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1. Introduction

The Tower of Hanoi problem was introduced by Lucas in 1883 [9] for the case of 3 pegs and n disks of different sizes.
Initially, n disks are placed on one of the 3 pegs with the largest at the bottom. Then, at each time one of the topmost disks is
moved to a peg with a larger disk on the top or to an empty peg. The goal of the problem is to transfer all the disks from the
initial peg to the peg of destination with the minimum number of moves. A simple recursive argument shows that 2" — 1
moves are necessary and sufficient to carry out this task. This Tower of Hanoi problem was then extended to the case of
4 pegs by Dudeney in 1907 [3] and to arbitrary k > 3 pegs by Stewart in 1939 [14]. In 1941, Frame [5] and Stewart [15]
independently proposed algorithms which achieve the same numbers of moves for the k-peg Tower of Hanoi problem with
k > 4 pegs. KlavZar et al. [8] showed that seven different approaches to the k-peg Tower of Hanoi problem, including those
by Frame and Stewart, are all equivalent, that is, achieve the same numbers of moves. Thus, these numbers are called the
Frame-Stewart numbers [7].

Somewhat surprisingly, the optimal solution for the multi-peg Tower of Hanoi problem with k > 4 pegs is not known
yet. So far, the best upper bounds are achieved by the Frame-Stewart numbers and the best lower bounds are obtained by
Chen and Shen [2]. Since the upper bounds are believed to be optimal, they are called the “presumed optimal” solution.

The Stewart’s recursive algorithm for the k-peg Tower of Hanoi problem is summarized as follows. For integer t such that
1<t<n,
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1. recursively transfer a pile of n — t smallest disks from the first peg to a temporary peg using k pegs;

2. transfer the remaining pile of t largest disks from the first peg to the final peg using k — 1 pegs, ignoring the peg occupied
by the n — t smallest disks;

3. recursively transfer the pile of n — t smallest disks from the temporary peg to the final peg using k pegs.

The algorithm chooses the integer t such that the number of moves 2 - Sy(n — t) 4+ Si_1(t) is minimized. Thus, the
Frame-Stewart numbers Si(n) satisfy the following recurrence relations:

Se(n) = min {2-S,(n— 1) + Se1 (O}, forn>1, k>4,
<t<n

S3(n) =2"—1, forn=>1, and Sx(0) =0, fork > 3.

When k = 4 for instance, S4(n) is obtained by the following simple formula:

. ) P41
S4(n) —S4(n—1) =21, for (;) <n< (HZ_ )

where ; is the binomial coefficient equal to i(i — 1)/2. In the general case k > 4, Sy(n) is obtained by several different
approaches, e.g., [5,7,8,10,15].

In [11], the following general recurrence relation was considered to clarify the combinatorial structure latent in the
recurrence relation for Si(n) and to cope with the recurrence relations for the Tower of Hanoi on graphs in which pegs are
placed on vertices of a given graph and disks are only moved along the edges:

T(n) = 1r£1ti2n{a Tn—t)+p-Q2" =1}, forn>1, andT(0) =0,

where « and § are arbitrary positive integers. It was shown that the sequence of differences (T(n) — T(n — 1)),>1 consists
of numbers of the form 8 - 2/ - o/, with i,j > 0, arranged in nondecreasing order. When @ = 3, 2' - o/ increases as
1,2,3,2%,2-3,23,3%2,22.3,24 2. 32, .... These numbers are called “3-smooth numbers”[13] and have been studied
extensively in number theory, in relation to the distribution of prime numbers [6] and to new number representations [1,4].
The formulation and analysis of T(n), however, has some defects such that (i) it is only focused on the 4-peg case with no
consideration for the general case k > 3; and (ii) even in the 4-peg case, term 2 - o/ consists of constant 2 and parameter «,
which might admit further generalization.

In this paper, we fully generalize the recurrence relations for the previous Sy () and T (n) and obtain the exact formulas.
Namely, we define the following recurrence relations for two sequences of arbitrary positive integers (p;);>3 and (q;);>3:

Ge(m) = min {p - Ge(n = ) + e Gea (0}, forn =1, k> 4,
<t<n
G3(n) = p3-G3(n—1)+q3, forn> 1, and Gx(0) =0, for k > 3.

