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SUMMARY

Synapses are asymmetric cellular adhesions that are
critical for nervous system development and func-
tion, but the mechanisms that induce their formation
are not well understood. We have previously identi-
fied thrombospondin as an astrocyte-secreted pro-
tein that promotes central nervous system (CNS)
synaptogenesis. Here, we identify the neuronal
thrombospondin receptor involved in CNS synapse
formation as a2d-1, the receptor for the anti-epileptic
and analgesic drug gabapentin. We show that the
VWF-A domain of a2d-1 interacts with the epidermal
growth factor-like repeats common to all thrombo-
spondins. a2d-1 overexpression increases synapto-
genesis in vitro and in vivo and is required postsynap-
tically for thrombospondin- and astrocyte-induced
synapse formation in vitro. Gabapentin antagonizes
thrombospondin binding to a2d-1 and powerfully
inhibits excitatory synapse formation in vitro and
in vivo. These findings identify a2d-1 as a receptor
involved in excitatory synapse formation and suggest
that gabapentin may function therapeutically by
blocking new synapse formation.

INTRODUCTION

Central nervous system (CNS) synapses are complex cell-cell

adhesions between neurons. Their establishment requires an

interaction between axons and dendrites, accompanied by the
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appositional organization of pre- and postsynaptic specializa-

tions. Several neuronal cell surface molecules and secreted

signals have been shown to be involved in processes that lead

to synaptic organization and maturation (Fox and Umemori,

2006), but molecules that regulate the formation of initial

synaptic adhesions remain poorly understood. Accumulating

evidence from our lab and others has shown that astrocytes

play active roles in the formation of synapses (Eroglu et al.,

2008). We have previously identified thrombospondins (TSP)

as a necessary and sufficient synaptogenic signal secreted by

astrocytes that increases synapse number (Christopherson

et al., 2005). TSP is present in astrocyte-conditioned media

(ACM) and is responsible for the ability of astrocytes to increase

synapse number in vitro (Christopherson et al., 2005). TSPs are

also important for synapse formation in vivo. TSP1/2-deficient

mice have a significant decrease in the number of excitatory

synapses. TSP1 and 2 are expressed during early postnatal

ages, when the majority of synapses are forming, and these

proteins are absent from the adult brain when the amount of

excitatory synaptogenesis is significantly reduced (Christopher-

son et al., 2005). Upon injury to the CNS, TSP1/2 levels are upre-

gulated, and lack of TSP1/2 impairs synaptic and functional

recovery from stroke (Liauw et al., 2008).

TSP is able to promote synaptic adhesion and initiate the

events that lead to the establishment of pre- and postsynaptic

specializations. Interestingly, these TSP-induced synapses are

ultrastructurally identical to fully developed synapses and are

presynaptically active but postsynaptically silent because of

the lack of surface AMPA receptors. Astrocytes secrete a second

unrelated signal that is able to convert these silent synapses into

fully active ones (Christopherson et al., 2005) (N.J.A. and B.A.B.

unpublished data).
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TSPs are large oligomeric, multidomain, extracellular matrix

proteins that have been previously shown to play important roles

in cell attachment, cell migration, cytoskeletal dynamics, and

angiogenesis (Bornstein et al., 2004). TSP mediates these func-

tions via its interaction with various cell surface receptors

through specific domains (Adams and Lawler, 2004). We hypoth-

esized that TSPs induce synapse formation by interacting with

a neuronal cell-surface receptor. Here, we show that TSPs

mediate synaptogenesis through their epidermal growth factor

(EGF)-like domains, common to all TSP isoforms. Using this

domain information, we identified the gabapentin receptor a2d-1

as the TSP receptor involved in synapse formation.

a2d-1 (Cacna2d1) was originally isolated as a nonessential

subunit of the L-type calcium channel complex from skeletal

muscle (Arikkath and Campbell, 2003), and it also binds to

other proteins (Kaltenbach et al., 2007). a2d-1 is ubiquitously

expressed in many tissues and is highly expressed by many

CNS neurons (Cole et al., 2005), including retinal ganglion cells

(RGCs). a2d-1 is translated from a single gene product, which

gets posttranslationally cleaved into a2 and d parts that remain

associated via disulfide bridges. The a2 part of the protein

(�950 amino acids) is entirely extracellular, while the d part has

a small extracellular part that is attached to a2 and a transmem-

brane domain with a very short cytoplasmic tail that tethers the

protein to the membrane (Davies et al., 2007).

Much research on a2d-1 has focused on its role in the regula-

tion of calcium channel function and trafficking. However, the

presence of a large extracellular region containing a well-known

protein-protein interaction fold, the Von Willebrand Factor A

(VWF-A) domain, suggests that this protein could serve as

a receptor for extracellular ligands. A recent study on skeletal

muscle cells, which express high levels of a2d-1, described

such a role for a2d-1 in myoblast attachment and extracellular

signaling that is independent of calcium channel function (Garcia

et al., 2007).

a2d-1 is the high-affinity receptor for two commonly

prescribed antiepileptic, antineuropathic pain medications,

gabapentin (GBP, Neurontin) and pregabalin (Lyrica) (Gee et al.,

1996). GBP and pregabalin were initially designed as hydro-

phobic gamma amino butyric acid (GABA) analogs that could

cross the blood-brain barrier. Further studies have shown that

even though they posses anticonvulsant properties, they do

not bind to GABA receptors or transporters. A recent study using

a knockin mouse that expresses a mutant a2d-1 that cannot bind

GBP or pregabalin has shown that a2d-1 is the in vivo target for

these drugs and that these drugs mediate their therapeutic

action through binding to a2d-1 (Field et al., 2006). GBP and

pregabalin do not affect the single-channel kinetics of calcium

channels and have only modest effects on neurotransmission

(Dooley et al., 2007). Thus, the cellular mechanisms underlying

the mode of action of these drugs are unclear.

