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This article is a continuation of the articles “Geometric Coloring Theory”’ 
and “Variations on Coloring: Surfaces and Higher-Dimensional Manifolds”’ 
which appeared in Advances in Mathematics. All previous definitions, 
results, and references are to be found there. 

Chapter VII studies homotopy and cobordism questions of colorings. The 
objects of these relations are pairs (ikf, n), where x is a local coloring of the 
boundaryless oriented manifold M. The first section constructs some 
invariants of homotopy and cobordism. In Section 2, it is shown that these 
invariants suffice to classify homotopy and cobordism classes in one 
dimension. The invariants are shown to be sufficient in dimension 2 in the 
next section. 

Chapter VIII is the final chapter and studies the global properties of 
coloring. Section 1 introduces a functor B which assigns an n-complex B(X) 
to an n-complex X. B(X) is built out of colorings of X. Section 2 studies 
librations of colorings. The main result is the calculation of B(X) where X is 
the “universal coloring bundle” of the circle P(n). Section 3 contains the 
beautiful result that B(BQ) =X, where X is the circle with n vertices. 
Section 4 shows that finiteness is important by giving an infinite graph Z 
such that for all finite subgraphs W we have B(B(W)) = W but it is not true 
that B(B(Z)) = Z. Section 5 studies the relations between the automorphisms 
of X and B(X), Section 6 looks at the structure of B(X), where X is an even 
triangulation of the 2-sphere. The last section ends with a beautiful result due 
to Tutte, and surprising calculation of the colorings of a graph due to 
coxeter. 

At the end of each chapter there are some problems. The unsolved 
problems are marked with a small circle (e.g., 79. 

VII. 1. Introduction 
VII 

We observed in the last Chapter that if we have an even triangulation of a 
manifold, then this even structure induces a local coloring of the boundary. 
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Let n be a local coloring of a boundaryless manifold M. We say that the pair 
(M, n) is homotopic to another pair (M’, n’) if there is a triangulation T of 
the topological space M x I (1 is the unit interval) such that these conditions 
are satisfied: 

(1) T is an even triangulation, 

(2) The boundary of T is MUM’, 

(3) T induces the local colorings rr on M and 7r’ on M’. 

We say that the two pairs are cobordant if there is a triangulation T which 
satisfies the three conditions, but T is a triangulation of some manifold W, 
not necessarily M X I. 

We consider two questions: (1) When are two pairs homotopic? (2) When 
are two pairs cobordant?. Necessary conditions are of course the topological 
requirements. In (1) M abd M’ must be homeomorphic, and in (2) M and M’ 
must be “topologically cobordant.” 

In the homotopy case, each pair determines characteristic maps v and I@: 

n,(lMI> + Sn+*, and it is clear that w and v/’ are conjugate. Recall 
(Section 1.4) that this means that there is a permutation a in S,,+? such that 
y = aya-‘. We will show that conjugacy is a sufficient condition for 
homotopy in dimensions 1 and 2. 

In the cobordism case there are also some necessary conditions. We say 
that an assignment f defined on pairs (M, z) is an invariant if, whenever 
(M, n) is cobordant to (M’, n’), we havef((M, z)) = f((M’, x’)). Let pair(n) 
(resp. sing(x)) be the parity of the number of nonsingular (resp. singular) 
codimension 1 simplices of A4 with respect to 71. We have previously seen 
pair(n) for dimension 2 in Chapter V. The following lemma gives some 
invariants: 

LEMMA 67. Let the dimension of M be n. The following are invariants of 
cobordism: 

(1) sing(n) if n = 1 (mod 4), 

(2) pair(n) if n = 2 (mod 4), 

(3) sing(n) and pair(n) if n = 3 (mod 4). 

ProoJ: Recall the degree of a simplex s, p(s, M), defined as the number of 
top-dimensional simplices of M containing s. Define P(s, M) as the number 
of codimension 1 simplices of M containing s. To show that some 
assignment is an invariant, it suffices to show that if T is an even n + 1 
manifold, then the assignment is zero on the boundary. In Formula (1) 
(VI.1) we saw that ifs is an (n - 2)simplex of the boundary M of T, then s 
is nonsingular iffp(s. T) is odd. s is singular iff P(s. T) is odd. Let X be the 
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number of n-simplices of T, and Y the number of (n - I)-simplices of T. We 
have the equations 

sing(z)= C p(s,T)= 2 p(s,T)=(n+l)Y. 
scar SET 

These equations show that pair(z) is even when (“:I) is even, and sign(x) 
is even when n is even. It is an exercise to show that in the case of n divisible 
by 4, neither pair(z) nor sing(n) can be an invariant. 1 

The formulation of homotopy and cobordism here is new, but there have 
been a few results that fit into this framework. The one-dimensional case 
have been studied the most. An example of the type of problem studied is: Is 
there a triangulation of the sphere with exactly two odd vertices, and they 
are adjacent? In our framework, we can remove a triangle containing the 
edge, and ask if a certain local coloring of the circle is homotopic to the 
identity. 

Fleischer and Roy (1974) studied some one-dimensional homotopy 
problems. Fleischer (1974) showed (in our terminology) that the number of 
nonsingular edges of a 4coloring of the 2-sphere is even (see Proposition 45 
in Chapter V). Jendrol (1975) studied some homotopy questions in one 
dimension, see also Malkevitch (1970). Wagner (1936), Lawson (1972), and 
Dewdney (1973) studied homotopy questions in two dimensions. 

V11.2. The Situation in One Dimension 

The feature that makes the one-dimensional case especially interesting is 
that there is not just one result for even triangulations, but there are results 
for all locally-n triangulations. Recall (Section 1.5) that a locally-n 
triangulation of a surface has all interior vertices of degree divisible by n. 
The universal object is the triangulation R(n) of the sphere (if n < 6) or the 
plane (if n > 6). Just as the sequence of degrees modulo 2 on the boundary of 
an even triangulation gives a local coloring, we shall say that the sequence of 
degrees modulo n on the boundary of a locally-n surface gives locally-n 
circles. We give the circles the orientation induced by the surface. We ask 
the same homotopy and cobordism questions about locally-n circles as we 
did of even triangulations (Section 1). 

We begin with the study of homotopy. Let p be a locally-n circle. p 
determines a map w: n,(l/II)-+ Aut(R(n)), where I/? is the underlying 
topological space of /3 (a l-sphere) and Aut(R(n)) is the group of orientation 
preserving automorphisms of R(n). This characteristic map p is defined in 
the same way as the other characteristic maps (1.4). VI is well defined up to 
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conjugacy. If p is induced by a locally-n triangulation of the disk, then the 
image of w is the identity. Any p whose characteristic map maps onto the 
identity we shall call trivial. In case that n < 6, triviality and being induced 
by a disk are equivalent. To show this, we need a preliminary lemma. By 
map we mean as usual a simplicial map which sends triangles onto triangles. 

LEMMA 68. Let K be a triangulation of a surface and f a map from P(n) 
to K which maps edges onto edges. Iff is also null homotopic then there is a 
triangulation D of the disk satisfying 

(1) aD = P(n), 

(2) there is an F: D + K, 

(3) F restricted to aD is f: 

Proof: Since f is null homotopic, there is a continuous map from the disk 
to K which extendsf: By the simplicial approximation theorem, we may find 
a triangulation D of the disk and a map F: D + K which extendsf: Now this 
map may not be a map in our sense, for it may map edges onto points. If an 
edge of D is mapped onto a point, collapse the edge to a point. The triangles 
containing the edge collapse to lines., The resulting triangulation D’ has a 
map to K and one less edge which is collapsed. Continuing, we get a 
triangulation of the disk as desired. 1 

COROLLARY 69. If n < 6 and j3 is a locally-n circle with trivial charac- 
teristic map, then /3 is induced by a locally-n disk. 

Proof Take a D as given in Lemma 68. Orient D and R(n). Consider the 
orientations of the triangles of D induced by f: It is easy to see that at all 
interior vertices the sum of the orientations (1 for positive, -1 for negative) 
is zero modulo n. Compare Proposition 25 in Section IV.l. Pick a triangle T 
of D which has negative orientation under f. Let D’ be D with T removed, 
and let R(n)’ be R(n) with one triangle removed. Join D’ and R(n)’ along 
these two triangular holes. The resulting triangulation has a map to R(n), 
and the new triangles added have positive orientation under this map. Do 
this for all triangles of D with negative orientation. If we end up with D* 
then D* has a map to R(n) with all triangles of positive orientation. Conse- 
quently all vertices have degree divisible by n and so D* is locally-n. I 

It is not at all obvious that there are any locally-n triangulations of closed 
surfaces for large n. For n equal to 6 we have seen that there are locally-6 
triangulations of the torus (Section V.1). We shall derive the existance of 
locally-n triangulations of closed surfaces, from a theorem about covering 
spaces. Husemoller (Ramified coverings of Riemann surface, Duke Math. J. 
29 (1962), 167-l 74) proved a result (Theorem 4) which gives conditions for 
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the existance of ramified coverings of a surface with specified branching. A 
special case of his result shows that for a set of 12 points S on the torus and 
any integer n, there is a ramified covering K of the torus where the only 
ramified points lie over S and have ramification indices of order n. If we 
take the triangulation A* X aA3 of the torus and lift it to a triangulation of 
the surface K by this covering, then every vertex of this induced triangulation 
has degree 6n. Any triangulation with all vertices of degree 6n is of course 
locally-n, so we have the 

LEMMA 70. For any n there are locally-n triangulations of some closed 
compact orientable surface. 

As a corollary of this lemma, we derive the cobordism version of 
Lemma 68 for n > 6. 

