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We introduce a new invariant, the coronal of a graph, and use it to

compute the spectrum of the corona G ◦ H of two graphs G and H.

In particular, we show that this spectrum is completely determined

by the spectra of G and H and the coronal of H. Previous work has

computed the spectrum of a corona only in the case that H is reg-

ular. We then explicitly compute the coronals for several families

of graphs, including regular graphs, complete n-partite graphs, and

paths. Finally, we use the corona construction to generate many in-

finite families of pairs of cospectral graphs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let G and H be (finite, simple, non-empty) graphs. The corona G ◦ H of G and H is constructed as

follows: Choose a labeling of the vertices ofGwith labels 1, 2, . . . ,m. Take one copy ofG andmdisjoint

copies of H, labeled H1, . . . ,Hm, and connect each vertex of Hi to vertex i of G. This construction

was introduced by Frucht and Harary [4] with the (achieved) goal of constructing a graph whose

automorphism group is the wreath product of the two component automorphism groups. Since then,

a variety of papers have appeared investigating a wide range of graph-theoretic properties of coronas,

such as the bandwidth [2], the minimum sum [15], applications to Ramsey theory [10], etc. Further,

the spectral properties of coronas are significant in the study of invertible graphs. Briefly, a graph G is

invertible if the inverse of the graph’s adjacency matrix is diagonally similar to the adjacency matrix

of another graph G+, dubbed the dual of G (see [5]). Motivated by applications to quantum chemistry,

Godsil [5] studies invertible bipartite graphswith unique perfectmatching. In response to his question
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asking for a characterization of such graphs with the additional property that G ∼= G+, Simion and

Cao [13] determine the answer to be exactly the coronas of bipartite graphs with the single-vertex

graph K1.

The study of spectral properties of coronas was continued by Barik et al. in [1], who found the spec-

trum of the corona G ◦ H in the special case that H is regular. In Section 2, we remove the regularity

hypothesis on H and compute the spectrum of the corona of any pair of graphs using a new graph

invariant called the coronal. In Section 3, we introduce two different techniques for evaluating coro-

nals, and apply these techniques to several important families of graphs, including complete n-partite

graphs, paths, and (as in [1]), regular graphs. In each of these instances, the coronal has a concise

explicit form. Finally, in Section 4, we see that the computation of the spectrum of coronas lends itself

to finding many large families of cospectral graph pairs.

1.1. Notation

The symbols 0n and 1n (resp., 0mn and 1mn) will stand for the length-n column vectors (resp.m× n

matrices) consisting entirely of 0’s and 1’s. For twomatrices A and B, thematrix A⊗ B is the Kronecker

(or tensor) product of A and B. For a graph G with adjacency matrix A, the characteristic polynomial

of G is fG(λ) := det(λI − A). We use the standard notations Pn, Cn, Sn, and Kn for the path, cycle, star,

and complete graph on n vertices.

2. The main theorem

Let G and H be finite simple graphs on m and n vertices, respectively, and let A and B denote their

respective adjacency matrices. We begin by choosing a convenient labeling of the vertices of G ◦ H.

Recall that G ◦ H is comprised of the m vertices of G, which we label arbitrarily using the symbols

{1, 2, . . . ,m}, and m copies H1,H2, . . . ,Hm of H. Choose an arbitrary ordering h1, h2, . . . , hn of the

vertices of H, and label the vertex in Hi corresponding to hk by the label i + mk. Below is a sample

corona with the above labeling procedure:

Under this labeling the adjacency matrix of G ◦ H is given by

A ◦ B :=
⎡⎣ A 1Tn ⊗ Im

1n ⊗ Im B ⊗ Im

⎤⎦ .

The goal now is to compute the eigenvalues of this corona matrix in terms of the spectra of A and B.

We introduce one new invariant for this purpose.

Definition 1. Let H be a graph on n vertices, with the adjacency matrix B. Note that, viewed as a

matrix over the field of rational functions C(λ), the characteristic matrix λI − B has determinant

det(λI − B) = fH(λ) �= 0, so is invertible. The coronal χH(λ) ∈ C(λ) of H is defined to be the sum of

the entries of the matrix (λI − B)−1. Note this can be calculated as

χH(λ) = 1Tn(λIn − B)−11n.
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Ourmain theorem is that, beyond the spectra ofG andH, only the coronal ofH is needed to compute

the spectrum of G ◦ H.