In this study, we show that EGF-like domains of TSP directly

bind to a2d-1 and mediate its synapse-inducing activity via this

receptor. These findings identify a2d-1 as a neuronal TSP

receptor that is required for CNS synapse formation. This func-

tion of a2d-1 is likely to be independent of calcium channel

function. We also show that GBP is a potent inhibitor of TSP/

astrocyte-induced excitatory synapse formation in vitro and
in vivo. This function of GBP may be a central part of its mecha-

nism of action.

RESULTS

All TSP Isoforms Induce Synapse Formation
There are five TSP isoforms in mammals, which fall into two

groups according to their domain structure and oligomerization

states (Figure 1A). Trimeric subgroup A TSPs, TSP1 and 2, are

synaptogenic (Christopherson et al., 2005). To determine

whether pentameric subgroup B TSPs are also synaptogenic,

we cultured RGCs in the presence of astrocytes or with TSP 1,

3, 4, or 5. All subgroup B TSPs increased synapse number signif-

icantly to similar levels as TSP1 or astrocytes (Figures 1B–1D).

These results suggest that the synaptogenic domain of TSP is

located in the conserved C-terminal portion of TSP, which is

common to all isoforms spanning the EGF-like repeats, the

calcium-binding repeats, and C-terminal L-type lectin-like glob-

ular domain.

The Synaptogenic Activity of TSP Maps to Its EGF-like
Repeats
TSPs interact with a number of known cell-surface receptors

through specific domains (Adams and Lawler, 2004). To identify

the synaptogenic domain of TSP, we treated RGCs with a panel

of recombinant truncation constructs of TSP1 and 2. The TSP

fragments that contained the EGF-like repeats mimicked the

ability of full-length TSP to induce synapses (Figures 2B and

2C). A fragment containing the third EGF-like repeat together

with the C-terminal region of TSP2 also significantly increased

synapse number; however, the third EGF like domain alone

did not induce a significant increase in synapse number

(Figure 2C).

We confirmed the importance of the EGF-like repeats in

synapse formation by functionally blocking synaptogenic effect

of TSP on cultured RGCs, using monoclonal antibodies directed

against different epitopes of TSP (Figure 2D). Monoclonal anti-

bodies against the second (HB8432 and C6.7) (Annis et al.,

2007) or third EGF-like repeats (A4.1) (Annis et al., 2006) blocked

the synaptogenic effect of TSP, whereas an antibody against the

N-terminal domain (mAb200-1) did not (Figure 2E).

To aid us in our efforts to identify the neuronal TSP receptor

involved in synapse formation, we expressed and purified

a myc and 6-Histidine tagged TSP2 fragment containing all three

EGF-like repeats (Figures S1A and S1B available online). This

TSP2 fragment (designated SD2 for synaptogenic domain 2)

was strongly synaptogenic (Figures S1C and S1D). Collectively,

these data suggest that TSP-induced synapse formation is

mediated by an interaction involving EGF-like repeats of TSP.

a2d-1 Interacts with the Synaptogenic Domain of TSP
The EGF-like domains of TSP4 have been shown to bind to the

VWF-A domain of integrin aM (Pluskota et al., 2005). Thus, we

investigated whether integrin aM or other VWF-A domain con-

taining integrins in RGCs were involved in TSP-induced synapse

formation. None of the integrins that contained the VWF-A

domain and were expressed by RGCs were crucial for the synap-

togenic activity of TSP (data not shown).
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Another class of cell-surface proteins that contains VWF-A

domains is the alpha2 delta (a2d) family. Among the a2d proteins

cloned to date (Klugbauer et al., 2003), RGCs express high levels

of a2d-1 (Figure S2A). We investigated whether a2d-1 is localized

to synapses using array tomography (Micheva and Smith, 2007).

Ultra-thin sections from rat cortex or mouse LGN were immuno-

labeled with antibodies against a2d-1 and the pre- and postsyn-

aptic markers synapsin and MAGUK. a2d-1 gave a punctate

staining pattern. Some a2d-1 puncta localized to synapses

identified as juxtapositioned pre- and postsynaptic puncta, while

some colocalized exclusively with pre- or postsynaptic puncta

(Figures 3A and S2B).

To determine whether a2d-1 interacts with TSPs, we immuno-

precipitated TSP1, 2, and 4 from P5 rat cerebral cortex lysate.

a2d-1 was detected in immunoprecipitation fractions performed

with each of the three TSP antibodies (Figure 3B), suggesting

that a2d-1 and TSPs interact in vivo.

To test whether there is a direct and specific binding interac-

tion between the synaptogenic domain of TSP and a2d-1, we

coexpressed a FLAG-tagged a2d-1 alone (Figure 3C, lane 2),

with SD2 (lane 4), or with an unrelated secreted control protein

that contained an EGF-like repeat (Control-myc-his, lane 5).
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Figure 1. All Thrombospondin Isoforms Are Synapto-

genic

(A) TSPs are divided into two subgroups. The N-terminal

domain (black), the procollagen repeat (red), and properdin-

like repeats (orange), EGF-like repeats (blue), calcium binding

repeats (gray), and C-terminal L-lectin like globular domain

(green) are shown.

(B) Immunostaining of RGCs for synaptotagmin (red) and PSD-

95 (green). White arrows point to colocalized synaptic puncta.

The scale bar represents 30 mm.

(C and D) Quantification of the effects of astrocytes, purified

TSP1, 4, and 5 (8 nM each) (C) and conditioned media from

COS7 cells overexpressing either TSP3 or empty vector (D)

on synapse number. In all graphs, n = 20 cells. Error bars

show the mean ± SEM, *p < 0.05.

Beads conjugated to an anti FLAG-tag antibody

were used to immunoprecipitate a2d-1-FLAG.

SD2 coimmunoprecipitated with a2d-1-FLAG, but

the Control-myc-his protein did not (Figure 3C,

lanes 8 and 9, respectively), suggesting that a2d-1

specifically interacts with the synaptogenic EGF-

like domains of TSP.

