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A B S T R A C T

Purpose: Electrographic seizures are common in encephalopathic critically ill children, but identification

requires continuous EEG monitoring (CEEG). Development of a seizure prediction model would enable

more efficient use of limited CEEG resources. We aimed to develop and validate a seizure prediction

model for use among encephalopathic critically ill children.

Method: We developed a seizure prediction model using a retrospectively acquired multi-center

database of children with acute encephalopathy without an epilepsy diagnosis, who underwent clinically

indicated CEEG. We performed model validation using a separate prospectively acquired single center

database. Predictor variables were chosen to be readily available to clinicians prior to the onset of CEEG

and included: age, etiology category, clinical seizures prior to CEEG, initial EEG background category, and

inter-ictal discharge category.

Results: The model has fair to good discrimination ability and overall performance. At the optimal cut-off

point in the validation dataset, the model has a sensitivity of 59% and a specificity of 81%. Varied cut-off

points could be chosen to optimize sensitivity or specificity depending on available CEEG resources.
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Conclusion: Despite inherent variability between centers, a model developed using multi-center CEEG

data and few readily available variables could guide the use of limited CEEG resources when applied at a

single center. Depending on CEEG resources, centers could choose lower cut-off points to maximize

identification of all patients with seizures (but with more patients monitored) or higher cut-off points to

reduce resource utilization by reducing monitoring of lower risk patients (but with failure to identify

some patients with seizures).

� 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Electrographic seizures (ES) are reported in 10–50% of children
with acute encephalopathy who undergo continuous EEG moni-
toring (CEEG),1–19 and there is increasing evidence that high ES
burdens are associated with worse outcomes, even in models that
adjust for acute encephalopathy etiology and severity.10,13,17,20,21

Most ES in critically ill children have no clinical correlate so CEEG is
required for identification,3,6,8–10,12–15,18,19 leading to recent
increases in CEEG use within pediatric intensive care units
(PICUs).22 CEEG is resource intense, and seemingly small changes
in CEEG utilization may have substantial impacts on equipment
and personnel needs.23 Seizure prediction models could allow
CEEG to be targeted to children at highest risk for experiencing ES
within the resource limitations of an individual medical center.

Several studies have described clinical and EEG risk factors for
ES. However, these data are limited in several ways. First, the data
are obtained from patients who have undergone CEEG at single or
few institutions,3,7–9,11,12,14,17,18 so the risk factors identified may
not be useful if implemented at a different institution with
different patient characteristics or CEEG practice. Although multi-
center consortia are starting to study ES epidemiology,13,24,25

multi-center data variability might preclude meaningful applica-
tion at individual centers. Second, prior studies have not combined
the identified risk factors to create clinically useful ES prediction
models accounting for multiple risk factors. Currently, a clinician
may consider multiple known seizure risk factors (such as younger
age, prior convulsive seizures, and inter-ictal epileptiform
discharges) when making a clinical judgment regarding the need
for CEEG, but there are no data available to help determine the
accuracy of this combinatorial approach.

We aimed to determine whether an ES prediction model
developed from retrospective multi-center data could be used to
predict ES occurrence when applied to data obtained from a single
center.

2. Methods

2.1. Datasets

The model was created and validated using separate datasets of
children in PICUs who underwent clinically indicated CEEG. The
overall study was approved by The Children’s Hospital of
Philadelphia institutional review board, and submission of data
was approved by the institutional review boards at each site.

