The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives

Shoshana Loya and Amnon Hizi

Department of Cell Biology and Histology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel

Received 1 June 1990

We have analyzed the effects of several natural compounds related to avarols and avarones on the catalytic functions of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). The most potent substances, designated as avarone A, B and E and avarol F, inhibited indiscriminately the enzymatic activities of HIV-1 RT, namely the RNA-dependent and DNA-dependent DNA polymerase as well as the ribonuclease H. The inhibition of the DNA polymerase activity was found to be non-competitive with respect to either the template primer or the deoxynucleotide triphosphate. These studies suggest that the hydroxyl group at the ortho position to the carbonyl group at the quinone ring is involved in blocking the RT activity. The identification of the active site of the inhibitors will hopefully lead to the rational design of new potent anti-HIV drugs.

AIDS; HIV-1; Reverse transcriptase; Inhibitor; Avarol; Avarone

1. INTRODUCTION

Active inhibitors of human immunodeficiency virus (HIV) may be suitable for the chemotherapy of acquired immunodeficiency syndrome (AIDS), the devastating human disease caused by HIV [1,2]. One of the ideal specific targets for chemotherapeutic treatment of HIV is the viral encoded enzyme reverse transcriptase (RT). This enzyme has a key role in the early stages of HIV infection and is responsible for converting the viral genomic RNA into proviral double-stranded DNA which is subsequently integrated into the host chromosomal DNA. Reverse transcriptases are unique to retroviruses and no cellular homologues are known (except those associated with endogenous retroviruses and retroposons). The search for anti-HIV RT drugs and a detailed study on the mechanism of the molecular and catalytic properties of reverse transcriptase (thus contributing towards the design of new drugs) require the availability of relatively large quantities of purified active protein. For this reason, several recombinant RT expression systems have been developed in bacteria, leading to the synthesis of substantial amounts of highly active, soluble and nearly authentic HIV-1 RT [3–5]. This recombinant enzyme is in many catalytic features indistinguishable from the enzyme found in virions [3,6].

Over the past few years, large scale screening of marine species have produced a number of exciting leads towards finding new pharmaceutically useful agents. In direct response to these encouraging results, we have decided to screen different marine natural products for their anti-HIV-RT activities. The presence of large amounts of recombinant HIV-1 RT combined with the convenient accessibility of various natural products, isolated from the Red Sea fauna (mainly sponges and corals) have enabled us to conduct a wide survey for specific inhibitors of this enzyme. During the course of this study we found that three novel natural products derivatives of the sesquiterpenoid avarol, isolated from the marine sponge Dysidea cinerea Keller from the Gulf of Eilat in the Red Sea, are potent in vitro inhibitors of HIV-1 RT.

2. MATERIALS AND METHODS

Avarol and avarone derivatives designated as A–F as shown in the structural formulas in Fig. 1 were a generous gift of Professor Y. Kashman. Apart from avarone A that is a known compound, the other 4 are novel secondary proferan metabolites (Professor Kashman, personal communication). The substances were dissolved in 100% dimethylsulphoxide (DMSO) to final concentrations of 10 mg/ml. The final DMSO concentration in the enzymatic assays was 1%, a concentration that did not affect the different RT-associated activities.

HIV-1 reverse transcriptase was a recombinant protein expressed in E. coli with an apparent molecular weight of 66 kDa (that differs from the RT found in HIV-1 only in two additional amino terminal amino acids residues [3]). The HIV-1 RT was purified to homogeneity according to Clark et al. [7].

2.1. Enzyme assays

In all enzymatic reactions mixtures the enzymes were preincubated with or without the various inhibitor concentrations for 5 min at 30°C. The enzymatic reactions were initiated by adding the ap-
3. RESULTS

Substances that inhibit in vitro the unique HIV-RT catalytic activities are likely to fall into one of three different categories: (i) Compounds that block all RT-catalytic activities, i.e., the RNA-dependent DNA polymerase (RDDP) and DNA-dependent DNA polymerase (DDDP), as well as the ribonuclease H (RNase H) activities associated with retroviral reverse transcriptases. (ii) Inhibitors of the DNA polymerases exhibiting little or no effect on the RNase H function. (iii) Compounds that block the RNase H activity without significantly affecting the DNA polymerase function. In the present study we have chosen to examine the effects of several marine natural products of the avarol and avarone group (see structural formulas in Fig. 1) on the different catalytic functions of HIV-1 RT. Compounds defined as effective inhibitors were those found to inhibit more than 50% of either one of the catalytic activities associated with HIV-1 RT at a final inhibitor concentration of either 10 μg/ml (for RDDP and DDDP activities) or 50 μg/ml (for RNase H). As can be seen in Table I, 4 of these compounds, avarone A (3'-hydroxy avarone), avarone B (4',6'-dihydroxy avarone) and avarone E (6'-hydroxy-4'-methoxy-aavaron) and avarone F (6'-hydroxy avarone) were found to inhibit HIV-1 RT associated RDDP. RDDP activity was impaired by more than 70% of its initial activity in the presence of the derivatives designated A, B, D, E and F, by 91% in the presence of avarone E. The IC₅₀ values (inhibitor concentrations yielding 50% inhibition of the enzymatic activities) determined from the dose-dependent curves were approximately 6.8, 5.0, 1.0 and 7.0 μg/ml for avarones A, B, E and avarone F, respectively. Contrariwise, the two derivatives, avarol C (6'-acetoxy avarone) and avarone D (6'-acetoxy avarone), were devoid of any significant activity against HIV-1 RT associated RDDP (Table I). Avarones A and B exhibited only a moderate activity against RT-associated RNase H (54% and 41% inhibition at 50 μg/ml, respectively) whereas avarone E and avarone F effectively inhibited this activity (by 94% and 100%, respectively, at 50 μg/ml inhibitor). Considered
Fig. 2. Dose-response curves of HIV-1 RT inhibition by avarone E (A) and avarol F (B). Assay conditions are as described in section 2. The 100% enzymatic activity for RDDP (○), DDDP (●) and RNase H (▲) activities correspond to 120, 10 and 55 units, respectively.

