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SUMMARY

Although uridine-rich small nuclear RNAs (U-
snRNAs) are essential for pre-mRNA splicing, little
is known regarding their function in the regulation
of alternative splicing or of the biological conse-
quences of their dysfunction in mammals. Here, we
demonstrate that mutation of Rnu2-8, one of the
mouse multicopy U2 snRNA genes, causes ataxia
and neurodegeneration. Coincident with the
observed pathology, the level of mutant U2 RNAs
was highest in the cerebellum and increased after
granule neuron maturation. Furthermore, neuron
loss was strongly dependent on the dosage of
mutant and wild-type snRNA genes. Comprehensive
transcriptome analysis identified a group of alterna-
tive splicing events, including the splicing of small
introns, which were disrupted in the mutant cere-
bellum. Our results suggest that the expression of
mammalian U2 snRNA genes, previously presumed
to be ubiquitous, is spatially and temporally regu-
lated, and dysfunction of a single U2 snRNA causes
neuron degeneration through distortion of pre-
mRNA splicing.

INTRODUCTION

Splicing of pre-mRNAs is performed by the spliceosome

machinery consisting of numerous proteins and five small

nuclear RNAs (snRNAs) (Wahl et al., 2009). Assembly of the

major spliceosome, responsible for splicing of over 90% of

human pre-mRNAs, begins with the recruitment of U1 snRNPs

(small nuclear ribonucleoprotein particles) to the pre-mRNA 50

exon/intron junction via base pairing of the U1 snRNA with the

splice site. U2 snRNPs subsequently bind to the pre-mRNA

branchpoint sequence (BPS) near the 30 intron boundary, also

in part via base-pairing interactions. Further remodeling of the

spliceosome results in the recruitment of additional snRNPs,

including U6 snRNPs that will replace U1 snRNPs at 50 pre-
mRNA splice sites. Base pairing of U6 with U2 snRNAs juxta-

poses the 50 splice site and the BPS, the reactants of the first
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transesterification reaction. Thus, recognition and removal of

introns and subsequent exon ligation depend in part on the

dynamic base pairing of snRNAs with pre-mRNAs and with

each other.

Given the critical importance of pre-mRNA splicing to the

regulation of gene expression and proteome diversity, it follows

that mutations in RNA-processing proteins that may influence

pre-mRNA splicing cause human disease (Cooper et al., 2009;

Licatalosi and Darnell, 2006). Indeed, dominant mutations in

multiple ubiquitously expressed protein components of the

U4/U5/U6 tri-snRNP cause retinitis pigmentosa (Mordes et al.,

2006). Mutations in the SMN1 (survival of motor neuron 1)

gene, which encodes a protein essential for U snRNP biogen-

esis, cause motor neuron degeneration in patients with spinal

muscular atrophy (SMA) (Lefebvre et al., 1995). Although SMN

is ubiquitously expressed, alterations in the levels of individual

snRNAs and numerous aberrant transcripts were observed in

a tissue-specific fashion in SMN-deficient mice (Zhang et al.,

2008). Mutations in genes encoding the ubiquitously expressed

DNA/RNA-binding proteins, TDP-43 and FUS/TLS, are associ-

ated with some cases of familial and sporadic amyotrophic

lateral sclerosis and frontotemporal dementia (Lagier-Tourenne

et al., 2010; Lemmens et al., 2010). Recent studies demon-

strated that decreased expression or altered subcellular locali-

zation of TDP-43 resulted in reduced expression and altered

splicing of multiple mRNAs (Polymenidou et al., 2011; Tollervey

et al., 2011). These findings strongly implicate alterations in

RNA processing as a key event in several neurodegenerative

disorders. However, given the multiple functions of these pro-

teins, the pathogenic basis of these diseases remains unclear.

Recently, mutations in the gene encoding U4atac snRNA, a

component of the minor spliceosome that splices a restricted

(U12-dependent) class of introns found in less than 1%of human

genes, have been linked to the developmental disorder microce-

phalic osteodysplastic primordial dwarfism (Edery et al., 2011;

He et al., 2011). However, to date, mutations in the major spli-

ceosomal snRNA genes have not been associated with disease,

perhaps in part due to their ubiquitous expression and essential

function. Furthermore, unlike the U4atac gene, the snRNAs of

the major spliceosome are encoded by multiple genes and

pseudogenes in metazoans (Marz et al., 2008), suggesting that

these genes are highly redundant. Although differing in orga-

nization (e.g., U1 and U2 genes exist in large chromosomal
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Figure 1. Progressive Granule Cell Degeneration in the NMF291�/�

Cerebellum

(A–F) Hematoxylin and eosin-stained sagittal sections of WT (+/+) and

NMF291�/� cerebella. Cerebellar lobules are indicated by Roman numerals

(D). (E and F) Higher-magnification images of lobule IV/V from (C) and (D).

(G–J) Cleaved caspase-3 immunostaining (G and H) and TUNEL analysis

(I and J) of sections from 6-week-old cerebella. Sections were counterstained

with Hoechst 33342.

Scale bars, 500 mm (D), 50 mm (F), and 10 mm (J). See also Figure S1 and

Movie S1.
clusters in the human genome, whereas other snRNA genes are

not clustered; Manser and Gesteland, 1982; Van Arsdell and

Weiner, 1984; Westin et al., 1984), sequence analysis of snRNA

genes suggests that they have apparently undergone concerted

evolution, i.e., members of gene families are identical or nearly so

within a species (Marz et al., 2008; Pavelitz et al., 1995).

However, the effect of polymorphisms in individual members of

these repetitive gene families on pre-mRNA splicing and the

extent to which the expression of single genes is independently

regulated are largely unknown.

Here, we report that a 5 nucleotide (nt) deletion in one member

of a cluster of mouse U2 snRNA genes causes neurodegenera-

tion and alternative splicing defects, including the retention of

small introns. Our study provides definitive evidence for the

causative role of splicing dysfunction in neurodegeneration and

a model to dissect the role of major spliceosomal snRNAs on

the regulation of mammalian pre-mRNA splicing.