The model creation dataset was derived from a multi-center
study in which 11 sites each collected data by retrospective chart
review on 50 consecutive critically ill children to yield 550 sub-
jects.13,24,25 The 11 sites were large academic medical centers with
available pediatric neurology consultation and CEEG. Subjects had
undergone clinically indicated CEEG as dictated by practice
patterns at each institution and not any study protocol or national
guideline. Thus, these subjects were heterogeneous in terms of
etiology, degree of encephalopathy, and other clinical character-
istics. For the current study, we excluded 214 subjects with
pre-existing epilepsy-related diagnoses leading to PICU admission,
leading to a cohort of 336 subjects. Patients with epilepsy were
excluded for several reasons. Prior classification proposals have
differentiated between non-convulsive status epilepticus (NCSE)
as occurring in the context of acute brain injury (termed ‘‘comatose
NCSE’’) and occurring in the context of more benign epilepsy
conditions (termed ‘‘NCSE proper’’) since the relative impact of
seizures to overall prognosis differs.26 Our aim was to address the
use of CEEG when screening for electrographic seizures in patients
with acute encephalopathy in whom seizure identification and
management might serve as a neuroprotective strategy. Second
and more practically, institutional practice, bed availability, and
admission time of day likely impact decisions regarding whether
patients with epilepsy in need of CEEG are admitted to the epilepsy
monitoring unit or PICU. Data were obtained by chart review from
the reports created by trained encephalographers on-service when
the CEEG was obtained and the tracings were not re-interpreted for
this study.

The model validation dataset was derived from a prospective
single center dataset from The Children’s Hospital of Philadelphia
and included 222 subjects who underwent CEEG while in the PICU
without an epilepsy-related diagnosis prior to admission. As
described above, patients with epilepsy were excluded. Institu-
tional practice at The Children’s Hospital of Philadelphia is to
obtain at least one day of CEEG in any patient admitted to the PICU
with encephalopathy of any degree and any acute neurologic
condition (i.e. traumatic brain injury, stroke, hypoxic ischemic
encephalopathy, encephalitis). These were different subjects than
those contributed by The Children’s Hospital of Philadelphia to the
multi-center model creation dataset. Epidemiologic data from a
portion of this dataset have been published previously.18 The
single center validation data were obtained prospectively by one
investigator (N.S.A.) who re-scored the CEEG after clinical
interpretation for seizure category and background category while
blind to clinical data other than age.

We categorized subjects by ES category (none, electrographic
seizures, electrographic status epilepticus). Electrographic status
epilepticus was defined as a single or recurrent electrographic
seizure(s) lasting 30 min or more within a 1 hour epoch. We
collected data regarding clinical variables previously identified as
predicting an increased risk of experiencing ES. Age was classified
as >24 months or �24 months. Clinically evident seizures prior to
CEEG were classified as present or absent. Etiology category was
classified as structural (i.e. traumatic brain injury, stroke (ischemic
or hemorrhagic), hypoxic-ischemic encephalopathy, encephalitis,
posterior reversible leukoencephalopathy) or non-structural (he-
patic encephalopathy, sepsis, metabolic disorders). The initial 1 h
EEG background categorization (normal/sleep, slow-disorganized,
discontinuous, burst-suppression, or attenuated/featureless), and
initial one hour EEG inter-ictal epileptiform discharge (IED)
categorization (present or absent). This background categorization
scheme has been used in prior studies related to EEG in critically ill
children.13,20,21 When EEGs from critically ill children are reviewed
by pediatric encephalographers, inter-rater agreement for back-
ground features continuity (continuous, discontinuous, flat) and



Table 1
Summary characteristics of the creation and validation datasets.

Creation dataset Validation dataset p-Value

Cohort Multi-center (N = 336) Single-center (N = 222)

Male N (%) 180 (53.57) 130 (58.56) 0.283

Age

Median (IQR) 28.4 (6–122.2) 32.37 (7.13–125.8)

<2 years N (%) 161 (47.92) 97 (43.69)

Clinically evident seizures prior to CEEG N (%) 142 (42.26) 99 (44.59) 0.648

Typical EEG background category N (%) 0.381

Normal/sleep 67 (19.94) 41 (18.47)

Slow/disorganized 182 (54.17) 138 (62.16)

Discontinuous 26 (7.74) 12 (5.41)

Burst-suppression 22 (6.55) 12 (5.41)

Attenuated/featureless 39 (11.61) 19 (8.56)

Inter-ictal epileptiform discharges N (%) 107 (31.85) 50 (22.52) 0.021

Etiology N (%)

Acute structural 212 (63.1) 168 (75.68) 0.0025

Acute non-structural 124 (36.9) 54 (24.32)

Electrographic seizures N (%) 70 (20.83) 83 (37.39) <0.001

CEEG, continuous EEG monitoring; IQR, interquartile range.
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burst suppression (present or absent) have been substantial and
agreement for inter-ictal discharges (present or absent) has been
fair.27

2.2. Analysis2

Descriptive statistics were calculated for the model creation
and model validation datasets, and the Pearson’s x2 statistic was
used to compare differences.

