs.

(e)⇔ (f). Assume that q is non-negative and Ker q = Z · h, where h is sincere. It is shown in the

proof of the implication (e)⇒(c) that there exists ε = (ε1, . . . , εn), with ε1, . . . , εn ∈ {−1, 1} such
that the form q ∗ ε is critical and Ker(q ∗ ε) is generated by the sincere positive vector h ∗ ε =
(ε1h1, . . . , εnhn). By [12, Theorem 1.2] and [13], there exist an extended Dynkin diagram � ∈
{Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8} and a group isomorphism T : Zn→ Zn such that the unit form (q ∗ ε) ◦ T is

the quadratic form q� : Zn→ Z, n = |�0|, of the diagram �. Since Ker q� is generated by a positive

sincere vector h′ ∈ Ker q� and Ker(q ∗ ε) = Z · (h ∗ ε), where h is sincere, the automorphism T

carries the vector h′ to a sincere vector in Ker(q ∗ ε). Since the converse implication (e)⇐ (f) follows

in a similar way, the statements (a)–(f) are equivalent, and it remains to prove the equivalence of (a)

and (d).

(a)⇒ (d) Assume that q is P-critical. By (b)⇒ (e), q is non-negative and Ker q = Z · h, where h

is sincere. Moreover, if q is critical, the vector h is positive. We recall from [1, p. 261], [15, p. 3], [20,

Proposition 2.7] that Ker q coincides with the kernel of the gradient group homomorphism

Dq : Zn→ Zn, v �→ Dq(v) =
(

∂q

∂x1
(v), . . . ,

∂q

∂xn
(v)

)
,
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if q is non-negative. Since h ∈ Ker q and 2bq(x, ej) = ∂q(x)
∂xj

, for j = 1, . . . , n, we have bq(h,−) = 0.

Then, given λ ∈ Z and s ∈ {1, . . . , n}, we get

q(es + λ · h)=bq(es + λ · h, es + λ · h)

=bq(es, es)+ 2λ · bq(es, hq)+ λ2 · bq(hq, hq)

=bq(es, es) = q(es) = 1. (2.4)

This shows that qhas infinitelymany roots, if q is P-critical.Moreover, if q is critical thenh is positive

and q(e1 + λ · h) = 1, for any λ ∈ N, that is, q has infinitely many positive roots.

(d)⇒ (a) Assume that n� 3 and q is a unit form (1.1) such that the set Rq is infinite, and the sets

Rq(1) , . . . ,Rq(n) are finite.

First we prove that −1� qij � 1, for all i � j. Assume, to the contrary, that |qij|� 2, for some i < j.

Then the restriction q[i,j] : Z2→ Z of q given by the formula q[i,j](xi, xj) = x2i + x2j + qijxixj has only

finitely many roots, because n� 3 and for any root (ui, uj) of q[i,j], the vector (0, . . . , 0, ui, 0, . . . , 0, uj, 0,
. . . , 0) ∈ Zn−1 belongs to the finite set Rq(1) ∪ · · · ∪ Rq(n) . On the other hand, by 2◦, the form q[i,j]
has infinitely many roots, if |qij|� 2; a contradiction.

Next we prove by induction on n� 2 the following fact we use in the proof of (d)⇒ (a).

Claim 1. Let n� 2 and g : Zn→ Z be a unit form.
(a) The set Rg is finite if and only if g is positive.

(b) The set R+g is finite if and only if g is weakly positive.

If g is positive, the set Rg is finite, by [7] and [18, Proposition 4.1]. Conversely, assume that Rg is

finite. If n = 2 then g12 ∈ {−1, 0, 1}, by the observation made earlier (in the proof of the equivalence

(b)⇔ (d)). Hence easily follows that g is positive.

Assume that n� 3, g : Zn→ Z is a unit form such that the set Rg is finite and our claim is proved

for unit forms Zn−1→ Z. Since Rg is finite, by the observation made earlier, the sets Rg(1) , . . . ,Rg(n)

are also finite and hence the forms g(1), . . . , g(n) are positive, by the induction hypothesis. It follows

that g is positive, because otherwise g is P-critical and, by the implication (a)⇒ (d) proved earlier,

the set Rg is infinite and we get a contradiction. This finishes the proof of the statement (a) of Claim.

The proof of (b) is similar and we leave it to the reader.

Nowwecomplete theproof of (d)⇒ (a)byapplying inductiononn� 3.We recall that−1� qij � 1,

for all i < j. If n = 3, by Claim applied to n = 2, the forms q(1), q(2), q(3)are positive. Since the set Rq

is infinite, by Claim, the form q is not positive. It follows that q is P-critical and we are done.

Assume that n� 4, q is a unit form (1.1) such that the set Rq is infinite and the sets Rq(1) , . . . ,Rq(n)

are finite. Assume that the implication (d)⇒ (b) is proved for unit forms of n− 1 variables. Hence

the forms q(1), . . . , q(n) are positive. Since the set Rq is infinite, by Claim, the form q is not positive,

that is, q is P-critical. This finishes the proof of the implication (d)⇒ (a) and completes the proof the

theorem. �

Corollary 2.5. Let n� 2 and p : Zn→ Z be a unit form.

(a) If p is positive then |pij|� 1, for all i < j, and p(1), . . . , p(n) : Zn−1→ Z are positive.
(b) The set Rp is finite if and only if p is positive.

(c) The set R+p is finite if and only if p is weakly positive.

Proof. Apply Claim, its proof, [7] and [18, Proposition 4.1]. �

Corollary 2.6. (a) For n� 3, a unit form q : Zn→ Z (1.1) is P-critical if and only if q is non-negative and

Ker q is generated by a sincere vector.
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(b) The classification of P-critical unit forms reduces to the classification of critical unit forms discussed

in [12].