RESULTS

Progressive Neurodegeneration in NMF291

Mutant Mice
The NMF (Neuroscience Mutagenesis Facility) 291mutation was

identified in a chemical mutagenesis screen for recessive muta-

tions that result in neurological phenotypes (Bult et al., 2004).

Mice homozygous for this mutation developed mild tremors by

8 weeks of age, which progressed to overt truncal ataxia by

12 weeks (see Movie S1 available online). At 4 weeks of age,

the brains of mutant mice appeared grossly normal (Figures

S1A–S1D). However, histological analysis revealed granule cells

with pyknotic nuclei in the mutant cerebellum beginning at

4 weeks of age (data not shown). Neuron loss was progressive,

and by 4 months of age, most granule cells had degenerated

(Figures 1A–1F). However, other cerebellar neurons, including

Purkinje cells, did not degenerate, even in aged mice (data not

shown). Although neuron death was most severe in the cere-

bellum, later-onset degeneration of granule cells in the dentate

gyrus region of the hippocampus was also observed (Figures

S1E–S1H).

To determine the nature of neuron death, immunostaining with

activated caspase-3 antibodies was performed on cerebellar

sections from 6-week-old mice. Many immunopositive granule

cells were observed in the mutant, but not the wild-type (WT)

cerebellum, suggesting that mutant neurons undergo apoptosis

(Figures 1G and 1H). Granule cell apoptosis was confirmed by

TUNEL (TdT-mediated dUTP nick end labeling) analysis (Figures

1I and 1J).

The NMF291 Mutation Deletes 5 nt in the Rnu2-8

U2 snRNA
The NMF291 mutation was initially localized to distal Chromo-

some 11 by a genome scan analysis of F2 mice using polymor-

phic microsatellite markers. Additional recombination mapping

narrowed the mutation interval to a 0.52 cM (0.34 Mb) region

between D11Mit200 and D11Mit199 containing eight protein-

coding genes (Figures 2A, 2B, and S2A). No coding sequence

polymorphisms between mutant and WT DNA were found in

these genes, nor did we observe differences in the expression
of the cerebellar transcripts of these genes between genotypes

(data not shown).

In addition to the protein-coding genes, a cluster of five U2

snRNA (Rnu2-6 to Rnu2-10) genes also resides in the NMF291

critical interval (Figure 2B). The RNAs encoded by these genes

are identical, except for a single nucleotide polymorphism in

Rnu2-6 (Figure S2B). Sequencing of mutant genomic DNA re-

vealed a 5 bp deletion between nt 30 and 34 (30AGUGU34) in

a highly conserved region of the Rnu2-8 transcription unit

(Figures 2C and 2D). This deletion removes the first 2 nt of

the U2 consensus branch site recognition sequence (BSRS)
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Figure 2. The NMF291 Mutation Is a 5 nt Deletion in a U2 snRNA Gene

(A) The NMF291 mutation was mapped to Chromosome 11 between D11Mit200 and D11Mit199 (values are in cM ± SEM).

(B) The NMF291 critical interval contains eight protein-coding genes (arrows) and five U2 snRNA genes (Rnu2-6–Rnu2-10; bars, top panel).
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Figure 3. The Expression of Rnu2-8 Is Temporally

and Spatially Regulated

(A and B) Total RNA from WT and NMF291�/� (�/�) P30

cerebella was separated by denaturing acrylamide gels for

shorter (A) or longer (B) periods and subsequently

analyzed by northern blot analysis using an U2-specific

oligonucleotide probe. For loading controls, the gel was

stained with ethidium bromide (A, bottom), or the

membrane was rehybridized with a probe for 5S rRNA (B).

(C) RPA using increasing amounts of cerebellar RNA

(0.2–1 mg) from P30 WT and NMF291�/� mice. For loading

controls, RPA was also performed using a b-actin RNA

probe.

(D) RPA analysis of U2 snRNAs in various tissues taken

from P30 WT and NMF291�/� mice.

(E) RPA analysis of U2 snRNAs in WT, NMF291+/� (+/�),

and NMF291�/� cerebella at different postnatal (P) ages

(days after birth). Cere., cerebellum; S.C., spinal cord.

See also Figure S3.
(33GUAGUA38) and the 3 nt linker region (30AGU33) between

the BSRS and U2/U6 helix IA (Figures 2D and 2E) (Wahl et al.,

2009). The deletion was not observed in genomic DNA from

several other inbred stains, including C57BL6/J and 129S4/

SvJae, from which the F1 ES cells used for mutagenesis were

derived (data not shown).

Rnu2-8 Is Spatially and Temporally Regulated
To confirm that the U2 gene disrupted by theNMF291 deletion is

indeed expressed, we performed northern blot analysis and
(C) Sequence chromatograms of WT (C57BL6/J) and mutant (NMF291�/�) Rnu2-8 genomic DNA amp

Asterisk (*) indicates nucleotides deleted in the mutant genome.

(D) Deleted nucleotides are evolutionarily conserved. Conserved nucleotides are boxed in black and

Nucleotideswith one ormoremismatches or absent across species are indicated in the consensus seq

The U2 BSRS, and the nucleotides in helices IA, II, and III, which base pair with U6 snRNA, are indic

sequence.

