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SUMMARY

Midbrain dopamine neurons are thought to signal
predictions about future rewards based on the
memory of past rewarding experience. Little is
known about the source of their reward memory
and the factors that control its timescale. Here we
recorded from dopamine neurons, as well as one of
their sources of input, the lateral habenula, while
animals predicted upcoming rewards based on the
past reward history. We found that lateral habenula
and dopamine neurons accessed two distinct reward
memories: a short-timescale memory expressed at
the start of the task and a near-optimal long-time-
scale memory expressed when a future reward
outcome was revealed. The short- and long-time-
scale memories were expressed in different forms
of reward-oriented eye movements. Our data show
that the habenula-dopamine pathway contains
multiple timescales of memory and provide evidence
for their role in motivated behavior.
INTRODUCTION

In order to make optimal decisions between options, the brain

must predict each option’s value based on the memory of the

consequences it produced in the past. This process is thought

to be crucially dependent on midbrain dopamine neurons

(Wise, 2004). Dopamine neurons are activated by new informa-

tion about the properties of upcoming rewards, firing a burst of

spikes if the reward value is better than expected and pausing

their activity if the reward value is worse than expected. In this

manner, their activity resembles a ‘‘reward prediction error’’

indicating the difference between predicted and actual rewards

(Schultz et al., 1997). These signals are translated into dopamine

release in downstream brain structures, which controls motiva-

tion to seek rewards (Wyvell and Berridge, 2000) and enables

synaptic plasticity to learn the reward value of behavioral actions

and outcomes (Reynolds et al., 2001; Wise, 2004). Thus, the

proper function of the dopamine system depends on its ability

to make accurate predictions about future rewards.
How are dopamine neuron reward predictions constructed

from past experience? It is known that during the early stages

of learning dopamine predictions emerge in parallel with

behavioral measures of reward expectation (Schultz et al.,

1993; Hollerman and Schultz, 1998; Takikawa et al., 2004; Day

et al., 2007; Pan et al., 2008). In addition, during expert perfor-

mance at behavioral tasks, dopamine neuron activity is

influenced by the memory of recently received rewards (Satoh

et al., 2003; Nakahara et al., 2004; Bayer and Glimcher, 2005).

Yet several vital questions remain unanswered. First, what

neural sourcesof input contribute to thedopamine neuron reward

memory? Dopamine neurons receive reward-related input from

many brain structures, including the amygdala (Lee et al.,

2005), pedunculopontine tegmental nucleus (Pan and Hyland,

2005; Okada et al., 2009), and lateral habenula (Matsumoto and

Hikosaka, 2007). The lateral habenula is a strong candidate for

this role, because its neurons carry negative reward signals

opposite to those indopamine neuronsand lateral habenula stim-

ulation inhibits dopamine neurons at short latencies (Christoph

et al., 1986; Ji and Shepard, 2007; Matsumoto and Hikosaka,

2007). However, it is unknown whether these input structures

adjust their neural signals based on past rewarding experience

in a manner resembling that of dopamine neurons.

Second, what determines the neural timescale of memory—

the persistence of past outcomes in affecting future predictions?

There is evidence that dopamine neurons are influenced by past

reward outcomes in different ways at different stages of learning

(Nakahara et al., 2004; Bayer and Glimcher, 2005; Pan et al.,

2008). Theories of optimal prediction propose that the neural

timescale of memory should be calibrated to match the reward

statistics of the environment, based on the true predictive

relationship between past and future rewards (Doya, 2002;

Behrens et al., 2007) which may require a mixture of multiple

memory timescales (Smith et al., 2006; Kording et al., 2007;

Fusi et al., 2007;Wark et al., 2009). However, it remains unknown

what timescales of memory are available to lateral habenula and

dopamine neurons, whether they are selected in an adaptive

manner sensitive to task demands, and how the selection

process unfolds over time.

To investigate these questions, we analyzed the activity of

lateral habenula and dopamine neurons recorded while monkeys

performed a task in which the reward value of each trial was

systematically related to the past reward history. This design

made it possible to make a direct comparison between neural,
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 499

https://core.ac.uk/display/82544406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bromberge@mail.nih.gov


Figure 1. Behavioral Task

(A) Task diagram. The animal was required to fixate a spot of

light, then follow the spot with a saccade when it stepped to

the left or right side of the screen. In each block of 24 trials,

saccades to one target direction were rewarded, while

saccades to the other direction were unrewarded.

(B) The task used a pseudorandom reward schedule in which

the reward probability could be predicted with high accuracy

as a weighted linear combination of past outcomes plus

a constant factor.

(C) The optimal weights (black dots) for each past reward

outcome. The optimal weights were similar when constrained

to take the form of an exponential decay (gray line).

(D) Plot of true reward probability against predicted reward

probability using the optimal exponentially decaying linear

weights. Each dot represents 1 of the 50 possible six-trial

reward histories in the pseudorandom schedule. The pre-

dicted reward probability was highly correlated with the true

reward probability. (See also Figure S1.)
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behavioral, and task-optimal reward memories. We found that

lateral habenulaanddopamineneuronshadsimilar rewardmemo-

ries in their phasic responses to task events, consistent with the

hypothesis that the lateral habenula transmits reward memory

signals to dopamine neurons. In addition, we found that lateral ha-

benula and dopamine neurons did not use a single timescale of

memory at all times during the task. Instead, they switched

between two distinct memories: a suboptimal short timescale of

memory expressed in response to the start of a new trial, and

a nearer to optimal long timescale of memory expressed at the

moment the trial’s outcome was revealed. The short- and long-

timescale memories were also found in specific forms of reward-

oriented behavior. Our data provide evidence that the habenula-

dopamine pathway can rapidly change between timescales of

reward memory in a behaviorally relevant manner.

