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Abstract

We study uniformly elliptic fully nonlinear equations of the type F(D2u,Du,u, x) = f (x). We show
that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and
study these objects; we obtain existence and uniqueness results for nonproper operators whose principal
eigenvalues (in some cases, only one of them) are positive; finally, we obtain an existence result for non-
proper Isaac’s equations.
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1. Introduction and main results

This paper is a study of uniformly elliptic fully nonlinear equations in nondivergence form

F
(
D2u,Du,u, x

) = f (x) (1.1)
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in a bounded domain Ω ⊂ RN . We pursue the following goals. First, we show that positively
homogeneous operators which are convex (or concave)—like Hamilton–Jacobi–Bellman oper-
ators, that is, suprema of linear operators with nonsmooth coefficients—possess two principal
eigenvalues, corresponding to a positive and a negative principal eigenfunction, and study prop-
erties of these objects. Second, we show that existence and uniqueness theory can be developed
for coercive nonproper operators, more precisely, for operators whose both principal eigenval-
ues (or, in some cases, only one of them) are positive. Finally, we obtain existence results for
the Dirichlet problem for nonproper operators which are not convex (like Isaac’s equations,
that is, sup–inf of linear operators), under the hypothesis that some related operator is coer-
cive.

It has long been known that certain types of positively homogeneous operators possess “half”-
eigenvalues. The first to observe this phenomenon was Berestycki in [2], where he considered
bifurcation for some Sturm–Liouville problems. An important step in studying these types of
questions was made by Lions [20]. By combining probability and analytical methods, in that
paper he proved the existence of principal eigenvalues for operators which are the supremum
of linear operators with C1,1-coefficients, and obtained results about the solvability of related
Dirichlet problems. Recently the question of existence of principal eigenvalues was addressed in
another particular case, namely when F is a Pucci extremal operator (M+

λ,Λ(D2u), see below),
by Felmer and Quaas [14] (see also [6,21]). Related results were obtained for operators of the
type |Du|αM+

λ,Λ(D2u) by Birindelli and Demengel [4]. The results in all the quoted papers are
partial in the sense that many known properties of the principal eigenvalue of a linear operator
were left open. These properties include the facts that the eigenvalue is simple, isolated, and
its positivity is necessary and sufficient for the operator to satisfy comparison principle, for the
Alexandrov–Bakelman–Pucci inequality to hold, and to guarantee that the Dirichlet problem is
solvable for any right-hand side. It is our aim here to bring the eigentheory of fully nonlinear
equations closer to the level of the well-studied linear case, for which we refer to the paper by
Berestycki, Nirenberg and Varadhan [3]—a deep study of properties of the principal eigenvalue
of linear elliptic operators in nondivergence form, as well as of related maximum principles and
existence theory for strong solutions of linear equations. The results we obtain extend most of
the main results in [3] to nonlinear operators and viscosity solutions, and exhibit the differences
due to the nonlinear nature of the operators we consider.

In the last thirty years there have been a multitude of results on existence, uniqueness and
regularity properties of classical, strong or viscosity solutions of equations of type (1.1). For the
classical case we refer to the works [19,13,5], and to the books [18,15]. For strong solutions of
linear equations, see [15, Chapter 9]. As far as viscosity solutions are concerned, we shall quote
here the fundamental work [10], where very general equations are studied, as well as [8,9,11,17,
22] (see also the references in these works), where a more specific—and close to ours—setting
is considered. Typical structure conditions on F assumed in these papers are

(S) M−
λ,Λ(M − N) − γ |p − q| � F(M,p,u, x) − F(N,q,u, x)

� M+
λ,Λ(M − N) + γ |p − q|,

for some positive constants λ,Λ,γ and any M,N ∈ SN (the set of all N × N symmetric matri-
ces), p,q ∈ RN , u ∈ R, x ∈ Ω , and

(P ) F is proper, that is, F is nonincreasing in u.
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Recall that Pucci’s operators are defined by M+
λ,Λ(M) = supA∈A tr(AM), M−

λ,Λ(M) =
infA∈A tr(AM), where A ⊂ SN denotes the set of matrices whose eigenvalues lie in the interval
[λ,Λ]. Note M+

λ,Λ(M) = −M−
λ,Λ(−M).

Condition (P ) is too restrictive compared to what is known for linear operators. For instance,
consider the linear operator L = tr(AD2·) + c(x). It is well known that the Dirichlet problem
for Lu = f ∈ LN is uniquely solvable provided λ1(L) > 0. On the other hand, if tr(AD2·) is
replaced by a nonlinear operator satisfying (S), all the above quoted papers concern the case
c(x) � 0. We will show that for a nonlinear operator the right hypothesis under which the
Dirichlet problem is solvable for any right-hand side is again the positivity of the principal eigen-
values.

The paper is organized as follows. In the next section we give assumptions and define the
principal eigenvalues. In Sections 1.2 and 1.3 we state our main results, about properties of prin-
cipal eigenvalues and eigenfunctions, and about solvability of the Dirichlet problem. In Section 2
we give some important examples of operators to which our results apply, and discuss different
situations that can arise. An intriguing difference between the two eigenvalues is put into light.
Finally, in Section 3 we recall some previous results which we use, and in Section 4 we give the
proofs of our results.

1.1. Assumptions and definition of λ+
1 , λ−

1

The operator F is supposed to be defined on SN × RN × R × (Ω \ N ), where N ⊂ Ω is a
null set.

Next, we assume that the operator is positively homogeneous of order 1, that is,

(H0) F(tM, tp, tu, x) = tF (M,p,u, x), for all t � 0.

Everywhere in the sequel we consider operators which satisfy the following hypothesis: for some
γ, δ > 0 and all M,N ∈ SN, p,q ∈ RN , u,v ∈ R, x ∈ Ω ,

(H1) M−
λ,Λ(M − N) − γ |p − q| − δ|u − v| � F(M,p,u, x) − F(N,q, v, x)

� M+
λ,Λ(M − N) + γ |p − q| + δ|u − v|.

We are going to suppose that

(H2) F(M,0,0, x) is continuous in SN × Ω.

Note that when F is linear (H1)–(H2) mean F is uniformly elliptic, with bounded coefficients,
and continuous second-order coefficients.

We denote

G(M,p,u, x) = −F(−M,−p,−u,x).

An important role will be played by the following definition. We say that an operator
H(M,p,u, x) satisfies condition (DF ) provided

(DF ) G(M − N,p − q,u − v, x) � H(M,p,u, x) − H(N,q, v, x)

� F(M − N,p − q,u − v, x).
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This hypothesis permits to measure how far an operator H is from linear—the extremes of (DF )

are attained, on one hand, when F is linear (so that F = G and H(M,p,u, x) = F(M,p,u, x)+
H(0,0,0, x)), and on the other hand, when F(M,p,u, x) = M+

λ,Λ(M) + γ |p| + δ|u|—then
(DF ) reduces to (H1).

Lemma 1.1. Suppose F satisfies (H0). Then the following are equivalent:

(i) F is convex in (M,p,u);
(ii) F satisfies (DF );

(iii) F satisfies one of the two inequalities in (DF ).

We shall assume that the domain Ω is smooth. We stress however that most results can be
extended to arbitrary bounded domains, by using an approximation argument, as in [3], see Sec-
tion 5.

We make the convention that each time we use the term viscosity solution we mean LN -
viscosity—see for example [9] for definitions and properties of these. Also, any time we say a
nonregular function satisfies an (in)equality, we shall mean it is satisfied in the viscosity sense.

For any λ ∈ R we define the sets

Ψ +(F,Ω,λ) = {
ψ ∈ C(Ω)

∣∣ ψ > 0 in Ω, F
(
D2ψ,Dψ,ψ,x

) + λψ � 0 in Ω
}
,

Ψ −(F,Ω,λ) = {
ψ ∈ C(Ω)

∣∣ ψ < 0 in Ω, F
(
D2ψ,Dψ,ψ,x

) + λψ � 0 in Ω
}
,

and the following (finite, see Proposition 4.2) quantities

λ+
1 (F,Ω) = sup

{
λ

∣∣ Ψ +(F,Ω,λ) �= ∅}
,

λ−
1 (F,Ω) = sup

{
λ

∣∣ Ψ −(F,Ω,λ) �= ∅}
.

We shall not write the dependence of λ+
1 , λ−

1 in Ω or in F , when no confusion arises. Note that
λ+

1 (F ) = λ−
1 (G) and λ−

1 (F ) = λ+
1 (G). Note also that λ+

1 (F ) � λ−
1 (F ) since F is convex. We

will show later that the sets Ψ in the definitions of λ+
1 , λ−

1 can be replaced by much smaller
ones—see (4.2) and Proposition 4.11.

Next, we turn to the statements of our results. In order to facilitate the task of the reader
acknowledged with the corresponding results for linear operators, we have adopted a way of
exposing similar to the one in [3]—we believe this better highlights similarities and differences.
It should be stressed however that our proofs, while borrowing some ideas from the linear case,
require a different overall approach, and that essential points in the proofs are very nonlinear in
nature—for example the construction of a supersolution in Proposition 4.12. We give an overview
in Section 4.

1.2. Existence and properties of eigenvalues

The following theorem asserts the existence of two pairs of principal eigenfunctions and
eigenvalues of a nonlinear operator. Set Ep = W

2,p
(Ω) ∩ C(Ω).
loc
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Theorem 1.1. Suppose F satisfies (H0)–(H2), and (DF ). Then there exist functions ϕ+
1 , ϕ−

1 ∈ Ep

for all p < ∞, such that⎧⎪⎨⎪⎩
F(D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x) = −λ+
1 ϕ+

1 in Ω,

ϕ+
1 > 0 in Ω,

ϕ+
1 = 0 on ∂Ω,

and ⎧⎪⎨⎪⎩
F(D2ϕ−

1 ,Dϕ−
1 , ϕ−

1 , x) = −λ−
1 ϕ−

1 in Ω,

ϕ−
1 < 0 in Ω,

ϕ−
1 = 0 on ∂Ω.

If ϕ+
1 (or ϕ−

1 ) is normalized so that ϕ+
1 (x0) = 1 (resp. ϕ−

1 (x0) = −1) for a fixed point x0 ∈ Ω ,
then ϕ+

1 � C (resp. ϕ−
1 � −C) in Ω , where C depends only on x0,Ω,λ,Λ,γ and δ.

In addition, λ+
1 (resp. λ−

1 ) is the only eigenvalue corresponding to a positive (resp. negative)
eigenfunction in C(Ω).