(E) The schematic of RNA:RNA interactions contributing to the first step of splicing. The 5 nt deletion

See also Figure S2.
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RNase protection assays (RPAs) using cere-

bellar RNA isolated from P30 WT and mutant

mice. Total U2 snRNA levels were similar

between the WT and the NMF291�/� cere-

bellum (Figure 3A), and both WT and the dele-

tion-containing Rnu2-8 RNAs were detected in

the mutant cerebellum (Figures 3B and 3C),

with the mutant transcript found at 78.9% ±

6.3% (n = 6) of the level of the WT U2 snRNA

(or �45% of total U2 levels). Similar analysis of

highly pure granule cell cultures demonstrated

that both WT and mutant U2 RNAs were ex-

pressed within the same cell type (data not

shown). Finally, immunoprecipitation experi-

ments using Y12 antibody, which precipitates

U snRNPs (Lerner et al., 1981), demonstrated

that the mutant U2 snRNAs were assembled

into mutant cerebellar U2 snRNPs (Figures

S3A and S3B), consistent with previous reports
that the free snRNA pool is relatively very small and unstable

(Sauterer et al., 1988).

Mammalian U2 snRNAs, like other U snRNAs, are believed to

be ubiquitously and highly expressed (Egloff et al., 2008; Hernan-

dez, 2001). However, neurodegeneration in NMF291�/� mice

was very distinct, with profound neuron loss occurring within

the cerebellum beginning at P30. To determine if expression of

mutant Rnu2-8 correlates with the specificity of pathological

changes, we performed RPA and northern blot assays using

neuronal and non-neuronal tissues from the P30 WT and
lified using unique primers outside of the transcription unit.

indicated in uppercase letters in the consensus sequence.

uence in lowercase letters or with an asterisk, respectively.

ated. Nucleotides are numbered according to the mouse

in Rnu2-8 is highlighted in red.
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Figure 4. Mutant Rnu2-8 Acts in a Dosage-Dependent Fashion on

Neuron Survival

(A–F) Hematoxylin and eosin-stained sagittal sections of NMF291+/� and WT

(+/+) cerebella. (E and F) Higher-magnification images of lobule IV/V from (C)

and (D).

(G) The 1.5 kb DNA fragment, containing the transcription unit of the mutant

Rnu2-8 and its 50 and 30 flanking sequences, used for pronuclear injection.
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homozygous mutant mice (Figures 3D and S3C). Surprisingly,

mutant Rnu2-8 was differentially expressed between tissues,

with highest levels observed in the cerebellum. Furthermore,

mutant Rnu2-8 expression was also temporally regulated in the

postnatal cerebellum. Mutant U2 RNAs comprised �20%–

25% of the total U2 RNA levels in the P10 and P20 NMF291�/�

cerebellum but rose to �45% of the total level at P30 (Figures

3E, S3D, and S3E). This increase was maintained at P40 but

dropped slightly at P60, likely due to neuron loss in the mutant

cerebellum. This temporal regulation of expression was also

observed in heterozygous mice, where amounts of mutant U2

RNA were approximately half of that observed in homozygous

mice (Figures 3E and S3E). Together, these data suggest that

mammalian U2 snRNAs display previously unsuspected

temporal and spatial variation with the expression of mutant

Rnu2-8 correlating with the onset and specificity of neurodegen-

eration in the NMF291�/� mouse.

Mutant Rnu2-8 Induces Neurodegeneration
in a Dosage-Dependent Manner
Although mice homozygous for the NMF291 mutation were orig-

inally ascertained in our screen, the site of the Rnu2-8 deletion,

the multicopy nature of the U2 genes, and the expression of

WT U2 snRNAs in the mutant cerebellum suggested that this

mutation might act in a gene dosage-dependent fashion. To

investigate this possibility, we performed histological analysis

of the cerebellum of NMF291+/� mice. Apoptotic granule cells

were observed in the cerebellum of 1-month-old and older

NMF291+/� mice, but the number of dying neurons was consid-

erably reduced compared to that observed in homozygous

NMF291 mice (data not shown). Differences in the overall

size of the NMF291+/� cerebellum were not obvious until mice

were close to 2 years of age, when mild tremors were apparent,

and histological analysis revealed that many granule cells had

degenerated (Figures 4A–4F).

To further test the mechanism of the Rnu2-8 mutation, we

generated mice transgenic for a 1.5 kb genomic DNA fragment

containing the mutant Rnu2-8 transcriptional unit and the basal

regulatory elements necessary for U2 transcription and process-

ing (Figure 4G) (Egloff et al., 2008; Hernandez, 2001). Mice from

one transgenic line (Tg-MuU2) expressed mutant Rnu2-8 in the

cerebellum, and expression was temporally and spatially regu-

lated similar to that observed in NMF291�/� mice (Figures 4H–

4J and S4A). Like NMF291�/� mice, hemizygous mice from

this line developed pronounced ataxia by 12 weeks of age

(data not shown). Histological analysis revealed dying granule

cells in the cerebellum of 1-month-old transgenic mice, and by

3 months of age, most granule cells had died, similar to the
(H) RPA analysis of cerebellar RNA from P30 WT, NMF291+/�, NMF291�/�

mice, and mice hemizygous for the mutant Rnu2-8 transgene (Tg).

(I) RPA analysis of cerebellar RNA from P20, P30, and P40 NMF291�/� mice

and mice hemizygous for the transgene (Tg).

(J) RPA analysis of tissues from P30 NMF291�/� and hemizygous Tg-MuU2

mice. Note that the NMF291�/� cerebellar lane was run on a separate gel.

(K and L) Hematoxylin and eosin-stained sagittal sections of Tg-MuU2 cere-

bella. DES, distal sequence element; PES, proximal sequence element.

Scale bars, 500 mm (D and L) and 50 mm (F). See also Figure S4.



Figure 5. Transgenic Expression of WT U2 snRNAs Partially

Rescues the NMF291�/� Phenotype

(A) Schematic of the RP23-268K4 BAC, containing three snRNA genes (Rnu2-

8, red bar; Rnu2-9 and -10, blue bars), used for transgenesis.

(B) RPA of cerebellar RNA from 1-month-old WT (+/+) or NMF291�/� (�/�)

mice with or without the BAC transgene (RP23-268K4).

(C–F) Hematoxylin and eosin-stained sagittal sections of WT (+/+), RP23-

268K4 (Tg-268K4), NMF291�/�, and Tg-268K4; �/� cerebella.