Theorem 2. Let G and H be graphs with m and n vertices. Let χH(λ) be the coronal of H. Then the

characteristic polynomial of G ◦ H is

fG◦H(λ) = fH(λ)mfG(λ − χH(λ)).

In particular, the spectrum of G ◦ H is completely determined by the characteristic polynomials fG and fH,

and the coronal χH of H.

Proof. Let A and B denote the respective adjacencymatrices ofG andH. We compute the characteristic

polynomial of the matrix A ◦ B. For this, we recall two elementary results from linear algebra on the

multiplication of Kronecker products and determinants of block matrices:

• In cases where each multiplication makes sense, we have

M1M2 ⊗ M3M4 = (M1 ⊗ M3)(M2 ⊗ M4).

• IfM4 is invertible, then

det

⎛⎝M1 M2

M3 M4

⎞⎠ = det(M4) det(M1 − M2M
−1
4 M3).

Combining these two facts, we have (as an equality of rational functions)

fG◦H(λ) = det(λIm(n+1) − A ◦ B)

= det

⎛⎝ λIm − A −1Tn ⊗ Im

−1n ⊗ Im λImn − B ⊗ Im

⎞⎠
= det

⎛⎝ λIm − A −1Tn ⊗ Im

−1n ⊗ Im (λIn − B) ⊗ Im

⎞⎠
= det((λIn − B) ⊗ Im) det

[
(λIm − A) − (1Tn ⊗ Im)((λIn − B) ⊗ Im)−1(1n ⊗ Im)

]
= det(λIn − B)m det(λIm − A − (1Tn(λIn − B)−11n) ⊗ Im)

= det(λIn − B)m det((λ − χH(λ))Im − A)

= fH(λ)mfG(λ − χH(λ)). �

Remark 3. A natural question is whether or not the spectrum of G ◦ H is determined by the spectra

of G and H, i.e., whether knowledge of the coronal is necessary. We find that indeed it is necessary:

Computing the coronals of the cospectral graphs S5 and C4 ∪ K1, we have

χS5(λ) = 5λ + 8

λ2 − 4
and χC4∪K1(λ) = 5λ − 2

λ2 − 2λ
.

Thus cospectral graphs need not have identical coronals, and hence for a random graph G, the spectra

of G ◦ S5 and G ◦ (C4 ∪ K1)will likely be distinct. Note that this stands in stark contrast to the situation

for the Cartesian and tensor products of graphs. In both of these cases, the spectrum of the product is

determined by the spectra of the components.

The examples in the above remark are representative of a fairly common phenomena: since the

coronal χH(λ) = χ̃H(λ)
fH(λ)

can be computed as the quotient of the sum χ̃H(λ) of the cofactors of λI − B

by the characteristic polynomial fH(λ), it is a priori the quotient of a degree n − 1 polynomial by a
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degree n polynomial. In practice, however, as in the examples, these two polynomials typically have

roots in common, providing for a reduced expression for the coronal. Let us suppose that g(λ) :=
gcd(χ̃H(λ), fH(λ)) has degree n− d (the gcd being taken inC[λ]), so thatχH(λ) in its reduced form is

a quotient of a degree d− 1 polynomial by a degree d polynomial. Moreover, since the denominator of

this reduced fraction is a factor of fH(λ), and since fG is of degreem, eachpoleofχH(λ) is simultaneously

a multiplicity-m pole of fG(λ − χH(λ)) and a multiplicity-m root of fH(λ)m. Since these contributions

cancel in the overall determination of the roots of fG◦H(λ) in the expression

fG◦H(λ) = fH(λ)mfG(λ − χH(λ))

from Theorem 2, we can nowmore explicitly describe the spectrum of the corona. Namely, let d be the

degree of the denominator of χH(λ) as a reduced fraction. Then the spectrum of G ◦ H consists of:

• Some “old” eigenvalues, i.e., the roots of fH(λ) which are not poles of χH(λ) (or equivalently, the

roots of g(λ)), each with multiplicity |G|; and
• Some “new” eigenvalues, i.e., the values of λ such that λ − χH(λ) is an eigenvalueμ of G (with the

multiplicity of λ equal to the multiplicity of μ as an eigenvalue of G.)