The next result implies that the principal eigenfunctions are simple in a strong sense, even in
the set of viscosity solutions.

Theorem 1.2. Suppose F satisfies (H0)–(H2), and (DF ). Assume there exists a viscosity solution
u ∈ C(Ω) of {

F(D2u,Du,u, x) = −λ+
1 u in Ω,

u = 0 on ∂Ω,
(1.2)

or of {
F(D2u,Du,u, x) � −λ+

1 u in Ω,

u(x0) > 0, u � 0 on ∂Ω,
(1.3)

for some x0 ∈ Ω . Then u ≡ tϕ+
1 , for some t ∈ R. If a function v ∈ C(Ω) satisfies either (1.2) or

the reverse inequalities in (1.3), with λ+
1 replaced by λ−

1 , then v ≡ tϕ−
1 for some t ∈ R.

Remark. Taking u = ϕ−
1 shows u(x0) > 0 cannot be removed from (1.3).

The following theorem states that the eigenvalues are isolated.

Theorem 1.3. Suppose F satisfies (H0)–(H2), and (DF ). There exists ε0 > 0 depending on
N,Ω,λ,Λ,γ, δ, such that the problem{

F(D2u,Du,u, x) = −λu in Ω,

u = 0 on ∂Ω
(1.4)

has no solutions u �≡ 0, for λ ∈ (−∞, λ− + ε0) \ {λ+, λ−}.
1 1 1
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It is an interesting question whether the two eigenvalues can coincide for truly nonlinear
operators, and, when they do not, whether the eigenfunctions can or may not differ only by a
multiplication by a constant. The answers are all affirmative, see Section 2.

The next theorem gives a necessary and sufficient condition for the positivity of the princi-
pal eigenvalues. It also shows that the existence of a positive viscosity supersolution implies the
existence of a positive uniformly bounded (below, and in the global W 2,p-norm) strong superso-
lution.

Theorem 1.4. Suppose F satisfies (H0)–(H2), and (DF ).

(a) Assume there is a function u ∈ C(Ω) such that{
F(D2u,Du,u, x) � 0 in Ω,

u > 0 in Ω,
resp.

{
F(D2u, . . .) � 0 in Ω,

u < 0 in Ω,

in the viscosity sense. Then either λ+
1 > 0 or λ+

1 = 0 with u ≡ tϕ+
1 , for some t > 0 (resp.

λ−
1 > 0 or λ−

1 = 0 with u ≡ tϕ−
1 , for some t > 0).

(b) Conversely, if λ+
1 > 0 then there exists a function u ∈ W 2,p(Ω), p < ∞, such that

F(D2u,Du,u, x) � 0, u � 1 in Ω , and ‖u‖W 2,p(Ω) � C, where C depends on p,N,Ω,λ,

Λ,γ, δ, and λ+
1 .

Remark 1. When F is proper, u ≡ 1 satisfies the condition of Theorem 1.4. Hence proper oper-
ators have positive eigenvalues.

Remark 2. Propositions 4.2 and 4.8 provide upper and lower bounds (in terms of F and Ω) for
λ+

1 and λ−
1 .

Remark 3. It follows from Theorem 1.4 that the eigenvalues are strictly decreasing with re-
spect to the domain: if Ω � Ω ′ then λ+

1 (Ω) > λ+
1 (Ω ′) and λ−

1 (Ω) > λ−
1 (Ω ′) (take u = ϕ+

1 (Ω ′)
in Theorem 1.4). Note that λ+

1 and λ−
1 are continuous with respect to the domain, as Proposi-

tion 4.10 shows.

Further, we show that, similarly to the linear case, the positivity of the principal eigenvalues is
a necessary and sufficient condition for the operator to satisfy a comparison principle. We say that
a second-order operator H satisfies a comparison principle (CP), provided for any u,v ∈ C(Ω),
one of which is in EN , such that{

H(D2u,Du,u, x) � H(D2v,Dv,v, x) in Ω,

u � v on ∂Ω,

we have u � v in Ω . A particular case of (CP) is the maximum principle, when one of u,v is set
to zero (and H(0,0,0, x) ≡ 0, as we always assume).

Theorem 1.5. Suppose a second-order operator F satisfies (H0)–(H2), and (DF ). Then
λ+

1 (F ) > 0 is necessary and sufficient for F to satisfy (CP). Hence, if a second-order opera-
tor H satisfies (DF ), then λ+(F ) > 0 is sufficient for H to satisfy (CP).
1
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If λ−
1 > 0, the comparison and even the maximum principle do not necessarily hold. However,

it can be shown that λ−
1 > 0 is necessary and sufficient for a one-sided maximum principle.

Theorem 1.6. Suppose a second-order operator F satisfies (H0)–(H2), and (DF ). Then F has
the following property: for any u ∈ C(Ω),{

F(D2u,Du,u, x) � 0 in Ω,

u � 0 on ∂Ω
implies u � 0 in Ω,

if and only if λ−
1 (F ) > 0.

Finally, we have the following Alexandrov–Bakelman–Pucci (ABP) inequality for nonproper
second-order operators. The ABP inequality is an essential tool in studying nondivergence form
equations—see [15,3,9] for discussions.

Theorem 1.7. Suppose the operator F satisfies (H0)–(H2), and (DF ). Then for any u ∈ C(Ω),
f ∈ LN(Ω), the inequalities F(D2u,Du,u, x) � f , λ+

1 (F ) > 0 (resp. F(D2u,Du,u, x) � f ,
λ−

1 (F ) > 0) imply

sup
Ω

u � C
(

sup
∂Ω

u+ + ‖f −‖LN(Ω)

) (
resp. sup

Ω

u− � C
(

sup
∂Ω

u− + ‖f +‖LN(Ω)

))
,

where C depends on Ω , N,λ,Λ,γ, δ, and λ+
1 (F ) (resp. λ−

1 (F )).

1.3. The Dirichlet problem

We will show that the Dirichlet problem for our type of operators is solvable for any right-
hand side if the eigenvalues of the operator are positive, and that the Dirichlet problem may not
be solvable if only one of them is positive.

Theorem 1.8. Suppose F satisfies (H0)–(H2), and (DF ). If λ+
1 (F ) > 0 then for any f ∈ Lp(Ω),

p � N , there exists a unique solution u ∈ Ep of{
F(D2u,Du,u, x) = f in Ω,

u = 0 on ∂Ω.
(1.5)

In addition, for any compact set ω � Ω there holds

‖u‖W 2,p(ω) � C‖f ‖Lp(Ω),

where C depends on p,ω,Ω,λ,Λ,γ, δ, and λ+
1 (F ).

On the other hand, if λ+
1 (F ) = 0 or λ−

1 (F ) > 0 � λ+
1 (F ) then problem (1.5) does not possess

a solution in C(Ω), provided f � 0, f �≡ 0 in Ω .

Remark. In [5] Busca showed (through different techniques) the existence of a unique classical
solution of the Dirichlet problem in the particular case when F is a supremum of a countable
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family of linear operators with Hölder continuous coefficients and uniformly positive first eigen-
values. This uniform positivity turns out to be equivalent to λ+

1 > 0, as our results show (see the
next section).

As Theorem 1.8 shows, if only one of the two eigenvalues is positive, the Dirichlet problem
may not have a solution. However, it still does provided the right-hand side is nonnegative.

Theorem 1.9. Suppose F satisfies (H0)–(H2), (DF ). If λ−
1 (F ) > 0 then for any f ∈ Lp(Ω),

p � N , such that f � 0 in Ω , there exists a nonpositive solution u ∈ Ep of (1.5).

Remark. We do not know if the solution obtained in Theorem 1.9 is unique.

As is known, the problem of solvability and uniqueness for the Dirichlet problem for noncon-
vex operators is quite complicated. The following existence result, applicable to Isaac’s operators,
completes (and uses) some recent results for proper operators, obtained in [11] (see also [17]). It
says an Isaac’s equation is solvable provided the operator is controlled, in the sense of (DF ), by
an operator with positive eigenvalues.

Theorem 1.10. Assume F satisfies (H0)–(H2), (DF ), and H satisfies (DF ) and (H0). If
λ+

1 (F ) > 0 then the problem {
H(D2u,Du,u, x) = f in Ω,

u = 0 on ∂Ω

is solvable in the viscosity sense for any f ∈ Lp(Ω),p � N . If H(M,p,u, x) is convex in M

then u ∈ Ep , and u is unique.

2. Examples and discussion

We have proved the existence of principal eigenvalues of Hamilton–Jacobi–Bellman operators

FHJB
(
D2u,Du,u, x

) = sup
α∈A

Lα
xu,

with Lα
xu := tr

(
Aα(x)D2u

) + �bα(x).Du + cα(x)u,

where A is an arbitrary index set, Aα(x) are matrices which depend continuously on x and such
that λI � Aα(x) � ΛI , and �bα : RN → RN , cα : RN → R are measurable bounded (uniformly
in α) functions.

Note that the question of existence and uniqueness of solutions of Hamilton–Jacobi–Bellman
equations is often set in the form: given a family of linear operators as above and a family of
continuous functions f α , solve

sup
α∈A

(
tr
(
Aα(x)D2u

) + �bα(x).Du + cα(x)u − f α(x)
) = 0.

This equation is in the form H(D2u,Du,u, x) = f (x), where

H
(
D2u,Du,u, x

) = sup
(
Lα

xu − f α(x)
) + inf

α∈A
f α(x), f (x) = inf

α∈A
f α(x).
α∈A
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This H is convex in (M,p,u) and satisfies (DFHJB), so the results of the previous section apply.
It easily follows from the definitions of the eigenvalues that

λ+
1 (FHJB) � inf

α∈A
λ1

(
Lα

x

)
� sup

α∈A
λ1

(
Lα

x

)
� λ−

1 (FHJB), (2.1)

where λ1(L
α
x ) denotes the usual first eigenvalue of the linear operator Lα

x . One should clearly
ask whether the first and the third inequalities in (2.1) are actually equalities.

As far as the first inequality is concerned, it actually is an equality when the set A is countable,
since then it is possible to show that the Dirichlet problem for FHJB is uniquely solvable for any
right-hand side (through an argument similar to the one in [5]), provided infα∈A λ1(L

α
x ) > 0.