Predictive variables were first analyzed by univariate logistic
regressions with statistical significance denoted by a two-sided p-
value of <0.05. Significant variables were entered into a
multivariate logistic regression model and the backward selection
method was used to generate the final model. Individual
predictors’ ability to classify seizure categorization was assessed
using beta coefficients and their corresponding z-statistics and
p-values.

Overall performance was measured by explained variation
(Nagelkerke’s R2)28 and Brier score/Brierscaled. R2 ranges from 0 to 1,
and higher values indicate more variation is explained by the
predictor. The Brier score ranges from 0 (perfect model) to 0.25
(non-informative model). We scaled the Brier score by its
maximum score under a non-informative model: Briersca-

led = 1 � Brier/Briermax, where Briermax = mean(p) � (1 � mean(p)),
p)), to let it range between 0% and 100% to ease the interpretation.

Accurate predictions discriminate between subjects with and
without ES. The concordance statistic (c-statistic) was used to
indicate the discriminative ability of the logistic regression model.
The c-statistic represents the probability that a subject who
experiences an ES has a higher predicted probability than a seizure
absent subject for a random pair of subjects consisting of one
subject with and one subject without an ES. It is equivalent to the
area under the receiver operating characteristic (ROC) curve (AUC)
for binary outcomes.29 Higher values were considered to demon-
strate better discrimination abilities as follows: excellent
(AUC � 0.90), good (0.80 � AUC < 0.90), fair (0.70 � AUC < 0.80),
and poor (AUC < 0.70).30 In addition, the discrimination slope was
used to measure how well subjects with and without ES were
separated. It was calculated as the absolute difference in average
predictions for subjects with and without ES.

The validity of the predicted SE was measured graphically by
plotting the predicted outcomes on the x-axis and the observed
outcomes on the y-axis. This calibration plot assesses the
agreement between the observed outcomes and predicted
2 Amy Yang and Dr. Justine Shults performed the statistical analyses.
outcomes. A 45-degree line would represent perfect prediction.
Since the outcomes in the study were binary with only 0 or 1 value
for the y-axis, we plotted observed outcome by decile of
predictions and added smoothing line by LOESS (locally estimated
scatterplot smoothing). The closeness of the smoothing line and
the 45-degree line is a visualization of the agreement/calibration.31

The performance for calibration was measured using a recalibra-
tion model logit(y) = a + b � linear predictors proposed by Cox.32

The values for a and b are two indicators for calibration
performance. For regression model development, a = 0 and
b = 1 were set as fixed. For validation, a departure from zero for
intercept a indicated that the predictions were systematically too
low or too high given that b set to 1. A value of calibration slope b

smaller than 1 given that a set to 0 reflected over-fitting of the
model, indicating that the predictions are too extreme (overly low
estimates for low predictions and overly high estimates for high
predictions). The observed outcome by decile of prediction in this
calibration plot is equivalent to a graphical illustration of the
Hosmer–Lemeshow test,33 which was used to test agreement
between the observed frequencies and predicted probabilities. A
high Hosmer–Lemeshow statistic is related to a small p-value and
indicates lack of fit.

Jack-knife cross-validation was used on the creation dataset as a
measure of internal validation to obtain an overall prediction error.
The model was then applied to the external dataset to test its
performance using all the measures above.

The predicted ES probabilities were calculated from the model,
and they were termed model scores. Sensitivity and specificity were
obtained from various model score cut-offs, assuming patients
receiving model scores above the cut-off would be selected to
undergo CEEG. Positive predictive values (PPV) and negative
predictive values (NPV) were calculated using a 30% ES prevalence
based on multi-center seizure prevalence data.13

3. Results

3.1. Descriptive statistics

Table 1 provides summary characteristics regarding the clinical
and EEG variables from the model creation and model validation
datasets. The two datasets were similar in the percentages of
males, subjects younger than two years, occurrence of clinically
evident seizures prior to CEEG, and typical background EEG
category. The model creation dataset contained a higher propor-
tion of subjects with IEDs and the model validation dataset
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contained a higher proportion of subjects with ES and with
structural neurologic diagnoses.