Since for a given μ, solving λ − χH(λ) = μ by clearing denominators amounts to finding the roots of

a degree d+ 1 polynomial in λ, the above two bullets combine to respectively provide all (n− d)m+
m(d + 1) = m(n + 1) eigenvalues of G ◦ H. Table 1, computed using SAGE [14], gives the number of

graphs on n vertices whose coronal has a denominator of degree d (as a reduced fraction), as well as

the average degree of this denominator, for 1 � n � 7.

Since determining the characteristic polynomial of G ◦ H from the spectra of G and H requires

only the extra knowledge of the coronal of H, it remains to develop techniques for computing these

coronals. In Section 3, we will develop shortcuts for these computations, but we briefly conclude this

sectionwith somemore computationally-oriented approaches. A first such option is to have a software

package with linear algebra capabilities directly compute the inverse of λI − B and sum its entries,

as done in the computations for Table 1. This seems to be computationally feasible only for rather

small graphs (e.g., n � 12). A second, more graph-theoretic, option relies on a combinatorial result

of Schwenk [12] to compute each cofactor of λI − B individually, before summing them to compute

the coronal.

Theorem 4 (Schwenk [12]). For vertices i and j of a graph H with adjacency matrix B, let Pi,j denote the

set of paths from i to j. Then

adj(λI − B)i,j = ∑
P∈Pi,j

fH−P(λ).

Table 1

Number of graphs on n vertices whose coronal has denominator of degree d.

d\n 1 2 3 4 5 6 7

1 1 2 2 4 3 8 6

2 0 2 5 12 28 44

3 0 2 13 50 138

4 0 6 40 304

5 0 22 246

6 8 214

7 92

Total 1 2 4 11 34 156 1044

Average d 1 1 1.5 1.82 2.65 3.41 4.68

(Average d)/n 1 0.5 0.5 0.45 0.53 0.57 0.66
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Again, this approach becomes computationally infeasible fairly quickly without a method for pruning

thenumber of cofactors to calculate.Weexplore this idea in thenext section. Regardless, fromTheorem

4, we obtain:

Corollary 5. The spectrum of the corona G ◦ H is determined by the spectrum of G and the spectra of the

subgraphs of H (or more economically, only those subgraphs obtained by deleting paths from H).

3. Computing coronals

In this section, we will compute the coronals χH(λ) for several families of graphs, and hence obtain

the full spectrum of the corona G ◦H for any G. We produce two relatively independent techniques for

computing the coronal of a graph. The first exploits the regularity or near-regularity of a graph in order

to greatly reduce the number of cofactor calculations (relative to those required by Theorem 4) needed

to compute the coronal. In particular, we use these ideas to compute the coronals of regular graphs,

complete bipartite graphs, and paths. The second approach relates the coronal to a previously-studied

graph invariant, the walk generating function, which culminates in giving the coronal of H in terms

of the characteristic polynomials of H and its complement. In cases where the latter is known (e.g.,

multi-partite graphs), one is led to simple formulas for the coronal.

3.1. Coronals via near-regularity

For graphs that are “nearly regular” in the sense that their degree sequences are almost constant,we

can take advantage of linear-algebraic symmetries to compute the coronals. We begin with two con-

crete computations, regular and complete bipartite graphs, before extracting the underlying heuristic

and applying it to the coronal of path graphs. The case of regular graphs, first addressed in [1], is

particularly straight-forward from this viewpoint.

Proposition 6 (Regular graphs). Let H be r-regular on n vertices. Then

χH(λ) = n

λ − r
.

Thus for any graph G, the spectrum of G ◦ H consists precisely of:

• Every non-maximum eigenvalue of H, each with multiplicity |G|.
• Two multiplicity-one eigenvalues

μ + r ±
√

(r − μ)2 + 4n

2

for each eigenvalue μ of G.

Proof. Let B be the adjacency matrix of H. By regularity, we have B1n = r1n, and hence (λI − B)1n =
(λ − r)1n. Cross-dividing and multiplying by 1Tn ,

χH(λ) = 1Tn(λI − B)−11n = 1Tn1n

λ − r
= n

λ − r
.