Then, we show that the sequence of differences (G, (n) —Gy(n—1))n>1 consists of numbers of the form (]_[£<=3 qi)- (l_[;{=3 pi*h),
with ¢; > 0 for all i, arranged in nondecreasing order. In other words, we show the following theorem.

Theorem 1. For every positive integer n and for two sequences of arbitrary positive integers (p;);>3 and (q;);>3, we have

n
Ge(m) =q- Y _uf
j=1

where q = ]—[f.‘=3 qi and u]’-‘ is the jth term of the sequence (u]’-‘)j> . of integers ]—[ff:3 pi%, with «; > 0 for all i, arranged in
nondecreasing order.

We call G (n) the generalized Frame-Stewart numbers. Note that G (n) is equal to Si(n) when (p;, q;) = (2, 1) foralli > 3
and G4(n) is equal to T(n) when (ps3, q3) = (2, 1) and (p4, q4) = («, B).

The remaining of the paper is organized as follows. In Section 2, we show some basic properties of the sequence (u]’-‘)j> ]
defined from (p;);>3. In Section 3, we prove Theorem 1, the main result of this paper. In Section 4, application of these
numbers in obtaining upper bounds of the number of moves for the Tower of Hanoi problem on several graphs is provided.

2. Basic results on smooth number sequences

Let (p;);>3 be a sequence of positive integers. We consider the sequence (uj’-‘)j> ; of all the integers of the form ]_[5;3 i,

where o; > 0 for all i, arranged in nondecreasing order. For instance, for (ps, ps) = (2, 2) and (ps, ps) = (2, 3), the first
few terms of (u]‘.‘)jzl are (1,2,2,2%,22,22,23 .. )and (1, 2, 3,22,2 - 3,23, 3%, ...), respectively. When there is some iy

such that p;, is equal to 1, then by definition (u]’f)j> | is the constant sequence of 1, for every k > iy. We note that (uJ’-‘)]_> .
is closely related to smooth numbers which have been explored extensively in number theory. A positive integer is called
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B-smooth if none of its prime factors are greater than a positive integer B. The sequence (u"

il
numbers for B = maxs<i< {p;}.

In this section, we restrict to the case where all the p;’s are greater than 1 and prove a simple lemma on a certain

“recursive” structure of the smooth number sequence (u}‘)j> v which will be used to prove Theorem 1 in the next section.

)J,> ] then consists of B-smooth

Lemma 1. Let k > 4 and let (f(j));>1 be the sequence of positive integers defined by fi,(1) = 1 and fy(j) = min{l > f,G — 1) |
uf = uj’-H}forj > 2. Then, for every integer n such that f,(j) < n < fi(j + 1), we have uy = py - us_;.

Proof. Iffy(j+ 1) = fi.(j) + 1, then the lemma is trivial. Suppose now that f; (j + 1) — f¢(j) > 2 and let n be a positive integer
such that fy(j) < n < fi(j+ 1). First, consider a term ]_[f:3 p;“ of the sequence (uf‘),zl. If ¢, = 0, then ]_[f‘:3 pi% = ]‘[f‘;; pi%
belongs to (u}‘k(,))lzl by definition of (fy(I));>1. Otherwise, if ¢y > 1, then ]_[5;3 pi% = px - <pk°‘k‘l . I—[:‘;; p,-"‘f) belongs to

(P - u)i=1. Now, since fi () < n < fi(j + 1), it follows that uf ; < uf < uf ;) by the growth of the sequence (uf);>1. We
deduce that

{uh]Slfn}ﬂ{uﬁk(l)|121}:{”}1(1)|1§l§j}-

- K k k
Therefore, since a term of (i), , belongs to (”fk(l)) orto (pe - uf)

=

we obtain the following decomposition

=1’

w11 =<t<np={uf, 1 1<1<i}U{p-uf 11<1=n—j}.