We hypothesized that the EGF-like domains of

TSP interact with the VWF-A domain of a2d-1,

which resides in the a2 region of the protein. So

that this could be tested, three a2d-1 constructs,

the full-length a2d-1, a2, or VWF-A domain, each

with a C-terminal Protein C (PC) tag for purification

(Figure 3D), were coexpressed with SD2. When we

performed PC tag affinity purifications, we could

detect SD2 in all three purified fractions

(Figure 3E, lanes 7, 8, and 9). SD2 did not copurify

with an unrelated membrane protein that also con-

tained the same PC tag (Figure 3E, lane 6). These

data show that TSP and a2d-1 interact through

the synaptogenic EGF-like domains of TSP and the VWF-A

domain of a2d-1.

a2d-1 Is the Neuronal TSP Receptor Involved in Synapse
Formation
To determine whether a2d-1 plays a role in TSP-induced

synapse formation in vitro, we overexpressed a2d-1 in RGCs

and tested whether SD2-induced synapse formation was

affected. RGCs that overexpressed a2d-1 (identified with GFP

coexpression) received twice as many synapses in response

to SD2 as did RGCs transfected with empty vector (Figure 4A),

indicating that a2d-1 overexpression enhances TSP-induced

synapse formation. a2d-1 overexpression was not sufficient to

induce synapse formation in the absence of SD2, suggesting

that SD2 is required for the enhancement of synapse formation

by a2d-1.

To determine which region of the a2d-1 protein was respon-

sible for its enhancement of SD2-induced synapse formation,

we utilized two a2d-1 constructs (schemed in Figure 4A). Over-

expression of a ‘‘a2d-1Adh’’ construct that contains the entire

extracellular region of a2d-1 followed by the transmembrane

domain from an unrelated type 1 membrane protein adhalin
382 Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc.



(Gurnett et al., 1996) mimicked the effect of full-length a2d-1 in

enhancing SD2-induced synapse formation (Figure 4A), sug-

gesting that the critical region of a2d-1 maps to the extracellular

part of the protein. We next overexpressed a ‘‘d-1 only’’

construct (lacking the a2 region), which inhibited SD2-induced

synapse formation (Figure 4A), indicating that the VWF-A-con-

taining a2 region is necessary for enhancing synaptogenesis

and that regions within d-1 may be involved in regulating down-

stream interactions that are critical for TSP-induced synapse

formation.

Since the VWF-A domain of a2d-1 binds TSP, we investigated

whether antibodies against the VWF-A domain of a2d-1 would

interfere with TSP-induced synapse formation. Two monoclonal

antibodies directed against the VWF-A domain of a2d-1, 5A5 and

3B4, recognized a2d-1 in western blots and stained the surface

of HEK293 cells overexpressing a2d-1 (Figures S3A and S3B).

When RGCs were cultured with these antibodies in the presence

or absence of TSP and synapse number analyzed, both 5A5 and
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Figure 2. EGF-like Repeats of TSPs Are

Synaptogenic

(A) The domain structure of TSP1 and 2. N-terminal

domain (black), oligomerization domain and a pro-

collagen repeat (red, PC), three properdin-like

(TSP type 1, orange, P1–P3), three EGF-like (TSP

type 2, blue, E1–E3), and 13 calcium binding (TSP

type 3, gray) repeats [Ca(wire)] and a C-terminal

L-type lectin like globular domain (green, C).

(B and C) Quantification of the effect of TSP1 (B)

and TSP2 (C) fragments on synapse number.

RGCs were treated with astrocytes, full-length

TSP1, or a panel of TSP1 or TSP2 fragments (8

nM each).

(D) Location of epitopes targeted by TSP blocking

antibodies (modified from Carlson et al. [2008]).

The inset shows a magnified structure of EGF-

like repeats and the Ca-binding wire region and

the C-terminal L-lectin like domain. Highlighted

domains indicate putative synaptogenic domain

of TSP.

(E) Quantification of the effect of monoclonal anti-

TSP antibodies on TSP’s synaptogenic activity.

In all graphs, n = 20 cells. Error bars show the

mean ± SEM, *p < 0.05.

3B4 induced synapse formation similar to

TSP. A control antibody (OX7) against

another RGC surface receptor (Thy1) did

not affect synapse formation. The synap-

togenic effect of 5A5 or 3B4 was not

additive with that of TSP (Figure 4B).

These data show that antibody binding

to the VWF-A domain can mimic TSPs

synaptogenic function and suggest

that the interaction of TSP with the

VWF-A domain of a2d-1 is important for

the initiation of synapse formation. Such

ligand-mimicking antibodies were also

described for VWF-A domain-containing

integrins (Wilkins et al., 1996).

To determine whether a2d-1 is required for TSP-induced

synapse formation, we used a small interfering RNA (siRNA)

knockdown approach. An siRNA pool specific for rat a2d-1

significantly reduced the expression of rat a2d-1 in transfected

HEK293 cells (Figure 4C). Knockdown of a2d-1 in RGCs with

this siRNA pool inhibited astrocyte or TSP-induced synapse

formation in vitro (Figures 4D and 4E), whereas the nontargeting

control siRNA pool (siControl) did not affect synapse formation

(Figures 4C and 4D).

To show that the reduction in synapse formation by the a2d-1

siRNAs was due to the specific knockdown of a2d-1, we tested

whether the siRNA inhibition could be rescued by coexpressing

an siRNA resistant a2d-1 construct. One of the siRNAs against

rat a2d-1, sia2d-1 Duplex 9, blocked overexpression of rat

a2d-1 but not human a2d-1 in HEK293 cells (Figure S4). When

we cotransfected RGCs with sia2d-1(9) and the human a2d-1

construct, we rescued SD2 or astrocyte-induced synapse

formation (Figure 4F), showing that siRNA knockdown of a2d-1
Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc. 383
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Figure 3. Thrombospondins Interact with a2d-1

(A) Array tomography analysis of synaptic localization of a2d-1 in cerebral cortex. RGCs were immunostained for synapsin I (blue) and MAGUK (green). a2d-1

puncta (red) associate both with synapses (white circles) and with isolated presynaptic (diamonds) or postsynaptic (squares) puncta. The scale bar represents

2 mm.

(B) Western-blot analysis of a2d-1 on the immunoprecipitation (IP) fractions performed with antibodies specific to TSP1, 2, or 4 as well as calcium channel a1C

(Cav1.2), or Agrin (positive and negative controls for IP, respectively).