COROLLARY 7 1. For any n, if/3 is a locally-n circle with trivial charac- 
teristic map, then /3 is induced by a locally-n surface. 

Proox Let Q be a locally-n triangulation whose existance is guaranteed 
by the preceeding lemma. The proof of Lemma 68 now applies, with R(n) 
replaced by Q. 1 

In case that n < 6 we get a simple homotopy result. 

THEOREM 72. If n < 6 and fi and p’ are two locally-n circles with 
conjugate characteristic maps, then /? and /I’ are homotopic. 

Proof. Let T be a triangulation of the annulus with the following 
properties: (1) T = S U S’, (2) S (resp. S’) has a neighborhood in T which is 
locally-n and induces the locally-n circle /i (resp. p’). T need not be locally-n 
itself. Picking basepoints in neighborhoods of S and S’, we get characteristic 
maps w  and I@. Since they are conjugate, there is an element a of Aut(R(n)) 
such that w’(s) = ayl(s)a-‘. Consequently one can join a triangle of a 
neighborhood of S to a triangle of a neighborhood of S’ by a path P of 
triangles in T with the following property: if K (resp. K’) is the path of 
triangles which goes once around S (resp. S’) in the positive direction, then 
the composite path KPK’P-’ has a nonsingular map to R(n). By Lemma 68 
there is a locally-n disk D whose boundary is exactly KPK’P-‘. If we 
identify P with P-’ in D we get a locally-n triangulation of the annulus 
whose boundary induces /3 and p’. 1 

The rest of this section will be devoted to cobordism. Suppose that K is a 
cobordism between two locally-n circles p and p’. Since the supporting 
circles S and S’ of p and p’ are homologous, as homotopy elements they 
differ by an element of the commutator subgroup of n,(K). Consequently, if 
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we compute the characteristic map I// on S and S’, we see that y/(S) v(S’)-’ 
lies in the commutator subgroup of Aut(R(n)). Thus, if p and p’ are 
cobordant, then w(p) = I#), considered as elements of Aut(R(n)) modulo 
the commutator subgroup. We can explicitely calculate this group. 

LEMMA 13. Aut(R(n)) module the commutator subgroup is isomorphic 

to ~,h.tl,~ the cyclic group on (6, n) elements. 

Proof: (6, n) is the greatest common divisior of 6 and n. From Coxeter 
and Moser (1957) we know a presentation for Aut(R(n)). The generators are 
X and Y subject to the relations X2 = Y3 = (Xv>” = 1. Dividing out by the 
commutator adds one more relation XY = YX. Suppose that (6, n) = 3. In 
this case, 1 = (XY)” =X” = X, the last step from (n, 2) = 1. Thus the only 
relation is Y3 = 1 and the group is L 3. The remaining cases are similiar. 1 

We shall write the group algebra generated by L, as Z(Z,). We now define 
the usual construction for cobordism groups. Let G(n) be the free group 
generated by all oriented locally-n circles modulo the group generated by all 
sums p + /?‘, where p and p’ are cobordant. We recall that the locally-n 
circles p are oriented, so we are dealing with oriented cobordism. 

Let p and ,8’ be locally-n circles. A connected sum of /3 and /?’ is a locally- 
II circle constructed as follows. Picking a basepoint on each of /I and /3’ we 
may write the sequence of degrees as p(l),..., P(r) (resp. p’(l),..., /3’(r’)). The 
sequence of degrees p(l),..., P(r), /?‘( 1),...,/3’(r’) is a connected sum of p and 
p’. 

THEOREM 74 (one dimensional cobordism). For any n > 2, 

(1) Q(n) is a ring with connected sum as product. 

(2) fib> = Uk,,). 
(3) Q(n) is periodic with period 6. 

Proof. Let us denote by l? the map from O(n) to Z(Zo,,,) which sends a 
generator p of 0(n) to the class of I@) in Aut(R(n))/commutators. To prove 
(2) it suffices to show that 0 is 1 - 1 and onto. It is easy to construct 
examples of locally-n circles which map onto the elements of Zt6.,!,, so 0 is 
onto. To show that 0 is 1 - 1, it must be shown that if /I is a locally-n circle 
with B(p) = 0, then there is a locally-n surface whose boundary induces /?. 
Write I@) as a product of commutators: n a,b,a;‘b,:‘. Consider a 
triangulation S of the disk with N handles. If the boundary of S is T then we 
can find curves Ai and Bi (i= l,..., N) such that the A’s and the B’s along 
with T generate the fundamental group of S. See Fig. 34. As elements of the 
fundamental group, T= n AiBiA;‘B;‘. Pick paths of triangles AT (resp. 
BP) such that A? (resp. BP) represents Ai (resp. Bi) and if we compute v 
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FIG. 34. Simple closed curves on genus two surface. 

along AT (resp. BT) we get Ui (resp. bi). Join the common triangle of all these 
paths to the boundary and triangulate the boundary so that the boundary 
path represents T. We can of course always do this for any /I,but in this case 
we have that w  computed over the path T- ’ n APBPAP- ’ is the identity. 
Moreover, the complement of the composite path is a disk. We can therefore 
apply Corollary 71 or Corollary 69 to find a surface K inducing /3. This 
concludes the proof of (2). 

To verify (I),. let p” be a connected sum of p and p’. w  computed on p” is 
the product of some conjugate of I,#) with some conjugate of I@‘). Under 
the map 8, we have O@) = O(p’), so by the preceding paragraph, the 
cobordism class of /I” is well defined. 

Part (3) is an immediate consequence of (2) and Lemma 73. fl 

How do we compute the isomorphism 19? Theorem 75 will give some 
simple interpretations of 0. Suppose that p is a locally-n circle, where n is 
even. Define a’@?) to be the sum of the values of /I plus the number of 
vertices of the underlying circle of 8. If we define the local degree of a vertex 
in a graph as the number of edges containing the vertex, then a*(,@ is the 
sum modulo 2 of the local degrees of all the vertices. The fact that the 
number of vertices of a graph with odd local degree is even becomes the fact 
that that a’(/?) is even when p is induced by the boundary of an even 
triangulation. Thus a2 induces a map from O(n) to Z,, which we shall 
denote a*. 

Next suppose 3 divides n. Define a3(,f?) as the sum of the values of p 
modulo 3. In case that /3 is zero in Q(n), then it is zero in a(3), so we get a 
map a3 from a(n) to Z,. 

THEOREM 75. There are maps w2 and w3 such that the following are 
commuting diagrams of homomorphisms. 



184 STEVE FISK 

COROLLARY 76. (1) A locally-2 circle bounds a surface iff the sum of the 
local degrees is even. 

(2) A locally-3 circle bounds a surface ifs the sum of the degrees is 
divisible by 3. 

(3) There exists a triangulation of some orientable surface with 
exactly two odd vertices, and they are adjacent. 

Proof of Corollary. Immediate. In part (3) such a triangulation can 
actually be found on the torus, the surface of minimal genus on which this is 
possible. 

Proof of the Theorem. We shall only do the case of n = 2r; the case 
n = 3r is entirely similar. A locally-n circle with basepoint is a pair (p, p), 
where p is a point of the underlying circle. Given a basepoint, the connected 
sum of two locally-n circles is now well defined. Let G(n) be the semigroup 
of all locally-n circles with basepoint. It is easily verified that the map w 
from G(n) to Aut(R(n)) is an antihomomorphism. If n = 2r, consider the 
diagram 

G(n) $ Aut(R(n)) 
/’ 

n? 
I 

,’ / 
A’ 

z,&L 
I 

Aut(R (n))/commutator 

If we knew that the diagonal map were well defined, then we could 
conclude the existance of w*. w* would be the result of factoring a map to an 
abelian group through the commutator. 

Suppose that w(x) = v/(y), where x and y are elements of G(n). By the last 
theorem, x and y are cobordant. Hence a’(x) + a’(y) = 0 so the map y-la2 
is well defined. 1 

VII.3. Two-Dimensional Results 

There are two results in the literature that can be interpreted as results 
about homotopy. The first is known as Wagner’s Theorem (Wagner, 1936). 
If we take an edge e and a triangulation M, we can construct a new 
triangulation by removing the edge e, and adding a new edge e’ which joins 
the other two vertices of the resulant square. Such a change is called a 
diagonal transformation, and an example is shown in Figure 35A. Wagner 



COBORDISM AND FUNCTORIALITY OF COLORINGS 185 

FIG. 35. Diagonal transformations. 

proved that any two triangulations of the sphere with the same number of 
vertices may be transformed into one another by diagonal transformations. 
(See Lawson (1972) for a metric version of this result.) The second 
homotopy result is due to Dewdney (1973) who showed that the same result 
holds for triangulations of the torus. 

We can interpretate these results in terms of homotopy as follows. If we 
take a triangulation M of a surface and an edge e of M and add a 
tetrahedron to the two triangles containing e, we get a space M’. Looking at 
M’ from the “inside” we see the triangulation M, but looking at M’ from the 
“outside” we see the triangulation which is the result of applying a diagonal 
transformation at e (see Fig. 35B). If we add a number of tetrahedra then we 
get some partially thickened surface whose boundary can be thought of as 
the original triangulation and the final one. Every interior edge has interior 
degree (there are none) so the thickened surface is an even triangulation. 
Thus, Wagner’s and Dewdney’s results imply that any two triangulations of 
the sphere or torus with the same number of vertices are “homotopic” via 
some sort of even triangulation. 

It is possible to approach homotopy problems for pairs (M,p) using 
diagonal transformations. Our approach will be to use even subdivision 
(Chapter II). 