This decomposition with the maximality of u’; leads to

uf = max{uf | 1<1<n}

= max{max{u}‘k(,) |1 §l§j},max{pk~u;‘|1§l§n—j}}

max {uj, ), Pt} -

Since the hypothesis fy(j)) < n < fi(j + 1) implies that uf belongs to (py - uf),_ . this completes the proof that u¥ =
!
Dk -Up_;. O

n—j

=1’

3. Proof of Theorem 1

Let G,} (n) denotes the special case of Gi(n) associated with arbitrary sequence (p;);>3 and with the constant sequence
(gi)i>3 with q; = 1fori > 3. There exists a simple relationship between numbers G, (1) and G,l(n).

Proposition 1. For every nonnegative integer n and for every sequence of integers (q;);>3, we have
Gi(n) = q- Gy(n),
where q = Hf:3 qi.

Proof. By double induction on k > 3 and n > 0. For k = 3, we can prove by simple induction on n that G3(n) = qs - G; (n)
for all n. For n = 0, we have G,(0) = q - G,l( (0) = 0 for all k. Suppose now that the result is true for k — 1 and alln > 0, and
for k and all | < n — 1. By the recursive definition of G;(n) and by the assumption of induction, we obtain

Gi(n) = f?fi?n {pr - Gk(n — t) + qi - Ge—1(D)}

k k—1
min {pk- qf-G,l(n—t)Jqu-]_[qui1(t)}
i=3

1<t<n ie3

k
= [Tai- min {pe-Gitn—1) + G, (0}

i=

=q-Gy(n). O

By Proposition 1, it is sufficient to prove Theorem 1 for G,l (n) instead of Gi(n). Now, we show at which argument
Gp(n) = minj<¢<n {pr - Gj(n — t) + G4_, (1)} takes its minimum.
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Lemma 2. Let n be a positive integer. Suppose that p; > 1 forall 3 < i < k. Suppose also that AGi1 = G} - G} (I—-1= u§
for3 <i<k—1landl> 1andthat AGl(l) = uf‘for 1 <1 <n— 1. Let j be the integer such that fi(j) < n < fy(G + 1). Then,
for 1<t <n, G (t) = pi - Gy(n — t) + Gi_,(t) takes its minimum at t = j.

Proof. Since
Grat+1) =G = pe- Gi(n—t = 1)+ Gg_ (t+ 1) — pg - Gg(n — t) — G;_; (1)
= —pe- (Ge(n—1t) = Gp(n—t — 1)) + (G_,(t + 1) — G;_,(t))
= —px- AGL(n — t) + AG,_,(t + 1)

forevery 1 <t < n — 1, it follows by hypothesis that
G,](,n(t +1) — G,l‘n(t) = —pr- u’,;ﬁ + u’:;} fori<t<n-—1.

First, when 1 < t < j — 1, the growth of the sequences (uf),_, and (u~"),_, yields the following inequalities

=1

1 k

k k k k— —1 __ .k
Upp Z Un_jpq Z Upojprs U S = Upge

Letm=min{l >0 | fyG+ 1+ 1) — fi G+ I) > 2}. Such m always exists. By definition of fy (j + ), we have f, j+1) = fi () +1
forO <l <mandfi,G+m) < fi()) + m+ 1 < fi(+ m+ 1). So we deduce from Lemma 1 that

k k k
U y+m1 = P U Gramen—G+m) = Pro U gy—jr1-
Thus,
1 1 k k—1 k k
Gn(t+1) = Gy (6) = —pic - Up_¢ + U < —Upyimyr U <0
for 1 <t <j — 1. Therefore, G;,n(t) > Gy () forall1 <t <j.