Proof. Apply the equivalences (e)⇔ (a)⇔ (c) of Theorem 2.3. �

A consequence of Theorem 2.3, is the following extension of Ovsienko’s theorem [13].

Corollary 2.7. Let n� 2 and let q : Zn→ Z be unit form (1.1).
1◦: If n = 2, q is critical if and only if q12 �−2, or equivalently, if and only if the set R+q is infinite.

2◦: If n� 3, the following statements are equivalent.
(a) The form q is critical.

(a′) The form q is not weakly positive, and the restrictions q(1), . . . , q(n) : Zn−1→ Z of q are positive.
(b) The formq isnon-negativeand there exists a sincerepositivevectorh ∈ Zn such thatKer q = Z · h.
(c) The form q is principal and there exist a sincere vector h = (h1, . . . , hn) ∈ Zn and s ∈ {1, . . . , n}
such that Ker q = Z · h, hs = 1 and 1� hj � 6, for all j ∈ {1, . . . , n}.

(d) The set R+q is infinite and the sets R+
q(1) , . . . ,R+q(n) are finite.

Corollary 2.8. If q : Zn→ Z is positive unit form (1.1), with n� 2, and v = (v1, . . . , vn) ∈ Zn is a root

of q then−6� vj � 6, for all j ∈ {1, . . . , n}.
Proof. Assume that q : Zn→ Z is positive and v = (v1, . . . , vn) ∈ Zn is a root of q, i.e. q(v) = 1. We

define ε = (ε1, . . . , εn) by setting εj = 1, if vj > 0, and εj = −1, if vj < 0. Obviously the form q ∗ ε is

positive (in particular, weakly positive) and the vector v ∗ ε = (ε1v1, . . . , εnvn) is positive (because v

is non-zero), and we have 1 = q(v) = (q ∗ ε)(v ∗ ε), that is, the positive vector v ∗ ε is a root of the

weakly positive unit form q ∗ ε. By theorem of Ovsienko [13], we have 1� εjvj � 6, for all j ∈ {1, . . . , n}
and hence−6� vj � 6, for all j ∈ {1, . . . , n}. �

3. Positive unit forms versus P-critical ones

In this section we present a useful correspondence (3.10) between positive unit forms p : Zn−1→
Z with sincere roots and P-critical forms q : Zn→ Z. The P-critical form q constructed from p may

be viewed as a one-point extension of p, compare with [15] and [21]. The correspondence (3.10) can

be successfully applied in producing a class of P-critical unit forms.

Following [20, Section 2], in the classification of P-critical forms q : Zn −→ Z (1.1) we use the

finite subgroup

ŜnC2 = Ŝn�Ĉn
2 ⊆ O(n,Z); (3.1)

of order n! · 2n of the group O(n,Z) of orthogonal matrices in Mn(Z) generated by the two sets of

matrices:

• the matrices ε̂ = ε · E, where E ∈Mn(Z) is the unity matrix and ε = (ε1, . . . , εn) ∈ Cn
2 runs

through all vectors with coefficients ε1, . . . , εn ∈ C2 = {−1, 1}, the cyclic group of order two, and

• the matrices σ̂ = Mσ of the group homomorphisms σ : Zn→ Zn given by the permutation

σ ∈ Sn and defined by σ(x) = x ·Mtr
σ = (xσ(1), . . . , xσ(n)), where Sn is the symmetric group of order

n!.

Following [18] and [20], we introduce the following definition.

Definition 3.2. (a) Given two matrices A, B ∈Mn(Z), we set A ∗ B = Btr · A · B. We associate with A

the quadratic form qA : Zn→ Z defined by the formula qA(x) = x · A · xtr .
(b) For n� 2, we denote by U(Zn,Z) the set of all unit forms q : Zn −→ Z (1.1), and by

posit(Zn,Z)⊆nneg(Zn,Z) ⊆ U(Zn,Z)

crit(Zn,Z)⊆P-crit(Zn,Z) ⊆ princ(Zn,Z) ⊆ U(Zn,Z) (3.3)
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the subsets ofU(Zn,Z) consisting of the positive, non-negative, critical, P-critical, and principal forms,

respectively.

(c) For n� 2, we define a right action

∗ : U(Zn,Z)× ŜnC2 −→ U(Zn,Z) (3.4)

of the group ŜnC2 on the setU(Zn,Z) of unit forms q : Zn −→ Z (1.1) by associating to q ∈ U(Zn,Z)
and a matrix B ∈ ŜnC2 = Ŝn�Ĉn

2 the unit form q ∗ B : Zn −→ Z by setting (q ∗ B)(x)=q(x · Btr),
for x ∈ Zn (see [20]).

Remark 3.5. (i) In general, Ǧq ∗ B is not the non-symmetric Gram matrix of q ∗ B.

(ii) The numbers of zero coefficients of thematrices Ǧq ∗ B and Ǧq are equal, because (q ∗ σ̂ )(x) =
q(x · σ̂ tr) = q(xσ(1), . . . , xσ(n)) is obtained from q(x) by permuting the coordinates x1, . . . , xn of the

vector x = (x1, . . . , xn) under σ ∈ Sn; and we have (q ∗ ε̂)(x) = q(x · ε̂) = q(ε1 · x1, . . . , εn · xn), for
ε ∈ Cn

2, with ε1, . . . , εn ∈ {−1, 1}.
(iii) det B ∈ {−1, 1}, the form q ∗ B is Z-equivalent with q and we have

Gq ∗ B = Gq ∗ B and qA ∗ B = qA ∗B, (3.6)

for any B ∈ ŜnC2 and A ∈Mn(Z).
(iv) It is easy to see that posit(Zn,Z), nneg(Zn,Z), princ(Zn,Z), and P-crit(Zn,Z) are ŜnC2-

invariant subsets of U(Zn,Z).
A relation between the P-critical forms and the positive ones is described as follows.