Scale bar, 500 mm (F). See also Figure S5.
time course of neuron death inNMF291�/�mice (Figures 4K and

4L; data not shown). As observed in NMF291�/� mice, neuron

loss in the dentate gyrus was observed in 3-month-old trans-

genic mice (Figures S4B and S4C).

If the severity of neurodegeneration is indeed dependent on

the ratio of mutant to WT snRNAs, then the complementary

experiment in which an increase in expression of WT U2 RNA

on the NMF291�/� background should lead to attenuation of

pathology. To test this hypothesis, we generated a transgenic

mouse line carrying a BAC (bacterial artificial chromosome

RP23-268K4) containing Rnu2-8 and two other U2 genes

(Rnu2-9 and -10; Figure 5A). This line was crossed to NMF291

mice to generate NMF291�/� mice carrying the BAC transgene.

The percentage of mutant/total U2 snRNA was reduced in the
cerebellum of Tg-268K4; NMF291�/� and Tg-268K4;

NMF291+/� mice relative to that observed in the cerebellum of

age-matched NMF291�/� and NMF291+/� mice (Figures 5B,

S5A, and S5B). Neurodegeneration was also decreased in the

cerebellum of 3-month-old Tg-268K4; NMF291�/� mice relative

to that of age-matched NMF291�/� mice (Figures 5C–5F).

Surprisingly, when mutant U2 RNAs represented �17% of total

U2 levels, little granule cell loss was observed in aged Tg-

268K4; NMF291+/� mice (Figures S5C–S5F). When the

percentage of mutant/total U2 RNA increased to �25% as

observed in the NMF291+/� cerebellum, neurodegeneration

was slowly progressive (Figures 4A–4F). However, when this

percentage reached �45% (as in the P30 NMF291�/� and Tg-

MuU2 cerebellum), rapid granule neuron loss was observed

(Figures 1C and 4L). Taken together, our data demonstrate

that the expression of the mutant Rnu2-8 gene is sufficient to

induce granule cell death even in the presence of WT U2 expres-

sion, and the extent of neuron loss is dependent on the expres-

sion level of the mutant U2 snRNAs relative to that of the WT U2

snRNA.

Expression of the Mutant U2 snRNA Decreases
Splicing Efficiency
The central role of U2 snRNA in pre-mRNA splicing suggested

that abnormalities in this process underlie neurodegeneration

in NMF291�/� mice. To study the impact of the mutant Rnu2-8

on pre-mRNA splicing, we employed a previously reported

splicing reporter construct, TN24 (ISS+), which encodes both

b-galactosidase and luciferase separated by an exon-intron-

exon cassette (Kollmus et al., 1996; Nasim et al., 2002). Although

b-galactosidase is constitutively expressed from this plasmid,

luciferase is only expressed when accurate splicing occurs

between the adenovirus 50 exon and the alternatively spliced

SK exon of human Tpm3 (see diagram in Figure 6C).

HEK293T cells were transfected with ISS+ alone, or cotrans-

fected with the reporter and a 1.5 kb genomic DNA fragment

containing the WT or the mutant (D5nt) U2 transcription unit

(Figures 6A–6C). As controls, cells were cotransfected with the

reporter and a plasmid encoding the RNA-binding protein

hnRNPG, which has been shown to silence splicing of this

exon-intron-exon cassette via binding of the 25 bp intronic-

splicing silencer (ISS) (Nasim et al., 2002). Transfection of WT

Rnu2-8 did not have a significant effect on reporter splicing as

determined by the ratio of luciferase/b-galactosidase activity or

by RT-PCR (Figure 6C). However, transfection of mutant Rnu2-

8 led to a significant decrease (28%; p < 0.01) in the splicing effi-

ciency of the reporter compared to that of cells transfected with

reporter alone.

Similar experiments were performed using the same reporter

lacking the 25 bp ISS (ISS�) (Nasim et al., 2002) (Figure 6D). In

agreement with the role of the ISS sequence in splicing silencing,

we observed a 4- to 5-fold increase in splicing of this reporter

over that of the reporter containing the ISS sequence. As previ-

ously shown (Nasim et al., 2002), the inhibitory effect of hnRNPG

expression on ISS� reporter splicing was greatly reduced

(Figure 6D). As observed for the ISS+ reporter, splicing of the

ISS� reporter was not changed by expression of the WT U2.

However, in contrast to the attenuation of ISS+ reporter splicing
Cell 148, 296–308, January 20, 2012 ª2012 Elsevier Inc. 301



Figure 6. Mutant Rnu2-8 Selectively Decreases

Splicing Efficiency of Introns

(A) The sequences of WT and deletion (D) U2 constructs

used for cell transfection experiments.

(B) RPA analysis of RNA from mock-transfected HEK293T

cells or cells transfected with WT or DU2 plasmids.

(C and D) HEK293T cells were transfected with the ISS+

splicing reporter (C) or the ISS� splicing reporter (D), or

cotransfected with WT or DU2 constructs as indicated.

The splicing of pBPLUGA parental vector is shown in (C)

as a control, and the splicing of the ISS+ reporter is shown

in (D) as a reference. The splicing efficiency of the

reporters was measured by luciferase/b-Gal (b-galacto-

sidase) activity (top panels in C and D) and confirmed by

RT-PCR (bottom panels). Values represent mean ± SEM,

n = 3; *p < 0.01; one-way ANOVA. Asterisk (*) and arrows in

reporter diagrams denote stop codons and RT-PCR

primers, respectively.

(E) A diagram of the 30 region of the L1CAM gene. Asterisk

(*) denotes stop codon. Arrows indicate RT-PCR primers.

(F) RT-PCR was performed on WT (+/+) and NMF291�/�

(�/�) cerebellar cDNA at indicated ages.