Similarly, whenj < t < n — 1, we have

k k k k=1 o k=1 _ ik
Up_¢ Uy SUprn—j—1r Uepr 2 Ui = Ug Gy

Letm = min{{>0]|fiG—1+1) —fiG— D > 2}. If such m does not exist, then n = f,(j) = j and we already know
that G,l,n(t) takes its minimum at t = j. Suppose now that the integer m exists. By definition of fi,(j — | + 1), we have
KG—1+1) =fiG+ 1) —Ilfor0 <l <mandfyG—m) < fi(G+1) —m—1 < fr(j — m+ 1). So we deduce from Lemma 1
that

k _ k _ k
Up G+—m—1 = Pk Ui Grn—m-1—G-m) = Pk UgGrn—j-1-

Thus,

Ghn(t+1) = Gl (0) = —pi -t +ul ] = —ub oy g+ uf i) =0

forj <t <n— 1.Therefore, G ,(t) = G; ,(j) forallj < t <n.
Consequently, G,l,n(t) takes its minimum att =j. O

We are now ready to prove the main result of this paper.

Proof of Theorem 1. From Proposition 1, it is sufficient to prove that

n
Gi(n) = Zu}‘
=

for every positive integer n. We divide into different cases depending on the values of the terms of the sequence (p;); 3.

Case 1: if p; > 1forall 3 < i < k. We proceed by double induction on k > 3 and n > 1. For k = 3, it is clear that
G(1) = 1and, by induction on n > 1, that AG}(n) = Gi(n) — Gl(n — 1) =ps - (G}(n — 1) — Gl(n — 2)) = p} ' = u? for
alln > 2.1t is also clear that, for arbitrary k, G} (1) = 1 = uk. Now assume that AG}(l) = ulforall3 <i < k — 1and all
I > 1 and that AG,l h = u{‘ forall1 < I < n — 1. Then, we show that AG,}(n) = u’,j holds. For n, there exists some j > 1
such that f,(j) < n < fi(G + 1).Itis divided into two subcases: when n = f;(j) (Subcase 1.1) and when fy(j) < n < fiG+ 1)
(Subcase 1.2).

Subcase 1.1: for n = f,(j). We obtain

AGy(n) = Gy(fie()) — Gy (i) — 1)
= Gl () —Ghpg1G— 1 (sincefi — 1) < fi() — 1 < fi()and by Lemma 2)
= pe - (Ge(() — ) = Ge((h@®) — D — G — 1)) + (Ge_;() — GG — D)
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AG_4 ()
k=1
= uj

= uf ; (by definition of fi (j))

k
n

(by assumption of induction)

=1u

Thus, the proof is shown in this case.
Subcase 1.2: for fi,(j) < n < fy(j + 1). We obtain

AGl(n) = Gi(n) — Gl(n— 1)
= Gyn() — Gppq () (since fu() <n— 1 < fi(i+ 1)and by Lemma 2)
= i~ (Ge(n =) = Gp(n =1 =) + (Ge_y () — Gy ()
= pi- AGL(n —J)
= Dy u’,‘H- (by assumption of induction)
=u* (byLemma 1).

Thus, the proof is shown in this case, and this completes the proof of Case 1.

Case 2: if p; = 1forsome 3 < i < k.Letm = min{3 <i < k| p; = 1}. It is further divided into two subcases: when
k = m (Subcase 2.1) and when k > m (Subcase 2.2).

Subcase 2.1: for k = m. If k = m = 3, then p; = 1. In this case, it is clear that G;(n) =nforalln > 1.If k = m > 4, that

is,if pr = 1and p; > 1forall 3 <i < k— 1, we proceed by induction onn > 1. For n = 1, we have G,}(l) = 1. Then assume
that G{(I) = Ifor 1 < I < n — 1. By definition,

Ge(m) = min {Gy(n— 1)+ G_y(0} = min {(n =) + G4 (D}

Sincep; > 1forall 3 <i < k — 1, we know that G,l_l(l) = ZJI-:] u}‘_l for I > 1 from Case 1. It is clear that u]’f_l > 1 for

all 1 <j < I Therefore, we have G} ,(I) > Ifor! > 1.So G,l,n(t) = (n —t) + G,_,(t) takes its minimum at t = 1 and
G,l((n) = (n—1) + 1 = n as announced.
Subcase 2.2: for k > m. We proceed by double induction on k > m and n > 1. We know that G}n () =lIforalll > 1from

