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Abstract 

We show that every free Cartesian closed category can be faithfully mapped to the category 
of sets. For that we use a Church-Rosser property of the appropriate typed lambda calculus. 
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1. Introduction 

The goal of this paper is to prove the following theorem. 

Theorem 1.1. Let V be a free Cartesian closed category. Then there exists a faithful 

structure preserving functor F : %? -F Set. 

Informally, a free Cartesian closed category is a Cartesian closed category freely 

generated by objects and arrows between generated objects. 

Some consequences of the above result are that various extensions of Cartesian closed 

structure do not impose additional equalities among arrows:let I : Gf? + a(%‘) be the 

canonical map from a free Cartesian closed category %T to the free Boolean topos ,@(%‘) 

generated by %? then I is faithful. But perhaps more important is that it confirms our 

intuition that Cartesian closed categories indeed axiomatize the Cartesian closed structure 

of sets. (In “everyday practice” it means that a diagram commutes in every Cartesian 

closed category if and only if it commutes in Set.) 
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Concerning the history of Theorem 1.1, we note that the problem whether it was true 

had been raised, along with analogous problem involving monoidal closed categories, 

by M. Barr and others, many years ago. Ref. [16] gives a proof that for every two 

arrows in a free Cartesian closed category without free arrows there is a structure- 

preserving functor into the category of finite sets which distinguishes these two arrows; 

in the proof the (then unrepaired) Mints’ reductions are used. 

Theorem 1.1 is formally analogous to results in [ 15, 61, each of which gives represen- 

tations, in the form of structure-preserving functors, of cartesian-closed and richer struc- 

tures in certain toposes; in place of faithfulness, other conditions are imposed on the 

representation. The methods in this paper are quite different from these of [ 151 or [6]. 

The above theorem is proved using connection between Cartesian closed categories 

and typed i-calculi for the “early history” of the subject; see the comments in [lo]. A 

key technical step is that in a free Cartesian closed category one can faithfully adjoin 

infinitely many maps 1 + C for every object C. This is shown with the help of a 

system of reductions suggested by Mints. Unfortunately the original paper contains 

some mistakes, as Hamik pointed out to us, see Remark 4.17; since we think that 

these reductions are very interesting on their own right, we repair Mints’ proof (of 

confluence as well as normalization). Also, an important ingredient in the proof is a 

variant of Friedman’s completeness result for (a variant of) typed I-calculus. 

We obtained the main theorem in spring 1990 and I gave a talk on that at a McGill 

seminar organized by Prof. Lambek. However, I was using Mints’ result without notic- 

ing this mistake in it. In December 1991 I corrected these mistakes in Mints’ paper 

and distributed almost the same version of the paper in March 1992 to some people 

at McGill University. Since the end of July, beginning of August 1992 the paper was 

available from an “ftp-site” as announced on two e-mail lists (under the name “On 

free CCC”). The only mathematical changes are two additional corollaries about Mints’ 

reductions - Corollaries 4.15 and 4.16 which are immediate consequences of our main 

result about Mints’ reductions, i.e. Proposition 4.3. Corollary 4.15 is the main result 

in [l] - a paper which has our paper as a reference. Also, independently, Jay [8] gives 

a different proof of strong normalization for a system in which every type had a closed 

normal term - property not available in general. 

Michael Makkai told me that the above result should be true and suggested some of 

the tools in proving it. I want to thank him and Victor Hamik for collaboration. 

So, first we explain again that Cartesian closed categories are “the same” as typed 

I-calculi. A reader familiar with [IO] or [13] can freely skip the following section (the 

difference in the presentation is given in Remark 3.3). 

2. Basic information 

We are going to work with the following definitions. 

