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A B S T R A C T

Stroke is a leading cause of adult motor disability. The number of stroke survivors is increasing in

industrialized countries, and despite available treatments used in rehabilitation, the recovery of motor

functions after stroke is often incomplete. Studies in the 1980s showed that non-invasive brain

stimulation (mainly repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current

stimulation [tDCS]) could modulate cortical excitability and induce plasticity in healthy humans. These

findings have opened the way to the therapeutic use of the 2 techniques for stroke. The mechanisms

underlying the cortical effect of rTMS and tDCS differ. This paper summarizes data obtained in healthy

subjects and gives a general review of the use of rTMS and tDCS in stroke patients with altered motor

functions. From 1988 to 2012, approximately 1400 publications were devoted to the study of non-

invasive brain stimulation in humans. However, for stroke patients with limb motor deficit, only

141 publications have been devoted to the effects of rTMS and 132 to those of tDCS. The Cochrane review

devoted to the effects of rTMS found 19 randomized controlled trials involving 588 patients, and that

devoted to tDCS found 18 randomized controlled trials involving 450 patients. Without doubt, rTMS and

tDCS contribute to physiological and pathophysiological studies in motor control. However, despite the

increasing number of studies devoted to the possible therapeutic use of non-invasive brain stimulation

to improve motor recovery after stroke, further studies will be necessary to specify their use in

rehabilitation.
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1. Introduction

Since the 1980s, the development of non-invasive techniques
(electrodes simply positioned on the scalp over the target brain
area) allowing for reversible manipulation of the cortex excitability
has paved the way to physiological studies in healthy humans. In a
second step, these non-invasive techniques were introduced in
pathophysiological studies. To briefly summarize the main data
[1,2], these studies reveal that isolated transcranial magnetic
stimulation (TMS) applied over the motor cortex induces a motor
evoked potential (MEP) in the target muscle recorded by surface
electromyography (EMG) (Fig. 1). Low-frequency repetitive TMS
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(rTMS < 1 Hz) reduces the excitability of the motor cortex, thus
decreasing the MEP amplitude, whereas high-frequency rTMS
(>5 Hz) increases it (Fig. 1). Anodal transcranial direct current
stimulation (tDCS) increases the motor cortex excitability and
cathodal tDCS decreases its excitability (Fig. 1). The effects of rTMS
and tDCS are not limited to the motor cortex target area but also
affect distant interconnected brain and spinal networks [3–9]. Both
rTMS and tDCS induce after-effects [3], which is a powerful
argument to explore their possible therapeutic effects.

Stroke is a leading cause of long-term adult disability, and the
number of patients with chronic motor deficit after stroke is
increasing in industrialized countries, despite classical rehabilita-
tion techniques. In the 2004 review by Dobkin, listing the current
strategies for stroke rehabilitation, only 60% of patients with
hemiparesis achieved functional independence in simple activities
of daily living [10]. The author also stressed that the effect of
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Fig. 1. Action of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). A–B. rTMS action. A. Low-frequency rTMS effects: the

upper line represents motor-evoked potential (MEP) in the target muscle. With increasing intensity of isolated TMS, the amplitude of MEP increases. The lower line represents

the MEP size after rTMS. Note that the MEP size decreases after low-frequency rTMS. B. High-frequency rTMS effects: upper line represents MEP in the target muscle. With

increasing intensity of isolated TMS, the amplitude of MEP increases. The lower line represents MEP amplitude after rTMS. Note that the MEP size increases after high-

frequency rTMS (adapted from Valero-Cabré et al., 2011 [22]). C–E. tDCS action C. Spontaneous discharge of cortical neurons before tDCS intervention. D. Decrease of the

spontaneous discharge after inhibitory cathodal tDCS. E. Increase of spontaneous discharge after anodal tDCS.
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therapeutics is limited during the acute stage and the management
of stroke mainly focuses on secondary prevention and rehabilitation.