Subcase 2.1. We also know that G} (1) = 1foralli > 3. Now, assume that G,l_l () =Iforalll > 1 and that G; () = Iforall
1 <1<n-—1.We obtain

Gy(m) = min {Gy(n —t) + G_; ()} = min {(n—1t) +t} =n.
1<t<n 1<t<n
This concludes the proof of Case 2, and thus the proof of Theorem 1. O
Corollary 1. Let k > 4 andj > 1. For every integer n such that fi(j) <n < fyG+ 1),

Ge(n) = pr - Ge(n — ) + Gk - Ge—1 ().
Proof. From Proposition 1, Theorem 1 and Lemma 2. O
We end this section in considering the special case where p; = p > 1 forall i.
Proposition 2. Let p; = p > 1 forall 3 <i < k. Then, for all integersj > 0 and n > 1 such that
k+j—3 k+j—2
<n= )
k—2 k—2
uk = p/ and G} (n) can be computed as follows:

i1/ -3 k+j—3 .
=3 (1) (- ()

m=0

Proof. Let j be a nonnegative integer. First, we can determine C; the number of values of n such that ufj = p/. Then, since G
corresponds to the number of ways to distribute j identical balls into k— 2 distinct urns or the number of ways of partitioning
jinto k — 2 ordered non-negative summands, we have

c_ (k—=2)+j—1\  (k+j-3
f‘( (k—2)—1 )‘( k—3 )
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Fig. 1. The original Tower of Hanoi problem with 3 pegs (K3) and 4 pegs (K4).

O—@—

Fig. 2. The path graph Ps.

Now let D; be the number of values of n such that u¥ < p/. Here we have

j-1 -1 .
k+m-—3 k+j—-3
! '; " Z( k—3 ) ( k—2 >

m=0

It follows that u¥ = p/ exactly when D; < n < Dj + G; = Dj4, that is, when

k+j—3 k+j—3 k+j—3 k+j—2
<n< + =
k—2 k—2 k—3 k—2

as claimed. This leads to the equality, for D; < n < Djy4,

j—1 j—1 .
m ; k+m—3\ . k+j—3 ;
Gim = ) Cnp" + (=D ' = ( k-3 )p +<n_< e ))ﬂ .
m=0 <= B

m=0

4. Application: The Tower of Hanoi on graphs

Let G = (V, E) be a simple graph with the set of vertices V = {vy, ..., vt} and the set of edges E. A k-peg Tower of Hanoi
problem can be considered on G: the k pegs are placed on the vertices v, ..., vy and transfer of disks is allowed between
the pegs v; and vj only if there is an edge between v; and v;. The original k-peg Tower of Hanoi problem then corresponds to
the Tower of Hanoi problem on the complete graph Kj. The cases of k = 3 and k = 4 are illustrated in Fig. 1.

The main application of the generalized Frame-Stewart numbers is in giving upper bounds of the number of moves for
the Tower of Hanoi problem on some simple graphs. For the Tower of Hanoi problem on the complete graph with k > 3
vertices and n > 0 disks, we retrieve the Frame-Stewart numbers Sy (n) stated in Section 1. In the sequel of this section, we
consider other special cases where G is the path graph P; or the star graph S;.

4.1. On the path graph P

The following theorem shows that the optimal number of moves for the Tower of Hanoi problem on the path graph Ps is
given by the generalized Frame-Stewart numbers.

Theorem 2. Consider the Tower of Hanoi problem on Ps, as depicted in Fig. 2. The minimum number of moves to transfer n > 1
disks

o from peg 1 to peg 3is G3(n) = 2 - Z::O] 31, where (ps, q3) = (3, 2);
o from peg 1to peg 2is G} (n) = Yi—,' 3!, where (ps, g3) = (3, 1).

Though the fact of this theorem is rather well-known (e.g., see [ 12]), we present a short proof to see the connection with
the generalized Frame-Stewart numbers.