The only pole of χH(λ) is the maximal eigenvalue λ = r of H, and the “new” eigenvalues are obtained

by solving λ − n
λ−r

= μ for each eigenvalue μ of G. �

It is noteworthy that all r-regular graphs on n vertices have the same coronal, especially given that

the cofactors of the correspondingmatrices (B−λI)−1 appear to bemarkedly dissimilar. The simplicity

of this scenario, and the easily checked observation that cospectral regular graphsmust have the same

regularity, lead to the following corollary. We will make use of this corollary in the final section.
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Corollary 7. Cospectral regular graphs have the same coronal.

As a second class of examples, we compute the coronals of complete bipartite graphs. (Though this

calculation will later be subsumed by Proposition 16, the formula given here is more elegant and

the proof does not require previous knowledge of the various characteristic polynomials arising in

that proof.)

Proposition 8 (Complete bipartite graphs). Let H = Kp,q be a complete bipartite graph on p + q = n

vertices. Then

χH(λ) = nλ + 2pq

λ2 − pq
.

For any graph G, the spectrum of G ◦ H is given by:

• The eigenvalue 0 with multiplicity m(n − 2); and
• For each eigenvalue μ of G, the roots of the polynomial

x3 − μx2 − (p + q + pq)x + pq(μ − 2).

Proof. Let B =
⎡⎣0pp 1pq

1qp 0qq

⎤⎦ be the adjacency matrix of Kp,q and let X = diag((q + λ)Ip, (p + λ)Iq) be

the diagonal matrix with the first p diagonal entries being (q+λ) and the last q entries being (p+λ).
Then (λI − B)X1n = (λ2 − pq)1n, and so

χH(λ) = 1Tn(λI − B)−11n = 1TnX1n

λ2 − pq
= (p + q)λ + 2pq

λ2 − pq
.

Thus the coronal has poles at both of the non-zero eigenvalues ±√
pq of Kp,q, leaving only the eigen-

value 0 with multiplicity p + q − 2. Finally, solving λ − χH(λ) = μ gives the new eigenvalues in the

spectrum as stated in the proposition. �

Remark 9. It might be tempting in light of Propositions 6 and 8 to hope that the degree sequence of

a graph determines its coronal. This too, like the analogous conjecture stemming from cospectrality

(Remark 3), turns out to be false: The graphs P5 and K2 ∪ K3 have the same degree sequence, but we

find by direct computation that

χP5(λ) = 5λ2 + 8λ − 1

λ3 − 3λ
χK2∪K3(λ) = 5λ − 7

λ2 − 3λ + 2
.

The proof technique for the last two propositions generalizes to “nearly regular” graphs, by which

we mean graphs H for which all but a small number of vertices have the same degree r. In this case,

we can write

(λI − B)1n = (λ − r)1n + v,

where v = (vi) is a vector consisting mostly of 0’s. This gives

(λI − B)−11n = 1

λ − r

[
1n − (λI − B)−1v

]
,

and thus, using the adjugate formula for the determinant,

χH(λ) = 1Tn(λI − B)−11n = 1

λ − r

⎡⎣n − 1

fH(λ)

∑
1�i,j�n

viCi,j

⎤⎦ ,
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where Ci,j denotes the (i, j)-cofactor of λI−B. Since vi is zero formost values of i, we have an effective

technique for computing coronals if we can compute a small number of cofactors (as opposed to, in

particular, computing all of the cofactors and using Theorem 4). For example, if we let fn = fPn(λ) be
the characteristic polynomial of the path graph Pn on n vertices (by convention, set f0 = 1), we can

compute coronals of paths as follows:

Proposition 10 (Path graphs). Let H = Pn. Then

χH(λ) = nfn − 2
∑n−1

j=0 fj

(λ − 2)fn
= (n(λ − 2) − 2)fn + 2fn−1 + 2

(λ − 2)2fn
.