(G and H) HEK293T cells were transfected with L1CAM

exon 27-intron 27-exon 28 (G) and exon 28-intron 28-exon

29 (H) splicing reporters with or without WT or DU2

constructs as indicated. Splicing of these reporters was

analyzed as described above in (C) and (D). As references,

the spliced RT-PCR products of exon 27-intron 27-exon

28 reporter and the unspliced PCR product amplified from

the exon 28-intron 28-exon 29 reporter plasmid (DNA) are

also shown in (H). Values represent mean ± SEM, n = 3;

*p < 0.01; one-way ANOVA. Asterisks (*) in reporter

diagrams denote stop codons.
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by expression of the mutant U2 construct, expression of

the mutant U2 did not significantly affect splicing of the ISS�
reporter. These results suggest that alterations in splicing effi-

ciency mediated by the expression of the mutant U2 snRNA

may be dependent on the presence of splicing regulatory

sequences.

The presence of intronic or exonic splicing regulatory

sequences often accompanies alternative splicing of pre-

mRNA (Black, 2003); thus, we initially analyzed several alterna-

tive-splicing events that were previously reported to occur in

the human cerebellum (Wang et al., 2008). Of the 20 alternative

splicing events, including 1 in the neural cell adhesion molecule

L1 (L1CAM), 4 displayed obvious changes in relative isoform

expression between the WT and NMF291�/� cerebellum (data

not shown). PCR amplification of the distal exons of the

L1CAM transcript from WT cerebellar RNA generated two iso-

forms: the major form containing exons 27-28-29, and a minor

isoform that retains the 95 bp intron located between exons 27

and 28 (Figures 6E and 6F). Coincident with the decrease of

the fully spliced isoform, the abundance of the intron 27-contain-

ing isoform was increased in mutant cerebellar RNA. Interest-

ingly, these alterations in splicing were most dramatic in the

P30 and P40 cerebellum, demonstrating that the change in the

ratio of splicing variants was temporally regulated in a manner

coincident with expression of the mutant U2 snRNA.

To directly evaluate the effects of the mutant U2 on splicing of

intron 27, we generated L1CAM splicing reporters. A cassette

containing exon 27, the alternatively spliced intron 27, and

exon 28, or a cassette with exon 28, the constitutively spliced

intron 28, and exon 29 were cloned into the pBPLUGA plasmid

(Figures 6G and 6H). These plasmids were cotransfected into

HEK293T cells with theWT or mutant Rnu2-8 plasmid. Transfec-

tion of the intron 27-containing reporter resulted in both spliced

and unspliced transcripts as evidenced by RT-PCR (Figure 6G).

In contrast only spliced transcripts were observed in cells trans-

fected with the intron 28-containing reporter, and luciferase/

b-galactosidase activity was increased accordingly (Figure 6H).

Overexpression of the WT U2 had no effect on splicing of either

reporter. However, in agreement with our in vivo data, expres-

sion of mutant Rnu2-8 caused a decrease in splicing efficiency

(34%; p < 0.01) of intron 27, but not of intron 28, the splicing

efficiency of which was increased for unknown reasons (Figures

6G and 6H). These reporter data confirm that expression of the

mutant U2 disrupts splicing of select introns.

Deletion of the U2/U6 Helix IA Linker Is Sufficient
to Disrupt Splicing
The 5 nt deletion in Rnu2-8 removes 2 nt of the BSRS, which

recognizes and forms a duplex with the intronic branch site

(BS) of the pre-mRNA that is important for the spliceosome

assembly and the first catalytic step of splicing (Wahl et al.,

2009). In addition, the NMF291 deletion removes the 3 nt linker

between the BSRS and the sequence that forms the U2/U6 helix

IA. The distance between these two sequences has been shown

to change splicing kinetics in yeast (McGrail et al., 2006; Ryan

and Abelson, 2002; Smith et al., 2009). To further understand

the underlying mechanism of mutant Rnu2-8-induced splicing

defects, we created a series of U2 deletion plasmids: D6, in
which the entire BSRS was deleted; D3, in which the linker

sequence between BSRS and U2/U6 helix IA was deleted; and

D9, in which both the entire BSRS and the linker were deleted

(Figure 6A).

Experiments in yeast demonstrated that mutations in U2

snRNA, which disrupt the duplex formation between the BSRS

and the BS, inhibit spliceosome assembly and result in the

degradation of these RNAs (Smith et al., 2009). In agreement

with these studies, we consistently observed lower expression

levels of D6 and D9 Rnu2-8 RNAs, both of which lack the

BSRS, compared to that observed for the WT, D5 (the NMF291

mutant form), and D3 Rnu2-8 RNAs in transfected cells (Fig-

ure 6B). Cotransfection of the D6 or the D9 plasmid with the

ISS+ reporter did not affect reporter splicing (Figure 6C).

However, expression of theD3 construct significantly decreased

(24%; p < 0.01) splicing of the ISS+ reporter, closely mimicking

the repression of splicing that was observed when D5 Rnu2-8

was cotransfected with the reporter. Also as observed with co-

transfection of D5 Rnu2-8, expression of D3 construct had no

effect on splicing of ISS� splicing reporter (Figure 6D).

Similarly, expression of the D3 Rnu2-8 plasmid was sufficient

to reduce splicing (13%; p < 0.01) of intron 27 from the L1CAM

intron 27-containing splicing reporter, although not as efficiently

as cotransfection of the reporter withD5Rnu2-8, suggesting that

the deletion of 2 nt of the BSRS may also contribute to the D5

effect on splicing (Figure 6G). Cotransfection of the D3 plasmid

with the intron 28-containing reporter again led to an increase

rather than decrease of splicing, as did expression of the D6

and D9 plasmids (Figure 6H). Our data suggest that expression

of a U2 snRNA with either the NMF291-associated 5 nt deletion

or lacking the linker sequence between the BSRS and the U2/U6

helix IA disrupts select intron splicing.