THEOREM 77. If M and M’ are triangulations of the same suface with 
local colorings II and 7~’ and the characteristic homomorphismms of the pairs 
(M, n) and (M’, n’) are conjugate, then the two pairs are homotopic. 

Proof. We first observe that if we evenly subdivide M to get M” with 71 
inducing z”, then the pairs (M, a) and (MO, 7f) are homotopic. Recall 
(Section 11.1) that evenly subdividing an edge or triangle can be thought of 
as adding the boundary of an octahedron with the 3-coloring on it. We get 
the homotopy between the two pairs by adding a vertex in the interior of the 
octahedron and joining it to the octahedron. 

If the genus of M is g, then we can find 2g simple closed curves of edges 
in M (resp. M’) xi (resp. xi) such that the intersection of any two of the 
curves is a point p (resp. p’). Because of the assumption that the 
homomorphisms are conjugate, we may assume that the homomorphisms 
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computed along these curves are actually identical. To realize the curves as 
disjoint may take some even subdivision. 

Pick a path xi and consider a thickening D of the path xi - p in M. D is a 
disk with boundary xt Ux-. The local coloring of M induces a 4-coloring f 
on D. w computed on xi is equal to w computed on x+ or x-. Therefore, 
computing li/ on the paths x+(x;)-’ and x-(x;)-’ gives the identity. By 
Lemma 57 there are triangulations Df and D- of the disk with 4-colorings 

f’ and f - such that f’ = f on X’ and f - = f on x-. We now apply 
Lemma 57 to the disk D = D+ U D- with 4-coloring f = f + U f -. Let E be 
the even 3-disk given by the Lemma. Joining E to M along D gives us a new 
triangulation A” with A” = M U M”. The local coloring on M” induced by A 
restricted to the curve xi agrees with the local coloring on xi determined by 
7~‘. Do this for all the xi, obtaining a triangulation A with boundary MUM*. 
In M* we have the paths xi with the induced local coloring agreeing with the 
local coloring determined by X’ on xi. The complement of the union of the xi 
in M’ resp. M*) is a disk. By Lemma 57 there is a triangulation E of the 
sphere whose boundary is D’ U D *. E’ is even and induces the coloring 
rc’ U 71’. Adding E’ along D’ to M* gives a triangulation A U E’. The 
boundary of A U E’ is MUM’, and the induced colorings are n and 7~‘. This 
is the desired homotopy. m 

From our general discussion in the first section, we saw one cobordism 
invariant in two dimensions: the parity of the number of not-singular edges. 
We now show that this is the only invariant in dimension 2. 

THEOREM 78. Let n be a local coloring of an orientable surface M. If n 
has an even number of nonsingular edges then there is an even 3-manifold 
which induces the pair (M, 71). 

ProoJ Using Theorem 77 we can find a triangulation M’ of M x I such 
that M* is even and one end of M2 induces n. Now since M is orientable, 
there is a three-dimensional surface K whose boundary is M. Join a 
triangulation of K to the other end of M2 to get a triangulation N. N has the 
property that the boundary is M, and a neighborhood of M in N is even and 
induces TC. The total number of odd edges of N is even, and .a11 the edges of 
the boundary are even except for an even number of nonsingular edges. 
Consequently N has an even number of odd edges, and they lie strictly in the 
interior of N. 

The proof is in two steps. We first show that we can assume that the odd 
part consists of disjoint circles, and then we show how to remove the circles. 

Suppose that some vertex p of N has more than two odd edges passing 
through it. Evenly subdividing if necessary, we may assume that the link ofp 
has no odd edges on it. The odd vertices of the link of p correspond to the 
odd edges at p. Subdividing further, we apply Corollary 13 to find an even 
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FIG. 36. Simplifying intersections. 

subdivision with a 4-coloring f of the link of p. Moreover, we may assume 
that NS(f) consists of free pairs (Fig. 1 la). Remove the star of p and fill in 
the hole with an even triangulation E which induces the 4-coloring f 
(Lemma 57). The odd edges of the boundary of E are exactly the 
nonsingular edges of f (Formula 1 of Section VI.l). The intersections are 
now simplified (see Fig. 36). 

We now remove the free pairs. Take an even disk in N whose boundary is 
the two arcs a U b. The disk can be chodsen so that the 3-coloring of the 
disk induces a 2-coloring of a U 6. Cut out the disk, obtaining a sphere S 
whose equator is 2-colored, and with even hemispheres. The odd edges of S 
in N are exactly a U b. Take the 4-coloring g of S such that NS( g) = Q U b. 

Let E be a triangulation of the 3-disk inducing g. Joining E to S changes the 
parity of the arcs a U b to even. We have removed a loop. Doing this for all 
the free pairs, we may assume that the odd part of N consists of disjoint 
circles. 

We have not yet changed the topological type of N. In order to kill off the 
odd circles we are forced to do so. Suppose that we compute v on loops of 
O(N), L and L’, and get the identity on each. We show how to remove these 
two odd circles. After sufficient even subdivision, we can assume that L and 
L’ are contained in the boundary of tori P and P’ with the boundary of P 
and P’ 3-colored. Under these 3-colorings, L and L’ are necessarily 2- 
colored. Let P and P’ bound solid tori T and T. Remove T and T from N. 
Give a local coloring a (resp. 7~‘) on P (resp. P’) by setting 7~ (resp. n’) to be 
non singular exactly on L (resp. L’). (Since v/ is the identity, this is easily 
seen to be a local coloring.) By Theorem 77, we can find a triangulation of 
P x I whose boundary induces these two local colorings. Adding this 
triangulation kills off the odd edges of L and L’. This surgery changes the 
homotopy type of N. 

If there is only one loop L with w  of it the identity, then we can add a 
loop somewhere (using Lemma 58) and kill them both off. If L is a loop of 
odd edges, then y(L) must be either the identity, (12), (12)(34), or (34). In 
these computations, the loop L is always colored with 1 and 2. Notice that 
w(L) is .not actually well defined, for we must choose a loop off L to 
represent it. This representing loop may twist around L. Each time it twists 
around, it add a factor of (34) the characteristic map. Therefore, by choosing 
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the proper number of turns we may assume that we have a representative 
loop with characteristic map values identity or (12). If the value is (12) then 
there is an odd number of edges on the loop. Since there are an even number 
of edges on the interior of N, and all our changes have preserved this parity, 
we see that there are an even number of loops of odd length. Such a pair we 
may eleminate as in the case of two loops with the identity. Thus, we are 
done. 1 

VII.4. Problems 

Problem 1. Show that there exists a locally-6 triangulation with this 
property: there is a simple closed curve that is a Kempe cycle (with respect 
to the local coloring of all nonsingular edges) at all but one point. 

Problem 2. Find a triangulation of the 5-sphere and a coloring f of it 
such that the number of nonsingular tetrahedra is odd. Find one with an even 
number of tetrahedra which are nonsingular. What does this say about 
possible cobordism invariants in dimension 4? 

Problem 3”. If M and MO are triangulations of the same n-manifold, 
with local colorings rr and 7p, show that (M, n) and (MO, 7p) are homotopic 
iff the characteristic maps are conjugate. 

Problem 4O. Let Q(ny be the group generated by all pairs (M,/3), with /I 
a local coloring of the n-manifold it4, modulo the subgroup generated by all 
(M, /I) + (MO, $) whenever the two pairs are cobordant. If a(n) is the n- 
dimensional cobordism group (oriented) (just drop the /3 in the above 
definition) show that 

n(ny/a(n) = 0 if 4 divides n, 

= z, otherwise. 

We have seen this to be true for n = 1 and n = 2. 

VIII 

VIII.l. Coloring as a Functor 

In this section we shall show that there is a functor B on a certain 
category of complexes such that B(X) is built in some way out of the 
colorings of X. We first describe the category and some of its properties. A 
pure n-complex is a complex such that every simplex is contained in an n- 
simplex. The objects of our category C are the pure n-complexes. A map in 
C is a simplicial map that sends every n-simplex onto an n-simplex. This is 
equivalent to requiring that no edge is mapped onto a vertex. This category 



COBORDISM AND FUNCTORIALITY OF COLORINGS 189 

has sums and products. The sum of two objects X and Y is their disjoint 
union Xu Y. The product of two objects X and Y is given as follows. The 
vertices of XX Y are all pairs (x, v) where x (resp. v) is a vertex of X 
(Resp. Y). A set of vertices (x0, y,J,..., (xI, JJ,) forms an r-simplex of the 
product iff (x0 ,..., x,) (resp. (yO ,..., JJ,)) is an r-simplex of X (resp. Y). This is 
of course just saying that the projections X x Y + X and X X Y + Y are 
maps in C. 

Let A” be the n-simplex. A coloring of X is a map X+ A”. We shall first 
state the properties of the functor B. The rest of this section will be devoted 
to the proof of these assertions. 

THEOREM 79. (1) B is a contavariant fun&or from C to C. 

(2) B is self-&joint. 

(3) There is a natural transformation (p: id + B’ such that the 
following diagram commutes: 

(4) B(X u Y) = B(X) x B(Y) (X and Y n-complexes). 

(5) ZfX and Y are path connected pure n-complexes, then B(X x Y) = 
B(X) u B(Y)- 

(6) If X is an n-complex, Y an m-complex, and * denotes the join then 
B(X* Y)=B(X)*B(Y). 

(7) All colorings of X are Kempe related tr B(X) is (n - 2) path 
connected. 