Then, if the first inequality in (2.1) were strict, the operators L̃α
x = Lα

x +λ+
1 (FHJB) have uniformly

positive eigenvalues but supα∈A L̃α
xu = 0 has two solutions which vanish on ∂Ω , the trivial one

and ϕ+
1 given by Theorem 1.1—a contradiction. Further, it is clear that the Dirichlet problem for

FHJB remains solvable under infα∈A λ1(L
α
x ) > 0, when A is a separable metric space such that

the maps α → Aα, �bα, cα are continuous for almost every x (a similar remark is made in [15],
after Theorem 17.18). This implies, for instance, that

λ+
1

(
M+

λ,Λ

) = inf
λI�A�ΛI

λ1
(
tr
(
AD2·)),

the infimum being taken over constant matrices, and not over functions (as was stated in [6]),
which is what the mere fact that the infimum is attained suggests.

Surprisingly, it turns out that an analogous intuitive statement about the third inequality
in (2.1) is wrong, as we shall show next.

First, note that λ+
1 = λ−

1 is possible for truly nonlinear operators. An explicit example is, for
instance, Ω = (0,π) × (0,π) ⊂ R2, and

Fa,b

(
D2u

) = max{aux1x1 + bux2x2 , bux1x1 + aux2x2}, a, b > 0, a �= b,

where ϕ+
1 = −ϕ−

1 = sin(x1) sin(x2), and λ+
1 (Fa,b) = λ−

1 (Fa,b) = a + b.
Further, Theorem 1.2 (with u = −ϕ−

1 ) easily implies that ϕ+
1 = −ϕ−

1 after renormaliza-
tion, whenever λ+

1 = λ−
1 . Let us now look at the same operator Fa,b(D

2u) = max{L1u,L2u},
but on a ball B ⊂ R2. A simple symmetry argument shows λ1(L1,B) = λ1(L2,B), so, by
what we already saw, λ+

1 (Fa,b) is equal to λ1(L1). However, λ−
1 (Fa,b) is strictly larger than

λ1(L1) = λ1(L2). Indeed, suppose for contradiction λ−
1 = λ1(L1) = λ+

1 =: λ. Then the principal
eigenfunction ϕ := ϕ+

1 = −ϕ−
1 of Fa,b would satisfy{

Fa,b(D
2ϕ) + λϕ = 0 in B,

Ga,b(D
2ϕ) + λϕ = 0 in B.

(2.2)

By adding up the two equations in (2.2) we see that ϕ is the principal eigenfunction of the Lapla-
cian, and so ϕ is smooth and radial. It also follows from (2.2) that Fa,b(D

2ϕ) = Ga,b(D
2ϕ)

in B , which means ϕx1x1 ≡ ϕx2x2 . The only smooth radial functions which satisfy this are
C1|x|2 + C2—a contradiction.

An example when λ+
1 �= λ−

1 and ϕ+
1 = −ϕ−

1 is provided by the operator

Fa

(
D2u

) = max{�u, a�u}, a > 0, a �= 1.
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Then ϕ+
1 = −ϕ−

1 is the usual first eigenfunction of the Laplacian, however λ+
1 = min{λ1, aλ1} <

max{λ1, aλ1} = λ−
1 , where λ1 is the first eigenvalue of the Laplacian. Note that the spectrum of

Fa is actually the so-called Fucik spectrum of the Laplacian.
Finally, we note that M+

λ,Λ is an operator for which ϕ+
1 and ϕ−

1 are not proportional, for
instance when Ω is a ball. Indeed, suppose for contradiction that ϕ ∈ Ep(B) is a function such
that ϕ > 0 in B , ϕ = 0 on ∂B , and{

M+
λ,Λ(D2ϕ) + λ+

1 ϕ = 0 in B,

M−
λ,Λ(D2ϕ) + λ−

1 ϕ = 0 in B,
(2.3)

for some ball B . By summing these two equations we obtain

(λ + Λ)�ϕ + (
λ+

1 + λ−
1

)
ϕ = 0 in B, (2.4)

so ϕ is the first (radial and smooth) eigenfunction of the Laplacian.
We recall that M+

λ,Λ(M) = Λ
∑

{ei>0} ei + λ
∑

{ei<0} ei , where ei denote the eigenvalues
of M , for any M ∈ SN . This, together with the fact that ϕ attains its maximum at the origin,

imply M+
λ,Λ(D2ϕ(0)) = λ�ϕ(0). It then follows from the first equation in (2.3) that

λ+
1
λ

= λ1,
where λ1 is the first eigenvalue of the Laplacian.

Therefore the first equation in (2.3) reads M+
λ,Λ(D2ϕ) − λ�ϕ = 0 in B , or

Λ
∑

{ei (x)>0}
ei(x) + λ

∑
{ei (x)<0}

ei(x) − λ

N∑
i=1

ei(x) ≡ 0 in B,

where ei(x) denote the eigenvalues of D2ϕ(x). Hence ei(x) � 0 in B , for all i = 1, . . . ,N .
However, by writing (2.4) in the radial variable and by using Hopf’s lemma, it is easy to see

that D2ϕ(x) has a positive eigenvalue in a neighbourhood of ∂Ω (see also Lemma 4.1). This is
a contradiction.

Naturally, given some positive constants λ,Λ,γ, δ, our results apply to the extremal operator

Fe

(
D2u,Du,u

) = M+
λ,Λ

(
D2u

) + γ |Du| + δ|u|,

and hence all results concerning maximum principles and existence for the Dirichlet problem
apply to operators H satisfying (DFe), that is, (H1). In particular, our results give an ABP in-
equality and existence results for Isaacs operators

inf
β∈B

sup
α∈A

{
tr
(
Aα,β(x)D2u

) + �bα,β(x).Du + cα,β(x)u
}
,

under a more general hypothesis than cα,β(x) � 0, which was considered in previous works (see
for example [10,11] and the references in these papers).

An interesting particular case is obtained by setting λ = Λ = 1, in other words, M+
λ,Λ(D2u) =

�u in Fe. In the recent work [16] Hamel, Nadirashvili and Russ considered (among other things)
the operator �u + |Du|, showed it has two eigenvalues and proved that the domain which min-
imizes the eigenvalue λ+

1 (� + |D · |,Ω) on the set of all smooth domains with fixed measure
is the ball. Their result depends on the fact that the second-order operator is the Laplacian. It is
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a very interesting open question to prove that the same holds for more general second-order op-
erators, for example, to prove that λ+

1 (M+
λ,Λ,Ω) is minimized when Ω is a ball. The analogous

question for λ−
1 is completely open.

3. Some known results

In this section we recall some results for proper uniformly elliptic equations.
We start with the Alexandrov–Bakelman–Pucci estimate for viscosity solutions, see Proposi-

tion 3.3 in [9].

Theorem 3.1 (ABP). Let f ∈ LN(Ω). If u ∈ C(Ω) is an LN -viscosity solution of

M+
λ,Λ

(
D2u

) + γ |Du| � f in {u > 0},

then there exists a constant B depending on N,λ,Λ,γ, and diam(Ω), such that

sup
Ω

u � sup
∂Ω

u+ + B‖f −‖LN(Ω). (3.1)

Similarly, if u is an LN -viscosity solution of

M−
λ,Λ

(
D2u

) − γ |Du| � f in {u < 0},

then

sup
Ω

u− � sup
∂Ω

u− + B‖f +‖LN(Ω). (3.2)

Hence if F satisfies conditions (S) and (P ) from the introduction, then F(D2u,Du,u, x) � f

implies (3.1), and F(D2u,Du,u, x) � f implies (3.2).

Theorem 3.1 implies a comparison result (Theorem 2.10 in [9]).

Theorem 3.2. Suppose H satisfies (DF ) and F satisfies (H1), (H2), and (P ). If u,v ∈ C(Ω)

are LN -viscosity solutions of{
H(D2u,Du,u, x) � H(D2v,Dv,v, x) in Ω,

u � v on ∂Ω,

and one of u,v is in EN , then u � v in Ω .

Now we give a regularity result, which will be needed in the sequel.

Theorem 3.3. Suppose F satisfies (H0)–(H2), and F(M,p,u, x) is convex in M . If u ∈ C(Ω)

is a viscosity solution of

F
(
D2u,Du,u, x

) = f in Ω
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and f ∈ Lp(Ω), p � N , then u ∈ W
2,p

loc (Ω), and for every Ω ′ � Ω

‖u‖W 2,p(Ω ′) � C
(‖u‖L∞(Ω) + ‖f ‖Lp(Ω)

)
,

where C depends on dist(Ω ′, ∂Ω), diam(Ω), p,N,λ,Λ,γ, δ.

Proof. In case F is proper (satisfies (P )), this follows from Theorem 3.1 in [22] (see also the dis-
cussion in Sections 8–9 in [12]). If F is not proper, by (H1) the operator F(D2u,Du,u, x) − δu

is proper. By applying Theorem 3.1 in [22] to F(D2u,Du,u, x)−δu = f −δu we conclude. �
Theorem 3.4. Suppose F satisfies (H0)–(H2), (P ), and F(M,p,u, x) is convex in M . Then, for
any f ∈ Lp(Ω), p � N , there exists a unique solution u ∈ Ep of{

F(D2u,Du,u, x) = f in Ω,

u = 0 on ∂Ω.

Proof. This is again a consequence of Theorem 3.1 in [22]. �
Next, we recall the following maximum principle in small domains.

Theorem 3.5. Suppose H satisfies (DF ), and F satisfies (H1) and (H2). Then there exists ε0 > 0,
depending on N,λ,Λ,γ, δ, and diam(Ω), such that if |Ω| � ε0 then for any u ∈ C(Ω){

H(D2u,Du,u, x) � 0 in Ω,

u � 0 on ∂Ω

implies u � 0 in Ω .

Proof. By (H1) u satisfies

M−
λ,Λ

(
D2u

) − γ |Du| � δ|u| = δu− in {u < 0}.
Then we use Theorem 3.1 to conclude, in a standard way. �

We shall need the following version of Hopf’s boundary lemma.

Lemma 3.1. Let Ω be a regular domain and let u ∈ EN , u �≡ 0, be a nonnegative solution to

M−
λ,Λ

(
D2u

) − γ |Du| − δu � 0 in Ω,

u = 0 on ∂Ω,
(3.3)

with γ, δ ∈ R. Then u > 0 in Ω . Moreover, for each x0 ∈ ∂Ω

lim sup
x→x0

u(x0) − u(x)

|x − x0| < 0,

where the limit is taken over the set of x for which the angle between x −x0 and the outer normal
at x0 is less than π/2 − α for some fixed α > 0.
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Remark. For a general strong maximum principle for degenerate convex elliptic operators, see
the paper of M. Bardi and F. Da Lio [1].

We recall next the following Harnack inequality.