RESULTS

Behavioral Task and Optimal Timescale of Memory
We trained two monkeys to perform a reward-biased saccade

task (Matsumoto and Hikosaka, 2007) (Figure 1A). Each trial

began with the presentation of a fixation point at the center of

a screen, where the animal was required to hold its gaze. After

a 1.2 s delay, the fixation point disappeared and the animal

was required to saccade to a visual target that appeared on

the left or right side of the screen. Saccades to one target loca-
500 Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc.
tion were rewarded with a drop of juice. Saccades

to the other target location were unrewarded but

still had to be performed correctly, or else the trial

was repeated. Thus, the target both instructed the

location of the saccade and signaled the presence

or absence of reward. The rewarded and unre-

warded locations were switched after each block

of 24 trials. Animals closely tracked the reward

values of the targets, saccading to rewarded

targets at short latencies and unrewarded targets

at long latencies (Matsumoto and Hikosaka, 2007)

(Figure 2B, ‘‘Target RT bias’’).
In this task rewarded and unrewarded trials occurred equally

often, but the reward probability was not fixed at 50%; the

reward probability varied from trial to trial depending on the

history of previous outcomes. We used a pseudorandom reward

schedule in which blocks were divided into four-trial subblocks,

each containing a randomized sequence of two rewarded target

trials and two unrewarded target trials. The result was that the

reward sequence wasmore predictable than would be expected

by chance: the reward probability on each trial was inversely

related to the number of rewards that had been received in the

recent past (Nakahara et al., 2004) (Supplemental Experimental

Procedures). Specifically, the reward probability could be well

approximated as a weighted linear combination of the previous

six reward outcomes plus a constant factor (Figures 1B–1D).

The optimal linear weights were largest for the most recent

reward outcomes, and the weights had a negative sign reflecting

the inverted relationship between past and future rewards

(Figure 1C). Applying these linear weights to the true sequence

of rewards in the task produced a highly accurate prediction of

each trial’s reward probability (R2 = 0.90, Figure 1D).

The optimal linear prediction rule in this task resembles classic

theories of reinforcement learning (Rescorla and Wagner, 1972;

Sutton and Barto, 1981) in which past outcomes have a linear

effect on future reward predictions (Sutton and Barto, 1998; Na-

kahara et al., 2004; Bayer and Glimcher, 2005). But there is

a crucial difference. In classic theories, if a stimulus is followed



Figure 2. Behavioral Memory for a Single Previous Outcome

(A) Trace of horizontal eye position during two example rewarded trials, when

the past trial was rewarded (Past R, red) or unrewarded (Past U, blue). Gray

bars indicate the fixation point and saccade target. Left: eye position aligned

at the time of fixation point onset. Right: eye position aligned at target onset.

Inset: eye position aligned at target onset, showing a small bias in eye position

toward the location of the rewarded target.

(B) Measures of behavioral performance, separately for trials when the past

trial was rewarded (red) or unrewarded (blue). Target RT bias is themean differ-

ence in reaction time between saccades to the unrewarded target versus

rewarded target. Bars are 80% bootstrap confidence intervals. Asterisks indi-

cate statistical significance. **p < 10�4 in combined data, p < 0.05 inmonkey L;

***p < 10�4 in combined data, p < 0.05 inmonkey L, p < 0.05 inmonkey E; boot-

strap test. The memory for past outcomes influenced behavioral performance

at all times during the trial. (See also Figure S2.)
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by reward, then this increases the estimated value of that stim-

ulus in the future. Whereas in our task, if a trial is followed by

reward, then this should reduce the estimated value of task trials

in the future (for a formal model, see Figure S1). In this sense, our

task may resemble a foraging situation in which collecting

rewards at a foraging site reduces the number of rewards that

are available at that site on future visits. We therefore set out

to test whether animals and neurons could predict rewards in

this ‘‘inverted’’ task environment.

Behavioral Memory for a Single Past Reward Outcome
We first analyzed the effect of a single previous reward

outcome on animal behavior. The true reward probability given

a single past outcome was 37% after rewarded trials and

63% after unrewarded trials. Consistent with previous studies

(Nakahara et al., 2004; Takikawa et al., 2002), we found that

animals used this feature of the task to predict future rewards,

indicated by their improved task performance on trials when

the reward probability was high (Figure 2B, ‘‘Correct fixation

rate’’). In order to obtain a finer measure of how the animals’

reward memory evolved over the course of each trial, we exam-

ined the time course of their eye movements. Past outcomes

influenced eye movements in anticipation of each task event

and in reaction to each task event (Figures 2A and S2). In antic-

ipation of the fixation point, animals often positioned their eyes

at the center of the screen in order to initiate the trial more
quickly. When the reward probability was higher, they antici-

pated the trial more often (Figure 2B, ‘‘Anticipatory fixation

rate’’). One animal was less perfect in anticipation and often

had to react to the fixation point by shifting its gaze. When

the reward probability was higher, its reactions to the fixation

point were faster (Figure 2B, ‘‘Fixation RT’’). Then, as animals

anticipated the upcoming saccade targets, their eyes drifted

minutely toward the rewarded target location. This drift was

stronger when the previous trial was rewarded (Figure 2B,

‘‘Anticipatory reward bias’’). Finally, when the saccade target

arrived, animals reacted more quickly to the rewarded target

than the unrewarded target, and when the reward probability

was higher this reward-oriented saccade bias was stronger

(Figure 2B, ‘‘Target RT bias’’). Thus, the animal’s memory for

past outcomes could be measured at the start of the trial

when the fixation point appeared as well as the end of the trial

when the saccade target appeared, in both anticipatory and

reactive eye movements.

Neural Memory for a Single Past Reward Outcome
To examine the neural basis of the single-trial memory, we next

analyzed the activity of 65 neurons recorded from the lateral

habenula and 64 reward-responsive presumed dopamine

neurons recorded from the substantia nigra pars compacta

(Matsumoto and Hikosaka, 2007) (Experimental Procedures).

Figure 3A shows the population average activity of lateral

habenula neurons. These neurons carried strong negative

reward signals (Matsumoto and Hikosaka, 2007). They were

phasically inhibited by the cue signaling the start of a new trial

(‘‘fixation point’’) and the cue signaling reward (‘‘rewarded

target’’) but were excited by the cue signaling reward omission

(‘‘unrewarded target’’). Figure 3B shows the population average

activity of dopamine neurons. Their response pattern was

a mirror-reversal of that seen in lateral habenula neurons

(Matsumoto and Hikosaka, 2007): they were excited by trial-start

and reward cues and inhibited by reward-omission cues.

Thus, both populations of neurons carried strong signals

predicting reward outcomes in the future; how might they be

influenced by the memory of outcomes received in the past?