We begin with the definition of B. Let X be a pure n-complex. A vertex of 
B(X) is a subset of the vertices of X which are all the points of a coloring 
that are the same color. That is, if f: X+ A” is a coloring and p is a vertex 
of A”, then f -l(p) is a vertex of B(X). A set of vertices of B(X) forms an n- 
simplex iff it is of the form (f - ‘(p,,),..., f - ‘(p,)}, where f is a coloring and 
pO,..., p,, are the vertices of A”. All other simplices of B(X) are faces of these 
simplices. Thus, there is a l-l correspondence between the colorings of X 
and the top-dimensional simplices of B(X). 

To help clarify this definition, we compute B(X), where X is the 2-complex 
given below. Since X is a 2-complex, we consider the 3-colorings of X. 
Figure 37A shows the complex X. Figures 37B, C, and D show the three 
different 3-colorings of X. Figure 37E is the complex B(X). Each coloring of 
X determines three vertices of B(X), but some of the vertices determined by 
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E 

FIG. 37. 3-Coloring the square. 

one coloring may be the same vertices determined by another coloring. In 
this example, { 2,6 ) is all the vertices of coloring (B) colored B, and (2,6 ) is 
also the set of vertices colored C by the coloring (C). It is in this way that 
B(X) gets its structure. 

Proof of 1. Clearly B(X) is an n-complex (or empty, which we allow as 
an n-complex). If g: X-t Y is a map and f is a coloring of Y then the 
composite is a coloring of X. The map B(g) sends f-‘(p) to g-‘f-‘(P). 
Since the map B(g) is from B(Y) to B(X), B is contravariant. We leave the 
relation B(hg) = B(g) B(h) to the reader. 

Proof of 3. By a natural transformation v, from id to B* we mean that to 
every object X of C there is a map p(X) from X to B(B(X)) = B’(X) such 
that the following diagram commutes: 

We give a functorial definition of (p. Let D be a top simplex of X. The 
inclusion j of D in X is a map in C, so applying B we get B(j): 
B(X) -, B(D). N ow an n-simplex has only one coloring, so B(D) = A”. 
Therefore, if p is a vertex of D, we can identify p with a vertex of B(D), so 
B(j)-‘(p) is a vertex of B’(X). This is the map rp. Explicitly, IJI(x)(~) 
consists of all the vertices f -l(q) of B(X) such that p is a member offP1(q). 
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To prove that the above diagram is commutative, we must do some careful 
chasing of elements through the diagram. The mapB(f) is given by 
B(f)(u) = {x E X such that f(x) E a}. Consequently, B’(f)(b) = ( y E B(Y) 
such that B(f)(y) E b}. An element x of X is sent by rp to the set {z E B(X) 
such that x E z). Under B2(f) this set goes to W = { y E B(Y) such that 
x E W-)(Y)~. N ow x E B(f)(y) iff f(x) E y, so W = { y E B(Y) such that 
f(x) E y} which is exactly p(f(x)). 

We now show the second property of the natural transformation o. Let z 
be an element of B(X). o(B(X))z = {a E B2(X) such that z E a}. Now we 
compute B(p)@@(X))) = {x E X such that p(x) E (p(B(X))z} = {x E X such 
thatzE&x))=(xEXsuchthatxEz}=z. 

Proof of 2. We must first explain what we mean by self-adjoint. Let X 
and Y be two pure n-complexes. By MOR(X, Y) we mean the set of all maps 
from X to Y. B is self-adjoint means that MOR(X, B(Y)) is naturally 
isomorphic to MOR(Y, B(X)). The correspondence is as follows. Let 
w: X-+ B(Y). We associate a w’: Y-1 B(X) by setting w’ equal to the com- 
position 

o(Y) Y- &(Y) B(w) 

We show that if we apply this construction to w’ we get back w. The 
construction yields the composition 

y  dX) ,B2(X) B2(W ,&(Y)sB(Y). 

That this composition is w  follows from putting the two previous diagrams 
relating (p together: 

Proof of 4. This is the easiest property. Iff is a coloring of X u Y then it 
is built out of a coloring of X and one of Y. A vertex of B(X u Y) 
corresponds to a vertex of B(X) and a vertex of B(Y). Moreover, any vertex 
of B(X) may be paired with any vertex of B(Y). It is now clear that this is 
the product. 

607/37/3-2 
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Proof of 5. We shall first show that iffis a map from A” x A” to A” then 
f is a projection onto one of the factors composed with some automorphism 
of A”. Let p be a vertex of A”. We claim thatf-‘(p) has all elements of one 
of the two coordinates the same. Indeed, suppose that there were pairs (a, b) 
and (c, d) off-‘(p) such that a # c and b # d. Then there is an edge joining 
(a, 6) with (c, d) in A” x A”. f therefore is not a map in our category, for f 
colors the ends of an edge the same. By symmetry, assume that a = c and 
b # d. Now we claim that all the first coordinates off -l(p) are equal. If we 
had some other element (x, y) off ‘(p) such that x # a, then the above 
argument shows that y = d and y = b, a contradiction. 

If n is 1, it is a simple matter to verify the conclusion, so assume that n is 
at least 2. In that case, A” has at least three vertices. Assume that there are 
vertices p and q of A” such that f -l(p) has all first coordinates equal and 

f-'(q) has all second coordinates equal. Consequently there are P and Q 
such that f -l(p) = P x A” and f -l(q) = A” x Q. The vertex (P, Q) belongs 
to both f -l(p) and f -‘(q)--contradiction. 

By symmetry, we can now say that for every p in A” there is a P in A” 
such that f ‘(p) = P x A”. Thus f is the projection to the first factor 
followed by the automorphism which sends p to P. 

Now suppose that we have a map f: X x Y-+ A”. Let D and E be n- 
simplices of X and Y, respectively. f restricted to D x E is a projection, say 
to the first factor. Let D’ be an n-simplex of X meeting D in a vertex p. Since 
f restricted to p x E is a projection to the first factor, f is a projection on 
D’ x E to the first factor. Continuing, f is a projection to the first factor on 
all of X x Y because X and Y are path connected. 

Remark. If X and Y are pure n-complexes, n greater than 1, then X x Y 
is connected iff both X and Y are. To see this, first suppose that X and Y are 
connected. If suffices to show that (p, q) and (p’, q) are connected in X x Y 
for any p, q, p’. Let a path from p top’ be p = p”, p’, p* ,..., p” = p’. Since Y 
is pure, let q belong to the triangle qst. Then the following is a sequence of 
adjacent vertices in X x Y: (p”, q), (p’, t), (p’, s), (p3, t) ,..., (p’- I, t) (or 
(pr-‘, s)), (p’, q). The converse direction is trivial. 

This observation is false in case n is 1. Let u denote the edge with two end 
points. We have u x u = u u U. 

Proof of 6. Let X be an n-complex and Y an m-complex. The join is an 
(n + m + I)-complex, so we compute the (n + m + 2)-colorings of it. Each n- 
simplex of X uses n + 1 colors and each m-simplex of Y uses m + 1 colors. 
Consequently in an (n + m + 2)-coloring n + 1 of the colors are used for X 
and m + 1 for Y. Any choice of coloring of X may be combined with any 
choice for Y so we get B(X * Y) = B(X) * B(Y). 

Proof of I. By rr - 2 path connected we mean that given any two n- 
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simplices D and E of X, there is a path of n-simplices joining D and E such 
that any two consecuetive n-simplices of the path intersect in at least an 
(n - 2)-simplex. Let us suppose for a moment that we are considering a 
manifold M”. If two (n + 2)-colorings of it are Kempe related, then there are 
two colors which are changed, and all the others remain fixed. In B(M), the 
two simplices corresponding to the coloring intersect in n vertices-an 
(n - 1)-simplex. Thus we see that Property 7 makes sense for manifolds. In 
the case of an arbitrary complex, we shall say that two (n f 1)-colorings are 
Kempe related iff they have n - 1 colors in common. In this case, Property 7 
becomes tautologous. 1 

The reader may have noticed by now that the coloring functor does not 
apply to 4-coloring the 2-sphere. The 2-sphere is a pure 2-manifold, so 
applying B to a 2-sphere is to compute the 3-colorings of it. We shall remedy 
this in a way that may seem artificial. Given a manifold M”, we form an 
n + 1 complex fi by adding an (n + 1)-simplex to each n-simplex. For 
example, if X is the circle with four vertices, P(4), then d is given in 
Fig. 37A. 

There is a 1-l correspondence between the 4-colorings of M and ti where 
M is a 2-manifold. If T is a tetrahedron which is joined to a triangle of M, 
then a coloring of the triangle uniquely determines a coloring of the 
remaining vertex of T. When we talk of the space of colorings of a manifold, 
we shall mean B(h?), although we will usually write B(M). 

The “hat” is natural in the following sense. We shall show in Section 3 

that B*@‘(n)) = &$. 
Another property of B(X) which is easily proved is that if /I is a codimen- 

sional 2-simplex of B(X), then p@, B(X)) = 2’ for some integer r. I is the 
number of Kempe cycles minus 1. 

VIII.2. Coloring Fibrations 

In this section we shall study librations in the category of nondegenerate 
maps and pure simplical complexes. We will first give a motivating example, 
and then proceed to the general definition. 

Suppose that X and Y are complexes, with Xn Y = T = d”. We would 
like to compute B(Z), where Z is the union of X and Y. Any coloring f of Z 
is determined by a coloring f, of X and a coloring fy of Y. Two arbitrary 
colorings f and X and g of Y do not determine a coloring of Z, because f and 
g must agree on the overlapping portion. Let P and Q be the maps 
B(X) + A” and B(Y) + A” determined by the simplex T of their intersection. 
(That is, P = p(T) and Q = p(T).) A vertex p of B(X) and a vertex q of B( Y) 
can form a vertex of B(Z) iff P(p) = Q(q). Consequently, B(Z) is a Whitney 
sum of B(X) and B(Y). We write this as the following diagram: 
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B(J3 B(Y) 

\ Jt 
A” 

This is a fiber square. That means that B(Z) is the set of all pairs (x, v), 
with x in B(X) and y in B(y) such that P(x) = Q(y). A collection of vertices 
of B(Z) is a simplex iff their image under each of the projection maps is also 
a simplex, and the projection maps are nondegenerate. 