Theorem 3.6. Let u ∈ C(Ω) and f ∈ LN(Ω) satisfy u � 0 in Ω and

M+
λ,Λ

(
D2u

) + γ |Du| + δu � f in Ω, (3.4)

M−
λ,Λ

(
D2u

) − γ |Du| − δu � f in Ω. (3.5)

Then for any compact set K ⊂ Ω

sup
K

u � C
{

inf
K

u + ‖f ‖LN(Ω)

}
,

where C is a constant depending only on K , Ω , N , Λ , λ, γ and δ.

Proof. First, inequality (3.5) implies the so-called weak Harnack inequality—this was proved
by Wang in [23], see also [8,12] for related results. The fact that inequality (3.4) implies the
local maximum principle (see for example [15, Chapter 9], for the terminology) was proved by
Wang in the proper case (δ = 0), and was extended to δ > 0 in [7]—see pages 560–562 of that
paper. �
4. Proofs of the main results

We shall first give an overview of the proofs and list some of the main points in them.
After some preliminary results concerning simplicity and bounds on eventual eigenvalues,

we define a class of nonproper operators (in particular those with λ̃+
1 > 0, see below), such that

one can get comparison results for equations involving these operators through relating them to
proper equations and using the results quoted in the previous section. Then the sub- and superso-
lution method allows us to prove existence and uniqueness results for these equations, which in
turn implies, via Krein–Rutman theory, that operators with λ̃+

1 > 0 have two eigenvalues (equal
to λ+

1 , λ−
1 ). The next step is to observe that λ+

1 , λ−
1 do not change if one takes only functions

ψ ∈ Ep in the definition of Ψ +,Ψ −, and then to prove Theorem 1.1, through an approximation
procedure in subdomains of Ω . The final quite delicate points are, on one hand, to bridge the gap
between λ̃+

1 and λ+
1 , and on the other hand, to show Theorem 1.4(b) with the right dependence

of the constant bounding the C1-norm of the supersolution obtained in it. This is accomplished
in the key Proposition 4.12, which permits us to relate our Theorems 1.5–1.10 corresponding
results for proper equations.

4.1. Some preliminary results

We start with the trivial proof of Lemma 1.1.

Proof of Lemma 1.1. Suppose f : RN2+N+1 → R is such that f (tx) = tf (x) for all t � 0. First,
f is convex if and only if

f (y1) − f (y2) � f (y1 − y2) for all y1, y2 ∈ RN2+N+1. (∗)
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Indeed, if f is convex then

f (y1) = 2f

(
y1 − y2 + y2

2

)
� f (y1 − y2) + f (y2).

Whereas if f satisfies (∗), then for any α ∈ [0,1]

f
(
αy1 + (1 − α)y2

) − αf (y1) = f
(
αy1 + (1 − α)y2

) − f (αy1)

� f
(
(1 − α)y2

) = (1 − α)f (y2),

so f is convex.
Define g(y) = −f (−y); we have from (∗) that

g(y1 − y2) = −f (y2 − y1) � f (y1) − f (y2),

and the lemma follows. �
Everywhere in the sequel F will denote an operator which satisfies (H0)–(H2), and (DF ).
The following theorem will be used several times.

Theorem 4.1. Suppose u,v ∈ C(Ω) are viscosity solutions of{
F(D2u,Du,u, x) � 0 in Ω,

u > 0 in Ω,
resp.

{
F(D2u, . . .) � 0 in Ω,

u < 0 in Ω

and ⎧⎨⎩ F(D2v,Dv,v, x) � 0 in Ω,

v � 0 on ∂Ω,

v(x0) > 0,

resp.

⎧⎨⎩ F(D2v, . . .) � 0 in Ω,

v � 0 on ∂Ω,

v(x0) < 0,

for some point x0 ∈ Ω , where F satisfies (H0)–(H2), and (DF ). Suppose one of u,v is in EN .
Then u ≡ tv for some t > 0.

Proof. Let u,v satisfy the first set of inequalities in Theorem 4.1. We suppose first that both
u,v ∈ EN . Theorem 4.1 is proved via a variant of a rather typical argument, used for example in
the linear setting in [3]. Take a compact set K ⊂ Ω such that |Ω \ K| � ε0, where ε0 is given in
Theorem 3.5. Set zt = v − tu. If t is large enough zt < 0 in K . By (DF ) and (H0), we have for
all t � 0

F
(
D2zt ,Dzt , zt , x

)
� F

(
D2v,Dv,v, x

) − tF
(
D2u,Du,u, x

)
� 0 (4.1)

in Ω . Since zt � 0 on ∂(Ω \ K), by using Theorem 3.5 we get zt � 0 in Ω \ K . So, by Hopf’s
lemma (Lemma 3.1), either zt ≡ 0 in Ω in which case we are done, or zt < 0 in Ω . We define

τ = inf{t | zt < 0 in Ω}.
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Since v(x0) > 0 we have τ > 0. Now we repeat the same argument for zτ . So, either zτ ≡ 0 in
Ω in which case we are done, or zτ < 0 in Ω . In this case there exists η > 0 such that zτ−η < 0
in K . Now we repeat again the same argument for zτ−η , which yields a contradiction with the
definition of τ .

If the inequalities satisfied by u,v are reversed (second set of inequalities in Theorem 4.1),
we consider the function tu − v and use the same argument.

In case one of the functions, say v, is only in C(Ω), exactly the same argument applies, since
(4.1) holds. This is very standard—if ψ is a test function for zt , then ψ + tu is a test function
for v, and vice versa. �
Corollary 4.1. If μ,ν ∈ R and u,v ∈ C(Ω) are such that⎧⎨⎩ F(D2u, . . .) = μu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

and

⎧⎨⎩ F(D2v, . . .) = νv in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

and one of u,v is in EN , then μ = ν and u = tv for some t > 0. The same is valid if both
functions are negative instead of positive.

Proof. Suppose μ � ν. Then use Theorem 4.1 with F(D2u,Du,u, x) replaced by
F(D2u,Du,u, x) − μu. �

Another consequence of Theorem 4.1 is an upper bound of the eigenvalues in terms of the
“thickness” of the domain. Before stating it, we recall the following simple fact.

Lemma 4.1. Suppose u ∈ C2(B) is a radial function, defined on a ball B , say u(x) = g(|x|).
Then the matrix D2u(x) has g′′(|x|) as a simple eigenvalue, and |x|−1g′(|x|) as an eigenvalue
of multiplicity N − 1.

Proposition 4.1. Suppose Ω contains a ball B2R , with R � 1. Then

λ+
1 (F,Ω) � λ−

1 (F,Ω) � C

R2
,

where C depends on N,λ,Λ,γ, δ.

Proof. Clearly λ−
1 (Ω) � λ−

1 (BR). We set σ(x) = − 1
4 (|x|2 −R2)2, σ < 0 in BR (this comparison

function appears in many other works). Then we have |Dσ | � |x|(R2 −|x|2) and the eigenvalues
of D2σ are R2 − |x|2 and R2 − 3|x|2. By (H1),

F
(
D2σ,Dσ,σ, x

)
� M+

λ,Λ

(
D2σ

) + γ |Dσ | + δ|σ |,
so, through an easy computation,

F
(
D2σ,Dσ,σ, x

)
� −C0

R2
σ

in BR , where C0 depends on N,λ,Λ,γ, δ. To get this, we use the previous lemma and the fact
that M+ (M) = Λ

∑
ei + λ

∑
ei , where ei denote the eigenvalues of M .
λ,Λ {ei>0} {ei<0}
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Suppose now there exists λ ∈ R,ψ ∈ C(Ω) such that ψ < 0 in Ω , F(D2ψ,Dψ,ψ,x) +
λψ � 0, and λ >

C0
R2 . By applying Theorem 4.1 with F replaced by F(D2u,Du,u, x) + C0

R2 u

and Ω replaced by BR , we get ψ = tσ in BR , a contradiction with σ = 0,ψ < 0 on ∂BR . �
Next, for any λ ∈ R we define the sets

Ψ̃ +(F,Ω,λ) =
{
ψ

∣∣∣ ψ ∈ W 2,p(Ω) ∀p < ∞, inf
Ω

ψ = 1,

and F
(
D2ψ,Dψ,ψ,x

) + λψ � 0 in Ω
}
,

Ψ̃ −(F,Ω,λ) =
{
ψ

∣∣∣ ψ ∈ W 2,p(Ω) ∀p < ∞, sup
Ω

ψ = −1,

and F
(
D2ψ,Dψ,ψ,x

) + λψ � 0 in Ω
}

(note these sets contain functions which are regular up to ∂Ω), and the following quantities

λ̃+
1 (F,Ω) = sup

{
λ

∣∣ Ψ̃ +(F,Ω,λ) �= ∅}
,

λ̃−
1 (F,Ω) = sup

{
λ

∣∣ Ψ̃ −(F,Ω,λ) �= ∅}
. (4.2)

By using these definitions and by setting ψ ≡ 1 in (4.2), we obtain the following bounds.

Proposition 4.2. We have λ̃−
1 � λ−

1 and

−δ � −‖c‖∞ � λ̃+
1 � λ+

1 � λ−
1 � C

R2
,

where c(x) = F(0,0,1, x), and C is the constant from Proposition 4.1.

4.2. First comparison and existence results for nonproper equations

We are now going to show that a version of the ABP inequality (and hence the maximum
principle) holds for operators with positive λ̃+

1 , λ̃−
1 .

Proposition 4.3. Suppose F satisfies (H0)–(H2), (DF ). Suppose there exists a function ψ1 ∈
Ψ̃ +(F,Ω,0). Then for any u ∈ C(Ω), f ∈ LN(Ω) the inequality F(D2u,Du,u, x) � f in Ω

implies

sup
Ω

u � C
(

sup
∂Ω

u+ + ‖f −‖LN(Ω)

)
,

where C depends on diam(Ω), λ,Λ,γ, δ, and ‖ψ1‖C1(Ω). Similarly, if there exists a function
ψ2 ∈ Ψ̃ −(F,Ω,0) then the inequality F(D2u,Du,u, x) � f implies

sup
Ω

u− � C
(

sup
∂Ω

u− + ‖f +‖LN(Ω)

)
.

Note that λ̃+
1 > 0 (resp. λ̃−

1 > 0) implies the existence of ψ1 ∈ Ψ̃ +(F,Ω,0) (resp. ψ2 ∈
Ψ̃ −(F,Ω,0)).
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Proof. The proof is symmetric for both cases, so we present it only in the case when there exists
a function φ ∈ Ψ̃ +(F,Ω,0). Set A = ‖φ‖C1(Ω) (recall W 2,p(Ω) embeds into C1,α(Ω)).