(C) Western blot analysis of a2d-1 interaction with the synaptogenic domain of TSP2 (SD2). Left, HEK293 cell lysates from nontransfected (1), a2d-1-FLAG alone

(2), SD2 alone (3), a2d-1-FLAG and SD2 (4), and a1d-1FLAG and Control-myc-His construct (5) transfected cells. SD2 and Control-his-myc protein are marked

with red d. Anti-his antibody cross-reacts with several histidine rich proteins in HEK293 cell lysates (marked with a blue *). Anti-a2d-1 antibody also weakly recog-

nizes the human a2d-1 expressed endogeneously in HEK293 cells at low levels (blue A) Right, anti-FLAG IP fractions from a2d-1-FLAG alone (6), SD2 alone (7),

a2d-1-FLAG and SD2 (8), and a2d-1FLAG and Control-myc-His construct (9) transfections.

(D) Domain structure of a2d-1 protein and scheme of a2d-1 protein C (PC) tagged constructs. SP, signal peptide; vWA_N and VGCC_a2, putative domains of

unknown structure. Yellow boxes indicate putative helical regions where no domain has yet been predicted. The red box shows the transmembrane (TM) region.

Orange hexagons indicate predicted N-glycosylation sites, and purple bars indicate positions of cysteines.

(E) SD2 interacts with the VWF-A domain of a2d-1. Lane 1 is nontransfected HEK293 cell lysate. SD2 was coexpressed with PC tagged full-length a2d-1, a2 only,

or VWF-A only constructs (lanes 3, 4, and 5) as well as CXCR4. SD2 coimmunopurified with the a2 only (8) and VWF-A only (9) constructs of a2d-1 as well as the

full-length protein (7) with anti-PC beads, (red arrows). SD2 did not copurify with CXCR4 (6).
384 Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc.
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Figure 4. a2d-1 Is the TSP Receptor Involved in Synaptogenesis

(A) RGCs were transfected with empty vector (pcDNA3, Invitrogen) or pcDNA3 constructs that express full-length a2d-1, d-1 only, or a2d-1-Adh. The synapses

received by transfected cells (marked by GFP coexpression) were then quantified. n = 20 cells. Error bars show the mean ± SEM, *p < 0.05.

(B) Quantification of the effects of monoclonal antibodies 5A5 and 3B4 (mouse monoclonals raised against the VWF-A domain of a2d-1; Mazorx, Inc.) and anti-

Thy1 antibody OX7 in synapse formation. 5A5 and 3B7 mimic TSP’s synaptogenic function. n = 30 cells. Error bars show the mean ± SEM, *p < 0.05.

(C) Western blot analysis of cell lysates from HEK293 cells, which were cotransfected with an expression vector for rat a2d-1 and siControl or sia2d-1 pools, with

a monoclonal antibody against a2d-1 or against b-actin.

(D) Immunostaining of siRNA-transfected RGCs (marked blue by GFP coexpression) for colocalization of synaptotagmin (red) and PSD-95 (green). RGCs that

were transfected with sia2d-1 did not form many synapses even in the presence of astrocytes (see inset i versus ii). The scale bar represents 30 mm.

(E) Quantification of the effects of siRNA pools on astrocyte and TSP-induced synapse formation in RGCs. n = 20 cells. Error bars show the mean ± SEM,

*p < 0.05.

(F) Overexpression of human a2d-1, which is resistant to sia2d-1(9), rescues the inhibition of SD2-induced synapse formation by sia2d-1(9). n = 20 cells. Error bars

show the mean ± SEM, *p < 0.05.
blocks synaptogenesis via specific inhibition of rat a2d-1

messenger RNA (mRNA). Taken together, these results demon-

strate that a2d-1 is necessary for TSP and astrocyte-induced
synapse formation in vitro. Since we analyze the effect of

a2d-1 overexpression and knockdown in the postsynaptic cells

receiving synapses, these data show a postsynaptic sufficiency
Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc. 385



and necessity for a2d-1 in astrocyte/TSP-induced synapse

formation.

a2d-1-Mediated Synapse Formation Does Not Depend
on Calcium Channel Surface Level or Function
a2d-1 is known to enhance calcium channel function and traf-

ficking (Arikkath and Campbell, 2003). We therefore investigated

whether the activity of a2d-1 in synapse formation is linked to its

role in increasing calcium currents or calcium channel levels.

Gene expression analysis of RGCs show that these cells express

predominantly postsynaptic L-type and presynaptic N- and P/Q-

type voltage gated calcium channels (VGCCs). To directly test

whether VGCC function was required for astrocyte-induced

synapse formation, we added L-type calcium channel blockers

to RGCs to block L-type channel function. These drugs had no

effect on SD2-induced synapse formation (Figure S5A). Similarly

presynaptic N- and P/Q-type channel blockers did not block
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Figure 5. a2d-1 Overexpression In Vivo Increases

Excitatory Synapse Number

(A) Immunolabeling of cortices from littermate wild-type (WT)

and a2d-1-overexpressing transgenic (TG) P21 mice for

VGlut2 and PSD95. The number of colocalized VGlut2/

PSD95 puncta (white arrows in insets i and ii) was higher in

the TGs then the WTs. The scale bar represents 20 mm.

(B) Quantification of VGlut2/PSD95 colocalization in brain

sections from WT and TG mice. Error bars show the mean ±

SEM, *p < 0.05.

(C) Representative raw data traces of mEPSCs from layer IV

cortical pyramidal neurons recorded from a WT and an a2d-1

TG mouse. Top, condensed trace. Bottom, expanded trace.

(D) Summary of the frequency of mEPSCs in layer IV cortical

pyramidal neurons of a2d-1 TG and WT. TG = 3.5 ± 0.3 Hz

(n = 11 cells); WT = 2.1 ± 0.2 Hz (n = 12 cells). Error bars

show the mean Hz ± SEM, p = 0.002.

(E) Summary of the amplitude of mEPSCs in layer IV cortical

pyramidal neurons of a2d-1 TG and WT. TG = 11.9 ± 0.3 pA,

WT = 11.6 ± 0.3 pA. Error bars show the mean ± SEM, p = 0.5.