Proposition 3.7. Assume that q : Zn→ Z is a unit form (1.1), with n� 3.
(a) If q is P-critical, Ker q = Z · h and s ∈ {1, . . . , n} is such that hs ∈ {−1, 1} (see Theorem 2.3 (e′))

then

(a1) the vectorh(s) :=(h1, . . . , hs−1, hs+1, . . . , hn) ∈ Zn−1 is a sincere root of the positive (connected)

unit form q(s) : Zn−1→ Z, and

(a2) the form q can be reconstructed from the triple (q(s), s, h(s)) by the formula

q(x) = q(s)(x(s))+ x2s − 2 · bq(s) (x
(s), h(s)) · hs · xs, (3.8)

where bq(s) is the symmetric bilinear polar form of q(s)(x(s)) = q(s)(x1, . . . , xs−1, xs+1, . . . xn).
(b) Given s ∈ {0, 1, . . . , n}, εs ∈ {−1, 1}, a positive (connected) unit form p : Zn−1→ Z, with n� 2,

and a sincere root w = (w1, . . . , wn−1) ∈ Zn−1 of p, the unit form q:=qp,s,w,εs : Zn→ Z defined by the

formula

q(x1, . . . , xn) = p(x(s))+ x2s − 2 · bp(x(s), w) · εs · xs (3.9)

is P-critical and Ker q = Z · ŵεs , where ŵεs :=(w1, . . . , ws−1, εs, ws, . . .wn−1) ∈ Zn.
(c) The set

Zn−1 = {(p, w); p ∈ posit(Zn−1,Z), w ∈ Zn−1 a sincere root of p} ⊆ posit(Zn−1,Z)× Zn−1

is an ̂Sn−1C2-invariant subset of posit(Z
n−1,Z)× Zn−1 under the action (p, w) ∗ B :=(p ∗ B, w · Btr).

The map (p, w) �→ ind(p, w):=qp,s,w,εs described in (3.9) defines a surjection

̂Sn−1C2 − Orb(Zn−1)
ind−→ ŜnC2 − Orb(P-crit(Zn,Z)) (3.10)

between the set of ̂Sn−1C2-orbits of Zn−1 and the set of ŜnC2-orbits of P-crit(Z
n,Z). A right inverse of ind

is given by the formula q �→ ress(q):=(q(s), h(s)) defined in (a), that associates to any P-critical form q,

with Ker q = Z · h and hs ∈ {−1, 1}, the pair (q(s), h(s)) ∈ Zn−1.

Proof. (a) Fix s ∈ {1, . . . , n} and assume that hs ∈ {−1, 1}. By (2.4), the vector ȟhs :=h− hses is a root

of the P-critical form q. Hence 1 = q(ȟhs) = q(s)(h(s)), that is, the sincere vector h(s) is a root of the
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positive form q(s) and (a1) follows. It is easy to see that the form q(s) : Zn−1→ Z is connected, because

it has a sincere root.

(a2) Firstwe recall that bq(−, h) = 0, because q is non-negative andh ∈ Ker q. It follows that, given

j /= s, we have 0 = bq(ej, h) = bq(ej, h− hses + hses) = bq(ej, ȟ
hs)+ hs · bq(ej, es), that is,

bq(ej, es) = −h−1s · bq(ej, ȟhs) = −hs · bq(s) (ej, h
(s)),

because h−1s = hs. Hence we get the equalities

q(x)=q((x1, . . . , xs−1, 0, xs+1, . . . xn)+ xses)

=q(s)(x(s))+ x2s + 2 · bq((x1, . . . , xs−1, 0, xs+1, . . . xn), xses)
=q(s)(x(s))+ x2s +

∑
j /=s

2 · bq(ej, es) · xj · xs

=q(s)(x(s))+ x2s −
∑
j /=s

2 · hs · bq(s) (ej, h
(s)) · xj · xs

=q(s)(x(s))+ x2s − 2 · bq(s) (x
(s), h(s)) · hs · xs

and (3.8) follows.

(b) Assume that (p, w) ∈ Zn−1 and q:=qp,s,w,εs is defined by the formula (3.9). For simplicity

of the presentation, we assume that s = 0. Then the Gram matrix Gq = 1
2
[Ǧq + Ǧtr

q ] of q and the

non-symmetric Gram matrix Ǧq (2.1) of q have the forms

Gq =
[

1 −w · ε0 · Gp

−Gp · wtr · ε0· Gp

]
and Ǧq =

[
1 −w · 2ε0 · Gp

0 Ǧp

]
, (3.11)

whereGp and Ǧp is the Grammatrix and the non-symmetric Grammatrix of the positive form p. Hence

det Gp /= 0 and a simple calculation shows that det Gq = (1− w · Gp · wtr) · det Gp = (1− p(w)) ·
det Gp = 0, becausew is a root of p. It follows that thematrix Gq is of corank one, q is non-negative and

Ker q = {v ∈ Zn; Gq · vtr = 0} is an infinite cyclic group. Since the vector ŵεs = (w1, . . . , ws−1, εs,
ws, . . . , wn−1) ∈ Zn is sincere and q(ŵεs) = p(w)+ 1− 2 · bp(w, w) · εs · εs = 0, the kernel Ker q of

q is generated by the sincere vector ŵεs , and q is P-critical, by Corollary 2.6. Hence (b) follows.

Since (c) is an immediate consequence of (a) and (b), the proof is complete. �

In the following sectionwe showhow P-critical forms q : Zn→ Z canbe constructed frompositive

forms p : Zn−1→ Z, with a sincere root, by applying the correspondence ind in (3.10) described by

the formula (3.9).