3.2. Model creation dataset

The best model for discriminating between ES category
outcomes was identified using logistic regression. All variables
used in the univariate analysis remained significant in the
multivariate analysis except for Etiology Category (Wald
z = �1.47, p = 0.1423), which was removed from the final model.
Table 2 provides the beta-coefficients and odds ratios from this
model. The strongest predictor of ES presence was EEG back-
ground; seizures were more likely in subjects with burst-
suppression and attenuated/featureless backgrounds. Other
Table 2
Risk factors in logistic regression model in model creation dataset.

Variable Log OR (beta) 

Age (<24 months) 0.91 

Clinically evident seizures prior to CEEG (present) 0.81 

Typical EEG background category (ref = normal/sleep)

Slow/disorganized 2.43 

Discontinuous 2.22 

Burst-suppression 3.08 

Attenuated/featureless 2.97 

Inter-ictal epileptiform discharges (present) 2.43 

CEEG, continuous EEG monitoring; CI, confidence interval; OR, odds ratio.

Table 3
The final logistic regression formula for a subject’s risk of electrographic seizure occurre

linear predictor w = 0.9076*age (1 = less than 24 months, 0 = greater or equal to 24 months

disorganized initial background (1 = yes; 0 = no) + 2.2239* discontinuous initial bac

0 = no) + 2.9661*attenuated/featureless initial background (1 = yes; 0 = no) + 1.8272

0 = absent) � 4.5067. To avoid requiring the calculations in clinical use, the model sc

formula. Patients with model scores above an institution’s pre-determined cut-off wou

Age Clinically evident seizures

prior to CEEG

EEG backgrou

<24 months Yes Slow and diso

<24 months Yes Discontinuous

<24 months Yes Burst suppres

<24 months Yes Attenuated an

<24 months Yes Slow and diso

<24 months Yes Discontinuous

<24 months Yes Burst suppres

<24 months Yes Attenuated an

<24 months No Slow and diso

<24 months No Discontinuous

<24 months No Burst suppres

<24 months No Attenuated an

<24 months No Slow and diso

<24 months No Discontinuous

<24 months No Burst suppres

<24 months No Attenuated an

�4 months Yes Slow and diso

�24 months Yes Discontinuous

�24 months Yes Burst suppres

�24 months Yes Attenuated an

�24 months Yes Slow and diso

�24 months Yes Discontinuous

�24 months Yes Burst suppres

�24 months Yes Attenuated an

�24 months No Slow and diso

�24 months No Discontinuous

�24 months No Burst suppres

�24 months No Attenuated an

�24 months No Slow and diso

�24 months No Discontinuous

�24 months No Burst suppres

�24 months No Attenuated an

CEEG, continuous EEG monitoring.
variables associated with higher odds of ES occurrence were:
age �24 months, clinically evident seizures prior to CEEG, and the
presence of IEDs. Table 3 provides the final regression formula as
well as the calculated risk values (model scores) for each possible
combination of variables. Supplemental Fig. 1 provides a graphical
summary of the model scores.

A model with good discrimination will show a wide spread in the
distribution of the predicted probabilities away from the average
probability. Fig. 1 shows the distribution of the probabilities for
subjects per outcome value (seizures absent or present). Subjects
who experienced ES had 27% higher predicted ES probabilities
than subjects who did not experience ES. The c-statistic/area under
the curve was 0.845 (Fig. 1) indicating the model had good
discrimination ability in the model creation dataset.
SE (beta) z p-Value OR OR 95% CI

0.33 2.76 0.0058 2.48 1.30–4.72

0.32 2.49 0.0126 2.24 1.19–4.22

1.04 2.34 0.0192 11.40 1.49–87.39

1.13 1.97 0.0488 9.24 1.01–84.4

1.15 2.69 0.0072 21.79 2.31–205.91

1.10 2.7 0.0069 19.42 2.25–167.33

0.40 6.14 <0.0001 11.34 5.22–24.62

nce based on the above values is given by the formula: risk = ew/(1 + ew) where the