Proof. The proof of the first equality will reflect the discussion above, and the second equality is

a combinatorial re-writing using a recurrence relation for the functions fn. In the notation of the

discussion preceding the proposition, we take r = 2 and v = [1 0 0 · · · 0 0 1]T . Further, we note that

an easy induction argument using cofactor expansion gives C1,j = Cn,j = fj−1. Thus we obtain

χPn(λ) = 1

λ − 2

⎡⎣n − 1

fn

n∑
j=1

(C1,j + Cn,j)

⎤⎦ = 1

λ − 2

⎡⎣n − 2

fn

n−1∑
j=0

fj

⎤⎦ ,

from which the first equality follows. For the second equality, we recall from [9, Theorem 3] that the

path graph polynomials fn satisfy f0 = 1, f1 = λ, and fn = λfn−1 − fn−2 for n � 2. The sum in the

previous formula can now be evaluated as follows:

S :=
n−1∑
j=0

fj = 1 + λ +
n−1∑
j=2

(λfj−1 − fj−2)

= 1 + λ + λ(S − 1 − fn−1) − (S − fn−1 − fn−2).

Solving gives (λ − 2)S = λfn−1 − fn−2 − fn−1 − 1 = fn − fn−1 − 1, and substituting S = fn−fn−1−1

λ−2

into the first equality gives the second. �

From this, we easily calculate the coronals for the first few path graphs, as shown in Table 2.

Remark 11. This particular example can also be computed using Theorem 4: For i and j distinct, there

is a unique path [i, j] from vertex i to vertex j, so the sum in the theorem reduces to a single term:

adj(λI − B)i,j = fPn−[i,j] = fi−1fn−j.

Similarly, we find adj(λI − B)i,i = fi−1fn−i. Summing over all the cofactors gives

χPn(λ) = 1

fn

⎛⎝ n∑
i=1

fi−1fn−i + 2

n∑
i,j=1

fi−1fn−j

⎞⎠ ,

which reduces to the result computed in Proposition 10 after the application of recurrence identities.

3.2. Coronals via the walk generating function

Here we give a combinatorial interpretation of the coronal of a graph H, and show that it can be

computed from the knowledge of the characteristic polynomials of H and its complement, which we

Table 2

The coronals χPn (λ) for 1 � n � 7.

n 1 2 3 4 5 6 7

χPn (λ) 1
λ

2
λ−1

3λ+4

λ2−2

4λ+2

λ2−λ−1

5λ2+8λ−1

λ3−3λ
6λ2+4λ−4

λ3−λ2−2λ+1

7λ3+12λ2−6λ−8

λ4−4λ2+2
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denote by H. We begin with the simple observation that

χH(λ) = 1Tn(λIn − B)−11n = λ−11Tn

(
In − λ−1B

)−1
1n

= λ−11Tn

⎛⎝ ∞∑
k=0

λ−kBk

⎞⎠ 1n

= 1

λ

∞∑
k=0

(1TnB
k1n)λ

−k.

Of course, the kth power of the adjacency matrix has (i, j)-entry equal to the number of length-k

walks in H from i to j, and hence the sum 1TnB
k1n of all the entries in this matrix is the total number

wk of all walks of length k in H. In particular, if wH(t) = ∑∞
k=0 wkt

k is the generating function of the

sequence wk , the above calculation has proven that

χH(λ) = 1

λ
wH

(
1

λ

)
.

This generating function admits a relation to fH(λ) and fH(λ) as follows [3, Theorem 1.11]:

wH

(
1

λ

)
= −λ + (−1)nλ

fH(−λ − 1)

fH(λ)
.

Combining the two equations give the principal result of this section.

Theorem 12. For a graph H of order n,

χH(λ) = −1 + (−1)n
fH(−λ − 1)

fH(λ)
.

Tangentially, we remark that one deduces from this the following curious property about graphs

whicharecospectral to their complement (e.g., Paleygraphs, or self-complementarygraphs ingeneral):

Corollary 13. If H is a graph on n vertices cospectral with its complement, then χH(− 1
2
) is 0 or −2,

depending on whether n is even or odd.

More significantly, we deduce from Theorem 2 the following alternative calculation of the charac-

teristic polynomial of a corona.

Corollary 14. The characteristic polynomial of the corona G ◦ H is given by:

fG◦H(λ) = fH(λ)mfG

(
λ + 1 − (−1)m

fH(−λ − 1)

fH(λ)

)
.

Remark 15. The reviewer notes an alternative proof of the corollary using the identity G ◦ H =
G 
 (H ∨ K1), where ∨ denotes the join of two graphs (see Proposition 17) and 
 denotes the rooted

product (see [7]).

As a first application, we generalize the first part of Proposition 8 to find the coronal of complete

multi-partite graphs.