Consider a top-dimensional simplex D of B(X). Denote by n the 
projection map B(Z) + B(X). It is clear that n-‘(D) is isomorphic to B(Y), 
for any choice of D. 

The general setup of a libration is first of all a map TC: B + G, such that 
for every top-dimensional simplex D of G, n-‘(D) is isomorphic to a fixed 
space F, called the fiber. This is analagous to a twisted product of spaces, for 
there is no coherent way the fibers fit together. The fiber F has colorings, for 
the projection back down 71: n-l(D) + D gives a coloring of F. If p is a 
vertex of G, then n-‘(p) gives a vertex of B(F). We make the fibers coherent 
by requiring that this vertex of B(F) is independent of the choice of simplex 
D containing p. 

Therefore we have the following diagram 

This means that for every top-dimensional simplex D of G, and vertex p of 
D, n-l(D) is isomorphic to F, and C’(P) is, under the isomorphism, the set 
of vertices w(p). 

Surprisingly enough, we can find a simple “universal fibration with fiber 
F.” The base space of this tibration is B(Fpit is coincidental that we are 
already using the letter B here. The total space is denoted E(F), and has as 
vertices all pairs (x, a), where x is a vertex of F, u is a vertex of B(F), and x 
belongs to u. Clearly the inverse image of a top simplex of B(F) is F, and the 
map w is just the identity. 

To see that this is a universal libration, take E, G, F, and 77 as above. The 
situation is really trivial, because the definition of fibration includes the map 
to the base space of the universal fibration. We compute the pull back by MI 
of the universal fibration. The pull back is the set of all (g, (x, a)), where g is 
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in G, x is in F, a is in B(F), x is in a, and w(h) = a. This set is the same as 
the set (g, x) such that x is in w(g), but this is isomorphic to E. 

Observe that all the terms of a fibration have colorings. We have already 
observed that F did. Since E maps to G, and G maps to B(F), and B(F) has 
colorings, all terms have colorings. The number of top-dimensional simplices 
of E is the product of the number of G and of F. Since all terms have 
colorings, we shall refer to these fibrations as coloring fibrations. 

We now describe some coloring fibrations. 

EXAMPLE 1. The motivating example is a coloring fibration. The map w  
is from B(X) to B@(Y)). We think of Q as a simplex of B*(Y), and map 
B(X) to it by the map P. 

EXAMPLE 2. E(F) --t F is a coloring fibration with fiber B(F). The map 
is the projection of E(F) onto the first coordinate. The map w  is the map 
q(F). To see this consider the diagram: 

E(F) E(W)) 

1 1 
F wp(F’ ’ B(B(F)) 

The coloring fibration induced by p(F) is the following: the pull back is all 
pairs (f, (a, x)) with f E F, a E B(F), x E B’(F), and q(f) =x. Thus, these 
pairs are just the same as (f, a) with a E q(f), or fE a. This is just E(F). 

EXAMPLE 3. The dual libration. Given a libration with fiber F, total 
space E and base G, there is another fibration with fiber G, total space E, 
and base F. Suppose that we have a map w: G + B(F) defining the fibration. 
We get a map w’ by the sequence of maps: F +@) B*(F) +B(w) B(G). Let us 
verify that the total space E’ of this Iibration is E. E’ consists of all pairs 
VT g), where w’(f) E g. This is equivalent to f E w(g), which is just E. 

The reason for the term “dual fibration” is that if we apply this 
construction once again, we get the original fibration back. In other words, 
(w’)’ = w. (w’)’ is the composition G + B*(G) + B3(F)+ B(F). That this 
composition is w  was shown in the proof of Theorem 79: it was what we 
needed to show that the functor B was self-adjoint. 

EXAMPLE 4 (Products). The last result showed that coloring fibrations 
have strong symmetry properties, just like products. However, not all 
products are coloring tibrations. Indeed, if X has no coloring, then 
Xx Y+ X is not a fibration. If X has a coloring f, then we can find a 
coloring tibration with fiber Y X A” and total space X x Y. The structure 



196 STEVE FISK 

mapisX~B(Yxd”)=B(Y)Ud”,wherewemapXtothesecondfactorby 
f: One can check that the total space is XX Y. 

Our intuition views a coloring fibration with base G and fiber F as being 
like a product G x F. It is not a product, for the number of simplices is 
much smaller that the product G X F. What is the effect of applying B to the 
total space of a libration? If the fibration were a product, we should get 
B(base) U B(liber). In the exercises we shall give an example where this is 
not true, but it is true for circles with more than four vertices. Our next 
project will be to establish this. 

For the remainder of this section we shall be concerned only with 2- 
complexes. P(n) is the circle with n vertices. We assume a result proved in 
the next section: (D is an isomorphism between P(n) and B*(P(n)). We wish 
to compute B(E(P(n))), for n greater than 4. We begin with the discussion of 
the general problem. 

Suppose that we have a coloring fibration with a coloring f of the total 
space: 

I E- A” 

Over each vertex p of G, we have a vertex w(p) of B(F), which we also think 
of as a set of vertices of E. The coloring f gives a coloring of this set of 
vertices. We need to capture how the different colorings of these vertices are 
related. 

Let X be a complex, with a vertex p of B(X). p is thought of as a set of 
vertices of X. Each coloring f of X induces a coloring f, on the set p. We 
form a complex r(X) by taking as vertices all pairs (f,, p). A set of pairs 
forms a simplex if there is a coloring f such that the pairs are of the form 
(fpi, pi). It is possible that there may be two different colorings f and g, such 
that for some p, f, = gP. One case where this happens is when f and g are 
Kempe related and p is the vertex that they have in common. In this case, all 
vertices of p are given the same color by both f and g. This gives us an 
inclusion of B(X) in r(X). 

Going back to the previous paragraph, we see that the coloring f of E 
gives rise to a map f #: G -+ T(F). Unfortunately, this is not a l-l correspon- 
dence, but it is enough to compute B(E) in some special cases. 

We want to compute T(B(P(n))) f or n larger than 4. Let X denote 

B(P(n)). The vertices of B(X) are those of P% under the map rp. The 
n 

colorings of X are the triangles of P(n) under rp. The points of T(X) are 
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therefore of the form (f,, x), where x is a vertex of a and f, is a triangle 

of 6& When is df,, x) = (g,, x)? The vertices of X corresponding to x are 
all those vertices of X containing x. Let f be the triangle (p, q, T) and g the 
triangle (s, t, u). If x is one of p, q, r, s, t, u, then x must be a vertex of each 
of the triangles. Assume that x is none of these vertices. Since n is larger 
than 4, it is possible to pick vertices of the two triangles, say p and s, such 
that no two of x, p, s are adjacent. Moreover, there are two vertices A and B 
of B(P(n)) such that A contains x, p and s while B contains x, p and not s. 
Such A and B may not exist if n is 4. Under f both vertices A and B are 
colored the same, while under g the vertices are colored differently. Thus, 
(f,, x) = (g,, x) iff f and g both contain x. 

We therefore have an explicit description of T(B(P(n))). There is a central 
polygon, consisting of the canonical inclusion of P(n) in T(B(P(n))). On 
each edge is another n-gon. Figure 38 gives a representation of T(B(P(5))). 
For simplicity we leave out all the pendant triangles of T(B(P(5))) and write 
E4 for (E, 4), etc. 

We now use this explicit form of T(B(P(n))) to find B(E(P(n))). A 
coloring f: E(P(n)) --t d* gives rise to a map f” which makes the following 
diagram commute 

p(n) 

n is the projection on the second coordinate. Because of the nature of the 
figure, there are only n + 1 possible maps f #. Suppose that f # maps onto one 
of the outer n-gons. We clain that there is at most one f inducing it. To see 

A 2 B 

3 G E 
5 4 

c 

D 

A 

FIG. 38. A $& B T(E(P(5))). 
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this, note that if two triangles of T(X) meet in a vertex not on the canonical 
embedding of B(X), then two or three colors are used on this vertex. Hence, 
there is a unique coloring on the union of the two triangles which induces 

this f”. Applying B to the map E(P(n)) gives @ = B,(P)n)) + B(E(P(n))), 

so each triangle of PQ induces a coloring of E(P(n)), and is seen to be the 
mappingf’ given above. 

Next, suppose that f” maps to the inner n-gon. Any 3-coloring of this 
inner n-gon lifts to a distinct coloring of E(P(n)), and all such colorings arise 
this way. We have shown 

THEOREM 80. Vn 2 5, then B(E(P(n)) = B(P(n)) u PG 

There is another complex X such that B(X) = B(E(P(n))), namely, 
P(n) x B(P(n)). This complex has six times as many triangles as E(P(n)). 

VIII.3. 3-Coloring 

In the first two sections we investigated general properties of coloring. In 
this section we study 3-coloring. Three colors is the smallest number of 
colors for which we get nontrivial results. Some of the results do not 
generalize to a larger number of colors. For instance, we show below that if 
X is a graph with a 2-coloring, then B(X) is (Kempe) connected. For 4- 
coloring, it is necessary to put some restrictions on the topology of X. If we 
choose X to be d* X &t3, then B(X) has two Kempe components, one with 
38 colorings and the other with 1. B(X) is path connected however. For three 
colors, Kempe connected and path connected coincide. 