TSP-induced synapse formation (data not shown).

We next investigated whether increase of postsyn-

aptic L-type calcium channel expression in RGCs

would enhance synapse formation. Overexpression

of L-type a1C and b subunits in RGCs had no

effect on astrocyte-induced synapse formation

(Figure S5B). Finally, we tested whether TSP treat-

ment would lead to an increase in cytoplasmic

calcium levels in RGCs. Neither acute nor long-

term TSP treatment led to a noticeable rise in spon-

taneous calcium oscillations in RGCs (Figure S6).

Taken together, these results show that the role of

a2d-1 in synapse formation cannot be directly linked

to calcium channel expression levels or function.

Overexpression of a2d-1 in Neurons
Enhances Synapse Formation In Vivo
To determine whether a2d-1 plays a role in synapse

formation in vivo, we examined synapsenumber and

synaptic activity in transgenic mice that selectively overexpress

a2d-1 in CNS neurons, under the control of the Thy1 promoter

(Li et al., 2006). Sagittal brain sections from 21-day-old (P21)

transgenic (TG) and wild-type (WT) littermate mice were coimmu-

nostained for PSD95 and either the presynaptic vesicular gluta-

mate transporter 1 or 2 (VGlut1 and VGlut2). We quantified the

number of colocalized pre- and postsynaptic puncta to determine

the synaptic density in the cortices of these mice. The TG mice

had significantly higher numbers of VGlut2-positive excitatory

synapses in the cortex than did the littermate WT controls (1.8-

fold, Figures 5A and 5B); however, there was no difference in

the number of VGlut1-positive synapses between WT and TG

mice (Figures S7A and S7B). The observation that a2d-1 overex-

pression increases VGlut2-positive synapses provides evidence

that excitatory synapse formation is enhanced in the TGs.

In the adult cortex thalamic neurons projecting onto layer IV

neurons form VGlut2-positive synapses, while synapses made
386 Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc.



between cortical neurons contain VGlut1 (Fremeau et al., 2004).

We confirmed that the increase in VGlut2-positive synapse

number was not due to an increase in the number of neurons

in the cortex or thalamus, as the number of cells and neurons

in WT and TG brains were identical in these brain regions

(Figures S8A and S8B).

Excitatory synapses in the cortex are initially formed as VGlut2

positive, and there is an isoform switch to VGlut1 that happens

around the second week of postnatal development (Miyazaki

et al., 2003). During this period, some synapses can transiently

be both VGlut1 and 2 positive (Nakamura et al., 2005). We deter-

mined that the increase in VGlut2-positive synapses was not due

to a prolonged colocalization of VGlut1 and 2 at the same

synapse, since these proteins seldom colocalized at P21, and

there were no differences in the frequency of colocalization of

these proteins between genotypes (Figures S9A and S9B).

Taken together, these results show that the increase in VGlut2-

positive synapses associated with a2d-1 overexpression is due

to neither an increase in the number of cortical or thalamic

neurons nor a delay in the isoform switch from VGlut2 to 1 in

the cortex.

In addition to analyzing synapse number by immunohisto-

chemistry, we performed whole-cell patch-clamp recordings in

layer IV cortical pyramidal neurons and assayed the number of

active synapses by analyzing the frequency and amplitude of

miniature excitatory postsynaptic currents (mEPSCs). Recorded

cells were dye filled, and their identity was verified (Figures S10A

and S10B). We targeted layer IV pyramidal neurons both

because these cells receive VGlut2-positive synapses and

because array tomography revealed an increase in a2d-1 immu-

nostaining in TG animals in this layer (Figure S10C). There was

a highly significant increase in the frequency of mEPSCs in

a2d-1 TG mice compared with WT mice (1.63-fold), with no effect

on the amplitude of mEPSCs (Figures 5C–5E). The increase in

the frequency of mEPSCs in TG mice is very consistent with

the increased excitatory synapse number found by the immuno-

histochemical analysis described above. Taken together, these

data show that a2d-1 plays a role in promoting excitatory

synapse formation in the brain.

Gabapentin, the High-Affinity Ligand for a2d-1, Strongly
Inhibits TSP-Induced Synapse Formation
In order to determine whether GBP, the high-affinity ligand for

a2d-1 affects TSP or astrocyte-induced synapse formation, we

cultured RGCs with TSP, SD2, or ACM in the presence or

absence of GBP (32 mM). GBP strongly inhibited TSP, SD2, or

astrocyte-induced synapse formation (Figures 6A–6C and

S1C). To determine whether GBP could dissolve already estab-

lished synapses, we cultured RGCs with SD2 for 5 days to allow

synapses to form and then added GBP for an additional day. GBP

had no effect on synapse number when added after the synapses

were formed (Figure 6C). Thus, GBP blocks new synapse

formation induced by TSP and astrocytes but does not dissolve

established synapses. Interestingly, GABA, an inhibitory neuro-

transmitter that binds to a2d-1 with much lower affinity (IC50 =

650 mM)(Suman-Chauhan et al., 1993), also blocked SD2-

induced synapse formation when used at high concentrations

(Figure S11).
To determine whether GBP blocks TSP-induced synapse

formation by inhibiting the a2d-1-TSP interaction, we cocultured

two populations of HEK293 cells, one expressing a2d-1FLAG

and the other expressing SD2, in the presence or absence of

GBP. Immunoprecipitation with anti-FLAG antibodies revealed

that the SD2-a2d-1 interaction was diminished in the presence

of GBP (Figure 6D), suggesting that GBP blocks TSP-induced

synapse formation by interfering with the interaction between

a2d-1 and TSP.

To test whether GBP similarly blocks synapse formation

in vivo, we injected neonatal mice with either GBP or saline for

the first postnatal week, which coincides with the initiation of

synapse formation in the brain. At this age, glutamatergic

synapses in the cortex are predominantly VGlut2 positive (Miya-

zaki et al., 2003). Therefore, we coimmunostained sagital brain

sections from P7 saline- or GBP-injected mice with antibodies

against VGlut2 and PSD95 and quantified the number of colocal-

ized pre- and postsynaptic puncta in the cortex of these mice.