We define the following operator

Fφ(M,p,v, x) = F
(
φM + p ⊗ Dφ + vD2φ,φp + vDφ,vφ,x

)
(4.3)

(here and in the sequel p ⊗ q denotes the matrix (piqj )ij , for p,q ∈ RN ).

Claim. Hypotheses (S) and (P ) from the introduction are satisfied by Fφ (so Theorem 3.1 applies
to Fφ).

Before continuing, we recall the following properties of Pucci operators.

Lemma 4.2. Let M,N ∈ SN, p,q ∈ RN , and φ(x) ∈ C(Ω) be such that 0 < a � φ(x) � A.
Then

M−
λ,Λ(M) +M−

λ,Λ(N) � M−
λ,Λ(M + N) � M−

λ,Λ(M) +M+
λ,Λ(N),

M−
λa,ΛA(M) �M−

λ,Λ(φM) � M−
λA,Λa(M),

−C(λ,Λ,N)|p||q| � M−
λ,Λ(p ⊗ q) � Λ|p||q|.

Proof. For the first two lines, simply use the definition of M−
λ,Λ. For the third line, note that for

any y ∈ RN we have 〈
(p ⊗ q)y, y

〉 = 〈p,y〉〈q, y〉 � |p||q||y|2,

so M̃ = p ⊗ q − |p||q|I is negative definite and M−
λ,Λ(M̃) = Λ tr(M̃). Of course |tr(p ⊗ q)| �

|p||q|. So, by what we already know,

M−
λ,Λ(M̃) +M−

λ,Λ

(|p||q|I)
� M−

λ,Λ(p ⊗ q) � M−
λ,Λ(M̃) +M+

λ,Λ

(|p||q|I)
,

and the lemma follows, with C(λ,Λ,N) = Λ(N + 1) − λN . �
We continue with the proof of Proposition 4.3. Let M,N ∈ SN , and p,q ∈ RN . Then by (H1)

and the above lemma

Fφ(M,p,v, x) − Fφ(N,q, v, x) � M−
λ,Λ

(
φ(M − N) + Dφ ⊗ (p − q)

) − γ |p − q|
� M−

λ,Λ

(
φ(M − N)

) +M−
λ,Λ

(
Dφ ⊗ (p − q)

) − γ |p − q|
� M−

λ,ΛA(M − N) − (CA + γ )|p − q|,

where C = C(λ,Λ,N) is the constant from Lemma 4.2. In the same way we obtain

Fφ(M,p,v, x) − Fφ(N,q, v, x) � M+ (M − N) + (CA + γ )|p − q|
λ,ΛA
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(recall that M−
λ,Λ(M) = −M+

λ,Λ(−M)). So Fφ satisfies (S), with modified constants. Let us
prove now that Fφ satisfies (P ). Let v1, v2 ∈ R be such that v = v1 − v2 � 0. Then by the
definition of Fφ , (DF ), (H0) and φ ∈ Ψ̃ +(F,Ω,0) we get

Fφ(M,p,v1, x) − Fφ(M,p,v2, x) � F
(
vD2φ,vDφ,vφ,x

)
= vF

(
D2φ,Dφ,φ,x

)
� 0.

So Fφ(M,p,v, x) is nonincreasing in v and the claim follows.
Now set v = u

φ
. Then by using that F(D2u,Du,u, x) � f we easily obtain Fφ(D2v,Dv,

v, x) � f . Now we use Theorem 3.1 for Fφ , which yields

sup
Ω

v � sup
∂Ω

v+ + C‖f −‖LN(Ω),

where C depends on the appropriate quantities. Note that A−1u � v � u. Proposition 4.3 fol-
lows. �

The following comparison result is an immediate consequence of (DF ) and Proposition 4.3.

Proposition 4.4. Suppose λ̃+
1 (F ) > 0. If u,v ∈ C(Ω) are such that{

F(D2u,Du,u, x) � F(D2v,Dv,v, x) in Ω,

u � v on ∂Ω,

and one of u,v is in EN , then u � v in Ω .

Proof. Recall that λ̃+
1 (F ) > 0 implies that Ψ̃ +(F,Ω,0) is not empty. Then we conclude with

the help of (DF ) and Proposition 4.3, applied to v − u. �
Remark. Note that λ̃−

1 (F ) > 0 does not imply comparison.

Next, we prove that λ̃+
1 > 0 is sufficient for the solvability of the Dirichlet problem.

Proposition 4.5. Suppose F satisfies hypotheses (H0)–(H2), and (DF ). If λ̃+
1 (F ) > 0 then for

any f ∈ Lp(Ω), p � N , there exists a unique viscosity solution u ∈ Ep of{
F(D2u,Du,u, x) = f in Ω,

u = 0 on ∂Ω.

In addition f � 0 in Ω implies u � 0 in Ω , and f � 0 implies u � 0.

Proof. Suppose first f ∈ C(Ω). By λ̃+
1 > 0 and the definition of λ̃+

1 , there exists a function
ψ1 ∈ Ψ̃ +(F,Ω, 1

2 λ̃+
1 ), that is, ψ1 � 1 in Ω and

F
(
D2(kψ1),D(kψ1), kψ1, x

)
� − λ̃+

1 kψ1 for all k > 0

2
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(in this inequality we have used the fact that F is homogeneous). We fix k1 such that λ̃+
1 k1 �

2‖f ‖L∞ . Then the positive function k1ψ1 is a supersolution of the equation F(D2u,Du,

u, x) = f .
Similarly, since λ̃−

1 � λ̃+
1 > 0 we can find a function ψ2 ∈ Ψ̃ −(F,Ω, 1

2 λ̃−
1 ), such that

ψ2 � −1 in Ω and

F
(
D2(kψ2),D(kψ2), kψ2, x

)
� − λ̃−

1

2
kψ2 for all k > 0.

Fixing k2 such that λ̃−
1 k2 � 2‖f ‖L∞ , the negative function k2ψ2 is a subsolution of the equation

F(D2u,Du,u, x) = f . �
Now we use the following (standard) lemma.

Lemma 4.3. Under the hypotheses of Proposition 4.5, suppose u0 ∈ Ep is a subsolution and
v0 ∈ Ep is a supersolution of F(D2u,Du,u, x) = f , where f ∈ C(Ω). Suppose in addition that
u0 � v0 in Ω , u0 � 0 on ∂Ω , and v0 � 0 on ∂Ω . Then there exists a solution u ∈ Ep of{

F(D2u,Du,u, x) = f in Ω,

u = 0 on ∂Ω.

Proof. It is clear that hypothesis (H1) implies that F(M,p,u, x) − δu is nonincreasing in u.
Therefore, by Theorem 3.4 we can solve the hierarchy of problems{

F(D2un+1,Dun+1, un+1, x) − δun+1 = f − δun in Ω,

un+1 = 0 on ∂Ω.

By Theorem 3.2 we have u0 � u1 � . . . � v0. Hence un tends pointwise to a function u, and
by interior estimates (Theorem 3.3) in W

2,p

loc , hence locally uniformly. Then by the viscosity
solutions theory (see for example Theorem 3.8 in [9]) u is a solution of F(D2u,Du,u, x) = f

in Ω . By Theorem 3.2 we have w1 � un � w2 for all n, where w1,w2 ∈ Ep are the solutions of{
F(D2wi,Dwi,wi, x) − δwi = εiL in Ω,

wi = 0 on ∂Ω,

where ε1 = 1, ε2 = −1,L = supn ‖f − δun‖L∞(Ω) (L depends on f , δ, u0, v0). Hence u ∈ C(Ω)

and u = 0 on ∂Ω .
To finish the proof of Proposition 4.5, if f ∈ Lp is not in C(Ω), we take a sequence fn ∈

C(Ω) which tends to f in the Lp-norm. By what we already proved, there exists a solution
un ∈ Ep of F(D2un,Dun,un, x) = fn. Then by (DF ) we obtain

F
(
D2(un − um),D(un − um),un − um,x

)
� fn − fm,

F
(
D2(um − un),D(um − un),um − un, x

)
� fm − fn,

for any m,n. By the ABP inequality (Proposition 4.3), which we already proved,

‖um − un‖L∞(Ω) � C‖fm − fn‖LN(Ω),
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hence {un} is a Cauchy sequence in C(Ω) and tends uniformly to a function u ∈ C(Ω). We
conclude by passing to the limit again. The function u is in Ep , by Theorem 3.3.

The uniqueness and the final statement of Proposition 4.5 follow from Proposition 4.4. �
4.3. On existence of eigenvalues. Proof of Theorems 1.1 and 1.2

We are now able to prove the existence of two principal eigenvalues and eigenfunctions, when
λ̃+

1 > 0.

Proposition 4.6. Suppose λ̃+
1 > 0. Then there exist positive numbers Λ+

1 ,Λ−
1 , and functions

ϕ+
1 , ϕ−

1 ∈ Ep for all p < ∞, such that

{
F(D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x) = −Λ+
1 ϕ+

1 , ϕ+
1 > 0 in Ω,

ϕ+
1 = 0 on ∂Ω,

and {
F(D2ϕ−

1 ,Dϕ−
1 , ϕ−

1 , x) = −Λ−
1 ϕ−

1 , ϕ−
1 < 0 in Ω,

ϕ−
1 = 0 on ∂Ω.

Proof. Recall F is convex and positively homogeneous. We have proved (Propositions 4.4
and 4.5) that (CP) holds for F and the Dirichlet problem is uniquely solvable for F . Moreover
the Hopf lemma (Lemma 3.1) holds for F . Then we can use an adaptation of the classical Krein–
Rutman Theorem for a convex operator in a cone to establish the existence of Λ+

1 > 0 and ϕ+
1 .

The argument is carried out in [21] or [14]. Since we can use exactly the same argument, we
refer to these papers for details.

The same argument can be used for G, this yields the existence of Λ−
1 > 0 and ϕ−

1 . �
Proposition 4.7. If λ̃+

1 > 0 and Λ+
1 ,Λ−

1 are as in the previous proposition then Λ+
1 = λ+

1 and
Λ−

1 = λ−
1 .

Proof. From Proposition 4.6 (the existence of ϕ+
1 ) and the definition of λ+

1 we have Λ+
1 � λ+

1 .
Suppose there exists ε > 0 such that Λ+

1 < λ+
1 − ε. By the definition of λ+

1 we can take
φ ∈ C(Ω) such that

F
(
D2φ,Dφ,φ,x

) + (
λ+

1 − ε
)
φ � 0, φ > 0 in Ω.