We first establish some general results about graphs with a 2coloring. 
Such graphs are called bipartite. 

THEOREM 8 1. Let G be a bipartite graph. Then 

(1) B(G) is connected. 

(2) There is a bipartite graph H such that B*(G) = ci. 

Proof: Since G is bipartite, we have a decomposition of the vertices of G 
into two sets U and V such that U is the set of vertices of one color, and V 
those of the other. Let f be a 3-coloring of G with the three colors inducing a 
decomposition of two vertices into sets X, Y, Z. 

We shall show that every triangle of B(G) is connected to the triangle 
which corresponds to the 2-coloring of G. We may thus assume that X. Y, 
and Z are all nonempty. Consider the set of vertices colored with X and Y. 
Let C be one of the connected components of the subgraph of G spanned by 
all vertices colored with X or Y. There are two possibilities: either XC U 
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and Y c V or X E V and Y c U. We form a new coloring by interchanging X 
and Y in those components where XC V and Y c U. This new coloring f 
shares a vertex with f in B(G), namely, the vertex corresponding to the color 
Z. If the new sets of colors are X’, Y’, Z’, then X’ E U. This may be a proper 
inclusion. 

Next consider all the vertices in Y’ and Z’. Change all of the components 
where we do not have the color of Y’ the same as the color of V. This gives 
us a new coloring f 3 sharing the vertex X’ with f’ and having as sets of 
colors X2, Y’, Z’. Since X’ c U, we have that Y2 = V. Consequently, f2 
shares the vertex Yz with the triangle of B(G) corresponding to the 2- 
coloring, so part (1) is done. 

Let P be the vertex of B(G) which is the vertex of the triangle 
corresponding to the 2-coloring, not equal to U or V. We shall show that if 
Q is a vertex of B’(G) such that P E Q, then Q lies in exactly one triangle of 
B’(G). The graph determined by all the vertices of B*(G) which do not 
contain P determines a graph H. If D is the triangle of the 2-coloring in 
B(G), then p(D) determines a coloring of B*(G) which 2-colors H, so H is 
bipartite. 

So let F be a triangle of B*(G) which we think of as a coloring of B(G). 
Let the sets of vertices of B(G) determined by F be X, Y, Z, with X 
containing the vertex P. The proof in part one shows that the subgraph deter- 
mined by Z and Y is joined to the triangle of the 2-coloring. Since Z and Y 
do not contain P, the subgraph contains the edge corresponding to U and V. 
Consequently the subgraph determined by Z and Y is connected, and so has 
at most one 2-coloring. X therefore lies in exactly one triangle of B(G). m 

This result is interesting in that it says that the functor B* essentially 
carries bipartite graphs to bipartite graphs. It would be nice to have a direct 
description of this assignment. B* is sometimes a homomorphism. Let X and 
Y be connected bipartites. Since B(X) and B(Y) are also connected, we have 
that B*(X u Y) = B(B(X) x B(Y)) = B*(X) u B*(j3. Also, B’(X X I’) = 
B@(X) u B(Y)) = B*(X) x B=(Y). C onsequently, on the subcategory of 
connected bipartite graphs, B’ is a multiplicative homomorphism. This is not 
true if we do not restrict ourselves to connected graphs. 

We shall now look at particular graphs and their colorings. If P(n) is the 
circle with n vertices, then we shall show 

THEOREM 82. q: m-+ B*(P(n)) is an isomorphism. 

ProoJ We first show that q is l-l. Suppose that p(x) = p(y), where x 
and y are vertices of P(n). This means that x and y are always colored the 
same. Since it is easy to construct colorings of P(n) such that x and y are 
colored differently, rp is l-l. 

We show that rp is onto by induction. We computed B(P(4)) in the first 
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section. We leave it to the reader to verify that B’@‘(4)) = P%, and that 

B(P(5)) = P%. These are very short computations. 
Let p be a vertex of P(n). Define P, to be the complex obtained by 

removed p and the two edges containing it, and then replacing them by an 
edge. P, is a circle with n - 1 vertices. We can identify B(P,,) with the 
subcomplex of B(P(n)) consisting of all colorings which are nonsingular at p. 

Let f be a coloring of B(P(n)). f restricts to a coloring of B(P,), and so by 
induction is given by a triangle of P,, Dp. Now each of the triangles of P(n) 
corresponds to a triangle of Pp. Except for the two triangles at, p, this is a 
l-l correspondence. If E is a triangle of P(n), let E, be the triangle 
corresponding to it in P, . If p is not in E then we identify E with E,. Since 9 
is l-l, a simple argument shows that there is a triangle E of P(n) such that 
for every p, we have Ep = D”. 

This E has the property that E induces f on the subcomplex of B(P(n)) 
consisting of the union of all the B(P,). If n is odd this all of B(P(n)), while 
if n is even the complement of the union in B(P(n)) is the triangle of the 2- 
coloring. Consequently, there are at most n colorings of B(P(n)). Since u, is 
l-l, q is an isomorphism. 1 

If X is the interval Z(n) (P(n) with an edge removed) then a similar 

argument shows that B*(Z(n)) = @ 

VIII.4. 3-Coloring the Integers 

In this section we shall make a brief excursion into the realms of infinite 
sets. Let Z denote the l-complex determined by the integers. The vertices of 
Z are the integers, and two vertices are adjacent iff they differ by f 1. Naive 
intuition would lead one to hope that since Z is in some sense the limit of 

A 
intervals Z(n), and since B’(Z(n)) = Z(n), perhaps B’(Z) = 2. The answer is 
that this is “almost” true. There is a complex K, a noncompact part of B(Z), 
so that B’(Z) = 2 U B(K). 

Let f and g be 2-colorings of Z. We shall say that f = g a.e. (almost 
everywhere) iff and g agree (perhaps after a permutation of the three colors) 
in the complement of a finite set of vertices of Z. We write ((f)) for the set 
of all colorings g equal to f a.e. Two vertices of B(Z), p and q, are equal a.e. 
iff the number of integers which are in p and q, or in q and not p is finite. 
The set of all vertices of B(Z) determined by p is denoted ((p)). Each 
equivalence class of colorings (0) determines three equivalence classes of 
vertices. The complex formed by the equivalence class of vertices and 
colorings is denoted B,(Z). This is the complex K mentioned above. 

We shall approach the projection map P: B(Z) + B,(Z) as though P were 
a coloring tibration. (See Problem 18). Our first lemma says that although 
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the fiber over a triangle of B,(Z) may not be constant, it is after we apply 
B. 

LEMMA 83. B(P-‘((f)) = 2 U f,, where f is a coloring of Z and f, is 
described below. 

Proof. The elements of P-‘((f)) are all the colorings of Z which 
eventually agree with f. Choose two integer sequences a, and b, such that 
the interval A, = (a,, b,) has the properties (1) A,, is properly contained in 
A n+l9 (2) f(a,)#f(bn). N ow define G, as the subcomplex of P-‘((f)) 
corresponding to all colorings of Z which agree with f outside the open 
interval A,. The Gn’s satisfy G, c G,, r and the union of all the G, is 
P-*((f)). G, is important because we know exactly what the subcomplex G, 
is. G, = B(W(n)), where IV(n) is the circle obtained by joining the two 
endpoints of the interval A,, by an edge. 

If g is a coloring of P-‘((f)), then g induces a coloring of G,. On G,, g is 
induced by an edge of IV(n), which we shall call e,. How do e, and e, 
compare, for n less than m? First suppose that e, is not contained in the 
interval A,. e, in this case must be the edge of w(n) joining the endpoints of 
A,. Next suppose that e, is in the interval A,. Since cp is l-l, we must have 
e, = e,. Hence, if some e, is contained in the interval A,,, then all higher e, 
are equal to e,. These e,‘s give rise to the factor Z in the lemma. 

If no e, is contained in A,,, then g is the unique coloring f, determined as 
follows: let the coloring f determine the three vertices (V;)) of B,(Z). If q is 
a vertex of P-*((f)), then fm(q) = i, where ((4)) = (pi)). i 

The next lemma describes how these colorings fit together. The situation is 
much easier than the case of coloring fibrations. 

LEMMA 84. Suppose that f and g are cololings of Z which are adj,cent 
as triangles of B(Z). Then B(P-‘(df)) U P-‘(( g))) = 2 U h,, where h, is 
given below. 

Proof. By the last lemma, a coloring k of P-‘((f)) U P-l((g)) is given 
by either an edge e of Z or f, on P- ‘((f )), and an edge e’ of Z or g, on 
P-‘(( g)). We first see that h, = f, U g, is well defined, since f, = g, on 
the intersection U of P-‘((f)) and P-‘((g)). The coloring induced by e and 
g, does not give a coloring of the union. Under g, any vertex of B(Z) 
which is eventually in U is given the same color, but this is certainly not the 
case for e. 

Finally, we claim that we must have e = e’. This is easy to see, so we are 
through. 1 

We can now prove our theorem. Suppose that g is a coloring of B(Z). On 
each fiber, g is either given by an edge e or by f,. By the last lemma, all 
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these edges must be the same, so this gives us the term Z in B*(Z). We use 
the fact that any two triangles of B(Z) are joined by a path of triangles, but 
this follows from Theorem 81, in which no assumption of finiteness was 
made. 

Assigning anfm to each P-‘((f)) is the same as giving a map B,(Z) +A*. 
We have therefore proved 

THEOREM 85. B*(Z) = 2? UB(B,(Z)). 