together, it is apparent that avarone E and avarol F are the most potent inhibitors out of the 6 derivatives analyzed. Therefore, these two compounds were selected for further study as representatives of the active inhibitors. We have measured the extent of the inhibition of the three catalytic activities associated with HIV-1 RT as a function of inhibitor concentrations. As can be seen in Fig. 2A, B, all three functions associated with HIV-1 RT (i.e., RDDP, DDDP and RNase H) were susceptible to the inhibitory effects of avarone F, and avarol F. The IC₅₀ values determined from these dose response curves for each enzymatic activity were in the case of avarone E 1 µg/ml, 6 µg/ml and 14 µg/ml and in the case of avarol F 7 µg/ml, 4.5 µg/ml and 14.5 µg/ml for RDDP, DDDP and RNase H activities, respectively.

3.1. Analysis of the mode of inhibition and determinations of kinetic constants

We have studied the kinetics of inhibition of the most potent inhibitor avarone E by analyzing the initial rates of the DNA polymerizing reactions as a function of increasing concentrations of either the template-primer or the deoxynucleoside-triphosphate substrate (in the absence or in the presence of inhibitor at final concentrations of 4 or 8 µg/ml). The values of Vₘₐₓ and Kₘ were determined from the double-reciprocal plots of velocity rates versus substrate concentrations (Fig. 3). The Kₘ values for avarone E were calculated to be 2.8 µM for dGTP and 1.6 µg/ml for poly(rC)-oligo(dG) irrespective of the presence of the inhibitor, whereas the Vₘₐₓ values were suppressed as a function of the presence of avarone E. Therefore, the mode of inhibition of RT activity by avarone E is non-competitive with respect to both dGTP and primer-template, i.e., reduced Vₘₐₓ and unaltered Kₘ values. Thus, the results suggest that avarone E binds HIV-1 RT molecules at sites different from the binding sites of either one of the substrates for DNA synthesis.

4. DISCUSSION

In the scientific effort to develop anti-AIDS drugs, a considerable number of compounds with diverse molecular properties have been so far tested for their
anti-HIV RT activities. These include deoxynucleoside analogues (such as 3'-azidothymidine-AZT), or 2',3'-dideoxynucleosides (such as dideoxynosine or dideoxyxycytidine) that inhibit the viral RT in the form of 5'-triphosphonucleosides [10–14], foscarnet [15], suramin [16], rifabutine [18], or HPA 23 [18]. Unfortunately, some of the drugs were found to be either insufficiently potent or too toxic to be considered for further development as anti-HIV drugs. To date, the only drug that was approved for clinical use is AZT, despite its known side effects [19]. The emergence of AZT-resistant HIV strains in patients treated with the drug has serious implications when considering it for wider use in the future [20]. This highlights the urgent need for the development of alternative drugs against AIDS.

In the course of screening for novel natural products with anti-HIV-1 RT activities we have found that compounds related to avarol and avarone were effective inhibitors. Avarol and avarone were previously reported to possess a variety of biological activities such as: (i) a potent antileukemic activity both in vivo and in vitro [21]; (ii) T-lymphotropic cytostatic activity in vitro [22]; (iii) anti-HIV activity in vitro in the H-9 cell system [23]. The results presented in this communication reveal another facet of the biological activities associated with this group of natural substances. Four avarol and avarone derivatives designated A, B, E, F, out of which B, E and F are novel secondary metabolites (Kashman et al., personal communication), were found to be potent inhibitors of HIV-1 RT in vitro. Avarone A and avarol F inhibited the enzyme activities most effectively. The two derivatives with 6'-acetyl-substituents (avarol C and avarone D) were devoid of any significant inhibitory activity against reverse transcriptase. This is in line with the results previously reported for unmodified avarol and avarone (also lacking the 6'-hydroxyl group) that exhibited no inhibitory activities against MuLV and HIV-1 RT DNA polymerase functions as well as against mammalian DNA polymerase [24]. When taken together, it seems that the hydroxyl group at the ortho position to the carbonyl group of the quinone ring (as in the case of the derivatives A, B, E and F) is a prerequisite for inhibitory activity of these compounds. Similarly, we have recently found that in the case of another natural sesquiterpenoid, illimaquinone, the inhibitory site of the compound is an hydroxyl group at the ortho position to the carbonyl group of the quinone ring. However, in this case the inhibition effect was restricted mainly to the RNase H function of HIV-1 RT (submitted). Considered together, we believe that the identification of the inhibitory site of a compound is an important step towards the rational design of new potent anti-HIV and possibly anti-AIDS drugs.

Acknowledgements: This research was supported in part by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel. We are grateful to Professor Y. Kashman for the supply of the avarones and avarols used in the study and for helpful comments.

REFERENCES