Current computational theories of dopamine activity make

a strong prediction. These theories interpret dopamine neuron

activations as ‘‘reward prediction errors’’ signaling changes

in a situation’s expected value (Montague et al., 1996; Schultz

et al., 1997; Montague et al., 2004). This theoretical account is

schematically illustrated in Figure 3C and explained in detail

below (see Figure S1 for a formal model and Figure S3 for single

neuron examples).

During the long and variable duration of the intertrial interval,

the animal’s reward expectation was presumably low because

the animal did not know when the next trial would begin.

When the fixation point appeared it signaled a new chance to

get rewards, whichwould cause the animal’s reward expectation

to rise, a positive prediction error. This inhibited lateral habenula

neurons and excited dopamine neurons (Figure 3, fixation

point). The prediction error was more positive when the trial’s

reward probability was higher (Satoh et al., 2003) (Figure 3C),

and accordingly habenula neurons were more inhibited and

dopamine neurons were more excited.
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 501



Figure 3. Neural Memory for a Single Previous

Outcome

(A) Population average firing rate of lateral habenula neurons

(LHb) when the past trial was rewarded (red) or unrewarded

(blue). Firing rates were smoothed with a Gaussian kernel

(s = 15 ms). Colored bars on the bottom of each plot indicate

times when the past trial outcome had a significant effect on

neural activity (p < 0.01, paired Wilcoxon signed-rank test).

(B) Same as (A), for dopamine neurons (DA). Lateral habenula

and dopamine neurons had opposite mean response

directions and opposite past-outcome effects during all three

task events.

(C) Schematic illustration of theoretical reward predictions at

each time during the trial (see text for full description). When

the reward prediction increased (upward arrows, positive

prediction errors), lateral habenula neurons were inhibited

and dopamine neurons were excited; when the reward predic-

tion decreased (downward arrows, negative prediction errors),

lateral habenula neurons were excited and dopamine neurons

were inhibited. (See also Figure S3.)
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If the fixation point was followed by the rewarded target, the

reward expectation would rise further up to 100%, a second

positive prediction error. This again inhibited lateral habenula

neurons and excited dopamine neurons. In this case, however,

the prediction error was less positive when the trial’s reward

probability was higher, because the high initial expectation

only needed to be increased by a small amount to reach its

maximal level (Figure 3C). Indeed, when the reward probability

was higher, habenula neurons were less inhibited, and dopamine

neurons were less excited (Figure 3, rewarded target).

Finally, if the fixation point was followed by the unrewarded

target the reward expectation would fall to 0%, a negative

prediction error. This excited lateral habenula neurons and

inhibited dopamine neurons. The prediction error was more

negative when the trial’s reward probability was higher, because

the high initial expectation had to fall farther to reach its minimal

level (Figure 3C). Indeed, when the reward probability was

higher, habenula neurons were more excited and dopamine

neurons were more inhibited (Figure 3, unrewarded target). The

reward probability effect was rather weak for dopamine neurons,

presumably because their firing rate on unrewarded trials was

close to zero and had little room to be modulated by reward

expectation (Bayer and Glimcher, 2005) (Figure 3B).

In summary, lateral habenula and dopamine neurons had

opposite phasic past-outcome effects to match their opposite

direction of phasic responses, consistent with the hypothesis

that the lateral habenula transmits reward memory signals to

dopamine neurons.
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We next asked how far the neural memories

extended into the past, and whether they remained

consistent over the course of the trial. In particular,

the theoretical ‘‘reward prediction error’’ model in

Figure 3C implies that all neural responses during

the trial should have the same timescale of

memory, because the responses should be based

on the same neural prediction about the trial’s
reward value (Figure S1). To test this, we fit the firing rates of

each neural population as a linear combination of past reward

outcomes (Bayer and Glimcher, 2005). To reduce the number

of fitted parameters, we used a model in which all neurons in

a population shared the same timescale of memory but each

neuron could carry the memory signal to a greater or lesser

degree (for example, due to differences in response gain).

Thus, the single-trial neural firing rates were fit by the equation:

raten;t =mn + anðb1rt�1 + b2rt�2 + b3rt�3 +.+ b6rt�6Þ+Nð0;snÞ;

where raten,t is the firing rate of neuron n on trial t, mn is the

neuron’s mean firing rate, an is the neuron’s ‘‘memory ampli-

tude’’ (strength of memory effects), bk is the population’s

‘‘memory weight’’ for the outcome received k trials ago, rt-k is

the reward outcome k trials ago (+0.5 if rewarded, �0.5 if unre-

warded), and sn is the neuron’s spiking noise (standard deviation

of the firing rate).

In this model, the relative influence of each past outcome was

controlled by the memory weight vector b, a parameter shared

among all neurons, while themagnitude and direction of memory

effectswere controlled by thememory amplitudes an, whichwere

specific to each neuron. Using this model, we estimated the

average effect of each past outcome on the firing rate. For each

past outcome k, the effect was equal to the memory weight bk
multiplied by the population average of the memory amplitudes

an, yielding the change in firing rate caused by the outcome

received k trials ago (‘‘Past Rewarded – Past Unrewarded,’’



Figure 4. Multiple Timescales of Memory

(A and B) Memory effects in lateral habenula neurons (A) and

dopamine neurons (B). Each panel shows the population

average past-outcome effects—the difference in firing rate

depending on whether a past outcome was rewarded or

unrewarded (‘‘Past R – Past U’’), derived from the parameters

of the fittedmodel described in themain text. Colored lines are

the firing rate differences for specific past outcomes (black,

red, orange, yellow = one, two, three, four trials-ago

outcomes). The analysis was performed in a 151 ms sliding

window advanced in 20 ms steps. Dark gray bars at the

bottom of the plot indicate times when the population average

memory amplitude was significantly different from zero, using

the version of thememorymodel in which theweights followed

an exponential decay (p < 0.01, Wilcoxon signed-rank test).

Light gray bars below the axes are the time windows used

for the analysis in Figure 5. Both lateral habenula and

dopamine neurons had one-trial memories in response to

the fixation point, but multiple-trial memories in response to

the targets. (See also Figure S4.)
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Figure 4). We then calculated the past-outcome effect at each

time point during the trial by fitting the model in a sliding window

advanced over the entire neural response (Figure 4).