4. Positive unit forms: algorithms

It follows from Proposition 3.7 that a description of P-critical unit forms q : Zn+1→ Z reduces

to a description of positive unit forms p : Zn→ Z with a sincere root, for n� 3. We recall that

v ∗ B :=(v1, . . . , vn) · Btr , for v = (v1, . . . , vn) ∈ Zn and B ∈ ŜnC2.

The main aim of this section is to find an algorithmic procedure that constructs all positive unit

forms q : Zn+1→ Z from the set posit(Zn,Z) ⊆ U(Zn,Z) of positive forms p : Zn→ Z, for n� 2.

The procedure is described in the following theorem and its proof.

Theorem 4.1. Assume that n� 2 and ŜnC2 ⊆ O(n,Z) is the finite group (3.1). Let posit•n be a fixed set of

pairwise different representatives p : Zn→ Z of all ŜnC2-orbits in posit(Zn,Z) and define W̌n ⊆ Wn ⊆
Zn to be the finite sets

W̌n := {
μ = (μ1, . . . ,μs, 1, . . . , 1) ∈ Zn, with μ1 = . . . = μs = 0 and 0� s� n

}
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Wn := {
w = (w1, . . . , wn) ∈ Zn, with w1, . . . , wn ∈ {−1, 0, 1} and w /= 0

}
(4.2)

of cardinality |W̌n| = n and |Wn| = 3n − 1. Moreover, given p ∈ posit(Zn,Z), we set

W+n,p =
{
μ ∈ Wn, det

[
2Gp μtr

μ 2

]
> 0

}
⊆ Wn, (4.3)

where Gp is the Gram matrix of p.

(a) The subset posit(Zn,Z) of U(Zn,Z) is finite and ŜnC2-invariant. The subset Wn of Zn is ŜnC2-

invariant and the equality Wn = W̌n ∗ ŜnC2 holds.
(b) Given p ∈ posit(Zn,Z) and μ ∈ W+n,p, the unit form

p̂μ : Zn+1 −→ Z (4.4)

defined by the formula p̂μ(x) = x ·
[
Ǧp μtr

0 1

]
· xtr , is positive and Ǧp̂μ =

[
Ǧp μtr

0 1

]
is its

non-symmetric Gram matrix, where Ǧp is the non-symmetric Gram matrix (2.1) of p.

(c) Ifw = (w1, . . . , wn) ∈ Zn is a sincere root of p ∈ posit(Zn,Z) such thatw · μtr :=w1μ1 + · · · +
wnμn /= 0, then ŵμ = (w,−w · μtr) ∈ Zn+1 is a sincere root of p̂μ.

Conversely, if v = (v1, . . . , vn, vn+1) ∈ Zn+1 is a sincere root of p̂μand −vn+1 = v̌ · μtr :=v1μ1 +· · · + vnμn /= 0, then the vector v̌ = (v1, . . . , vn) ∈ Zn is a sincere root of p.
(d) For any unit form q ∈ posit(Zn+1,Z) there exist p ∈ posit•n ⊆ posit(Zn,Z),μ ∈ W+n,p, and B ∈

ŜnC2 such that

q ∗ B = p̂μ,

where B =
[
B 0

0 1

]
∈ ̂Sn+1C2.

(e) Every q ∈ posit(Zn+1,Z) is of the form p̂μ (4.4), where p ∈ posit•n andμ ∈ W+n,p, up to the action

∗ : posit(Zn+1,Z)× ̂Sn+1C2 −→ posit(Zn+1,Z) (3.4) of the group ̂Sn+1C2.

Proof. (a) Assume thatn� 2 and p : Zn→ Z is a positive formdefinedby the formula p(x1, . . . , xn) =
x21 + · · · + x21 +

∑
i<j pijxixj , where pij ∈ Z. Then, given i < j, the restriction p[i,j] : Z2→ Z of p given

by the formula p[i,j](xi, xj) = x2i + x2j + pijxixj is also positive and |pij|� 1, by the observation (i) in the

proof of Theorem 2.3. It follows that posit(Zn,Z) is a finite set, for any n� 2.

It is clear that each of the coordinates of the vector v ∗ B :=(v1, . . . , vn) · Btr lies in {−1, 0, 1}, if v =
(v1, . . . , vn) ∈ Wn and B ∈ ŜnC2. It follows that Wn is a ŜnC2-invariant subset of Zn and the inclusion

Wn ⊇ W̌n ∗ ŜnC2 holds. To prove the inverse inclusion, assume that v = (v1, . . . , vn) ∈ Wn. Define

the vector ε = (ε1, . . . , εn) ∈ Cn
2 by setting εj = −1, if vj = −1, and εj = 1, if vj � 0. Then ε̂ ∈ ŜnC2,

the vector η = (η1, . . . , ηn):=v ∗ ε̂ is non-zero and η1, . . . , ηn ∈ {0, 1}. It follows that there exist a

permutationσ ∈ Sn such that thevectorμ = η∗ σ̂ lies in W̌n. Henceμ = η∗ σ̂ = (v ∗ ε̂)∗ σ̂ = v∗B,
where B = ε̂ ∗ σ̂ ∈ ŜnC2, and the inclusion Wn ⊆ W̌n ∗ ŜnC2 holds. This completes the proof of (a).