At this point, it might appear that our intuition was correct, for there are 
no obvious colorings of the second factor. We can only show nonconstruc- 
tively that it is nonempty. We first show that every finite subcomplex of 
B,(Z) has a coloring. Let ((f,)),..., ((f,)) be a finite set of triangles of 
B,(Z). If we look at a large enough interval, we find that there are colorings 
gi such that ((g,)) = ((fj)), and outside this interval two g,‘s are related iff 
the corresponding f’s are. Chosing appropriate colorings of the interval gives 
us a set K of triangles of B(Z) which is isomorphic to the set in B,(Z) that 
we began with. Since B(Z) has colorings, so does this finite subcomplex. 
That B,(Z) has colorings now follows from 

RADO SELECTION PRINCIPLE. If K is a graph such that all Jnite 
subgraphs are n-colorable, then K is n-colorable. 

VIII.5. Injectives and Automorphisms 

In this section we discuss the two questions: (1) When is the map q 
injective? (2) What is the relationship between the automorphisms of X and 
B(X)? 

The map q(X) is injective if X has enough colorings to separate points. 
This means that for any two vertices p and q of X, there is a coloring f of X 
such that f(p) #f(q). If this were not the case, then p and q would always 
be colored alike and so would determine the same set of vertices in B(X). 

PROPOSITION 86. The following triangulations separate points; 

(1) any n-mantyold with a global even coloring, 

(2) any subcomplex of B(X), for any X, 

(3) the image of X under the map p(X), 

(4) all circles P(n). 

Proof: Let f be a coloring of M” with n + 1 colors. Given two vertices p 
and q of M, define a new coloring g of M by setting g(x) = f (x) for x fp 
and g(p) = n + 2. This coloring separates p and q. Next, let K be a 
subcomplex of B(X) and let p and q be two vertices of K. There is a vertex x 
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of X which lies in p and not in q-otherwise p and q would be equal. Let x 
lie in a maximal simplex T of X. The coloring (D(X)(T) separates the vertices 
p and q. 

Clearly (2) implies (3). By Theorem 82, we see (3) implies (4). [ 

There are many complexes X such that q(X) is not injective. For instance, 
if S is a triangulation of the sphere with exactly two odd vertices, then we 
know (Section 1.2) that the two odd vertices are colored alike by every 
coloring of S. It is not known if this is the entire kernel, but in any case p(S) 
is not injective. Therefore, S can not be contained in any B(X), for any 3- 
complex X. More generally, if M” is an n-manifold with odd part a 
submanifold, then M can not be a subcomplex of B(X), for any n + 1 
complex X (see Section VI.2). 

We now discuss automorphisms of X and B(X). If X is a complex, let 
Aut(X) denote the group of all simplicial automorphisms of X. For instance, 
if X is the n-simplex, then Auto = S, + i , the symmetric group on n + 1 
letters. If a is an automorphism of X, then a induces an automorphism of the 
colorings of X by the rule fwfa, wheref is a coloring. We shall denote this 
map by 

/3: Aut(X) + Aut(B(X)) 

/I is a homomorphism, but is not necessarily onto nor l-l. If we take G in 
Fig. 39A below, then G has a unique coloring, so B(G) is the 3-simplex. 
Aut(G) has 12 elements, while Aut(B(G)) has 24 elements. The two vertices 
of G of degree 3 may be intechanged without changing the coloring, so the 
induced automorphism is the identity. 

PROPOSITION 87. If p(X) is injective, then p: AutQ + Aut(BQ) is 
also injective. 

Proof Let B(a) = identity, where a is an automorphism of X. This means 
that ifp is a color, then for any coloringfwe have af-‘(p) = f -l(p). Given 
vertices x and y of X, let f be so that f(x) #f(y). Since y is not in f - ‘(p), 
neither is ay. In particular, ay # x. Thus a is the identity, for we see that if y 
is not x then neither is ay. 1 

The converse to this is false. Taking the triangulation S in Fig. 39B, we 
have Aut(X) = identity, B(X) = d3, but rp(X) is not injective. 

COROLLARY 88. For any integer n, Aut(P(n)) = Aut(B(P(n))) under the 
map p. More generally, if B’(X) =X, then p is an isomorphism. 

Since the even triangulations of the sphere usually have the nicest 
properties, one might guess that /I is an isomorphism in this case. The 
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FIG. 39. Triangulations of the sphere. 

FIG. 40. Even triangulation of the sphere with 10 vertices. 

example in Fig. 40 shows that this is false. Consider the coloring f of the 
triangulation given in Fig. 40. The Kempe cycles all use colors 3 and 4, so if 
T is the tetrahedron corresponding to f in B(X), then T meets the rest of 
B(X) is exactly one edge. There is an automorphism of B(X) which fixes all 
vertices in the complement of T and interchanges the two vertices 
corresponding to 1 and 2 of T. Since X is an even triangulation of the sphere 
there are vertices in B(X) of the form (x), where x is a vertex of X. Any 
automorphism a of X fixing the complement of T fixes all these vertices, so a 
must be the identity. Consequently, Aut(B(X)) is larger than Aut(X). 

VIII.6. The Space of Colorings of Even Spheres 

In this section we shall investigate some of the effects that the topology of 
a complex X can have on B(X). We shall only prove the results for even 
triangulations of the 2-sphere, but analogous results hold for even 
triangulations of simply connected manifolds. We collect all the results in the 
following 

THEOREM 89. Let X be an even triangulation of the 2-sphere. 

(1) B(X) is 2-connected. 

(2) q(X) is injective. 
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(3) If p is a oertex @B(X), then Ink(p) is connected. 

(4) There is a 2-complex Y with with a 3-coloring such that 
B*(x) = P. 

Remark. All of these results are false if X is not an even triangulation of 
the sphere. Let X be the triangulation of Fig. 2 in Section 1.1. B(X) consists 
of two disjoint components. One component U is a tetrahedron, and the 
other V is two tetrahedra joined along an edge. X is a counterexample to (1). 
Since B(U) = U and B(V) = V, we have B’(X) = U x V. Consequently X is 
also a counterexample to (4). X does satisfy (2) and (3) though. 

We saw many examples of noninjective X in the last section. To show that 
(3) is not always true, we describe B(I), where I is the icosahedron (see 
Problem 8, Section 1.7). B(Z) consists of 10 tetrahedra. Consider a regular 
dodecahedron. It has 20 vertices, and there are 10 ways of embedding a 
regular tetrahedron in it. The union of these 10 regularity embedded 
tetrahedra is B(I). Each vertex is contained in two tetrahedra, and the link is 
two disjoint triangles. 

Proof of the theorem. For (1) see Theorem 55. From the last section, we 
know that p(X) is injective. We now prove (3). Think of p as a set of vertices 
of X. Consider the Z, sum V= 2 Ink(q), where q is a vertex of p. If e is an 
edge of I’, then e is nonsingular in any coloring which contains p. 

Let f be a coloring which contains p. Let us think of the vertices of p as 
being colored 1. Let us change f by Kempe cycles of type (1,2), (1,3) or 
(1,4) to a coloring g. p is still a vertex of g. If the tetrahedra in B(X) 
corresponding to f and g are F and G, then F - p and G - p have a vertex in 
common. Hence f is Kempe equivalent to a coloring f’ such that if F and F’ 
are the corresponding tetrahedra in B(X), then F-p and F’ - p are 
connected by a path of edges in Ink(p). Moreover, f’ has no nonsingular 
(1,2), (1, 3), nor (1,4) edges. Therefore we must have nsdfl) = V, but there 
is at most one coloring h such that ns(h) = V. Consequently, Ink(p) is con- 
nected. 

We now prove (4). Let P be the vertex of B(X) which is in the tetrahedra 
corresponding to the 3-coloring, and contains no vertices of X (just those of 
X-X). We first show that if p E B’(X) and P E p, thenp lies in exactly one 
tetrahedra of B*(X). Let p lie in a tetrahedron T of B*(X). We think of T as 
a coherent choice of labelings for colorings of X. That is, for each coloring 
of X we have a specific choice of map’f: X -+ A3 so that f and g are Kempe 
equivalent along a (1, 2) cycle for instance, then f -‘((l, 2))= g-‘((1,2)). 
Let the colors be 1, 2, 3, 4 and let p correspond to the color 4. 

We shall show that B(X) - p is connected in the following sense: any 
triangle of B(X) -p map be reached from any other by a path of triangles 
(any two consecutive triangles having an edge in common) not using any 
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vertex which lies in p. It would then follow that there is a unique 3-coloring 
of B(X) L p, so p lies in exactly one tetrahedron. 

In other words, we wish to go from any coloring of X to any other 
coloring of X without ever making a change using the color 4. We begin by 
changing along a nonsingular (1, 2) or (1, 3) or (2, 3) cycle. After changing 
along all possible such cycles, there are two possibilities: either there is a 
triangle colored with 1, 2, 3 or there is not. If there is, then it follows that all 
triangles are colored with 1, 2, 3 so we have reached the 3-coloring’s 
triangle. Suppose that there were a vertex colored 4. Since no (1,2), (1,3) 
nor (2,3) edge is nonsingular, 4 must be a global color. This is a 
contradiction, for this means that p contains two vertices of the tetrahedron 
corresponding to the 3-coloring. All of B(X) - p is therefore joined to the 
triangle of the 3-coloring, and is therefore connected. 

The complex Y is now determined as B*(X) minus all vertices which 
contain the vertex P of B(X), The 4-coloring of the complex B*(X) induced 
by the 3-coloring’s tetrahedron of B(X) induces a 3-coloring on the complex 
y. I 

VIII.7. Edge Coloring 

In this section we are going to study properties of edge colorings. If G is a 
graph, then an edge coloring in r colors is a labeling of each of the edges of 
G with one of r colors so that if two edges share a vertex, then they have 
different colors assigned to them. It is possible to reduce this to a problem in 
vertex coloring. Define the line graph L(G) of a graph G as follows: the 
vertices of L(G) are the edges of G. Two vertices of L(G) are joined by an 
edge iff the edges that they correspond to interest in a point. A coloring of 
L(G) in r colors is a coloring of the edges of G in r colors. 