Neurons had strikingly different timescales of memory at

different times during the trial (Figures 4A and 4B). In response

to the onset of the fixation point, both lateral habenula and dopa-

mine neurons had a short timescale of memory, primarily

influenced by only a single previous reward outcome. However,

in response to the targets their memory suddenly improved,

taking on a long timescale of memory with a strong influence

of at least three previous outcomes. Analysis of single-neuron

activity showed that both short and long timescales of memory

were present in the same population of neurons (Figure S4).

To make a quantitative comparison between the neural

memories, we constrained the population memory weights b to

take the form of an exponential decay, so that thememory length

could be described by a single parameter, the decay rate D

(Figures 5A and 5B, solid lines). The decay rateD takes on values

between 0 and 1 and represents the fraction of each past

outcome’s influence that fades away after each trial, analogous

to the learning rate parameter a used in temporal-difference

algorithms for reinforcement learning (Bayer and Glimcher,

2005; Sutton and Barto, 1998). Note that this parameter does

not distinguish whether neural memories decayed as a function

of elapsed time or of elapsed task trials. The resulting exponen-

tially decaying memory weights were close to the original fit in

which the weights were allowed to vary independently (Figures

5A and 5B, compare solid lines to filled circles; see Table S1

for all fitted decay rates).

For habenula neurons, the memory decay rate was signifi-

cantly higher for the response to the fixation point than for the

responses to the rewarded target (bootstrap test, p < 10�4)

and the unrewarded target (p = 0.03). For dopamine neurons,

the decay rate was higher for the fixation point than for the

rewarded target (p = 0.006); a similar trend was evident for the

unrewarded target, but did not reach significance (p = 0.33)

possibly due to the lower firing rates and smaller absolute

memory effects on those trials. The decay rates for the rewarded

and unrewarded targets were not significantly different from
each other in either population (habenula p = 0.12, dopamine

p = 0.39), so for further analysis the data from both targets

were pooled by fitting them with a single decay rate

(Experimental Procedures).

We next compared the memory timescales found in neural

activity with the memory timescale of the task-optimal reward

prediction rule (gray curve, Figure 1C). All neural responses

had significantly higher decay rates than the optimal predictor,

indicating that they all had a shorter-than-optimal timescale of

memory (all p < 0.05; see also Figure 7). The optimal timescale

was approached most closely by the long-timescale neural

responses to the target, suggesting that the neural responses

to the target were most closely matched to the reward statistics

of the task.

To understand the functional significance of the neural

timescales of memory, we compared them to the behavioral

timescales of memory seen in anticipatory eye movements and

saccadic reaction times (Figures 5C and 5D). These were fitted

using the same procedure that was used for neural activity,

producing a comparable set of memory weights (Experimental

Procedures). This analysis produced two main results. First,

anticipatory eye movements had a long timescale of memory at

all times during the trial, both in anticipation of the fixation point

andof the target (Figure 5C). Both typesof anticipatory eyemove-

ments had a longer timescale of memory than the neural

response to the fixation point (anticipation of fixation point versus

neural response to fixationpoint: habenula p=0.025, dopaminep

= 0.037; anticipation of target versus neural response to fixation

point: habenula p < 10�4, dopamine p = 0.002). Thus, at the

moment when the fixation point appeared neural activity was

only influenced by a single past outcome even though behavioral

anticipation was influenced by multiple past outcomes. This

shows that neurons were not bound to follow the timescale of

memory present in behavior. Consistent with this finding,

a control analysis showed that neural memory effects were not

simply caused by neural coding of behavioral output (Figure S5).

This raised the question of whether the neural timescale of

memory could be linked to any motivational process that drove

animal behavior. A second analysis, focused on reaction times,
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 503



Figure 5. Quantifying Neural and Behavioral Timescales of Memory

This figure shows the fitted influence of past outcomes on the activity of lateral

habenula and dopamine neurons (A and B) and on behavioral anticipatory eye

movements (C) and saccadic reaction times (D).

(A) Fittedmemory weights (bweights) for the lateral habenula neural population

during responses to the rewarded target, unrewarded target, and fixation point

(red, blue, and black). The memory weights are normalized so that b1 = 1

(Experimental Procedures). Solid dots are memory weights from a fit in which

all weights were allowed to vary independently (like those shown in Figure 4).

Colored lines are a fit in which the weights were constrained to follow an expo-

nential decay (Experimental Procedures). This analysis was done on neural

activity within the time windows indicated by the gray bars below the axes in

Figure 4. Asterisks indicate that the fitted memory decay rate is significantly

different from 1.0 (bootstrap test, p < 0.05).

(B) Same as (A), but for dopamine neurons. Both lateral habenula and dopa-

mine neurons had long-timescale memories in response to the targets, but

short-timescale memories in response to the fixation point.

(C) Fittedmemory weights for anticipatory behavior, separately for anticipatory

fixation (black) and anticipatory bias toward the rewarded target (purple).

(D) Fittedmemory weights for saccadic reaction times, separately for reactions

to the fixation point (black) and targets (purple). (See also Figure S5.)
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provided a possible candidate. In parallel with the pattern seen in

neural activity, behavioral reaction times to the fixation point had

a short timescale of memory, whereas reaction times to the

targets had a longer timescale of memory (Figure 5D,

p = 0.017). When compared to neural activity, the behavioral

timescale for the fixation point was shorter than the neural time-

scale for the targets (habenula p < 10�4, dopamine p = 0.035),

and likewise, the behavioral timescale for the targets was longer

than the neural timescale for the fixation point (habenula

p = 0.010, dopamine p = 0.028). A caveat is that the measured

timescales for reaction times were primarily dependent on one

animal that had a larger amount of data (Figure S7). Taken

together, these data suggest that lateral habenula and dopamine

neurons do not share a common reward memory with the neural

process that drives proactive, anticipatory eye movements but

may share a common memory with the neural process that

drives reactive, saccadic eye movements.
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Timescales of Memory in Tonic Neural Activity
Our results so far suggested that the neural memory ‘‘built up’’

over time, starting each trial with a short timescale but finishing

with a long timescale. If this was the case, then neural activity

during the intermediate portion of each trial should have an inter-

mediate timescale. To test this hypothesis, we checked for

memory effects in tonic neural activity during the pretarget

period and intertrial interval.