Abnormal Alternative Splicing in the NMF291

Mutant Cerebellum
To analyze alternative splicing in the NMF291 mutant cere-

bellum, exon expression was examined by Affymetrix mouse

exon 1.0 ST microarrays. Microarrays were hybridized with

RNA from three WT and three NMF291�/� cerebella isolated at

P30, a timewhen themutant U2 RNA is expressed at peak levels,

but few neurons have degenerated (Figures S1A–S1D, 3E, and

S3E). A total of 123 genes were differentially expressed between

the WT and mutant cerebellum, as demonstrated by analysis

of signal across all probe clusters for a gene (fold change R1.5;

p < 0.05) (Table S1A). Differential expression of most (78%) of

these genes was relatively low (1.5- to 2-fold), suggesting that

overall gene expression was not dramatically altered in the P30

mutant cerebellum.

Paired analysis of the exon splicing index (SI), which was

calculated by normalizing exon expression to gene level expres-

sion (Clark et al., 2007; de la Grange et al., 2010), revealed that

the expression of 206 exons in 178 genes was differentially ex-

pressed between the WT and mutant cerebellum (SI fold change

R1.5; p < 0.05) (Table S1B). These exons were compared to the

comprehensive list of known human and mouse splice variants

in the FAST DB database (de la Grange et al., 2007), and 146

(71%) events, representing all major types of alternative splicing

patterns, were previously annotated as alternatively spliced
Cell 148, 296–308, January 20, 2012 ª2012 Elsevier Inc. 303



(Table S1B; Figure 7A). To validate our exon array results,

RT-PCR was performed using cerebellar cDNA from four inde-

pendent mice of each genotype. Of these events, 92% (12 of

13) were validated as differentially spliced between the WT and

mutant cerebellum (Figure S6A; data not shown).

Interestingly, 14% of the differentially spliced events detected

by exon array analysis were annotated as alternatively spliced

introns, although introns normally represent a very minor (1%–

3%) class of alternative splicing events (Chacko and Rangana-

than, 2009; de la Grange et al., 2010; Wang et al., 2008). To

examine this more closely and to expand our exon array results,

we performed RNA-Seq analysis. Libraries were prepared from

cerebellar mRNA from three P30 mutant and two P30 WT mice

and sequenced. The resulting reads were aligned to the mouse

genome reference sequence via SpliceMap (http://www.

stanford.edu/group/wonglab/SpliceMap/), an algorithm that

maps exon-exon junctions without relying on previous exon

annotations for recovering the splicing junctions (Au et al.,

2010). A total of 53.48 ± 6.35 3 106 reads per sample were

uniquely mapped to the mouse genome, and 61.23% ± 1.18%,

20.80% ± 1.54%, and 6.20% ± 0.19% of these reads uniquely

mapped to exons, introns, and splice junctions, respectively

(Table S1C).

To identify alternative splicing pattern changes between the

WT and NMF291�/� cerebellum, splicing junction reads were

extracted and normalized for isoform expression to generate

the Relative Junction Index (RJI) (Figure S6). Comparison of

the RJI between the two genotypes identified 1,636 junctions

that were differentially expressed (RJI ratioR 2.0; p < 0.05; Table

S1D). In addition, 52 and 1,137 junction reads that were present

only in the WT and mutant data sets, respectively, indicated that

many splicing variants in the mutant cerebellum were not

present, or present at a very low levels, in the WT cerebellum

(Table S1E). As described above, RT-PCR using WT and mutant

cerebellar cDNA was performed to test differential splicing of

junctions. A total of 20 of 20 junctions that were originally identi-

fied in both genotypes and 20 of 21 (95%) of the junctions iden-

tified only in 1 genotype were validated (Figures S6B and S6C;

data not shown).

To examine global abnormalities in splicing of introns in the

mutant cerebellum, we calculated the Relative Intron retention

Index (RII) from our WT and mutant RNA-Seq data sets (Fig-

ure S6). Comparison of WT and mutant RIIs indicated that

3,978 introns were retained at higher levels in the mutant cere-

bellum (RII ratio R 2; p < 0.05, Figure 7B; Table S1F), including

intron 27 of L1CAM (RII ratio = 3.55; p = 0.0012). In contrast,

we identified only 362 introns that were retained at higher levels

in the WT cerebellum (RII ratio R 2; p < 0.05). To check the val-

idity of our analysis, we performed RT-PCR on 23 introns that

were present at higher levels in the mutant transcriptome by

RNA-Seq, and all were validated (Figures S6D and S6E; data

not shown). Furthermore, 19 of 23 (82.61%) of these introns,

like intron 27 of LICAM, and 5 of 7 RT-PCR-validated introns

identified by exon array, were also present in WT cerebellum

as aminor isoform (Figures S6A and S6D). These results indicate

that these introns represent alternative splicing events and are

likely to be suboptimal pre-mRNA substrates even in presence

of the WT spliceosome. Previous studies have shown that small
304 Cell 148, 296–308, January 20, 2012 ª2012 Elsevier Inc.
introns are prone to being retained in human and mouse tran-

scripts in physiological conditions (Sakabe and de Souza,

2007). These prompted us to check the size distribution of the

intron retention events identified by RNA-Seq. Indeed, 30.62%

of the retained introns in the mutant cerebellum were less than

100 bp, which largely differs from the size distribution of introns

in the mouse genome (RefSeq; 5.31% < 100 bp) or those signif-

icantly retained in the WT cerebellum (3.31% < 100 bp) (Fig-

ure 7C). As expected, differences in splicing of small introns

removed by the U12-dependent minor spliceosome were not

observed in the mutant cerebellum (Figure S6F). Thus, both

exon array and RNA-Seq analysis demonstrated that a group

of alternative splicing events, including the splicing of small

introns, was altered in the NMF291�/� cerebellum.