One case that is of particular interest is when all vertices of the graph 
have the same degree r. Such a graph is called a regular graph (of degree r). 
The case that has received the most attention is the case where r is 3. These 
regular graphs of degree 3 are called cubic graphs. The dual of every 
triangulation of a surface determines a cubic graph. Precisely, if S is a 
triangulation of a 2-manifold, let the vertices of D(S), the dual of S, be the 
triangles of S. Two vertices of D(G) are joined by an edge iff the 
corresponding triangles share an edge in S. 

A 4-coloring of the vertices of S determines what we have been calling an 
edge coloring (see Chapter IV), namely a labeling of the edges of S with one 
of three colors so that every triangle has three colors on it. This is the same 
as an edge coloring of the dual D(S). 

There is one major result in this area, due to Tutte (1946). If S is a 
triangulation of a 2-manifold, a hamilton circuit of D(S) is a simple closed 
curve of D(S) which passes through each vertex exactly once. This circuit 
determines a three coloring of the edges of D(S) as follows. The edges not in 
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the circuit are one color. Since there are an even number of triangles in S, 
the length of the circuit is even. The set of edges on the circuit split into two 
sets, no edge in one set meeting another in that set. This division is accom- 
plished by taking every other edge of the circuit. Tutte proved 

THEOREM 90. If a triangular of the sphere has one hamilton circuit, then 
it has three. 

Proof: (Tutte, 1946). We can form the space of colorings of the edges of 
the triangulation S by computing B&@(S))). We shall abbreviate this as 
&Z(S). BLD(S) is composed of triangles. The complement of a hamilton 
circuit determines a vertex of this space. A vertex of BLD(S) corresponds to 
a hamilton circuit iff the vertex lies in exactly one triangle. 

If p is a vertex of BLD(S), let Q(p) denote the set of edges of S that do 
not lie in p. Since every triangle has two edges not a given color, Q(p) is a 
E, cochain. Let p, q, r be the vertices of a triangle of BLD(S). Clearly, 
Q(p) + Q(r) + Q(q) = 0. If y(p) denotes the number of triangles containing p 
in BIB(S), then we have the string of equalities: 

0 = c Q@> = c P(P) Q(P) = c Q(P), 
PEH 

FIG. 41. The Coxeter graph. 

601/37/3-3 
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where the first summation sign is over all triangles of ED(S), and H is the 
set of hamilton circuits of S. Since the sum of all Q(p), p in ZZ, is zero, there 
must be at least three members of H. 1 

There is undoubtably much to discover in the way of edge colorings. I 
would like to close this section with the description of a most remarkable 
graph (see Biggs, 1972, Coxeter, 1946). We begin with what is called the 
Coxeter graph, given in Fig. 41. Let K be the line graph of the Coxeter 
graph. 

AMAZING PROPERTY OF K. B(K)=K U K. 

Biggs more or less does this by hand, although he gets the wrong result at 
the end. Only computer calculations of this are known. There may be some 
connection with the theory of projective planes (see Parsons, 1976). 

VIII.8. Problems 

Problem 1. Show that the triangulation of the disk X given in Fig. 42b 
satisfies B(X) = if. 

Problem 2. Consider the graph K given in Fig. 42a. It can be thought of 
as the l-skeleton of the cube with the corners cut off. If we compute the 4- 
colorings of K, show that B,(K) = A* x aA3. Considering the 3-colorings of 
K, show that B,(K) = B(P(4)). 

Problem 3. How many vertices does B(P(n)) have? Show that this 
number is periodic modulo 4 with period 6. 

Problem 4. If I is the icosahedron, show that B(Z) = B3(Z). Show that 
Aut(Z) = Aut(B(Z)) = Aut(B*(Z)). 

FIG. 42. Two triangulations of the disk. 
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Problem 5. Show that B(E(P(4))) has 24 triangles and hence is not 

B(P(4)) ” iqij. 

Problem 6. Find a 2-complex D such that for all proper subcomplexes 
C, we have B*(C) = C, but B*(D) #D. 

Problem 7. Find a counterexample to the conjecture: if X, Y, Z are 2- 
complexes with Z =XU Y, Xn Y= A*, B’(X) =X, B’(Y) = Y, then 
B’(Z) = z. 

Problem 8. Construct L infinitely many 2-complexes Z such that 
B(Z) = B(P(4)). 

Problem 9. Show that there are two maps$and g from P(5) to B(P(5)), 
such that x is a member off(x) and g(x) for all vertices x of P(5). Show that 
the dual off is J 

Problem 10. Give an example of an even 2-sphere with three nonad- 
jacent vertices p, q, r such that there is no 4-coloring f with f(p) #f(q), 
f(p) #f(r) andf(r) #S(q). In other words, you can not separate more than 
two vertices by colorings. 

Problem 11. In B(P(2n)), call a vertex p even if it contains an even 
number of vertices of P(2n). Let E be the set of even vertices of B(P(2n)) 
and let 0 be the set of odd vertices. How many components does the 
supgraph spanned by E (resp. 0) have? 

Problem 12. Show that for all n and k, n > 2, k > 0 there is an n- 
complex W with exactly k colorings. 

Problem 13. Show that the only maps from P(2n + 1) X P(2n + 1) to 
P(2n + 1) are given by RP, where P is a projection to one of the two factors 
and x is an automorphism of P(2n + 1). Show this is false for P(2n). 

Problem 14. If X(n, m) is the triangulation of the disk given in Fig. 43, 

show that B*(X(n, m)) = e). 

Problem 15. Let Z and P be as in Section 4. Let T be the triangle of 
E(Z) corresponding to the 2-coloring, and let S be another triangle of E(Z) 

FIG. 43. Triangulations (n, k) of the disk. 



210 STEVE FISK 

so that P(T) #P(S). Show that every triangle of P-‘(P(T)) has a vertex of 
finite degree, but no vertex of P-‘(P(S)) has finite degree. Not all fibers of 
the map P are isomorphic: P is not a fibration. 

Problem 16. Find a locally-6 triangulation of the torus with exactly 1 4- 
coloring. 

Problem 17. Construct a theory of coloring using cubes. The objects to 
be colored are built out of cubes: cubulations. 

Problem 18”. Let H be a bibartite graph with B*(H) = fi, Show that H 
is either an interval or a circle P(2n). 

Problem 19. If f: X+ Y is a map, we say that a map g: Y + X is a 
retraction if the composition gf is the identity. Let Y be B’(X) and let f be 
I#?). In case X = B( IV), then X has a retraction. Find an example of an 
even triangulation of the sphere that has no such retraction. 

Problem 20. Let B,(Z) be all the 3-colorings of Z (see Section 4) which 
are 2-colorings outside a finite set. Show that B(B,(Z)) = Z. 

The rest of these problems are unsolved. 

Problem 2 IO. Define the functor B2 on the category of bipartite graphs 
by B’(X) = H, where B’(X) = A. Describe this functor directly. On finite 
graphs, does B2 take connected graphs to connected graphs? 

Problem 22O. Find the set of all graphs X such that B’(X) =if. Does the 
set of 2-complexes Y with the property B’(Y) = Y have any extra structure? 

Problem 23”. What is a good reason for B’(P(n)) =a? 

Problem 24’. Find all triangulations D of the disk such that B’(D) = d. 
See Problems 14 and 1. 

Problem 25”. Consider the generalized Peterson graphs r(n, k). There 
are vertices A, “‘A,, and B, . ..B.,.A, isjoined toAi+,,Ai_,, and Bi. Bi is 
joined in addition to Biik and Bipk. All indices are module n. It is known 
that all T(n, k), except for the Peterson graph T(5, 2) = T(5,3), have edge 
colorings in 3 colors. See Castagna (1972). Is the map rp l-l? 

Problem 26”. If S is an even triangulation of the 2-sphere, let H satisfy 
B’(S) = fi. Is every simple closed path of triangles of H of even length? 

Problem 27. If S is a triangulation of the 2-sphere with a 3-coloring, is 
the number of tetrahedra of B’(S) even. Modulo 4. is it the same as the 
number of triangles of S? 

Problem 28”. If S is a triangulation of a 2-manifold and B’(S) = 9, is 
B(BLD(S)) = LD(S)? (see Section 7). 
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Problem 2!l”. If Sz is an even triangulation of the sphere, are all B’(S) 
connected? 

Problem 30°. If S and H are even triangulations of the 2-sphere, and 
B(S) = B(H), show that S and H are isomorphic. There are simple examples 
where this is not true if we drop the condition “even.” 

Problem 3 lo. If M is a closed manifold with the property that 
B*(M) = i@, then M is a sphere and is a join of circles P(2n) and So. 

Problem 3 2O. Find all complexes X such that B(X) = r copies of X. The 
Coxeter graph is an example for r = 2. The pentagon and the triangulation of 
Problem 1 are examples for r = 1. 

Problem 33”. If B(X) = UU V, is there a complex Y such that 
B(Y) = lJ? If there is, let X, = Y. Is X a Iibered product of X, and X, ? 

Problem 34O. If X and Y separate points, then Aut(X x Y) = 
Aut(X) x Aut(Y). 

Problem 3 5”. When is B@(X)) = B(X) U B’(X)? More generally, 
suppose that we have a fibration 

what are conditions off to insure that B(E) = B(X) U B(Y)? 