We found that the majority of lateral habenula neurons carried

reward-related signals in their tonic activity (Figures 6A and 6C).

In the example shown in Figure 6A, the neuron was phasically

excited by the unrewarded target but then switched to be toni-

cally excited after rewarded outcomes, a signal that continued

during the intertrial interval and carried into the next trial (this

neuron also had a second phasic excitation on unrewarded trials

at the time of reward omission, a response found in a fraction of

habenula neurons [Matsumoto and Hikosaka, 2007; Hong and

Hikosaka, 2008] which also had a memory effect [Figure S6]).

The example habenula neuron had the most typical pattern of

tonic memory effects, with tonic excitation after past rewards.

However, the opposite pattern of modulation was also common.

We measured each neuron’s tonic memory effects using the

area under the receiver operating characteristic (ROC) (Green

and Swets, 1966). The ROC area was above 0.5 if the neuron

had a higher firing rate after rewarded trials, and below 0.5 if

the neuron had a higher firing rate after unrewarded trials. The

tonic memory effects were strong but idiosyncratic (Figure 6C)

and occurred in the same neurons as phasic memory effects

(Figure S6). Consistent with our hypothesis, habenula tonic

activity had an intermediate timescale of memory (Figure 6D),

shorter than the response to the targets (intertrial interval,

p < 10�4; pretarget period, p = < 10�4) but tending to be longer

than the response to the fixation point (intertrial interval,

p = 0.06; pretarget period, p = 0.009).

Dopamine neurons could also be tonically excited or inhibited

after past rewards (Figures 6B and 6E). Their past-reward effects

were generally modest in size (Figure 6E) but reached signifi-

cance in a much greater proportion of neurons than expected

by chance (binomial test, intertrial interval p < 10�12, pretarget

period p = 0.009). Themodest size and variable direction of these

effects may explain why they have not been reported before to

our knowledge. During the intertrial interval these tonic effects

appeared to have a short timescale of memory, similar to the

dopamine neuron response to the fixation point and shorter

than in the response to the targets (Figure 6F), although the latter

difference did not reach significance (p = 0.14). During the pretar-

get period their tonic effects were too weak for the timescale of

memory to be estimated accurately (Table S1).

Time-Varying Changes in the Timescale of Memory
Taken as a whole, the timescales of neural memory during the

task followed a V-shaped pattern (Figure 7). This was clearest

in lateral habenula neurons where tonic activity was common

and the ebb and flow of memory effects could be tracked during

all task periods. The timescale started as a one-trial memory in

response to the fixation point, lengthened during the pretarget

period, reached a climax in response to the target, and then

faded back to a one-trial memory again during the intertrial



Figure 6. Timescales of Memory in Tonic

Neural Activity

This figure shows the effect of a single past

outcome on tonic neural activity during the inter-

trial interval and pretarget period, for two example

neurons (A and B) and quantified for all lateral

habenula and dopamine neurons (C and E). Also

shown is the fitted influence of multiple past

outcomes on tonic activity (D and F).

(A) Activity of an example lateral habenula neuron

on rewarded (red) and unrewarded (blue) trials.

The activity is shown for the response to the target

(Past-trial target), and then is followed into the next

trial. Tonic activity was analyzed during the inter-

trial interval (ITI, yellow 700 ms window before

fixation point onset) and the pretarget period

(Pre-target, yellow 700 ms window before target

onset). Numbers indicate the neuron’s ROC area

for discriminating the past reward outcome.

Colors indicate significance (p < 0.05, Wilcoxon

rank-sum test).

(B) Same as (A), for a dopamine neuron.

(C) Histogram of lateral habenula neuron ROC

areas for the intertrial interval and pretarget period.

Numbers indicate the percentage of neurons with

significantly higher activity on past-rewarded trials

(red) or past-unrewarded trials (blue).

(D) Timescale of neural memory for the intertrial

interval (black) and pretarget period (gray).

Conventions as in Figure 5.

(E and F) same as (C and D), for dopamine

neurons. Memory effects during the pretarget

period were not strong enough to estimate the

timescale of memory. (See also Figure S6.)
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interval. The same V-shaped pattern was present in both animals

(Figure S7). When considered over the course of multiple trials,

this pattern implies that neural activity repeatedly changed

between two different memory timescales, switching back and

forth between them every few seconds.
DISCUSSION

We found that lateral habenula and dopamine neurons had

mirror-reversed phasic memory effects, consistent with the

hypothesis that the lateral habenula contributes to dopamine

neuron reward memories. Unexpectedly, however, lateral habe-

nula and dopamine neurons were not bound to a single reward

memory but instead accessed at least two distinct memories

for past rewards, a short-timescale memory expressed at the

start of each trial, and a long-timescale memory expressed as

the trial’s reward outcome was revealed.
Neuron 67, 499–510
Functional Implications of Reward
Memories
It is known that lateral habenula and

dopamine neuron responses to rewarding

cues and outcomes are modulated by

predictions built on the basis of past

experience. The neural algorithm which
computes these predictions has been a topic of intense investiga-

tion (Schultz et al., 1997; Pan et al., 2005, 2008;Morris et al., 2006;

Roesch et al., 2007). Conventional theories of the dopamine

system suggest that reward predictions resemble an exponen-

tially weighted average of past reward outcomes, a pattern that

was seen in a previous study (Bayer and Glimcher, 2005). On

the other hand, there is evidence that neural reward predictions

can also be influenced by additional factors such as the number

of trials since the most recent reward delivery (Satoh et al.,

2003; Nakahara et al., 2004). Our task made it possible to assess

the functional significance of these neural reward memories, by

measuring the degree to which they are adapted to the reward

statisticsof theenvironment (via comparisonwith the task-optimal

reward memory) and the degree to which they are linked to

reward-related behavior (via comparison with the reward memo-

ries expressed in anticipatory and saccadic eye movements).