Since

F
(
D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x
) + (

λ+
1 − ε

)
ϕ+

1 > F
(
D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x
) + Λ+

1 ϕ+
1 = 0 in Ω,

and ϕ+
1 > 0 in Ω , ϕ+

1 = 0 on ∂Ω , Theorem 4.1 implies that φ = tϕ+
1 for some t > 0, which is a

contradiction. By replacing F by G in this argument we get Λ−
1 = λ−

1 . �
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Lemma 4.4. Set

Ψ +
0 (F,Ω,λ) = {

ψ ∈ Ep, ∀p < ∞ ∣∣ F
(
D2ψ,Dψ,ψ,x

) + λψ � 0 in Ω

and ψ > 0 in Ω
}

Ψ −
0 (F,Ω,λ) = {

ψ ∈ Ep, ∀p < ∞ ∣∣ F
(
D2ψ,Dψ,ψ,x

) + λψ � 0 in Ω

and ψ < 0 in Ω
}
.

Then

λ+
1 (F,Ω) = λ̄+

1 (F,Ω) := sup
{
λ

∣∣ Ψ +
0 (F,Ω,λ) �= ∅}

,

λ−
1 (F,Ω) = λ̄−

1 (F,Ω) := sup
{
λ

∣∣ Ψ −
0 (F,Ω,λ) �= ∅}

.

Proof. If λ̃+
1 > 0 this follows from the previous proposition, since clearly Λ+

1 (F,Ω) �
λ̄+

1 (F,Ω) � λ+
1 (F,Ω) (from Proposition 4.6 and the definitions of λ+

1 , λ̄+
1 ).

Note that if F is a proper operator then λ̃+
1 (F ) � 0 (since ψ ≡ 1 is in Ψ̃ +(F,Ω,0)). On

the other hand F(D2u,Du,u, x) − δu is nonincreasing in u. Then, setting F̂ (D2u,Du,u, x) =
F(D2u,Du,u, x) − (δ + 1)u we have λ̃+

1 (F̂ ) � 1, so, by what we already proved,

λ+
1 (F ) + δ + 1 = λ+

1 (F̂ ) = λ̄+
1 (F̂ ) = λ̄+

1 (F ) + δ + 1. �
Theorem 4.2. Suppose F satisfies hypotheses (H0)–(H2), and (DF ). If λ+

1 (F,Ω) > 0 then there
exist functions ϕ+

1 , ϕ−
1 ∈ Ep for all p < ∞, such that ϕ+

1 > 0, ϕ−
1 < 0 in Ω , ϕ+

1 = 0, ϕ−
1 = 0 on

∂Ω , and

F
(
D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x
) = −λ+

1 ϕ+
1 , F

(
D2ϕ−

1 ,Dϕ−
1 , ϕ−

1 , x
) = −λ−

1 ϕ−
1 .

Proof. Take a sequence of smooth domains Ωn � Ω , such that Ωn → Ω as n → ∞. By the
previous lemma λ+

1 (Ω) > 0 implies λ̃+
1 (Ωn) > 0, for each n. By Propositions 4.6 and 4.7 there

exist functions ϕ
(n)
1 ∈ W

2,p

loc (Ωn)∩C(Ωn), ∀p < ∞, such that ϕ
(n)
1 > 0 in Ωn, ϕ

(n)
1 = 0 on ∂Ωn,

and

F
(
D2ϕ

(n)
1 ,Dϕ

(n)
1 , ϕ

(n)
1 , x

) = −λ
(n)
1 ϕ

(n)
1 in Ωn,

where λ
(n)
1 = λ+

1 (Ωn). Likewise, there exist negative eigenfunctions in Ωn corresponding to
λ−

1 (Ωn).

Clearly {λ(n)
1 } is nonincreasing and bounded below by λ+

1 (Ω). Hence {λ(n)
1 } converges to a

number Λ1, with Λ1 � λ+
1 (Ω) > 0. Proposition 4.2 provides an upper bound for Λ1.

The argument which follows is inspired by [3]. Fix a point x0 ∈ Ω and renormalize ϕ
(n)
1 so that

ϕ
(n)
1 (x0) = 1 (of course kϕ

(n)
1 satisfies the same equation as ϕ

(n)
1 , for any k > 0). Fix a compact

set K ⊂ Ω such that x0 ∈ K and |Ω \ K| < β , where β is to be chosen later.
By the Harnack inequality (Theorem 3.6) we have for large n∥∥ϕ

(n)
∥∥ ∞ � C1ϕ

(n)
(x0) = C1.
1 L (K) 1
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By the hypotheses on F —the homogeneity, (H1), and the fact that

F(M,p,u, x) � F(M,p,0, x) + F(0,0, u, x),

we get

F
(
D2(ϕ(n)

1 − C1
)
,D

(
ϕ

(n)
1 − C1

)
,0, x

)
� F

(
D2(ϕ(n)

1 − C1
)
, . . .

) − F
(
0,0, ϕ

(n)
1 − C1, x

)
� F

(
D2ϕ

(n)
1 , . . .

) − C1F(0,0,1, x) − δ
∣∣ϕ(n)

1 − C1
∣∣

�
(−λ

(n)
1 − δ

)
ϕ

(n)
1 − 2C1δ

(we have written F(D2u, . . .) for F(D2u,Du,u, x)). By applying the ABP inequality (Theo-
rem 3.1) in the domain Ωn \ K we get

sup
Ωn\K

(
ϕ

(n)
1 − C1

)
� (1/2) sup

Ωn\K
ϕ

(n)
1 + C2,

provided we choose β = (2B(Λ1 +δ+1))−N , where B is the constant from Theorem 3.1. Hence∥∥ϕ
(n)
1

∥∥
L∞(Ω)

� 2(C1 + C2).

In addition, we proved that

F
(
D2ϕ

(n)
1 ,Dϕ

(n)
1 ,0, x

)
� −(Λ1 + δ + 1 + 2C1δ) =: −C3

in Ωn. Therefore, by Theorem 3.2,

ϕ
(n)
1 � C3w0 (4.4)

in Ωn, where w0 ∈ Ep,p < ∞, is such that{
F(D2w0,Dw0,0, x) = −1 in Ω,

w0 = 0 on ∂Ω

(this problem is solvable, see Theorem 3.4).
Now, by interior W 2,p-estimates, the sequence ϕ

(n)
1 converges in W

2,p

loc to a nonnegative func-
tion ϕ+

1 , which is bounded in Ω , ϕ+
1 (x0) = 1, and

F
(
D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x
) = −Λ1ϕ

+
1 (4.5)

in Ω . By the strong maximum principle ϕ+
1 > 0 in Ω . By (4.4) ϕ+

1 � C3w0 in Ω—so in partic-
ular ϕ+

1 ∈ C(Ω) and ϕ+
1 = 0 on ∂Ω .

Recall that Λ1 � λ+
1 . On the other hand the definition of λ+

1 and (4.5) imply Λ1 � λ+
1 . Exactly

the same argument (reversing signs and inequalities where appropriate) can be carried out for
λ

(n)
1 = λ−

1 (Ωn) and ϕ
(n)
1 < 0 in Ω (then G(D2(−ϕ

(n)
1 ), . . .) = −λ−

1 (−ϕ
(n)
1 ) in Ω). Theorem 4.2

is proved. �
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Proof of Theorem 1.1. We have just proved that operators with positive λ+
1 have a principal

eigenvalue (equal to λ+
1 ). So, to show that any F has two principal eigenvalues and eigenfunc-

tions, it is enough to consider the operator F(M,p,u, x) − (λ+
1 (F ) + 1)u, whose λ+

1 is equal
to 1.

The upper bound on ϕ+
1 , ϕ−

1 follows from the proof of Theorem 4.2. The fact that no other
eigenvalue can correspond to a positive (negative) eigenfunction is a consequence of Corol-
lary 4.1. Theorem 1.1 is proved. �

The following lower bound on λ+
1 in terms of the measure of the domain is an easy conse-

quence of Theorems 1.1 and 3.1.

Proposition 4.8. Under the hypotheses of Theorem 1.1

λ+
1 (F,Ω) � 1

B|Ω| 1
N

− δ,

where B is the constant from Theorem 3.1.

Proof. Recall that F(D2u,Du,u, x) − δu satisfies the hypotheses of Theorem 3.1 and apply
this theorem to

F
(
D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x
) − δϕ+

1 = −(
λ+

1 + δ
)
ϕ+

1 . �
Proof of Theorem 1.2. We shall use Theorem 4.1 (the first set of inequalities), with F(D2u,Du,

u, x) replaced by F(D2u,Du,u, x) + λ+
1 u.

Suppose u1 = u satisfies (1.3). Then we apply Theorem 4.1 with u = ϕ+
1 and v = u1.

If u1 = u satisfies (1.2) then either u1 is positive somewhere, so u1 satisfies (1.3) and we are
in the previous case, or u1 is a negative eigenfunction, so λ+

1 = λ−
1 , by Theorem 1.1. Then we

apply Theorem 4.1 with u = ϕ+
1 and v = −u1. Theorem 1.2 is proved. �

4.4. Proof of λ+
1 = λ̃+

1 . Proof of Theorem 1.4

In the sequel we shall need the following boundary Lipschitz estimate for fully nonlinear
equations. It is simple and probably known, yet we have not found a reference, so for the reader’s
convenience we shall include the proof. For the case of a linear equation, see Problem 3.6 in [15].

Proposition 4.9. Suppose F satisfies (H1) and Ω satisfies an uniform exterior sphere condition.
Suppose u ∈ C(Ω) satisfies F(D2u,Du,u, x) = f , u = 0 on ∂Ω , where f ∈ L∞(Ω). Then
there exists a constant k depending on N,λ,Λ,γ, δ, diam(Ω),‖u‖L∞(Ω),‖f ‖L∞(Ω), and the
radius of the exterior spheres, such that for each x0 ∈ ∂Ω∣∣u(x)

∣∣ � k|x − x0| for each x ∈ Ω.

Proof. We use the barrier w(x) = l(R−p − |x − y|−p) for sufficiently large p and l. Here y is
the center of the exterior ball touching ∂Ω at x0 and R is its radius. We replace F by F − δu
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(so that F − δu be proper) and f by f − δu. Since w is radial, with the aid of Lemma 4.1 it is
simple to see that

M+
λ,Λ

(
D2w

) + b|Dw| � −l

provided p is taken large enough. We then fix l � ‖f − δu‖∞. Hence

F
(
D2w,Dw,w,x

) − δw � F
(
D2u,Du,u, x

) − δu in Ω,

w � u on ∂Ω,

so the comparison between u and w permits to conclude. �
Next, we prove that the principal eigenvalues are continuous with respect to the domain.