Proof. We begin with the transfer between peg 1 and peg 3. In order to move the biggest disk from peg 1 to peg 3, we have
to first move it from peg 1 to peg 2 and so the n — 1 smallest disks must be on peg 3. The n — 1 smallest disks are transferred
from peg 1 to peg 3 in G3(n — 1) moves. Then, we move the biggest disk from peg 1 to peg 2. In order to move this disk to
peg 3, we transfer the n — 1 smallest disks from peg 3 to peg 1 in G3(n — 1) moves. Finally, we put the biggest disk from peg
2 to peg 3 in 1 move and the n — 1 smallest disks from peg 1 to peg 3 in G3(n — 1) moves. The total number of moves for n
disks is then 3 - G3(n — 1) + 2, which corresponds to G3(n) as announced. Since this is best possible, G3(n) is the optimal
number of moves.

For the transfer between peg 1 and peg 2, as before, in order to move the biggest disk from peg 1 to peg 2, we have to
first transfer the n — 1 smallest disks from peg 1 to peg 3. As proved above, the minimum number of moves to do this is
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Fig. 3. The star graphs S4 and Ss.

G3(n — 1). Moreover, we know that Gs(n — 1) = 2 - G; (n — 1) by Proposition 1. Then, after moving the biggest disk from
peg 1to peg 2, the n — 1 smallest disks are transferred from peg 3 to peg 2. It is done in G_l, (n— 1) moves. Thus, we conclude
that the minimum number of moves for transferring n disks from peg 1 to peg 2 is 3 - G;(n — 1) + 1asannounced. O

4.2. On the star graph S

We end this section by considering the Tower of Hanoi problem on the star graph S; with k vertices and k — 1 edges. For
k = 3, the graph S3 corresponds to the path graph Ps. The star graphs for k = 4 and k = 5 are depicted in Fig. 3.

Stockmeyer [16] considered the Tower of Hanoi problem on the star graph S4, where all the n disks are transferred from
one leaf of the graph to another leaf (for instance, the problem of transferring disks in the minimal number of moves from
peg 2 to peg 3 in Fig. 3). He described a recursive algorithm which achieved a good (seemingly the best) upper bound; thus,
called it the “presumed optimal” algorithm. Here, we generalize this algorithm to the star graph Sy for arbitrary k > 3 and
show that disks can be transferred from one leaf to another in G, (1) moves.

Theorem 3. Let k > 3 be an integer. Consider the Tower of Hanoi problem on the star graph Sy in which n > 1 disks are
transferred from one leaf of the graph to another leaf. Then, an upper bound on the minimal number of moves to solve this problem
is given by the generalized Frame-Stewart number Gy (n), where (p3, q3) = (3,2) and (p;, q;)) = 2, 1) for4 <i < k.

Proof. By induction on k of S,. When k = 3, as noted before, the star graph S3 corresponds to the path graph Ps. So by
Theorem 2, G3(n), where (p3, q3) = (3, 2), is the minimum number of moves to transfer n disks from peg 2 to peg 3. For
k > 4and n = 1, we can transfer one disk from peg 2 to peg 3 in only G,(1) = 2 moves. Suppose now that the result is true
for any number of disks up to Sy_; and until n — 1 disks for S;. Then, n disks are recursively transferred from peg 2 to peg 3
as follows. For some integer t suchthat1 <t <n,

o transfer the n — t smallest disks from peg 2 to peg k in G (n — t) moves;

e consider the remaining k — 1 pegs and the subgraph obtained after deleting the vertex of peg k, which is the star graph
Sk—1, and transfer the t largest disks from peg 2 to peg 3 in G,_1(t) moves;

e transfer the n — t smallest disks from peg k to peg 3 in Gi(n — t) moves.

We choose the integer t such that the number of moves 2-Gy(n—t)+Gy_1(t) is minimized. Thus, the number of moves of this
algorithm is minj<¢<p {2 -Gr(n—t)+Gr—1(t) } which is, by the assumption of induction, equal to G, (n) with (ps, g3) = (3, 2)
and (p;, q;) = (2, 1) for 4 < i < k. This completes the proof of Theorem 3. O
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