We found that the neural response to the reward-indicating

target was based on a reward prediction resembling an
, August 12, 2010 ª2010 Elsevier Inc. 505



Figure 7. Time-Varying Changes in the

Timescale of Memory

This figure quantifies the timescale of memory

found in neural activity and behavior, separately

for each lateral habenula and dopamine neuron

response (LHb, DA) and for behavioral anticipatory

eye movements and reaction times. Each data

point for neural activity represents the fitted decay

rate D for one of the curves shown in Figures 5A

and 5B or 6D and 6F. The decay rates for

behavioral anticipatory eye movements and

reaction times are from Figures 5C and 5D. Far

right: optimal timescale of memory (from

Figure 1C). Asterisks indicate significant differ-

ences in the fitted decay rates (p < 0.05, bootstrap

test; Experimental Procedures). Nonsignificant

differences are shown as written p values. Error

bars are 80% bootstrap confidence intervals.

(See also Figure S7 and Table S1.)
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exponentially weighted average of past outcomes, similar to the

prediction rule derived from classic theories. This confirms

previous findings in dopamine neurons and shows that lateral

habenula neurons also signal reward predictions built by inte-

grating multiple past outcomes. However, the neural reward

predictions were related to past outcomes in a negativemanner.

This is opposite to the relationship predicted by classic theories

and measured in a previous study (Bayer and Glimcher, 2005)

but is similar to the rule derived for the optimal reward predictor

in our task. This shows that lateral habenula and dopamine

neurons integrate multiple past outcomes in a flexible manner

that is tuned to the reward statistics of the task at hand.

In addition, the neural response to the target had a longer time-

scale of memory than the neural response to the fixation point.

Indeed, the neural response to the target matched the longest

timescales of memory seen in animal behavior and approached

(although did not achieve) the timescale of the task-optimal

prediction rule. The long timescale of memory of the target

response may be a result of the target’s importance for reward

prediction. The target indicated the upcoming reward outcome

with high accuracy, whereas the fixation point did not provide

any new information about future outcomes. In other words,

neurons accessed their most optimized timescale of memory

at the moment when animals viewed the most informative cue

for predicting future rewards. Thus, our data demonstrate

a possible mechanism by which lateral habenula and dopamine

neurons could respond to reward information with improved

accuracy by shifting to a task-appropriate timescale of memory.

Along with our own data, this mechanism may account for

a puzzling observation from previous studies: that dopamine

neurons encode a task trial’s expected value inaccurately at

the onset of the trial, but later encode its value with improved

accurately when responding to new information about the trial’s

reward outcome (Satoh et al., 2003; Bayer and Glimcher, 2005).

Given the role of dopamine in reinforcement learning (Wise,

2004), this mechanism would improve the accuracy of dopami-

nergic reinforcement signals at the moment when they are

most needed for effective learning.

In contrast to the target response, the fixation point response

had a suboptimal one-trial memory. The fixation point response
506 Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc.
did not approach the longest timescales of memory present in

behavior and neural activity, and its short-timescale memory

could not be predicted by current computational models of

reward prediction errors (Figure S1). Instead, there was evidence

that the fixation point response resembled the timescale of

memory seen in saccadic reaction times at the moment the

fixation point appeared. This suggests that the fixation point

response may be more closely related to reward-oriented

behavioral reactions than to predicted reward value. This would

be sensible in our task because the fixation point caused animals

to make an orienting response to initiate the trial but did not

provide new information about its reward value. This is also

consistent with evidence that dopamine responses in certain

conditions are more closely related to orienting responses and

behavioral reactions than to the expected amount of primary

rewards (Ljungberg et al., 1992; Satoh et al., 2003; Matsumoto

and Hikosaka, 2009a; Bromberg-Martin and Hikosaka, 2009).

Notably, the nigrostriatal dopamine pathway is known to be

crucial for learned orienting responses to an upcoming task trial,

in a manner distinct from learned approach to reward outcomes

(Han et al., 1997; Lee et al., 2005).

This distinction between the fixation point and target

responses is further supported by a recent study (Bromberg-

Martin et al., 2010). In that study, we found that lateral habenula

and dopamine responses to a ‘‘trial start’’ cue (similar to the

fixation point) were enhanced on trials when the cue triggered

short-latency orienting reactions. In addition, these responses

reflected motivational variables in a different manner than

conventional neural responses to reward value cues. When the

behavioral task was changed by replacing reward outcomes

with aversive stimuli, many neurons adapted by changing their

responses to reward value cues in a manner consistent with

reduced reward expectation. However, animals continued to

orient to the trial start cue and neurons continued to respond

to the trial start cue with equal strength (Bromberg-Martin

et al., 2010). Our present data complement these results by

showing quantitatively that the responses to the trial start cue

and reward value cues do not reflect the same expectation about

the trial’s reward value, and that the response to the trial start cue

may be linked to the neural process that motivates orienting
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reactions by adapting to past outcomes with a similar timescale

of memory.

Neural Mechanisms Underlying RewardMemory Signals
We found that lateral habenula neurons carried phasic reward

memory signals that resembled a mirror-reversed version of

the memory signals in dopamine neurons. This lateral habenula

activity is likely to contribute to dopamine neuron reward

memories, since lateral habenula responses to the fixation point

and unrewarded target occur at shorter latencies than in dopa-

mine neurons (Matsumoto and Hikosaka, 2007; Bromberg-

Martin et al., 2010), and it is known that spikes in lateral habenula

neurons induced by electrical stimulation cause dopamine

neurons to be potently inhibited at short latencies (Christoph

et al., 1986). However, it is also possible that reward memory

signals arrive in dopamine neurons through a more complex

pathway. For instance, it is possible that lateral habenula and

dopamine reward memories originate from a common source,

or that lateral habenula signals to dopamine neurons are

modified by downstream circuitry such as inhibitory neurons in

the ventral tegmental area (Ji and Shepard, 2007) and rostrome-

dial tegmental nucleus (Jhou et al., 2009). A comprehensive test

of these alternatives would require recording dopamine neuron

activity while manipulating lateral habenula spike transmission

through lesions or inactivation.