Proposition 16. Let H be the complete multi-partite graph Kn1,n2,...,nk where n1 + n2 + · · · + nk = n.

Then

χH(λ) =
⎛⎝1 −

k∑
i=1

ni

λ + ni

⎞⎠−1

− 1.
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Proof. This follows directly from Theorem 12 and well-known formulas for the characteristic polyno-

mials of H and H = Kn1 ∪ · · · ∪ Knk . Namely, we have [3, Section 2.6]

fH(λ) = λn−k

⎛⎝1 −
k∑

i=1

ni

λ + ni

⎞⎠ k∏
j=1

(λ + nj)

and

fH(λ) =
k∏

i=1

fKni
(λ) =

k∏
i=1

(λ + 1)ni−1(λ − ni + 1) = (λ + 1)n−k
k∏

i=1

(λ − ni + 1).

Substituting, we have fH(−λ − 1) = (−1)nλn−k ∏k
i=1(λ + ni). Now from Theorem 12,

χH(λ) = −1 + (−1)n
fH(−λ − 1)

fH(λ)
= −1 + 1

1 − ∑k
i=1

ni
λ+ni

,

as desired. �

Finally, we include the following proposition and its proof, due to the reviewer. The join G ∨ H of

two graphs is the graph obtained by taking the disjoint union of G andH and adding an edge from each

vertex of G to each vertex of H. We note that the complement of the join G ∨ H is the disjoint union of

G and H.

Proposition 17. Let H1 be an r1-regular graph of order n1 and H2 an r2-regular graph of order n2. If

H = H1 ∨ H2, then

χH(λ) = (λ − r1)n2 + (λ − r2)n1 + 2n1n2

(λ − r1)(λ − r2) − n1n2
.

Proof. Theorem2.6of [3] relates the characteristic polynomials of a regular graphand its complement:

For i = 1, 2, we have

fHi
(λ) = (−1)ni

λ − ni + ri + 1

λ + ri + 1
fHi

(−λ − 1)

Now since fH(λ) = fH1
(λ)fH2

(λ), we have

fH(−λ − 1) = (−1)n1+n2
(r1 − n1 − λ)(r2 − n2 − λ)

(r1 − λ)(r2 − λ)
fH1

(λ)fH2
(λ).

Finally, Theorem 2.8 of [3] computes

fH(λ) = fH1
(λ)fH2

(λ)

(λ − r1)(λ − r2)
[(λ − r1)(λ − r2) − n1n2].

The result now follows easily from Theorem 12. �

4. Cospectrality

At the end of [1], the authors prove that if G1 and G2 are cospectral graphs, then G1 ◦ K1 and G2 ◦ K1

are also cospectral, and that (by repeated coronation with K1) this leads to an infinite collection of

cospectral pairs. Armed with the characteristic polynomial

fG◦H(λ) = fH(λ)mfG(λ − χH(λ))

of the corona (Theorem 2), we can greatly generalize this observation on two fronts.
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Corollary 18. If G1 and G2 are cospectral, and H is any graph, then G1 ◦ H and G2 ◦ H are cospectral.

Further, if H1 and H2 are cospectral and χH1
(λ) = χH2

(λ), and G is any graph, then G ◦ H1 and G ◦ H2

are cospectral.

We remark that examples of this second type do indeed exist. Define the switching graph Sw(T) of
a tree T with adjacency matrix AT to be the graph with adjacency matrix

ASw(T) :=
⎡⎣1 0

0 1

⎤⎦ ⊗ AT +
⎡⎣0 1

1 0

⎤⎦ ⊗ AT ,

and let T1 and T2 be non-isomorphic cospectral trees with cospectral complements (note that by [6],

generalizing [11], “almost all” trees admit a cospectral pair with cospectral complement). Then the

switching graphs Sw(T1) and Sw(T2) are non-isomorphic cospectral regular graphs (see [8, Construc-

tion 3.7]), and also have the same coronal by Corollary 7. Corollary 18 now implies that for any graphs

G and H, we have the cospectral pair G ◦ Sw(T1) and G ◦ Sw(T2) and the cospectral pair Sw(T1) ◦ H

and Sw(T2) ◦ H. This gives, for example, infinitely many cospectral pairs of graphs with a given graph

G as an induced subgraph.
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