There were significantly fewer excitatory synapses in the cere-

bral cortex of the GBP-injected mice relative to control mice

(Figure 6E). This difference was mainly due to a severe decrease

in synapse number in half of the GBP-injected animals. In the

mice that responded strongly to GBP, the VGlut2/PSD95

synaptic densities went down profoundly, to less than 10% of

the saline-injected values, although the number of neurons did

not change. GBP injection affected both VGlut2 and PSD95

puncta by reducing their number, size, and colocalization

(Figure 6E), similar to its effect on synaptic puncta in vitro. These

findings show that GBP is a powerful inhibitor of new synapse

formation both in vitro and in vivo.

Inhibition of TSP-Induced Synapse Formation Interferes
with Lesion-Induced Barrel Cortex Plasticity
To determine whether astrocyte-induced synapse formation is

involved in remodeling neural circuits during development, we

utilized a well-established developmental plasticity paradigm,

the ‘‘barrel cortex plasticity’’ assay. The nerves that innervate

the major whiskers on the snout of the mouse project to the brain

as a topographically ordered ‘‘somatotopic’’ map (Erzurumlu

et al., 2006). In the primary somatosensory cortex, this map is

organized as ‘‘barrels’’ (Figure 7A) that exhibit structural changes

in response to peripheral whisker manipulations.

To test whether TSP-induced synapse formation is involved in

mechanisms of experience-dependent plasticity, we injected

two groups of neonatal mice either with GBP or saline daily

starting at P0 until P7. On P1, five whiskers from the C row on

one side of each mouse were lesioned. The mice were sacrificed

at P7, and barrel cortex organization in both the unlesioned

‘‘control’’ and the lesioned hemisphere was analyzed. Both

saline- and GBP-injected mice had typical barrel organization

formed on the control side (Figure 7B, top two left panels). On

the lesioned side, although all saline-injected mice displayed

a normal barrel cortex plasticity pattern, 50% of the GBP-

injected mice displayed an atypical plasticity response

(Figure 7B, right panels), where the A and B rows as well as

the C row lost form and fused, even though the whisker follicles

for these rows were undisturbed in all mice (Figures 7B, 7C,

and S12).
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Figure 6. Gabapentin Inhibits TSP/Astrocyte-Induced Synapse Formation

(A) Immunostaining for synaptotagmin (red) and PSD-95 (green) in RGCs treated with SD2 in the presence or absence of GBP The scale bar represents 30 mm.

(B and C) Quantification of the effect of GBP on astrocyte- or TSP-induced synapse formation (B) and on SD2-induced synapse formation (C). GBP blocks SD2’s

synaptogenic effect when added simultaneously with SD2 but not when added after synapses have formed. n = 20 cells. Error bars show the mean ± SEM,

*p < 0.05.

(D) Western Blot analysis of effect of GBP on the SD2-a2d-1 interaction. Red arrows point to SD2 protein coimmunoprecipitated with a2d-1FLAG. Anti-a2d-1

antibody also recognizes weakly expressed endogenous human a2d-1 expressed by HEK293 cells (lanes 2 and 5, top blots).

(E) Quantification of colocalization of VGlut2 and PSD95 in brain sections from saline- and GBP-injected P7 mice. Error bars show the mean ± SEM, *p < 0.05.

(F) Immunolabeling of saline- and GBP-injected P7 cortices for VGlut2 (green) and PSD95 (red). Half of GBP-injected mice had a very strong reduction in the

number, size, and colocalization of synaptic puncta (white arrows, inset i versus ii). Scale bars represent 20 mm.
To more directly test the role of TSPs, we examined barrel cortex

plasticity in TSP1/2 double-null (KO) mice. A third of the TSP1/2 KO

mice we analyzed showed a very similar, aberrant barrel cortex

plasticity phenotype (Figure 7B, bottom right), a pattern that we
388 Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc.
never observed in any of the WT mice. These findings suggest that

astrocyte-secreted TSPs are required for rewiring of the barrels

post injury and that the main effect of GBP in barrel cortex plasticity

is mediated by its inhibition of TSP-induced synapse formation.



Figure 7. TSP-Induced Synapse Formation Is Involved in Barrel Cortex Plasticity

(A) Schematic presentation of the experimental paradigm: ablation of the C row of whiskers at P1 causes corresponding reorganization of barrel representations

at P7 in contralateral hemisphere.

(B) Immunolabeling of thalamocortical afferents to the barrel cortex with an antibody against 5HT transporter. The left images show control barrel cortex. The right

images are representative examples of lesion-induced plasticity after whisker follicle ablation in mice that were injected with saline (top) or GBP (middle). The

bottom row shows control (left) and lesioned (right) barrel cortices from a TSP1/2KO mouse. Arrows flank the C row of barrels corresponding to lesioned whiskers.

Brackets and dashed lines show the expansion of D row barrels. Asterisks denote regions of abnormal lesion-induced plasticity.

(C) Hematoxylin staining of the whisker pads from mice whose barrels are shown in (B) showing selective ablation of C row follicles.
DISCUSSION

a2d-1 Is a Neuronal Thrombospondin Receptor
Responsible for Synaptogenesis
The molecular interactions that regulate initiation of synapse

formation are not well characterized. Our finding that a2d-1 is

the TSP receptor required for synaptogenesis provides molec-

ular insight into the mechanism of synapse formation and raises

the question of how TSP-a2d-1 interaction leads to initiation of

synaptogenesis.

Our findings lead us to the following working model: a2d-1 is

the extracellular ligand-binding portion of a postsynaptic ‘‘syn-

aptogenic signaling complex’’ (Figure S13) that regulates forma-

tion of an initial synaptic adhesion between a dendrite and an

axon. TSP binding to the VWF-A domain of a2d-1 causes a struc-

tural rearrangement in this molecule, which triggers subsequent

conformational shifts in its binding partner(s) and switches this

complex to an ‘‘active’’ state. a2d-1 activation by TSP then leads

to inter- and intracellular signaling events that trigger the recruit-

ment of synaptic adhesion and scaffolding molecules to nascent

synaptic sites. VWF-A domains are known protein-protein inter-
action domains that act as conformational switches and alter

a protein’s structure upon binding to its ligand (Bork and Rohde,

1991; Whittaker and Hynes, 2002). The fact that antibodies

directed against the VWF-A domain of a2d-1 can mimic the syn-

aptogenic function of TSP also suggests a binding-induced acti-

vation of a2d-1 in synapse formation.