What is the source of the short- and long-timescale memo-

ries? One possibility is that reward memories are transmitted

along a sequential pathway, from upstream brain areas/ lateral

habenula / dopamine neurons. Memory functions have been

traditionally associated with prefrontal cortical areas where

past reward outcomes are known to have a persistent influence

on neural activity (Barraclough et al., 2004; Seo and Lee, 2007;

Simmons and Richmond, 2008), and reward outcomes also

have persistent effects in subcortical areas, including the stria-

tum (Yamada et al., 2007). A good candidate for conveying these

signals to the lateral habenula is the globus pallidus, which is

known to provide the habenula with short-latency reward signals

(Hong and Hikosaka, 2008). Thus, one candidate pathway for

transmitting reward memory signals is prefrontal cortex/ stria-

tum/ globus pallidus/ lateral habenula. Another candidate is

a direct projection frommedial prefrontal cortex/ lateral habe-

nula, suggested by anatomical studies in rats (Greatrex and

Phillipson, 1982; Thierry et al., 1983). Finally, it is also possible

that lateral habenula and dopamine neurons receive reward

memory signals from a common source of input to both brain

regions, such as the ventral pallidum or lateral hypothalamus

(Geisler and Zahm, 2005).

In order to decide between these alternatives, it will be impor-

tant for future studies to record activity in multiple brain areas

using the same subjects and behavioral tasks, so that the reward

memories in these areas can be directly compared. Notably, one

brain imaging study using punishments (aversive outcomes)

found that blood-oxygen level dependent signals in the amyg-

dala had a long timescale of memory, but during the same task

signals in the fusiform gyrus had a short timescale of memory

(Gläscher and Büchel, 2005). A similar approach may reveal

the sources of short- and long-timescale memories in the realm

of rewards. Another question for further study is whether neural
memories are similar for rewards and punishments (Yamada

et al., 2007). Many lateral habenula neurons and dopamine

neurons respond to rewards and punishments in opposite

manners as though encoding motivational value, whereas other

dopamine neurons respond to rewards and punishments in

similar manners as though encoding motivational salience

(Matsumoto and Hikosaka, 2009a, 2009b). These distinct types

of punishment-coding neurons are likely to receive input from

separate neural sources, suggesting that their punishment

memories may be distinct, as well.

We also found that many lateral habenula neurons and some

dopamine neurons reflected past reward outcomes in their tonic

activity. This is unexpected based on previous studies, which

largely emphasized phasic activations to task events (but see

Schultz, 1986; Fiorillo et al., 2003, 2008). These tonic signals

might be sent to lateral habenula and dopamine neurons by

the same brain regions that send them phasic signals in

response to task events. The tonic activity might also be created

within the neurons themselves as a biophysical after-effect of

their phasic responses on previous trials. Regardless of its origin,

an important caveat is that tonic memory effects were idiosyn-

cratic between neurons, which would make them difficult for

downstream brain areas to decode. If downstream neurons

simply averaged the activity of all habenula or dopamine neurons

together, then the tonic effects would largely cancel each other

out, leaving only phasic signals fully intact (Figure 3).

Studies of reward history effects on neural activity have often

focused on the framework of stimulus-reinforcement learning

(Bayer and Glimcher, 2005; Pan et al., 2008) which can be imple-

mented by a simple mechanism involving dopaminergic rein-

forcement of synaptic weights (Montague et al., 1996). By

contrast, our task required animals to use a more sophisticated

form of reward memory, a task-specific prediction rule based on

a storedmemory trace of past outcomes (Figures 1 and S1). This

would allow the timescale of memory to be adapted tomatch the

reward statistics of the task environment, perhaps including the

frequency of changes and reversals in stimulus values (Behrens

et al., 2007; Wark et al., 2009). It will be important to determine

whether this form of memory is implemented with a similar

synaptic mechanism, or whether it requires memory traces to

be stored in a fundamentally different manner. Also, given that

this form of memory had a potent influence on neural activity

and behavior in our task, it will be important to test its influence

in more conventional reward learning situations, as well.

In conclusion, we found that lateral habenula and dopamine

neurons make use of multiple timescales of reward memory in

amanner sensitive to task demands, expanding the set of mech-

anisms available to this neural pathway for guiding reward-

oriented behavior.

EXPERIMENTAL PROCEDURES

General

Two rhesus monkeys, E and L, were used as subjects in this study. All animal

care and experimental procedureswere approved by the National Eye Institute

Animal Care and Use Committee and complied with the Public Health Service

Policy on the humane care and use of laboratory animals. Eye movement was

monitored using a scleral search coil system with 1 ms resolution. For single-

neuron recordings, we used conventional electrophysiological techniques
Neuron 67, 499–510, August 12, 2010 ª2010 Elsevier Inc. 507
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described previously (Matsumoto and Hikosaka, 2007). All statistical tests

were two-tailed unless otherwise noted.

Behavioral Task

Behavioral tasks were under the control of a QNX-based real-time

experimentation data acquisition system (REX, Laboratory of Sensorimotor

Research, National Eye Institute, National Institutes of Health [LSR/NEI/NIH],

Bethesda, MD). The animal sat in a primate chair, facing a frontoparallel

screen �30 cm from the eyes in a sound-attenuated and electrically shielded

room. Stimuli generated by an active matrix liquid crystal display projector

(PJ550, ViewSonic) were rear-projected on the screen. The animals were

trained to perform a one-direction-rewarded version of the visually guided

saccade task (Figure 1A). A trial started when a small fixation spot appeared

at the center of the screen. After the animal maintained fixation in a small

window around the spot for 1200 ms, the fixation spot disappeared and

a peripheral target appeared at either left or right, typically 15� or 20� from

the fixation spot. The animals were required to make a saccade to the target

within 500 ms. Errors were signaled by a beep sound followed by a repeat

of the same trial. Correct saccades were signaled by a 100 ms tone starting

200 ms after the saccade. In rewarded trials, a liquid reward was delivered

which started simultaneously with the tone stimulus. The intertrial interval

was randomized from 2.2 to 3.2 s or (for a small number of neurons) fixed at

2.2 s. In each block of 24 trials, saccades to one fixed direction were rewarded

with 0.3 ml of apple juice while saccades to the other direction were not re-

warded. The direction-reward relationship was reversed in the next block.

Each block was subdivided into six four-trial subblocks, each consisting of

two rewarded and two unrewarded trials presented in a random order. Transi-

tions between blocks and between subblocks occurred with no external

instruction (see Supplemental Experimental Procedures for example blocks

and subblocks of trials).