) + 0.8056*clinically evident seizures prior to CEEG (1 = yes, 0 = no) + 2.4334*slow and

kground (1 = yes; 0 = no) + 3.0813*burst-suppression initial background (1 = yes;

*interictal epileptiform discharges in the first hour of EEG (1 = present,

ore is calculated for each combination of variables using the logistic regression

ld undergo CEEG.

nd category Interictal epileptiform

discharges

Model score

rganized Yes 0.8126

 Yes 0.7786

sion Yes 0.8924

d featureless Yes 0.8808

rganized No 0.4110

 No 0.3613

sion No 0.5715

d featureless No 0.5430

rganized Yes 0.6596

 Yes 0.6111

sion Yes 0.7874

d featureless Yes 0.7675

rganized No 0.2376

 No 0.2018

sion No 0.3734

d featureless No 0.3468

rganized Yes 0.6363

 Yes 0.5866

sion Yes 0.7698

d featureless Yes 0.7488

rganized No 0.2197

 No 0.1859

sion No 0.3498

d featureless No 0.3241

rganized Yes 0.4388

 Yes 0.3880

sion Yes 0.5991

d featureless Yes 0.5712

rganized No 0.1117

 No 0.0926

sion No 0.1938

d featureless No 0.1764



Fig. 1. Characteristics are provided for the creation (left) and validation (right) datasets. Top. Receiver operating characteristic (ROC) curves. Middle. Validation plots of

prediction model for residual masses in creation data and validation data. Calibration is shown with a non-parametric line (dot). Distribution of the predicted probabilities

and 95% confidence intervals are indicated by groups of patients (triangles with vertical line) and for individual patients (vertical lines). Vertical lines upwards represent

patients with seizures; lines downwards represent patients without seizures. The threshold value was chosen to be 20% (downwards arrow). Bottom. Box plots of predicted

probabilities in creation and validation datasets. Group means are displayed as filled squares. Points outside 1.5 interquartile ranges are displayed as unfilled circles.

A. Yang et al. / Seizure 25 (2015) 104–111108



Table 4
Using the logistic regression formula or the pre-calculated resulting model scores for each combination of variables shown in Table 3 a patient’s model score would be

identified. Patients with model scores above an institutionally determined model score cut-off would undergo CEEG. For various cut-offs the sensitivity and specificity are

provided for the creation and validation datasets. Compared to all patients who underwent CEEG in the datasets, the percentage of patients who would be above the model

score cutoff and thus undergo CEEG are provided for each cutoff. Bold font indicates the model score cut-off maximizing sensitivity and specificity.

Model score cut-off 0.10 0.15 0.20 0.25 0.35 0.45

Creation dataset Sensitivity/specificity 94/52 87/67 79/73 72/79 67/84 53/91

Percentage of patients classified as needing CEEG at each cut-off 36 28 24 18 17 9

Validation dataset Sensitivity/specificity 86/58 62/76 59/81 43/88 34/92 19/97

Percentage of patients classified as needing CEEG at each cut-off 43 28 25 14 13 5
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Table 4 provides the sensitivities and specificities using
different model scores cut-offs. In practice, patients with model
scores above the cut-off would be considered at higher risk for
experiencing ES and would undergo CEEG. A model score cut-off of
0.2 maximized sensitivity and specificity in the creation model.
The model worked well in the creation dataset with a Brier score of
0.121 indicating an informative prediction. The Hosmer–Leme-
show goodness-of-fit test was not significant (x2 = 6.01, p-
value = 0.65) indicating the model had adequate fit for this dataset.
In the model creation dataset, the prediction error from jack-knife
cross-validation was 13%, suggesting that approximately 87% of
the cases would be correctly classified.

3.3. Model validation dataset

Overall model performance in the model validation dataset was
less than in the creation dataset, according to R2 (35% for validation
dataset in contrast to 37% for creation dataset) and Brier score
(0.23 for validation dataset in contrast to 0.12 for creation dataset).
The c-statistic AUC was 0.799, indicating fair discrimination ability
in the model validation dataset. The discrimination slope was 0.16
(Fig. 1) indicating on average the difference in the predicted
probability between the two outcome groups was 16%.