(b) Fix p ∈ posit(Zn,Z) and μ ∈ W+n,p. If Ǧp ∈Mn(Z) is the non-symmetric Gram matrix (2.1)

of p then 2Gp̂μ = Ǧp̂μ + Ǧtr
p̂μ =

[
2Gp μtr

μ 2

]
and obviously Ǧp̂μ =

[
Ǧp μtr

0 1

]
is the non-symmetric

Grammatrix of the form p̂μ. Since p is positive, in view of the determinant Sylvester criterion, the form

p̂μ : Zn+1→ Z is positive if and only if det 2Gp̂μ > 0, or equivalently, if and only if det

[
2Gp μtr

μ 2

]
>

0. It follows that the form p̂μ : Zn+1→ Z is positive, because we assume that μ ∈ W+n,p.
(c) Assume that w = (w1, . . . , wn) ∈ Zn is a sincere root of p such that w · μtr /= 0, and let ŵμ =

(w,−w · μtr). Then 1 = p(w) = w · Ǧp · wtr and we have p̂μ(ŵμ) = ŵμ ·
[
Ǧp μtr

0 1

]
· (ŵμ)tr =
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(w · Ǧp, 0) · (ŵμ)tr = w · Ǧp · wtr = 1, that is, ŵμ is a sincere root of p̂μ. The converse implication

follows in a similar way.

(d) Assume that q ∈ posit(Zn+1,Z). Then the restriction p0 := q(n+1) : Zn→ Z is positive and

|qij|� 1, for all i < j, by Corollary 2.5(a). If Gq is the Grammatrix of q then thematrix 2Gq has the form

2Gq =
[
2Gp0 wtr

w 2

]
,wherew = (q1n+1, . . . , qnn+1) ∈ Zn. It follows thatqhas the formq = p̂w0 . Since

|qjn+1|� 1, for all j = 1, . . . , n, the vector w lies in Wn = W̌n ∗ ŜnC2, by (a). Hence, there is a matrix

B1 = ε̂ · σ̂ ∈ ŜnC2, with ε ∈ Cn
2 and σ ∈ Sn, such that the vector η :=w ∗ B1 lies in the set W̌n. Let

B1 =
[
B1 0

0 1

]
∈ Sn+1 ⊆ ̂Sn+1C2.

If Ǧq is the non-symmetric Gram matrix of q then the matrix

A1 :=Ǧq ∗ B1 =
[
Ǧp0 ∗ B1 (w ∗ B1)tr

0 1

]
=
[
Ǧp0 ∗ B1 ηtr

0 1

]

defines the quadratic form q1 :=q ∗ B1 : Zn+1→ Z such that 2Gq1 =
[
2Ǧp0 ∗ B1 ηtr

η 2

]
and q1 =

q
Ǧp0
∗ B1

, see (3.6). It is easy to see that q1 is positive. Hence, the restriction p1 :=q
(n+1)
1 : Zn→ Z is

also positive, q1 = qA1 , and we have p1 = p0 ∗ B1, q1 = ̂p0 ∗ B1
η
and η ∈ W+n,p1 .

Since p1 is positive, there exists B2 ∈ ŜnC2 such that the unit form p:=p1 ∗ B2 lies in posit•n . If we

set μ:=η ∗ B2 and B2=
[
B2 0

0 1

]
∈ ̂Sn+1C2 then q2 := q1∗B2 = qA1 ∗ B2 , by (3.6),

2Gq2 = 2Gq1 ∗ B2 =
[
2Gp1 ∗ B2 (η ∗ B2)

tr

η ∗ B2 2

]
=
[
2Gp μtr

μ 2

]
is the symmetric Gram matrix of q2, and hence 2Gq2 =

[
2Gp μtr

μ 2

]
. Since q2 is positive, we have

det

[
2Gp μtr

μ 2

]
> 0, that is, the vector μ lies in W+n,p, q2 = p̂μ, p = p0 ∗ B and p̂μ = q2 = q ∗ B,

where B = B1 · B2 ∈ ŜnC2 and B = B1 · B2 ∈ ̂Sn+1C2. This finishes the proof of (d). Since (e) is an

immediate consequence of (d), the proof is complete. �

As a consequence of Theorem 4.1 and its proof we get the following algorithm producing the set

posit(Zn+1,Z) from the set posit(Zn,Z), for n� 2.

Algorithm 4.5. Input: An integer n� 2, the finite sets of matrices ŜnC2 ⊆Mn(Z) and ̂Sn+1C2 ⊆
Mn+1(Z) (see (3.1)), and a fixed finite set posit•n ⊆ posit(Zn,Z) of representatives p : Zn→ Z of all

ŜnC2-orbits in posit(Zn,Z).
Output: The finite family {W+n,p}p∈posit•n of the finite sets W+n,p (4.3), and a finite set posit•n+1 ⊆

posit(Zn+1,Z) of pairwise different representatives p̂μ : Zn+1→ Z of all ̂Sn+1C2-orbits in

posit(Zn+1,Z).
Step 1◦: Construct the finite sets W̌n ⊆ Wn (4.2) as lists of vectors in Zn.

Step 2◦: Givenp ∈ posit•n , construct thematrices Ǧp, 2Gp = Ǧp + Ǧtr
p , and thefinite setW+n,p (4.3) as

the sublist of the listWn, by selecting the vectorsμ ∈ Wn satisfying the inequality det

[
2Gp μtr

μ 2

]
> 0.

Step 3◦: Given p ∈ posit•n andμ ∈ W+n,p, construct thematrixGp,μ :=
[
Gp μtr

0 1

]
∈Mn+1(Z) and

the positive unit form p̂μ(x) = x · Gp,μ · xtr , where x = (x1, . . . , xn, xn+1).
Step 4◦: Construct the list Pn+1 = {p̂μ} ⊆ posit(Zn+1,Z), where p and μ run through all p ∈

posit•n and μ ∈ W+n,p.
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Step 5◦: Construct a finite set posit•n+1 ⊆ Pn+1 by selecting pairwise different representatives p̂μ

of all ̂Sn+1C2-orbits of the vectors in Pn+1.
Hint. By Theorem 4.1 (e), we have Pn+1 ∗ ̂Sn+1C2 = posit(Zn+1,Z) and therefore we can take for

posit•n+1 the subset of Pn+1constructed in Step 5◦.