To check the overlap of our exon array and RNA-Seq analysis,

we compared intron retention events (Table S1H). Of these

events, 96.4% (27 of 28) detected by exon array displayed differ-

ences in the same direction in RNA-Seq data, although only

46.4% (13 of 28) passed our stringent threshold set for RNA-

Seq analysis. Although differential events in other splicing event

categories ascertained by both analyses were clearly validated

by RT-PCR, little overlap was observed in the data sets, likely

due to the different experimental and analysis parameters used

in the two methods (see Extended Experimental Procedures).

The role of U2 snRNA as a basal component of the spliceo-

some would predict that splicing of transcripts encoding

proteins across many functional classes would be disrupted in

the mutant cerebellum. Indeed, splicing alterations between

the WT and mutant cerebellum occur in genes with many pre-

dicted cellular roles (Tables S1B and S1D–S1F). However,

Gene Ontology (GO) analysis of the differentially expressed junc-

tions and spliced introns detected by RNA-Seq and exon array

analysis revealed that genes annotated to GO terms of nucleo-

plasm (GO:0005654) were significantly enriched, as were those

annotated to ribonucleotide binding (GO:0032553) (Table S1G).

Interestingly, after these two functional clusters, the most signif-

icantly enriched genes in the differentially spliced intron data set

were annotated to mRNA processing (GO:0006397), including

those annotated to the spliceosomal complex (GO:0005681)

(Figure 7D; Table S1G). Differentially expressed exons and

genes also showed significant enrichment for mRNA processing,

although at higher p values.

DISCUSSION

We demonstrate that a mutation in one of the multicopy mouse

U2 snRNA genes causes defects in pre-mRNA splicing, leading

to neurodegeneration. U2 snRNAs play an essential role in

formation of the catalytically active spliceosome by base pairing

with both the intron branch point and the U6 snRNA (Wahl et al.,

2009). Expression of the mutant U2 snRNA alters pre-mRNA

splicing at selective splice sites that are often associated with

alternative splicing, demonstrating that U-snRNA dysfunction,

like downregulation of core spliceosomal proteins, can influence

splice site choice (Corioni et al., 2011; Park et al., 2004; Saltzman

et al., 2011; Shaw et al., 2007).

One of the main pathological features of the NMF291�/� cere-

bellum is the increased retention of small introns, which likely

http://www.stanford.edu/group/wonglab/SpliceMap/
http://www.stanford.edu/group/wonglab/SpliceMap/


Figure 7. Global Splicing Abnormalities in the NMF291�/� Cerebellum

(A) Types of alternative splicing events identified by exon array analysis as differentially spliced between theWT and theNMF291�/� cerebellum. A3SS, alternative

30 splice site; A5SS, alternative 50 splice site; AFE, alternative first exon; ALE, alternative last exon; MXE, mutually exclusive exon; T3UTR, truncated 30UTR.
(B) The log of the mutant/WT IRI generated by RNA-Seq analysis plotted against the log of the intron length (bp).

(C) Significantly retained introns in the cerebellum of NMF291�/� or WT mice, or RefSeq introns were grouped by length and plotted as a percentage of the total

introns.

(D) GO analysis of genes annotated to the pre-mRNA splicing GO term were significantly enriched in the differentially spliced exons (Diff. junctions) and introns

(Diff. introns) identified by RNA-Seq, and differentially spliced exons (Diff. exons) and differentially expressed genes (Diff. genes) identified by exon array.

Percentage is the number of genes (the numerator in parentheses) annotated to the GO term divided by the total number of inputted genes (the denominator in

parentheses). Fold enrichment is the magnitude of enrichment of input genes relative to all mouse genes annotated to pre-mRNA splicing. The p value indicates

the significance of gene-term enrichment with a modified Fisher’s exact test.

(E) The working model for our findings. The splicing status and biological consequences of expression of WT (blue) and NMF291 mutant (red) U2 snRNAs in WT

and NMF291�/� neurons are shown. Our in vivo and in vitro data suggest that expression of mutant U2 snRNA disrupts splicing at many suboptimal or weaker

splice sites, including some of those used in alternative splicing. These changes in alternative splicing may be further amplified by altered splicing of

RNA-processing factors caused directly by mutant U2 snRNAs or by autoregulation.

See also Figure S6 and Tables S1A–S1H.
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represent unique spliceosomal substrates. Unlike splicing of

large introns, which is thought to first occur by pairing of splice

sites across the exon (‘‘exon definition’’), splicing of short

introns likely occurs by pairing of 50 and 30 splice sites across

the intron (‘‘intron definition’’) (Berget, 1995). Furthermore,

even under normal physiological conditions, many of the highly

retained introns in the mutant cerebellum are not fully spliced,

consistent with the observation that weak splicing sites often

flank small introns (Lim and Burge, 2001; Sakabe and de Souza,

2007). Given the disruption of short intron splicing and other

alternative splicing events, it is plausible that mutant U2 snRNPs

are fully functional on optimal, but not suboptimal, substrates

(Figure 7E).

Interestingly, we found that mRNA-processing genes were

significantly enriched among the alternative splicing events

differentially expressed between theWT andmutant cerebellum,

suggesting that neurons may utilize alternative splicing to regu-

late the function of proteins involved in RNA splicing and pro-

cessing in an effort to restore splicing homeostasis. Indeed,

studies have shown that a number of splicing regulators autore-

gulate their expression and activity via transcriptional feedback

loops and alternative splicing (Ni et al., 2007; Saltzman et al.,

2011;Wollerton et al., 2004). However, rather than reestablishing

homeostasis, these splicing alterations could in fact act to

amplify the amount of abnormal splicing and ultimately prove

deleterious. It will be intriguing to see whether the expression

level and/or alternative splicing status of these mRNA-process-

ing genes is also affected in SMA patients or ALS/FTD patients

with mutations in TDP-43 or FUS/TLS.