The search to improve rehabilitation during the last decades has
led to different strategies to manipulate or induce brain plasticity.
An increasing number of studies, involving rTMS and tDCS, are
devoted to their possible therapeutic effects to improve motor
functions after stroke [3,11–15]. These therapeutic trials consisted
of excitatory stimuli applied on the motor cortex with a lesion to
increase the efficacy of the remaining cells; inhibitory stimuli
applied on the non-lesioned cortex to decrease the inhibitory
connections from the non-lesioned hemisphere to the lesioned
one; and both stimulations combined, with or without traditional
rehabilitation and with or without sham stimulation. These studies
differ by the characteristics of the stimulation and number of
sessions. The outcome measures used to objectively determine the
possible effect of these stimulations differed among studies,
including in the assessment of the clinical motor function, muscle
force or spasticity scales; appreciation of daily living; functional
MRI (fMRI); and electrophysiology. They also differed in whether
the possible effect was tested during the intervention, immediately
after or at longer time after the end of the intervention.

2. Background summary

The mechanisms underlying the effects of rTMS and tDCS
applied over the motor cortex are fully described in this special
issue [1,2]. Here, we summarize the central nervous system
structures that these stimulations likely involve. Excitatory
stimulation enhances the excitability of the motor cortex under
the electrodes, thus inducing a facilitatory effect on the contralat-
eral corticospinal tract and the spinal motor neurons. This effect is
revealed by an increase in MEP amplitude (Fig. 1). The stimulation
over the contralateral motor cortex also likely activates the
ipsilateral corticospinal tract in stroke patients, but healthy
subjects show no evidence of increased ipsilateral MEP amplitudes.
The descending projections from upper motoneurones are not
limited to the spinal motor neurones but are also propriospinal
nuclei and spinal interneurons [4,7–9,16]. In a given hemisphere,
fMRI and magneto-encephalography studies have demonstrated
that brain stimulation applied over the motor cortex may affect
many brain regions at a distance involving other cerebral areas,
basal ganglia and cerebellum. Finally, the homologous cortical area
exhibits mutual inhibitory connections between the 2 hemispheres
[3,17].

In summary, it must be remembered that non-invasive brain
stimulation over the motor cortex induces changes in the target
motor area but also in many cortico-subcortical and spinal
structures. The likely excessive interhemispheric inhibition (IHI)
from the non-lesioned hemisphere after stroke has led to exploring
the possible therapeutic effects of inhibitory stimulation applied to
the non-lesioned hemisphere and also dual stimulation (excitatory
on the lesioned hemisphere and inhibitory on the non-lesioned
hemisphere) (Fig. 2). In recent years, 4 review articles [11–13,18]
have summed up the therapeutic trials of rTMS and tDCS
performed for about 10 years. In searching MEDLINE via PubMed
in February 2015 to identify the trials of rTMS and tDCS
interventions in stroke patients with limb motor deficit, we found
about 141 references for rTMS and 132 for tDCS. As reported in the
4 reviews quoted above, about 1400 publications involved non-
invasive brain stimulation in humans, 180 of these devoted to
stroke patients.

The criteria used by the authors of these 4 reviews to retain
studies for meta-analysis differ as follows:

� Ayache et al. [11] retained all studies devoted to the possible
therapeutic effects of rTMS and tDCS on motor function in stroke
patients. The authors excluded studies of only purely neuro-
physiological evaluation. Therefore, 66 studies involving