Proposition 4.10. Suppose Ωn are smooth domains such that Ωn → Ω as n → ∞. Then
λ+

1 (Ωn) → λ+
1 (Ω), and λ−

1 (Ωn) → λ−
1 (Ω).

Proof. The two limits are proved in the same way, so let us prove the first. We already know that
there exist positive eigenfunctions ϕ

(n)
1 , ϕ+

1 for F in Ωn,Ω . If Ωn+1 ⊂ Ωn ⊂ Ω for each n, the
proposition is proved through exactly the same argument as the one in the proof of Theorem 4.2.

Suppose now Ω ⊂ Ωn ⊂ Ωn+1 for each n. Then λ+
1 (Ωn) is nondecreasing and bounded above

by λ+
1 (Ω). Again through the same argument as the one in the proof of Theorem 4.2 we can show

that ϕ
(n)
1 is uniformly bounded in L∞(Ω), and converges to a positive function ϕ in W

2,p

loc (Ω).

By Proposition 4.9 {ϕ(n)
1 } is equicontinuous in Ω , and hence converges (up to a subsequence) to

a function ϕ in C(Ω). Then ϕ = tϕ+
1 is a consequence of Corollary 4.1.

Finally, for any given sequence Ωn, such that Ωn → Ω , we can find sequences Ω ′
n,Ω

′′
n such

that Ω ′
n is increasing, Ω ′′

n is decreasing, Ω ′
n ⊂ Ωn, Ω ′

n ⊂ Ω , Ωn ⊂ Ω ′′
n , and Ω ⊂ Ω ′′

n . Proposi-
tion 4.10 then follows from what we already proved. �
Lemma 4.5. Assume λ+

1 (Ω) > 0. Then there exists a function v such that v ∈ Ep , ∀p < ∞,
satisfying

F
(
D2v,Dv,v, x

)
� 0 in Ω, 1 � v � C in Ω,

where the constant C depends on λ,Λ,N,Ω,γ, δ, and λ+
1 . Respectively, if λ−

1 > 0 then there
exists a function w ∈ Ep such that −C � w � −1 and F(D2w,Dw,w,x) � 0.

Proof. First, by Proposition 4.9 there exists a neighbourhood of ∂Ω , depending only on
N,λ,Λ,γ, δ and λ+

1 (or λ−
1 ), such that ϕ+

1 (or ϕ−
1 ) attains its maximum (minimum) outside

this neighbourhood.
Next, we use the idea of the proof of Proposition 6.1 in [3]. Choose a compact set K ⊂ Ω

such that ϕ+
1 attains its maximum (set to 1) in K , and such that |Ω \ K| � ε = (2δB)−N where

B is the constant in Theorem 3.1. We solve the problem

F
(
D2w,Dw,0, x

) =
{ −2δ in Ω \ K,

0 in K,
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and w = 0 on ∂Ω (see Theorem 3.4). By Theorem 3.1 we have

0 < w � B2δε1/N = 1 in Ω.

Then, by (H1),

F
(
D2(w + 1),D(w + 1),w + 1, x

)
� F(0,0,w + 1, x) + F

(
D2w,Dw,0, x

)
� δ(w + 1) − 2δ � 0 in Ω \ K.

By the Harnack inequality (Theorem 3.6), we know that ϕ+
1 � η on K , for some η > 0 which

depends on the appropriate quantities. Set A = 2δ

λ+
1 η

and v = 1 + w + Aϕ+
1 . Then 1 � v �

2 + A =: C.
Further, by (H1),

F
(
D2v,Dv,v, x

)
� F

(
D2(w + 1),D(w + 1),w + 1, x

) − Aλ+
1 ϕ+

1

�
{

F
(
D2(w + 1),D(w + 1),w + 1, x

)
� 0 in Ω \ K,

2δ − Aλ+
1 η � 0 in K.

To get the corresponding statement when λ−
1 > 0 we can repeat the same argument, reversing

signs and inequalities where appropriate. �
Note that we cannot directly infer from the proof of Lemma 4.5 that the function v is in

W 2,p(Ω), because of unavailability of global W 2,p-estimates for fully nonlinear equations. For
completeness (at least we are unaware of any reference dealing with that question), we use the
following construction. Set

Ωd = {
x ∈ RN

∣∣ dist(x,Ω) < d
}
.

Then if d is small enough (say d � d0, depending only on the shape of Ω) Ωd is smooth, and
by (H2) we can continuously extend the function F(M,0,0, x) in SN × Ωd . Define F̂ = F if
x ∈ Ω , and F̂ (M,p,u, x) = F(M,0,0, x) for each x /∈ Ω . The extended operator F̂ has the
same properties as F , namely, is convex in (M,p,u) and satisfies (H0)–(H2).

Proposition 4.11. We have λ+
1 (Ω) = λ̃+

1 (Ω).

Proof. Fix d � d0. For each ε > 0 we can apply Lemma 4.5 to the operator F̂ + (λ+
1 (F̂ ,Ωd)−ε)

in the domain Ωd , which yields λ̃+
1 (F,Ω) � λ+

1 (F̂ ,Ωd) − ε, by the definitions. By letting first
ε → 0, then d → 0 and by using Proposition 4.10, we get λ̃+

1 (F,Ω) � λ+
1 (F,Ω). Since by

definition λ̃+
1 � λ+

1 , Proposition 4.11 is proved. �
Proposition 4.12. Assume λ+

1 (Ω) > 0. Then there exists a function v such that v ∈ W 2,p(Ω),
for all p < ∞, satisfying

F
(
D2v,Dv,v, x

)
� 0 in Ω, v � 1 in Ω, ‖v‖W 2,p(Ω) � C,
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where the constant C depends on p,λ,Λ,N,Ω,γ, δ, and λ+
1 . Respectively, if λ−

1 > 0 then
there exists a function w ∈ W 2,p(Ω) such that −C � w � −1, F(D2w,Dw,w,x) � 0, and
‖w‖W 2,p(Ω) � C.

Proof. In view of the previous proposition we only need to prove the bound on the W 2,p-norm.
We are going to show that there exists d0 > 0, depending on λ,Λ,N,Ω,γ, δ and λ+

1 , such
that λ+

1 (Ωd0) > 0. The result will then follow from Lemma 4.5 and the interior W 2,p-estimates
(Theorem 3.3).

Take the function v we constructed in Lemma 4.5. Looking at its construction, v = 1 + w +
Aϕ+

1 (see the proof of Lemma 4.5), we have v ≡ 1 on ∂Ω , and v(x) � 1 + k0 dist(x, ∂Ω), by
Proposition 4.9 applied to w and ϕ+

1 . Here k0 depends on the right quantities.
We extend v outside Ω in the following way: given d0 such that the distance function to the

boundary of Ω is smooth in Ωd0 \Ω (we refer to [15, Chapter 14.6], for properties of the distance
function), for each y ∈ Ωd0 \ Ω we set

v(y) = 1 − (k0 + 1) d(y) − C d2(y), where 0 � d(y) = dist(y, ∂Ω) � d0.

Of course y = x + d(y)n(x), where n(x), x ∈ ∂Ω, is the unit exterior normal to ∂Ω , and x is the
point where dist(y, ∂Ω) is attained. The extended function v is clearly continuous in Ωd0 . �
Claim. We can choose d0 sufficiently small, and C sufficiently large, depending only on the
appropriate quantities, such that

M+
λ,Λ

(
D2v

)
� −1 in Ωd0 \ Ω. (4.6)

Proof of Claim. Fix y and a principal coordinate system at x (see [15, p. 354]). Then

D2d(y) = diag

(
κ1

1 − κ1 d(y)
, . . . ,

κn−1

1 − κn−1 d(y)
,0

)
,

where κi = κi(x) are the principal curvatures of ∂Ω at x, see Lemma 14.17 in [15]. Clearly there
exists a constant κ depending only on Ω such that |κi(x)| � κ for all i and all x ∈ ∂Ω . Take d0
so small that κd0 � 1

2 .
Since |Dd| = 1 we have Dd ⊗ Dd(y) =diag(0, . . . ,0,1), in the same coordinate system.

Now, by using

D2(d2) = 2dD2d + 2Dd ⊗ Dd,

we see −2C is an eigenvalue of D2v, while each of the other N − 1 eigenvalues of D2v is
bounded by 2((k0 + 1)κ + 2κdC). This implies

M+
λ,Λ

(
D2v

)
� 2Λ(N − 1)

(
(k0 + 1)κ + 2κdC

) − 2λC.

Taking d0 < λ
4κΛN

and C = 2ΛNκ(k0+1)+1
λ

yields the claim.
Therefore, by the way we extended F ,

F
(
D2v,Dv,v, x

) = F
(
D2v,0,0, x

)
� M+ (

D2v
)
� −1 in Ωd \ Ω,
λ,Λ 0
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with the choice of d0 we made above. So we already know that we have F(D2v,Dv,v, x) � 0
in Ω ∪ (Ωd0 \ Ω). Finally, the function v is a viscosity solution of F(D2v,Dv,v, x) � 0 in
Ωd0 —this follows from the fact that we have constructed v to be sufficiently “steep” outside Ω ,
namely

v(x) �
{

1 + k0d(x, ∂Ω) for x ∈ Ω,

1 − (k0 + 1)d(x, ∂Ω) for x /∈ Ω,

so no regular function can “touch from below” the graph of v at a point on ∂Ω . By the definition
of λ+

1 we infer λ+
1 (Ωd) > 0 for each d < d0.

Getting the statement for λ−
1 > 0 is again a matter of reversing signs and inequalities. �

Proof of Theorem 1.4. Part (a) is a consequence of Theorem 4.1. Indeed, if u is as in The-
orem 1.4(a) then λ+

1 � 0, by the definition of λ+
1 . If λ+

1 = 0 then Theorem 4.1 with v = ϕ+
1

implies u = tϕ+
1 .

Part (b) follows from Proposition 4.12. �
4.5. Conclusion. Proofs of Theorems 1.5–1.10

Proof of Theorem 1.5. That λ+
1 > 0 suffices for (CP) follows from Propositions 4.4 and 4.11.