It is unlikely that a2d-1 can induce intracellular signaling by

itself since it has a very short cytoplasmic tail and the extracel-

lular domain of a2d-1 is able to mimic the full-length a2d-1’s

function in synapse formation. a2d-1 may be linked to intracel-

lular signaling mechanisms via other membrane proteins.

A calcium channel a1 subunit can be a part of this complex.

a1, after being recruited by a2d-1 to dendrite-axon contact sites,

could undergo conformational changes induced by TSP-a2d-1

interaction and potentially serve as a platform for the nucleation

of synaptic proteins at the new synaptic site (Figure S13).

a2d-1 has previously been shown to enhance calcium currents

and surface trafficking of calcium channel a1 subunits (Arikkath

and Campbell, 2003). Is a2d-1’s role in synapse formation linked

to this function? We have several observations that suggest

otherwise. First, overexpression of a2d-1 in the absence of
Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc. 389



TSP enhances calcium channel surface expression (Gurnett

et al., 1996) but does not lead to an increase in synapse number.

Second, the a2d-1Adh protein can mimic the effect of full-length

a2d-1 in enhancing synapse formation, but it does not induce an

increase in calcium currents like the full-length protein (Gurnett

et al., 1996). Third, neither the overexpression nor the pharmaco-

logical blocking of calcium channels interfered with TSP-induced

synapse formation. Similarly, acute or long-term TSP treatment

did not increase cytoplasmic calcium levels in RGCs; thus, it is

unlikely that TSP triggers activation of a homeostatic mechanism

that can activate synapse formation. Taken together, our results

show that global changes in calcium channel numbers or

currents are not involved in TSP-induced synapse formation.

However, since the a2d-1Adh construct, which enhances

synapse formation, can interact with the a1 subunit, and since

d-1 construct, which inhibits synapse formation, can interfere

with the a2d-1 and a1 interaction, a physical interaction between

a2d-1 and the calcium channel a1 subunits might be important

for synapse formation. Future studies exploring whether knock-

ing down expression of a1 subunits affects TSP-induced

synapse formation are necessary to verify this possibility.

a2d-1 might also interact with other proteins that are involved

in organization of synaptic contacts. Such dual functions have

been described for the g subunits of VGCCs also known as star-

gazins. They were initially isolated as a component of the calcium

channel complex but are now known to play primary roles in

AMPA receptor regulation (Chen et al., 2000). Identification of

the relevant a2d-1 interacting molecules promises to provide

new molecular insight into the process of synapse formation.

In addition, there could be other CNS molecules that share

TSP’s and GBP’s abilities to bind to a2d-1 and trigger or inhibit

synapse formation.

Our findings have a number of important implications for future

studies. First, TSP and a2d-1 are also highly concentrated at the

neuromuscular junction; thus, it is likely that these molecules are

involved in formation of this synapse (Arber and Caroni, 1995;

Arikkath and Campbell, 2003). Second, other a2d family

members might also regulate synapse formation. In fact, disrup-

tion of the a2d-4 gene in mice leads to a severe loss of ribbon

synapses in the photoreceptor cells (Wycisk et al., 2006), and

mutations in a2d-3 cause defects in synaptic transmission and

a morphological defect in presynaptic organization at the

Drosophila neuromuscular junction (Dickman et al., 2008; Kur-

shan et al., 2009). These observations suggest that the function

of a2d subunits in promoting synaptogenesis may be evolution-

arily conserved and can be exerted presynaptically as well as

postsynaptically.

Gabapentin Is a Powerful Blocker of Synapse Formation
Our findings suggest that GBP blocks TSP-induced synapse

formation by interfering with TSP-a2d-1 interaction. GBP binding

to a2d-1 involves a region just upstream of the VWF-A domain in

a2 (Wang et al., 1999). Therefore, it is unlikely that TSP and GBP

compete for the same binding site. It is known for integrins that

conformational changes in VWF-A domains can be constrained

by interactions made by regions flanking this domain (Bork and

Rohde, 1991; Whittaker and Hynes, 2002). We propose that

GBP binding to a2d-1 restricts the conformation of the VWF-A
390 Cell 139, 380–392, October 16, 2009 ª2009 Elsevier Inc.
domain and keeps a2d-1 in its ‘‘inactive conformation.’’ This per-

turbs the TSP-a2d-1 interaction and inhibits activation of the syn-

aptogenic signaling complex (Figure S13).

GABA, leucine, and isoleucine can also bind to a2d-1, albeit at

lower affinity than GBP (Dooley et al., 2007), and thus they can be

physiological ligands for a2d-1 and regulate excitatory synapse

formation. In agreement with this, we found that high concentra-

tions of GABA inhibited synapse formation in culture. Such high

concentrations of GABA are present in the CNS right next to

a GABAergic axon. Dendritic filopodia in the developing brain

actively seek for synaptic partners and establish exclusively

glutamatergic contacts. Interestingly, dendritic filopodia that

contact a GABAergic axon never stabilize the contact and retract

(Lohmann and Bonhoeffer, 2008; Wierenga et al., 2008). In future

studies, it will be interesting to explore whether a2d-1 functions

as a physiologically relevant GABA receptor that enables initial

selectivity for the formation of excitatory synapses by dendritic

filopodia.

a2d-1-TSP Interaction Regulates Synapse Formation
during Development and after Injury
The ability of GBP to strongly decrease synapse formation in

wild-type mouse brains points to a critical role for TSP-a2d-1

interaction and astrocytes in driving synaptogenesis in vivo. In

addition, the correct execution of barrel cortex plasticity

depends on TSP-induced synapse formation. Since the unle-

sioned barrel cortices are formed normally both in GBP injected

and TSP1/2 KO mice, TSPs might specifically play a role in

synaptic remodeling plasticity upon injury in this system. These

findings add to the growing data that astrocytes not only actively

contribute to normal synaptogenesis but also mediate synaptic

remodeling events after injury.