Fig. 2. rTMS and tDCS location. A. tDCS or rTMS is applied over the lesioned hemisphere: an excitatory stimulation is used. B. tDCS or rTMS is applied over the non-lesioned

hemisphere: an inhibitory stimulation is used to reduce the interhemispheric inhibition drive from the non-lesioned to the lesioned hemisphere. C. Dual stimulation:

excitatory stimulation on the lesioned hemisphere and inhibitory stimulation on the non-lesioned hemisphere.
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1785 patients (1343 for rTMS studies and 442 for tDCS studies)
were analyzed;
� the review by Hsu et al. [18] related to rTMS effects. The criteria

used were number of patients involved in each study >5 and
only randomized controlled trials. Thus, the authors retained
18 studies involving 392 patients;
� the Cochrane review [12] focused on the effects of rTMS for

improving function after stroke. Randomized controlled trials
coupling rTMS therapeutics with sham or control interventions
were included. The studies reporting only laboratory parameters
were excluded. After screening 2431 titles and abstracts, the
authors included 19 papers involving 588 patients;
� the Cochrane review [13] described the effects of tDCS. Only

randomized controlled trials and randomized controlled cross-
over trials were included. From 6231 records identified via
database searching, the authors eliminated duplicate records
(2726) and retained only studies meeting Cochrane criteria.
Thus, only 18 studies involving 450 patients were retained for
further analysis.

3. Main data

Whatever the aim of the non-invasive brain stimulation
(excitatory or inhibitory) or type, rTMS or tDCS, the studies
mostly dealt with upper-limb motor function. The possible
improvement of upper-limb motor function was assessed mainly
by clinical tests and clinical scales of generic activities of daily
living, improvement of hand functions, muscle force and
spasticity. More accurate tests such as neurophysiological and
neuroimaging tools were rarely used even though clinical
assessment alone has low prognostic accuracy [19]. These studies
differed in number of patients (from <10 to >200), the stroke
onset, the presence of sham stimulation, the presence of
traditional rehabilitation coupled with non-invasive brain stim-
ulation, the type of stroke (cortical or sub-cortical), the time
between 2 sessions in case of repetitive sessions, and the time
between the test and the end of the intervention.
3.1. rTMS

The Cochrane review [12] included 588 patients aged 50 to
75 years; 30% to 80% were males (according to the different
studies). The time between the stroke onset and the start of the
intervention varied from 4 hr to 6 years. The aim of the review was
to assess efficacy and safety of rTMS for improving motor function
in patients with stroke. The side effects were minimal, including
small headaches and local discomfort at the site of the stimulation.
The possible rTMS efficacy was tested whatever the characteristics of
the stroke (area, cortical or subcortical lesions, haemorrhagic or
ischemic origin), the characteristics of the stimulation (low frequency
applied over the non-lesioned hemisphere or high frequency applied
on the lesioned hemisphere), and the time between stroke onset and
intervention. The evidence did not support the routine use of rTMS for
the treatment of stroke. Subgroup analysis did not reveal any
difference between stimulation of the lesioned and non-lesioned
cortex.

The review by Hsu et al. published in 2012 [18] targeted upper-
limb motor-function studies in 392 stroke patients. Hence, the side
effects were extremely limited (4 patients). The meta-analysis
suggested that rTMS had a positive effect on motor recovery,
especially for patients with subcortical stroke. Low-frequency
rTMS over the unaffected hemisphere may be more beneficial than
rTMS over the affected hemisphere. However, the authors stressed
that further studies in a larger population are required to better
elucidate the differential roles of various rTMS protocols in stroke.

The review by Ayache et al. published in 2012 [11] included
1343 patients. The authors divided studies into 4 categories:

� low-frequency rTMS (inhibitory effects applied on the non-
lesioned hemisphere) in the acute or post-acute phase (5 days to
3 months after stroke), involving 139 patients;
� the same inhibitory stimulation applied in the chronic phase

(4 months to 12 years), involving 682 patients;
� high-frequency rTMS (excitatory stimulation applied on the

lesioned cortex) in the acute phase, involving 182 patients;
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� the same excitatory stimulation in the chronic phase, involving
327 patients.

Whatever the category, the studies were almost completely
devoted to upper-limb motor function. However, the studies were
heterogeneous given the characteristics of the stimulation,
number of patients, number of sessions when the intervention
was repeated, time between stroke onset and intervention, type of
stroke (cortical or subcortical), presence of traditional rehabilita-
tion coupled with rTMS intervention, and presence of sham
stimulation. In a few cases, the clinical evaluation was coupled
with electrophysiological tests. Most of the individual studies
reported clinical improvement of upper-limb motor function, more
commonly found in patients with subcortical lesions, when the
rTMS intervention was coupled with traditional rehabilitation, and
when the stimulation was applied over the non-lesioned
hemisphere.