Fig. 1 provides the calibration plots of the model predicting ES
presence for the model validation dataset. The intercept and slope
of the calibration line were estimated in a logistic regression model
with the linear predictor w calculated for the patients of the
validation dataset, as the only predictor variable: log odds = a + b

linear predictor. The calibration intercept was 1.42 which is greater
than zero indicating the predicted probabilities were systemati-
cally too low. The slope was 0.96 which is close to 1 and therefore
indicates that the model is not too optimistic (over-fitting). This
type of miscalibration (slope close to 1 and the intercept different
from 0) indicates that certain patient characteristics not included
in the prediction model were differently distributed in the
validation sample compared with the model creation sample.
The Hosmer–Lemeshow test was statistically significant (x2 = 104,
p-value < 0.0001) indicating a lack of fit in the model validation
dataset, which agrees with the calibration plot.

The sensitivities and specificities using different model score
cut-offs are shown in Table 4. Using the optimal 0.2 model score
cut-off identified in the model creation dataset, only 25% of
patients in the model validation dataset who might have
undergone clinically indicated CEEG would be selected to undergo
CEEG. This practice would lead to lower resource requirements but
would fail to identify some patients experiencing ES.

4. Discussion

A seizure prediction model derived from a retrospectively
acquired multi-center dataset provides useful ES predictions when
validated using a single center dataset. Having a model that
discriminates well between patients who will and will not
experience ES can improve resource utilization since limited CEEG
resources can be directed to the patients most at risk for
experiencing ES. While imperfect, our model has a fair to good
discrimination even on the validation dataset indicating that most
patients could be appropriately classified.

Many studies have indicated that 10–50% of children with acute
encephalopathy who undergo CEEG experience ES.1–19 Because
CEEG is resource intense and a limited number of patients might be
able to undergo CEEG at a given center, using this model derived
from a small number of clinically evident risk factors might
improve CEEG efficiency. This model could be applied clinically in a
few steps. First, the clinician must know several clinical variables
and EEG variables which could be obtained from a routine EEG.
Second, using these variables, the clinician can calculate the model
score using the logistic regression formula or, more easily, by
locating the appropriate row in Table 3 or location on Supplemen-
tal Fig. 1, both of which provide pre-calculated model scores for
each combination of variables. Third, patients with model scores
above the institutional cut-off would be selected to undergo CEEG.

Individual institutions might pick different model score cut-offs
based on center-specific criteria. A model score cut-off of 0.20 had
the best overall test characteristics. Given a seizure prevalence of
30%, the estimated PPV was 57% and NPV was 82%. Only 25% of
patients who might have undergone clinically indicated CEEG
would be classified as needing CEEG, leading to lower resource
requirements. However, 41% of patients experiencing ES would not
be classified as needing CEEG and thus the ES would not be
identified. A center with substantial CEEG resources might perform
CEEG for any patient with a model score >0.10. At this cut-off, 14%
of patients with ES would not undergo CEEG so the seizures would
not be identified and managed. However, 58% of patients without
ES would be identified as not needing CEEG, so limited CEEG
resources would not be expended. At this cut-off, only 43% of all
patients who might have undergone CEEG would be selected to
undergo CEEG. Given a seizure prevalence of 30%, this would result
in a PPV of 47% and NPV of 91%. In contrast, a center with more
limited CEEG resources might only perform CEEG for any patient
with a model score >0.45. At this cut-off, 81% of patients with ES
would not undergo CEEG so the seizures would not be identified
and managed. However, 97% of patients without ES would be
identified as not needing CEEG, so limited CEEG resources would
not be expended. Given a seizure prevalence of 30%, this would
result in a PPV of 74% and NPV of 74%.