By applying Proposition 3.7 and the correspondence (3.10), we get the following algorithm produc-

ing the set P-crit(Zn+1,Z) of P-critical forms q : Zn+1→ Z from the unit forms p ∈ posit(Zn,Z),
with a sincere roots w, for n� 3.

Algorithm 4.6. Input: An integer n� 3, the finite sets of matrices ŜnC2 ⊆Mn(Z) and ̂Sn+1C2 ⊆
Mn+1(Z) (see (3.1)), and a finite set posit•n ⊆ posit(Zn,Z) of pairwise different representatives

p : Zn→ Z of all ŜnC2-orbits in posit(Zn,Z).
Output: A finite set P-crit•n+1 ⊆ P-crit(Zn+1,Z) of pairwise different representatives of all̂Sn+1C2-orbits in P-crit(Zn+1,Z).
Step 1◦: Construct a finite set posit•n ⊆ posit(Zn,Z) of pairwise different representatives of all

ŜnC2-orbits in posit(Zn,Z), by applying Algorithm 4.5.

Step 2◦: Given a unit form p ∈ posit•n , construct the set Rp = {w ∈ Zn; p(w) = 1} of roots of p,

and then form the list SRp of all sincere vectors in Rp. Here we can apply the restrictively counting

algorithm [18, Algorithm 4.2].

Step 3◦: Construct a finite setZ−n of pairwise different representatives of all ŜnC2-orbits in the finite

set Z•n = {(p, w); p ∈ posit•n, w ∈ SRp}, see Proposition 3.7 (c). Note that (p, w) and (p,−w) lie in

the same ŜnC2-orbit.

Step 4◦: Given (p, w) ∈ Z−n , construct the Gram matrices Ǧp and Gp of p, then construct the ma-

trix Gp,w =
[
1 −w · 2 · Gp

0 Ǧp

]
, and finally construct the unit form qp,w : Zn+1→ Z by the formula

qp,w(x) = x · Gp,w · xtr .
Hint. It follows from (3.11) and Proposition 3.7 (b) (with s = 0, ε0 = 1, and with n and n+ 1

interchanged) that the form qp,w is P-critical such that ind(p, w) = qp,w , see (3.10).

Step 5◦: Define P-crit•n+1 to be the finite set {qp,w}(p,w)∈Z−n .

Hint.ThechoiceofP-crit•n+1 inStep5◦ is aproperone, becauseever ̂Sn+1C2-orbit inP-crit(Zn+1,Z)

is represented by a P-critical form qp,w , with (p, w) ∈ Z−n , by Proposition 3.7 (c).

We recall from [20] the following definition, see also [18] and [19].

Definition 4.7. Let q : Zn→ Z be a unit form and let Ǧq be its non-symmetric Gram matrix (2.1).

(a) The Coxeter-Gram polynomial of q is the characteristic polynomial

coxq(t):= det(t · E − Coxq) ∈ Z[t] (4.8)

of the Coxeter-Grammatrix Coxq := − Ǧq · Ǧ−trq of q.

(b) If� is aDynkindiagram,wesay thatq is ofCoxeter-Gramtype�, if theCoxeter-Grampolynomial

coxq(t)is the Coxeter polynomial coxA(t) of a morsification bA : Zn × Zn→ Z of the quadratic form

q� of �, see [19, 3.12] and compare with [2].

We recall from [12] (see also [2]), that a unit form is said to be connected if its bigraph is connected.

By applying Algorithm 4.5 implemented in MAPLE, we get the following classification of positive

unit forms q : Zn→ Z, for n = 2, 3, 4, 5.

Corollary 4.9. Letn� 2.Upto theaction ∗ : posit(Zn,Z)× ŜnC2 −→ posit(Zn,Z) (3.4)of thegroup
ŜnC2 (3.1), the connected positive unit forms p : Zn→ Z that admit a sincere root w are the following.

(a) If n = 2 then p(x) = x21 + x22 − x1x2 = qA2
(x), w = (1, 1) is a sincere root of p, and coxp(t) =

FA2
(t) = t2 + t + 1 is the Coxeter-Gram polynomial (4.8) of p.
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(b) If n = 3 then p(x) = x21 + x22 + x23 − x1x2 − x2x3 = qA3
(x), w = (1, 1, 1) is a sincere root of p,

and coxp(t) = FA3
(t) = t3 + t2 + t + 1, see [19, 3.12].

(c) If n = 4 then p(x) is one of the following three unit forms

(c1) p1(x) = x21 + x22 + x23 + x24 − x1x2 − x2x3 − x3x4 = qA4
(x), the vector w = (1, 1, 1, 1) is

a sincere root of p1, and coxp1(t) = FA4
(t) = t4 + t3 + t2 + t + 1.

(c2) p2(x) = x21 + x22 + x23 + x24 − (x1 + x2 + x3)x4 = qD4
(x), the vectors w = (1, 1, 1, 1) and

u = (1, 1, 1, 2) are sincere root of p2, and coxp2(t) = FD4
(t) = t4 + t3 + t + 1.

(c3) p3(x) = x21 + x22 + x23 + x24 − x1x2 + x1x3 − x2x3 + x2x4 − x3x4, the vector v =
(1, 1,−1,−1) is a sincere root of p3, and coxp3(t) = FD4

(t) = t4 + t3 + t + 1.

(d) If n = 5 then p(x) is one of the following seven unit forms having a sincere root.