3.2. tDCS

The Cochrane review [13] assessed the effects of tDCS on
activities of daily living and motor function in stroke patients. It
included 455 patients, >18 years old, regardless of the initial level
of impairment and duration of stroke. All kinds of tDCS (anodal,
cathodal or dual) were tested. Analysis of 6 studies involving
326 patients regarding activities of daily living found an effect of
tDCS at follow-up but not at the end of the intervention. Regarding
upper-limb function, the authors found an effect of tDCS at the end
of the intervention but not at the end of follow-up. The authors
concluded low-quality evidence of the effectiveness of tDCS versus
control for improving activities of daily living and functions after
stroke.

Ayache et al. [11] studied the effects of tDCS in 388 patients,
using the same classification as for rTMS: excitatory stimulation
(anodal tDCS applied over the lesioned cortex) in the acute or post-
acute phase (2 days to 3 months), involving 169 patients;
excitatory stimulation in the chronic phase (1–7 years), involving
67 patients; inhibitory stimulation (cathodal tDCS applied on the
non-lesioned hemisphere) in the acute or post-acute phase
(10 days to 4 months), involving 124 patients; and inhibitory
stimulation in the chronic phase (1–7 years), involving 28 patients.
The authors also included dual tDCS studies of 54 patients in the
chronic phase (5 months to 7 years). The heterogeneity among
studies was similar to that for rTMS studies. The smaller number of
patients (388 in tDCS studies vs 1343 in rTMS studies) does not
allow for more detailed conclusions. All studies performed in the
chronic phase suggested an improvement in upper-limb motor
function. The effects were more variable in the acute phase.

4. Comments

4.1. rTMS versus tDCS

A recent study by Priori et al. [20] compared rTMS and tDCS in
terms of technology and costs, the possibility of obtaining a true
sham stimulation, focality of stimulation, the possibility of
obtaining stimulation during a motor or cognitive task, and
stimulus intensity and safety. The authors cautioned the reader
about no strict recommendation on which of the 2 techniques is
better for specific use, but they suggested that the high temporal
and spatial resolution of rTMS is useful in experiments that probe
neurophysiologic effects on specific neuronal networks. In
contrast, the simplicity of low-cost tDCS may be better for
investigations that do not target a selective population of neurons
because it may occur in various clinical studies.
4.2. What is currently acquired?

Physiological studies of both animals and humans have
demonstrated that rTMS and tDCS (see corresponding papers in
this issue [1,2]) reversibly modulate the excitability of the cortex
and may induce after-effects. These findings have opened the way
to pathophysiological studies in humans. By coupling non-invasive
stimulation with electrophysiological and imaging studies, owing
to neural connectivity, rTMS and tDCS modify the excitability of
the target brain area and also at a distance (other brain areas,
cerebellum, spinal cord networks, contralateral brain area). For
both rTMS and tDCS, changes induced at a distance from the motor
cortex area targeted by the stimulation have not been fully
documented, and their possible role in the effects induced by the
stimulation over the motor cortex remain to be explored. To induce
after-effects is likely important to favour the therapeutic effects.
However, the stimulation parameters needed to regularly evoke
after-effects remain to be explored.