It is interesting that the effect of GBP in vivo is an ‘‘all or none’’

effect rather than a fractional decrease in synapse number, and

only 50% of the mice responded strongly to GBP injections. It is

possible that a critical threshold concentration of GBP in the

cerebrospinal fluid is required to be effective in blocking synapse

formation, which is only achieved in half of the mice. Gender

could be critical in GBP responsiveness by affecting in GBP

delivery to neural tissues and can explain the 50% penetrance

we have observed. In fact, a recent study demonstrated that

intraperitoneal GBP injections were not as effective at blocking

seizures in female mice as in males (Traa et al., 2008).

Since GBP strongly blocks TSP-induced synapse formation

within its therapeutic concentration, it is possible that inhibition

of excitatory synapse formation is an important mode of its ther-

apeutic action in epilepsy and pain. Reactive astrocytosis is

prominent both in epileptic lesions and in the spinal cord after

peripheral nerve injury that leads to neuropathic pain (Liu et al.,

2000; Ridet et al., 1997). Reactive astrocytes express high levels

of TSP1 and 2 (Lin et al., 2003). Similarly, upon injury in the spinal

nerve, both a2d-1 and TSP4 genes are upregulated in the spinal

cord (Valder et al., 2003; Wang et al., 2002). Increased a2d-1

levels were shown to lead to enhanced excitatory synaptic trans-

mission and elevated neuropathic pain states (Li et al., 2004,

2006). Similarly, there is increased excitation in the epileptic

brain (Prince, 1999). All these observations point to the possi-

bility that aberrant excitatory synaptogenesis may contribute to



the pathophysiology of neuropathic pain and epilepsy. Thus

GBP may act by limiting these excess synapses from forming,

a possibility which can now be directly tested in animal models

of these diseases. In conclusion, by identifying a2d-1 as a

receptor for TSP mediated glial-induced synapse formation,

we have gained molecular understanding not only of astrocytes’

role in synapse formation in health and disease, but also of the

process of synapse formation itself.

EXPERIMENTAL PROCEDURES

Purification and Culture of RGCs and Astrocytes

RGCs were purified with greater than 99.5% purity from P5 Sprague-Dawley

rats (Charles Rivers) and cultured in serum-free medium as previously

described (Christopherson et al., 2005; Meyer-Franke et al., 1995; Ullian

et al., 2001). Cortical astrocyte inserts and ACM were prepared as described

in (Christopherson et al., 2005). RCGs were cultured for 3–4 days to allow

robust process outgrowth and then cultured with astrocyte inserts, ACM, or

TSPs for an additional 6 days.

Mice

TSP1/2 double-null mice on an FVB background were used (n = 12). WT FVB

mice were purchased from Charles River Laboratories. Brains from P21, a2d-

1-overexpressing, TG mice and their littermate WT controls (n = 8) were

provided by Li and colleagues and are described in Li et al. (2006).

Quantification of Synapse Numbers

For synapse quantification of RGCs, we followed a previously developed

immunohistochemistry (IHC)-based method described and validated in Chris-

topherson et al. (2005) and Ullian et al. (2001). For quantification of excitatory

synapse number in mouse brain, three sagital brain sections per animal were

stained with pre- and postsynaptic markers, and 5 mm confocal scans were

performed (optical section width 0.38 mm, 14 optical sections each) at the

cortex. The parameters for scanning were always set up for WT (or saline-

injected) brain sections, and the same imaging parameters were used for

TG (or GBP-injected) animals. Merged single optical section images at 1 mm

intervals were analyzed with the ImageJ puncta analyzer option to count for

number of colocalized pre- and postsynaptic puncta (five optical sections/

section, 15 images/brain). Average synaptic density per imaged area was

calculated for each condition. Details on IHC conditions, image acquisition,

and quantification can be found in Supplemental Data.

Electrophysiological Recordings

Experiments were carried out on littermate WT and a2d-1 transgenic mice

aged P21–P25, and recordings and analysis were both carried out blind to

genotype. Whole-cell voltage-clamp recordings of layer IV pyramidal neurons

in the visual cortex were carried out at room temperature in flowing isotonic

saline containing 1 mM tetrodotoxin (TTX) and 40 mM bicuculline to isolate

mEPSCs. mEPSCs were recorded for one minute and analyzed with Minianal-

ysis software from Synaptosoft.

Saline and Gabapentin Injections

Mice were given daily intraperitoneal injections of either a single dose of

400 mg/kg of GBP (Sigma-Aldrich) or a matching volume of saline solution

(PBS). Pups were weighed just before injections to determine the dose admin-

istered and to follow weight gain and general health, which showed no differ-

ences between GBP- and saline-injected mice.

Whisker Lesions and Barrel Cortex Immunohistochemistry

Neonatal mice were held on their left side under a dissecting scope and

received two parallel incisions with a surgical blade flanking the C row of

whiskers to be removed. The skin between the incisions was pulled back

with forceps. Follicles were individually removed with forceps at the opening.

The lesion site was then cauterized with silver nitrate using flexible caustic

applicators (Tech-Med). Mice were allowed to recover in their home cage.
P7 mice were sacrificed, and brains were harvested. Samples were blinded

during rest of the analysis of the barrel cortex plasticity. Tangential cortical

sections were stained with anti-serotonin (5-HT) transporter rabbit polyclonal

antibody (Calbiochem, 1:400) Barrels were imaged with a Nikon Eclipse

E800 fluorescent microscope, and images were digitally acquired with an

SPOT camera (Diagnostic Instruments). The complete maps of the barrel

cortex were reassembled from 5-HTT-stained images of serial sections by

reconstruction in Photoshop (Adobe Systems). Details on the immunohisto-

chemistry conditions, image acquisition, and data analysis can be found in

Supplemental Data.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and 13

figures and can be found with this article online at http://www.cell.com/

supplemental/S0092-8674(09)01185-4.
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