(d1) p1(x)= x21 + x22 + x23 + x24 + x25 − x1x2 − x2x3 − x3x4 − x4x5= qA5
(x), w= (1, 1, 1, 1, 1)

is a sincere root of p1, and coxp1(t) = FA5
(t) = t5 + t4 + t3 + t2 + t + 1,

(d2) p2(x)=x21 + x22 + x23 + x24 + x25 − x1x3 − x2x3 − x3x4 − x4x5=qD5
(x), w=(1, 1, 1, 1, 1),

u = (1, 1, 2, 1, 1) and v = (1, 1, 2, 2, 1) are sincere roots of p2, and coxp2(t) = FD5
(t) =

t5 + t4 + t + 1, see [19, 3.12],

(d3) p3(x) = x21 + x22 + x23 + x24 + x25 − x1(x2 + x3 + x4 − x5)+ x3x4, u = (2, 1, 1, 1,−1) is a
sincere root of p3, and coxp3(t) = FD5

(t) = t5 + t4 + t + 1,

(d4) p4(x) = x21 + x22 + x23 + x24 + x25 − x1(x2 + x3 + x4 − x5)+ x2x4 + x3x4, u = (1, 1, 1,

−1,−1) is a sincere root of p4, and coxp4(t) = FD5
(t) = t5 + t4 + t + 1,

(d5) p5(x) = x21 + x22 + x23 + x24 + x25 − x1(x2 + x3 + x4)+ x2x4 + x2x5 + x3x4, u = (1, 1, 1,

−1,−1) and w = (1, 2, 1,−1,−1) are sincere roots of p5, and coxp5(t) = t5 + t4 + t + 1,

(d6) p6(x) = x21 + x22 + x23 + x24 + x25 − x1(x2 + x3 + x4)+ x2x5 + x3x4 − x4x5, u = (1, 1, 1,

−1,−1) is a sincere root of p6, and coxp6(t) = t5 + t3 + t2 + 1,

(d7) p7(x) = x21 + x22 + x23 + x24 + x25 − x1(x2 + x3 + x4 − x5)+ x2x3 + x2x4 + x3x4 − x4x5,

u = (1, 1, 1,−1,−1) is a sincere root of p7, and coxp7(t) = t5 + t3 + t2 + 1.

Proof. (a) Since p has a sincere root, we have |p12| = 1 and (a) easily follows.

(b) By applying Theorem 4.1 (in particular the formula (4.4)), we construct p̂μ : Z3→ Z, with

p(x) = qA2
(x) = x21 + x22 − x1x2 andμ = (1, 1), see (a). It is easy to see that there are only two Ŝ3C2-

orbits in posit(Z3,Z) represented by the forms p(x) = x21 + x22 + x23 − x1x2 − x2x3 = qA3
(x) and

p0(x) = x21 + x22 + x23 − x1x2 + x1x3 − x2x3. Observe that the form p0(x)has no sincere root.

(c) By applying the proof of (b) to the form p(x) = x21 + x22 + x23 − x1x2 − x2x3 and to the vector

μ = (1, 1, 1), we get the form (c1) with the sincere root w = (1, 1, 1). To construct the remaining

forms (c2) and (c3), we apply Algorithm 4.5 (implemented in MAPLE) to n = 3 and the form p(x).
Note that W̌3 = {(1, 1, 1), (0, 1, 1), (0, 0, 1)} and the set W3 = W̌3 ∗ Ŝ3C2 consists of all non-zero

vectors v = (v1, v2, v3), with v1, v2, v3 ∈ {−1, 0, 1}. One can check (using MAPLE) that there are only

three Ŝ3C2-orbits in W3,p; they are represented by the vectors w = (1, 1, 1), u = (0,−1, 0) and v =
(1,−1,−1). It is easy to see that the unit form p̂μ(x) (4.4), withμ ∈ {w, u, v}, equals p1(x), p2 ∗ τ̂ (x) =
x21 + x22 + x23 + x24 − (x1 + x4 + x3)x2, with τ = (2, 4) ∈ S4, and p3(x), ifμ = w,μ = u, andμ = v,

respectively. Hence, in view of Theorem 4.1, (c) follows. Note also that p2(x) = p̂
μ
0 (x), where p0(x) =

x21 + x22 + x23 − x1x2 + x1x3 − x2x3 and μ = (0,−1,−1) ∈ W3,p0 .

The proof of (d) is analogous to that of (c) and we leave it to the reader. �

By applying Algorithms 4.5 and 4.6 implemented in MAPLE, we get the following classification of

P-critical unit forms q : Zn→ Z, for n = 3, 4, 5.

Corollary 4.10. If n ∈ {3, 4, 5} and ŜnC2 is the group (3.1) then, up to the action ∗ : P−crit(Zn,Z)×
ŜnC2−→P−crit(Zn,Z) (3.4), the P-critical unit forms q : Zn→Z, withKerq = Z · h, are the following.
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(a) If n = 3 then q(x) = x21 + x22 + x23 − x1x2 − x1x3 − x2x3 = q�(x), h = (1, 1, 1), and coxq(t) =
t3 − t2 − t + 1 = F�(t), where � = Ã1,2 (see [19, 3.12] and [21, p. 146]).

(b) If n = 4 then q(x) is one of the following two unit forms

(b1) q1(x) = x21 + x22 + x23 + x24 − x1x2 − x1x3 − x2x4 − x3x4 = qÃ2,2
(x), h = (1, 1, 1, 1), and

coxq1(t) = t4 − 2t2 + 1 = F�(t), where � = Ã2,2.