4.3. Therapeutic trials

Therapeutic trials of rTMS and tDCS aim to increase the
excitability of the lesioned hemisphere to enhance the motor
control originating from the lesioned hemisphere and decrease the
excitability of the non-lesioned hemisphere to reduce the IHI drive
from the non-lesioned to lesioned hemisphere. More recently, dual
stimulation (excitatory stimulation on the lesioned hemisphere
and inhibitory stimulation on the non-lesioned hemisphere) has
been introduced. Guidelines for non-invasive stimulations have
been established, and thus side-effects are rarely reported. The
possibility of non-invasively modifying the brain cortex excitabil-
ity and the existence of after-effects have led to a number of
therapeutic trials of stroke patients with motor deficits, aphasia or
spatial neglect and also patients with psychiatric diseases.
However, as stressed by Hao et al. [12] in their Cochrane review,
the available evidence does not support the routine use of rTMS for
motor function treatment after stroke. The review by Elsner et al.
[13], of tDCS, points to low-quality evidence of the effectiveness of
tDCS as compared with a control in stroke patients. The rather
disappointing conclusions from these reviews differ from those of
individual studies, which predominantly indicate an improvement
with rTMS or tDCS. The discrepancy between individual studies
and meta-analysis findings is likely linked to heterogeneity of
patients, clinical tests and features of the intervention, which are
not standardized. Indeed, the number of inhibitory rTMS pulses
varied from 150 to 1800 among studies [11] and the number of
rTMS sessions from 1 to 30 [11]. For tDCS studies, the intensity of
the current varied from 1 to 2 mA and the duration of sessions from
7 to 30 min [11]. The context of the therapeutic trials also varied
among studies: non-invasive stimulations were applied with or
without traditional rehabilitation techniques and with or without
sham stimulation. The outcome measures used to detect the
possible effects of non-invasive stimulation also differed. In most
studies, various clinical tests were performed, including muscle
force and spasticity scales, functional tests and activity of daily
living assessments. Of note, the means used to detect the possible
effects of rTMS and tDCS different greatly in physiological and
therapeutic trial studies. Physiological tests may be more
appropriate to detect subtle changes than are clinical tests.
Therefore, the clinical tools used in most therapeutic studies may
not be sufficiently sensitive to detect modifications induced by
non-invasive motor cortex stimulations, and physiological studies
may be more able to detect them. Different types of stroke are
involved; cortical or subcortical, ischemic or haemorrhagic. The
time between stroke onset and therapeutic trials also varied.
Finally, most studies were devoted to the possible modification of
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upper-limb motor functions, mainly hand functions. Almost no
study was devoted to lower-limb functions and gait, which are also
commonly disordered in stroke patients with motor deficit.

5. Conclusion

The current possibility of non-invasively manipulating the
excitability of the cortex without doubt led to therapeutic trials
of post-stroke treatment. Demonstrating the therapeutic effects
of rTMS and tDCS will require controlled therapeutic trials with
sham intervention and standardised features of the stimulations,
especially that evoking after-effects. These possible therapeutic
effects need to be tested by taking into account the characte-
ristics of the stroke and the time elapsed since the stroke,
because the data suggest a critical period in post-lesioned brain
plasticity [21].
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[22] Valero-Cabré A, Pascual-Leone A, Coubard OA. [Transcranial magnetic stimu-
lation (TMS) in basic and clinical neuroscience research]. Rev Neurol 2011;
167:291–316.

http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0115
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0115
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0115
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0120
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0120
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0120
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0125
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0125
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0125
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0130
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0130
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0130
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0135
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0135
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0135
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0140
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0140
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0140
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0145
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0145
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0145
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0150
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0150
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0150
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0155
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0155
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0160
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0160
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0165
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0165
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0165
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0170
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0170
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0170
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0175
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0175
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0175
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0175
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0180
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0180
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0185
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0185
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0185
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0190
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0190
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0190
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0195
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0195
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0195
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0200
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0200
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0200
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0205
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0205
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0210
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0210
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0215
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0215
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0215
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0220
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0220
http://refhub.elsevier.com/S1877-0657(15)00084-6/sbref0220

	Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after str...
	1 Introduction
	2 Background summary
	3 Main data
	3.1 rTMS
	3.2 tDCS

	4 Comments
	4.1 rTMS versus tDCS
	4.2 What is currently acquired?
	4.3 Therapeutic trials

	5 Conclusion
	Disclosure of interest
	References