Database

Our database consisted of 65 lateral habenula neurons (37 in animal L, 28 in

animal E) and 64 reward-responsive presumed dopamine neurons (44 in

animal L, 20 in animal E). We have previously reported other aspects of

most of the behavioral sessions and neurons analyzed here (Matsumoto and

Hikosaka, 2007). Lateral habenula neurons were included if they were respon-

sive to the task. We searched for dopamine neurons in and around the sub-

stantia nigra pars compacta. Putative dopamine neurons were identified by

their irregular and tonic firing around five spikes/s (range: 2.0–8.7 spikes/s),

broad spike waveforms (spike duration > �0.8 ms, measured between the

peaks of the first and second negative deflections; signals bandpass-filtered

from 200 Hz to 10 kHz), and response to reward-predicting stimuli with phasic

excitation. Neurons that did not meet these criteria were not examined further.

Recordings using similar criteria found that putative dopamine and nondop-

amine neurons formed separate clusters with distinct electrophysiological

properties (Matsumoto and Hikosaka, 2009b).

Our analysis was limited to trials with ‘‘pure’’ reward histories, i.e., histories

in which all trials were performed correctly and which did not include reversal

trials (the first trial of a block in which the reward values of the targets were

unexpectedly switched). The average number of trials meeting this criterion

was 98 ± 33 for habenula neurons and 94 ± 32 for dopamine neurons

(mean ± SD). There was no detectable change in memory effects related to

the proximity or recency of reversal trials. The initial analysis was done using

a single past reward outcome (Figures 2 and 3). The full analysis of behavioral

and neural memory was done using six past-reward outcomes because

beyond that point the behavioral and neural memories decayed to near zero

(Figures 4–7). The results did not depend on the precise number of past

outcomes that were analyzed. We observed similar behavioral results during

lateral habenula and dopamine neuron recording, so their data were pooled

for the behavioral analysis.

Memory Model

We fit the model of past-reward effects on neural activity using the method of

maximum likelihood. For the version of the model with separate memory

weights for each past trial, we used the MATLAB function ‘‘fminunc’’ to search

for the memory weight vector b that produced the maximum likelihood fit, with
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b2.b6 initialized to 0.5 and b1 held fixed at 1 so that the memory weights were

automatically normalized (as shown in Figure 5). For the version of themodel in

which the weights were constrained to follow an exponential decay, we fit the

single parameterD using a gradient descent procedure withD initialized to 0.5.

The memory weight vector was determined by the equation bk = (1 � D)k-1.

Fitting results did not depend on the initial settings of the parameters, and

for simulated data sets the fitted value of D on average matched the true value

of D (data not shown). For the plots in Figures 5 and 6, the analysis windows

were chosen to include the major component of the mean neural response

and of one past trial memory modulation. To pool data across rewarded and

unrewarded targets (Figure 7), we allowed each neuron to have different

neuron-specific parameters (mn,an,sn) for each target, but constrained both

targets to have the same the memory weight vector b.

The confidence intervals for the D parameter (Figure 7) were calculated

using a bootstrap procedure: for each population of neurons, the fitting proce-

dure was repeated separately on 20,000 bootstrap data sets each created by

resampling the neurons with replacement, creating a bootstrap distribution of

fittedD values. The 80%confidence intervals were created by taking the range

of the 10th to 90th percentiles of the bootstrap distribution. To compare a pair

of decay rates D1 and D2, we calculated the difference, Ddiff = (D1 – D2), and its

bootstrap confidence interval. The decay rates were considered to be signifi-

cantly different at level k if Ddiff = 0 was excluded by the 100 3 (1 � k)%

confidence interval.

Procedures for behavioral memories were the same as those for neural

memories, except the model was used to fit behavioral measurements instead

of neural firing rates (see below).

Behavioral Memory

The behavioral variables were defined as follows. The correct fixation rate

was the percentage of trials in which the animal fixated the fixation point to

initiate the trial and continued to fixate until the target appeared (i.e., no fixation

break errors). The anticipatory fixation rate was the percentage of trials in

which the animal’s eye was inside the fixation windowwithin 140ms of fixation

point onset, judged to be too fast for a reactive eye movement in these

monkeys based on examination of reaction time distributions (other criteria

produced similar results). The anticipatory target bias was the horizontal offset

of the eye position in the direction of the rewarded target location, measured at

the moment when the target appeared. The reaction time to the fixation point

was the time between the onset of the fixation point and the eye entering the

fixation window, excluding anticipatory fixations (RT < 140 ms, 61% of trials),

and very slow fixations indicating inattention to the task rather than saccadic

reactions (RT > 500 ms, <2% of trials). The reaction time to the target was

the time between the onset of the target and the onset of the saccade. The

reward-oriented reaction time bias was calculated from the reaction times

to the rewarded and unrewarded targets, using the equation RTbias =

(RTunrewarded – RTrewarded). The behavioral analysis was based on sessions in

which the relevant behavioral variable could be measured on at least 10 trials.

Confidence intervals and p values were computed using a bootstrap proce-

dure, in which the analysis was repeated on 20,000 bootstrap data sets

created by resampling trials with replacement. To measure the behavioral

timescale of memory (Figures 5 and 7), we used the same procedure as before

except fitting behavioral measures instead of neural activity. Each behavioral

session was treated as a separate ‘‘neuron,’’ except when fitting saccadic

reaction times to the targets, in which case each session was divided into

four separate ‘‘neurons’’ representing the 2 3 2 combinations of (saccade

direction) 3 (target reward value).

To measure the optimal timescale of memory (Figure 1D, black dots and

gray line), we again used the same model, but fitted to the actual reward

outcomes on each trial (+0.5 for rewarded, �0.5 for unrewarded) using a large

simulated data set generated from the task’s subblock-based reward

schedule. This produced the optimal linear predictor of a trial’s reward

outcome based on the recent reward history (optimal in the sense of

minimizing the mean squared error). To measure the accuracy of the optimal

linear predictor, we correlated its predicted reward probability for each

possible history of six past outcomes with the true reward probability for those

histories (computed using a large set of simulated data). For this correlation,

each history was weighed by its frequency of occurrence.
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