The ultimate cause of neuron death in themutant cerebellum is

unclear. Cell death could be caused by the generation of proteins

with altered function or by the production of RNAs containing

abnormal sequences, which could themselves be toxic as previ-

ously reported for trinucleotide repeat expansion diseases (Li

et al., 2008). Retained introns may also contribute to neuron

death by sequestering splicing regulators and/or other RNA

binding proteins. In addition, many of these introns likely harbor

premature translation termination codons (PTCs) that would be

predicted to trigger the nonsense-mediated mRNA-decay

(NMD) pathway. In addition to its role in degradation of abnormal

transcripts, NMD also regulates many natural PTC-containing

transcripts, including those involved in synaptic physiology and

cellular stress (Gardner, 2010; Giorgi et al., 2007). Enhanced

and/or prolonged NMD activation could overwhelm the NMD

pathway, causing dysregulation of natural NMD targets that

might be essential for cell survival, or itself cause cellular stress.

Finally, our data demonstrate the potential for disease-

causing mutations in multicopy genes. Although a single U2

gene is present in yeast, multiple copies of these genes exist in

higher organisms, each producing identical or nearly identical

products. Indeed, the region on human Chromosome 17p21

(homologous to the Rnu2-6 to Rnu2-10-containing region on

mouse Chromosome 11) also contains a cluster of stably in-

herited U2 genes that vary in copy number from 5 to 25 (Van

Arsdell and Weiner, 1984; Westin et al., 1984). In addition to

our findings of temporal and spatial regulation of a mouse U2

gene, developmental regulation of other snRNA genes, including

U2 snRNA genes, has been reported (Forbes et al., 1984; Lund
306 Cell 148, 296–308, January 20, 2012 ª2012 Elsevier Inc.
et al., 1985; Sierra-Montes et al., 2005; Stefanovic et al., 1991).

Furthermore, the developmental arrest associated with homozy-

gosity for a mutation in 1 of 12 C. elegans U1 genes raises the

possibility of differences in expression and/or function between

C. elegans U1 genes (Zahler et al., 2004). Whether individual

human U2s (or other multicopy genes) are differentially ex-

pressed during development, in different cell types, or even as

a result of pathogenic processes is unknown. However, the

potential for discrete regulation of individual members of multi-

gene families, combined with their potential for copy number

variation, increases the prospect of uncovering disease-causing

mutations in repetitive genes.

EXPERIMENTAL PROCEDURES

Mice

The NMF291mutant strain was derived from EMS-treated ES cells and a two-

generation mating scheme, as described previously (Munroe and Schimenti,

2009). Genetic mapping of the NMF291 mutation was performed using an

intersubspecific intercross (B6; 129 NMF291 3 CAST/Ei). The Jackson Labo-

ratory Animal Care and Use Committee approved all animal protocols.

Histology Analysis

Hematoxylin and eosin staining was performed on Bouin’s fixed tissue.

Cleaved Caspase-3 (Cell Signaling) immunostaining and TUNEL assays

(Roche) were performed as described previously (Zhao et al., 2005). At least

three mice of each genotype were used for all histological analyses.

RPA, Northern Blot Assay, and RT-PCR Assay

Total RNA was extracted by TRIzol (Invitrogen) and treated with DNase I (Am-

bion). RPA analysis was performed as suggested by the manufacturer’s

instructions (Ambion). For northern blots, total RNA was separated by 10%

denaturing polyacrylamide gel, and the membrane was hybridized with end-

labeled DNA oligo probes. RT-PCR was performed on random-primed

cDNA (Invitrogen). Primers used for RT-PCR are described in Table S2.

Density of bands in scanned X-ray films was determined by ImageQuant 5.2

software (Amersham).

Constructs, Cell Culture, Transfection, and Luciferase Assays

ThemutantRnu2-8DNA fragment used for generating transgenic mice and the

corresponding WT DNA fragment were cloned into pCR2.1-TOPO for expres-

sion of WT and mutant U2 snRNA in cultured cells. The D3, D6, and D9 U2

snRNA and ISS� expression constructs were generated by site-directed

mutagenesis (Stratagene). Primers used for construct generation are

described in Table S2B. HEK293T cells were used for transient transfection

(Lipofectamine 2000; Invitrogen). Luciferase and b-galactosidase activities

(Promega) were measured in a multilabel counter 48 hr after transfection.

Statistical significance was determined by ANOVA analysis (SPSS).

Exon Array, RNA-Seq, and Functional GO Analysis

Data treatment of Mouse Exon 1.0 ST Arrays (Affymetrix) was done by the EA-

SANA analysis and the interface visualization system (GenoSplice Technology,

http://www.genosplice.com), which is based on the FAST DB annotations (de

la Grange et al., 2007). Probe selection and statistical analysis were preformed

as previously described (Clark et al., 2007; de la Grange et al., 2010). The GEO

(Gene Expression Omnibus) accession number for our exon array data is

GSE33069. For RNA-Seq, mRNA purification and DNA library preparation

were performed according to the manufacturer’s protocol (Illumina). The

library was sequenced on Illumina GAIIX using paired-end read strategy. For

de novo identification of junctions, the reads were inputted to SpliceMap

3.3.6 (Au et al., 2010) and aligned to the mouse reference genome. A work-

flow chart of our RNA-Seq analysis is shown in Figure S6G. RefSeq intron

length information was extracted fromUCSC. The GO analysis was conducted

by using DAVID bioinformatics resources 6.7 (Huang da et al., 2009). Primers

http://www.genosplice.com


used for exon array and RNA-Seq validation experiments are described in

Table S2C.
ACCESSION NUMBERS

Our exon array data have been deposited into the GEO. The GEO accession

number is GSE33069. The databank accession numbers for the Rnu2-6,

Rnu2-7, Rnu2-8, Rnu2-9, and Rnu2-10 sequences reported in this paper are

JN863957, JN863958, JN863956, JN863959, and JN863960, respectively.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, two tables, and one movie and can be found with this article online

at doi:10.1016/j.cell.2011.11.057.
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