There are limitations to these data. First, the model included a
limited number of categorized variables. While this kept the
model simple and focused on data readily available to clinicians
at admission, utilizing additional clinical and EEG variables
might yield better predictive models. For example, etiology was
categorized as structural or non-structural, and future larger
studies using more exact etiologic categories might yield better
predictive models. Additionally, a limited number of clinical
variables were included, and future studies might include
variables related to critical illness severity, neuroimaging,
hypoxia, hypotension, vasopressor use, and markers of injury
to other organs. Second, the multi-center dataset used for
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validation was generated from 11 large pediatric centers based
on clinically obtained CEEG with retrospective data acquisition.
Each institution had different CEEG practices and PICU referral
patterns that lead to variability as well as selection and referral
bias for CEEG inclusion. Seizure occurrence was significantly
lower in the multi-center dataset than the Children’s Hospital of
Philadelphia dataset reflecting these cross-institutional differ-
ences in CEEG practice and PICU referral patterns. This variability
likely underlies the imperfect fit for the single center validation
dataset. The lack of optimal model fit cautions clinical
investigators aiming to develop evidence-based CEEG pathways
that single center studies based on clinically indicated CEEG may
have a limited ability to provide generalizable data. Future
studies of consecutive patients with very specific CEEG inclusion
criteria may be needed to generate improved seizure prediction
models. However, the fact that model fit was fair despite this
variability and the limited number of variables utilized indicates
that with further development data acquired from multi-center
studies could have meaningful applicability at individual
institutions. Third, the model may under-predict seizures.
Developing a model which is well calibrated across diverse
settings is difficult since models with a limited number of
predictors always leave some variance between subjects unex-
plained. The intercept from the validation plot was greater than
zero and the fitted line between observed seizure frequencies
and predicted frequencies was above the 458 diagonal line
indicating the model under-predicted seizures on average in the
validation dataset. Seizure occurrence was significantly higher in
the validation than creation dataset, whereas three out of four
predictor variables were distributed similarly between the two
datasets. A model developed from a low outcome rate population
applied to a higher outcome rate population will produce under-
prediction. These data suggest we should aim to identify and
include additional predictive variables. Fourth, the model
requires information obtained from a routine EEG (EEG
background category and inter-ictal epileptiform discharge
category) so implementation still requires EEG technologist
work. However, selecting patients who need only routine EEGs
and not CEEG may still be useful by reducing technologist work
time at bedside (electrode placement may be quicker for many
patients since electrodes could be applied with paste rather than
collodion), physician work time (fewer patients undergoing
CEEG would reduce the pages of EEG to be reviewed each day)
and equipment needs (collector equipment would not need to
remain at bedside for CEEG). Fifth, ES occurrence and back-
ground category were determined by a number of encephalo-
graphers from each site for the multi-center dataset and one
encephalographer for the single center dataset. Further, the
multi-center data was obtained by chart review of CEEG reports
and not be re-review of the CEEG tracings. There were likely
some inter-rater differences in EEG interpretation.27 Multi-rater
scoring using unified seizure definitions34,35 may improve model
performance.

We created the prediction model using multi-center data and
validated it using single center data. Studying ES epidemiology and
impact on outcome will likely require multi-center studies to
enroll sufficient patients, particularly if patients are to be stratified
by injury type. Consortia are already performing initial multi-
center studies working toward these goals.13,24,25 Our field will
need to determine whether these multi-center data can be applied
meaningfully at individual institutions despite inherent inter-
institutional variability. These considerations guided our decision
to develop the model using multi-center data and validate it using
single center data, rather than vice versa. The fact that the model
had predictive ability indicates that future studies using larger
multi-center datasets incorporating more variables could have
meaningful applicability when applied at individual centers. We
are working to develop a free app which could easily calculate
model scores when predictor variables are entered (Supplementa-
ry Fig. 2). Development of this type of tool could make complex
predictor models developed over time easily implementable by
clinicians.

5. Conclusions

The current model was based on small number of clinically
known variables, was developed in a broad cohort of patients who
underwent clinically indicated CEEG at 11 institutions and was
validated in a broad cohort of patients at a single center. Despite
these limitations, the model had fair to good discrimination ability
and may help clinicians consider multiple risk factors together
when making decisions regarding CEEG use. With further
development including more defined subject cohorts and addi-
tional predictor variables, these data suggest that prediction
models derived from multi-center data could yield improved CEEG
efficiency at individual centers.
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