(b2) q2(x) = x21 + x22 + x23 + x24 − x1x2 − x1x4 − x2x3 − x3x4 = qÃ1,3
(x), h = (1, 1, 1, 1), and

coxq2(t) = t4 − t3 − t + 1 = F�(t), where � = Ã1,3,

Observe that coxq1(t) /= coxq2(t) and q1 = q2 ∗ τ̂ , where τ = (3, 4).
(c) If n = 5 then q(x) is one of the following four unit forms

(c1) q1(x) = x21 + x22 + x23 + x24 + x25 − x1x2 − x1x4 − x2x3 − x3x5 − x4x5, h = (1, 1, 1, 1, 1), and

coxq1(t) = t5 − t3 − t2 + 1 = F�(t), where � = Ã2,3.

(c2) q2(x) = x21 + x22 + x23 + x24 + x25 − x1x2 − x1x5 − x2x3 − x3x4 − x4x5, h = (1, 1, 1, 1, 1), and

coxq2(t) = t5 − t4 − t + 1 = F�(t), where � = Ã1,4.

(c3)q3(x)= x21 + x22 + x23 + x24 + x25 − x1(x2+ x3+ x4 − x5)− (x2+ x3+ x4)x5, h= (1, 1, 1, 1, 1),

and coxq3(t) = t5 + t4 − 2t3 − 2t2 + t + 1 = F�(t), where � = D̃4,

(c4) q4(x) = x21 + x22 + x23 + x24 + x25 − (x1 + x2 + x3 + x4)x5 = q�(x), h = (1, 1, 1, 1, 2), and

coxq4(t) = t5 + t4 − 2t3 − 2t2 + t + 1 = F�(t), where � = D̃4,

Observe that coxq1(t) /= coxq2(t) and q1 = q2 ∗ τ̂ , where τ = (4, 5).

Proof. For n = 3, 4, 5, we construct the P-critical forms q : Zn→ Z from positive forms p : Zn−1→
Z, with a sincere root w, by applying the correspondence ind in (3.10) described by the formula (3.9).

(c) Assume that n = 5. To prove (c3) and (c4), assume that p = p2 : Z4→ Z is the positive form

p2 in Corollary 4.9 (c2), that is, p2 = qD4
: Z4→ Z is the positive Euler form of the Dynkin quiver

D4 :
• 2⏐⏐⏐�

• −→ • ←− •,
1 4 3

i.e. p(x1, x2, x3, x4) = x21 + x22 + x23 + x24 − (x1 + x2 + x3)x4. The form p has precisely four sincere

roots: two positive roots w = (1, 1, 1, 1) and u = (1, 1, 1, 2), and two negative roots −w and −u.
By applying the map ind in (3.9), with s = 0 and ε0 = 1, we construct two P-critical unit forms

q3 = ind(p, w) andq4 = ind(p, u) as follows. Firstwenote that−2 · Gp =
⎡⎢⎢⎣
−2 0 0 −1
0 −2 0 −1
0 0 −2 −1
−1 −1 −1 −2

⎤⎥⎥⎦ ,

w · (−2 · Gp) = (−1,−1,−1, 1), and u · (−2 · Gp) = (0, 0, 0,−1). Hence, by (3.11), we have

Ǧq3 =

⎡⎢⎢⎢⎢⎣
1 −1 −1 −1 1

0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ , Ǧq4 =

⎡⎢⎢⎢⎢⎣
1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦, and

q3(x) = x · Ǧq3 · xtr = x20 + x21 + x22 + x23 + x24 − x0(x1 + x2 + x3 − x4)− (x1 + x2 + x3)x4,

q4(x) = x · Ǧq4 · xtr = x20 + x21 + x22 + x23 + x24 − (x0 + x1 + x2 + x3)x4,

where x = (x0, x1, x2, x3, x4). By Proposition 3.7 (b), the forms q3, q4 : Z5→ Z are P-critical, Ker q3 =
Z · ŵε0 and Ker q4 = Z · ûε0 , where ε0 = 1, ŵε0 = (ε0, 1, 1, 1, 1) = (1, 1, 1, 1, 1), and

ûε0 = (ε0, 1, 1, 1, 2) = (1, 1, 1, 1, 2). Note that q3, q4 : Z5→ Z are the Euler forms of the canonical

algebra C(2, 2, 2) = KQ(2, 2, 2)/I (see [21, Section XII.1]) and the tame hereditary algebra of the

extended Dynkin quiver D̃4, respectively, where
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Q(2, 2, 2) :
•1↗ ↘•0→•2→•4↘ ↗•3

and D̃4 :

• 2⏐⏐⏐�
• −→ • ←− •.
1 3

�⏐⏐⏐•
0

The proof in remaining cases is analogous to that one for (c3) and (c4), and we leave it to the reader.

Note that the statement (a) follows from Theorem 2.3 and [20, Example 2.6(b)]. The Coxeter-Gram

polynomials coxq(t) (4.8) are obtained by a direct case by case calculation. �

Remark 4.11. For n = 5, the surjective correspondence (3.10) is not bijective, because

• the pairs (p2, w), (p3, v) ∈ Z4 lie in different Ŝ4C2-orbits, where (p2, w) and (p3, v) are as in (c2)

and (c3) of Corollary 4.9,

• ind(p2, w) is the P-critical form q3 of Corollary 4.10(c3),

• ind(p3, v) is the P-critical form q5(x) = x21 + x22 + x23 + x24 + x25 − x1(x3 − x4)− x2x3 + x2x4

− x3x4 + x3x5 − x4x5, with Ker q5 = Z · (1, 1, 1,−1,−1), and coxq5(t) = F�(t) = t5 + t4

− 2t3 − 2t2 + t + 1, where � = D̃4, and• the forms q3 and q5 lie in the same Ŝ5C2-orbit, because q5 = q3 ∗ B, where B = σ̂ · ε̂ ∈ Ŝ5C2,

with σ = (1.4) · (3, 5) and ε = (1, 1, 1,−1,−1).
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