On the other hand, if λ+
1 � 0 then ϕ+

1 is a counterexample to the maximum principle, since
then F(D2ϕ+

1 ,Dϕ+
1 , ϕ+

1 , x) � 0 in Ω , ϕ+
1 = 0 on ∂Ω , but ϕ+

1 � 0 in Ω . �
Proof of Theorem 1.7. Theorem 1.7 is a consequence of Proposition 4.3 in which we take
ψ1,ψ2 to be the functions v,w constructed in Proposition 4.12, in view of the imbedding
W 2,p(Ω) ↪→ C1,α(Ω). �
Proof of Theorem 1.6. Use Theorem 1.7 and note that if λ−

1 � 0 then ϕ−
1 (ϕ−

1 < 0 in Ω) pro-
vides a counterexample to the one-sided maximum principle. �
Proof of Theorem 1.8. The existence result follows from Propositions 4.5 and 4.11. The W 2,p

bound follows from Theorems 3.3 and 1.7.
Suppose for contradiction λ+

1 = 0 and u ∈ C(Ω) is a function such that F(D2u,Du,u, x) =
f � 0 in Ω , u = 0 on ∂Ω . First, if u � 0 in Ω , then by Lemma 3.1 u > 0 in Ω (note u �≡ 0 since
f �≡ 0). Then u = u and v = ϕ+

1 satisfy the first set of inequalities in Theorem 4.1, so u = tϕ+
1 ,

which yields a contradiction with f �≡ 0.
Second, if u is negative somewhere, we have the second set of inequalities in Theorem 4.1,

with u = ϕ−
1 and v = u (recall that F(D2ϕ−

1 , . . .) = −λ−
1 ϕ−

1 , ϕ−
1 < 0 in Ω , and note λ−

1 �
λ+

1 = 0). We get f � 0 and f � 0, a contradiction with f �≡ 0.
Finally, if λ−

1 > 0 � λ+
1 then Theorem 1.6 and Lemma 3.1 imply u > 0 or u ≡ 0 in Ω , so we

can conclude as in the previous two cases. �
Proof of Theorem 1.9. As in the proof of Proposition 4.5, λ̃−

1 = λ−
1 > 0 implies the existence

of a negative subsolution u0, provided f ∈ C(Ω). On the other hand, f � 0 implies that v0 ≡ 0
is a supersolution. Then Lemma 4.3 shows Theorem 1.9 holds in case the right-hand side f is
in C(Ω).
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If f ∈ Lp is not in C(Ω), we take a sequence fn ∈ C(Ω), fn � 0, which tends to f

in the Lp-norm. By what we already proved, there exists a solution un ∈ Ep , un � 0, of
F(D2un,Dun,un, x) = fn, and un = 0 on ∂Ω . Note that we cannot use the same approximation
argument as in the proof of Proposition 4.5, since the ABP inequality does not hold. However,
the half-ABP inequality which still holds under λ−

1 > 0 (see Theorem 1.7) implies that un is uni-

formly bounded in Ω (recall un � 0). Then by interior W 2,p estimates un converges in W
2,p

loc to
a solution u of F(D2u,Du,u, x) = f . It only remains to show that u = 0 on ∂Ω and u ∈ C(Ω).

Take again a compact subset K ⊂ Ω such that |Ω \ K| � (2δB)−N , where B is the constant
in Theorem 3.1. We already know that un ⇒ u in K . Now the inequality

F
(
D2(un − um),D(un − um),un − um,x

) − δ(un − um) � fn − fm − δ(un − um),

(and the same with m and n interchanged), together with Theorem 3.1, yield

sup
Ω\K

|un − um| � sup
∂K

|un − um| + B‖fn − fm‖Lp(Ω) + 1

2
sup
Ω\K

|un − um|.

This implies that {un} is a Cauchy sequence in C(Ω \ K) and so converges uniformly in this
set. �
Proof of Theorem 1.10. We are going to use the results for proper operators obtained in [11].

First, suppose H and f are continuous in all their variables. Let φ = v be the function con-
structed in Proposition 4.12. Then, as we already showed in the proof of Proposition 4.3, the
operator Hφ satisfies hypotheses (1.2) and (1.3) in [11] (we define Hφ as in (4.3) with F replaced
by H ). Hence Theorem 1.10 follows from Theorem 1.1 in [11]—note that if u is a solution of
Hφ(D2u,Du,u, x) = f , then u = φu is a solution of H(D2u,Du,u, x) = f .

Next, if H is only measurable, we smooth out G,H , and F as in the proof of Theorem 4.1
in [11]

Fε(M,p,u, x) = 1

εn

∫
RN

η

(
x − y

ε

)
F(M,p,u, y) dy, same for Hε,Gε,

where η � 0 has compact support and mass 1. Now, for fixed ε, the operators Hε,Gε,Fε satisfy
all the hypotheses we have made on H,G,F , with the same constants λ,Λ, γ, δ.

In particular, Fε also possesses a principal eigenvalue λ+
1 (Fε,Ω).

Claim. λ+
1 (Fε) → λ+

1 (F ), as ε → 0.

Proof of Claim. By the bounds on the first eigenvalue that we have already proved (Proposition
4.2) {λ+

1 (Fε)} is bounded in ε. Fix a subsequence of {λ+
1 (Fε)} and let μ be the limit of some

subsequence of this subsequence. We are going to show that μ = λ+
1 (F ). Let ϕ+

1,ε be the first

eigenfunctions of Fε normalized so that ϕ+
1,ε(x0) = 1 for a fixed point x0 ∈ Ω . Then {ϕ1,ε} is

uniformly bounded in the L∞-norm, by Theorem 1.1. Hypothesis (H1) and the equation satisfied
by ϕ1,ε then imply

M+ (
D2ϕ1,ε

) + γ |Dϕ1,ε| � −C, M− (
D2ϕ1,ε

) − γ |Dϕ1,ε| � C,
λ,Λ λ,Λ
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where C is independent of ε. Hence, by Proposition 4.2 in [11] (see also the end of the proof
of Theorem 4.1 in this paper), a subsequence of {ϕ1,ε} converges uniformly in Ω to a positive
function ϕ ∈ C(Ω), which solves (see also Theorem 3.8 in [9])

F
(
D2ϕ,Dϕ,ϕ, x

) = −μϕ in Ω, and u = 0 on ∂Ω.

So μ = λ+
1 (F,Ω), by Theorem 1.1.

Hence, if ε is small enough, we have λ+
1 (Fε) > 1

2λ+
1 (F ) > 0. �

We take a sequence fn ∈ C(Ω) which converges to f in Lp . By what we already proved, if ε

is small enough, there exists a solution uε,n of

Hε

(
D2uε,n,Duε,n, uε,n, x

) = fn,

and uε,n = 0 on ∂Ω . Since H satisfies (DF ) this implies

Fε

(
D2uε,n,Duε,n, uε,n, x

)
� fn, and

Fε

(
D2(−uε,n),D(−uε,n),−uε,n, x

)
� −fn

in Ω . By the ABP inequality (Theorem 1.7) uε,n is uniformly bounded in ε and n, so we can
finish the proof of Theorem 1.10 through the same argument as the one used to end the proof of
Theorem 4.1 in [11].

The last statement in Theorem 1.10 is a consequence of Theorem 3.3. �
5. General bounded domains

In [3] Berestycki, Nirenberg and Varadhan proved the existence of a principal eigenvalue and a
principal eigenfunction of linear elliptic operators with bounded (and continuous second-order)
coefficients in arbitrary bounded domains. As noted in the introduction, once we have proved
our theorems in smooth domains, it is not difficult to adapt some arguments from [3] in order to
show that most of our results extend to general domains. In this section we make several remarks
concerning these extensions, leaving the details to the interested reader.

So suppose Ω is just bounded, F satisfies (H0) and (H1), and F(M,0,0, x) is continuous
in SN × Ω . Similarly to Section 3 in [3] we use the positive function u0 defined as the limit
of the solutions of F(D2u,Du,0, x) = −1 in smooth subdomains of Ω which converge to Ω .
Note that the negative function u0 defined as the limit of the solutions of F(D2u,Du,0, x) = 1
satisfies 0 < −u0 � u0, by the assumptions on F .

The functions we consider are not continuous up to the boundary, and the Dirichlet boundary

condition u = 0 is to be replaced in all results by u
u0= 0, that is, u(xj ) → 0 whenever xj → ∂Ω

and u0(xj ) → 0. Inequalities u � v on ∂Ω are to be replaced by lim sup(u(xj ) − v(xj )) � 0
whenever xj → ∂Ω and u0(xj ) → 0. In defining the comparison principle one has to explic-
itly state that the functions involved are bounded (see [3] for an example showing that this is
unavoidable). The space Ep has to be replaced by W

2,p

loc ∩ L∞(Ω).
Then Theorem 1.1 is proved through the same approximation argument as the one used in

the proof of Theorem 4.2, since we already know eigenvalues exist in the smooth subdomains.
Theorem 1.2 and all other results following from Theorem 4.1 do not change. Theorem 1.4(b)
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has to be replaced by the result in Lemma 4.5, which remains true (but Proposition 4.12 no longer
holds). The results on solvability of the Dirichlet problem and the ABP inequality are proved by
an adaptation of the arguments in Section 6 of [3], by using at the appropriate places the fact that
the Dirichlet problem is already known to be solvable in smooth subdomains of Ω .

6. Proof of Theorem 1.3

It follows from Theorem 1.8 that u ≡ 0 is the unique solution of (1.4), when λ < λ+
1 . If λ < λ−

1
and u �≡ 0 is a solution of (1.4) then it follows from Theorem 1.6 and the strong maximum
principle that u > 0 in Ω . Then λ = λ+

1 , by the last statement in Theorem 1.1.
Finally, suppose there exists a sequence λn ↘ λ−

1 such that problem (1.4) with λ = λn has a
solution un �≡ 0. We normalize un so that ‖un‖L∞(Ω) = 1. By (H1)

M+
λ,Λ

(
D2un

) + γ |Dun| � −C, M−
λ,Λ

(
D2un

) − γ |Dun| � C,

and again from Proposition 4.2 in [11] and Theorem 3.8 in [9] it follows that un converges
uniformly in Ω to a nontrivial solution of (1.4) with λ = λ−

1 , in other words, to ϕ−
1 . However, un

changes sign, by Theorem 1.1, so we can take a connected component Ωn of {un > 0}. Then, by
what we have already proved for nonregular domains, λ+

1 (F,Ωn) = λn → λ−
1 . On the other hand

ϕ−
1 < 0 implies Ωn → ∅, hence λ+

1 (F,Ωn) → ∞ by Proposition 4.8, which is a contradiction.
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