Definition 2.1 (Cartesian closed category). A category %? is Cartesian closed (ccc) if 

there is an object, denoted by 1, and for every two objects A,B E Gf? there is an object, 
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denoted A x B and one object, denoted AB and there are the following arrows: 

l 0, E hom(A, 1 ), rc~,~ E hom(A x B, A), xi-B E hom(A x B, B), 

l EA,J E hom(AB x B,A); 
and the following operations on homsets: 

l hom(C,A) x hom(C,B) -% hom(C,A x B), 

l hom(A x B, C) 5 hom(A, CB) 

(the operations would have to have indexes, but since they are uniquely determined by 

their arguments we omit them). These (constants and) operations have to satisfy the 

following equations: 

for every arrow f E hom(A, 1 ), fi E hom( C, Ai), g E hom( C, A x B), h E hom( C x B, A) 

and k E hom(C, AB). When space for superscripts is needed we may write ret ,712 instead 

of 71, 71’. 

As we can see, we will work with Cartesian closed categories with already chosen 

structure and with functors preserving the chosen structure “on the nose”, just as in 

[lo]. However, the main result holds for the “ordinary” free Cartesian closed categories 

as well - every such is equivalent to a free Cartesian closed category with a chosen 

structure. 

We will use the following abbreviations: A’ = Al x . . . x A,, when the brackets are 

nested on the left; also if B is a subsequence of A’ then rcj : A’ --+ 3 denotes the 

canonical projection. 

Definition 2.2 (Typed A-calcuZus). A typed &calculus is a formal system which con- 

sists of three classes: Types, Terms and Equations. They have to satisfy the following 

conditions: 

Types: Types are freely generated from a set of basic types-sorts and the following 

rules: 1 ETypes, A, B ETypes then A x B,AB ETypes. 

Terms: For each type A we have countably many variables of type A (we denote 

them as 4 or xi : A) and they are terms, also for every type we may have a set of basic 

constants of this type and they are terms; the other terms are generated as follows: * : 1 

is a term, and then if a:Al x AZ, ui:Ai (i=1,2), f :A’, b:B are terms then n(a):Al, 
n’(u):Az, (ut,uz):Al x AZ, (f‘b):A, 2cx!.b:BA are terms. (We can notice that every 

term has uniquely assigned type.) The notions of free (bounded) variable in a term t 

are standard, I+‘(t) will denote the set of the free variables in t. 

Equations: They always have the following form s =X t where S, t ETerms and X 

is a set of (typed) variables such that FV(s) U IV(t) CA’. 

Convention: When FV(s) u FV(t) = X we often omit X in s =x t. Also, typing is 

omitted whenever convenient. 
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The following expressions are equations (we call them axioms of I-calculus): 

(T) f’ = *, 
P.1) m,,AZ<(fl,f2)> = f-1, W-2 > 7L4~w-lJ2)) = f2, 

W) (%,B(LJ), &?(s)) = a 

(/I) (Ati .h’r) = h(r/.d), (q) I,xQw) = k 2 $2 W(k) 

for every term f: 1, fi:Ai, g:A x B, h:B, r:A and k:AB (h(r/x) denotes the 

substitution of r instead of all free occurrences of x in h(x) but first taking care of 

clashes of variables - so we are all the time working under a-congruence since it is 

possible to do that naively as in untyped A-calculus and it is safe for our purposes). 

Equations are obtained also by the following rules (we also say that proofs are 

formed from the axioms and the following rules): 

(RI t=vt (S) z (Trun) r =x ’ ’ =’ t , 
r =XUY f 

The need for having indexed equations-contexts will be explained later. We can have 

some other basic types (sorts) and some other basic terms (constants). A set of equa- 

tions added to the above system we will call a I-theory. 

In the presence of (Pri) and (23-m) one can see that the reflexivity (rule (R)) is not 

needed. Also, it is a simple exercise to see that the following rules are derivable (the 

usual care about clashes of variables is needed for the second rule): 

The following expression (x;” , . . . ,xynr>t) called term with context is going to be used 

often, it will always satisfy W(t) C{xp’ , . . . ,x,“~}. And one more piece of notation: 

The symbol t = s is used to denote that t and s are equal as strings (but again up to 

a-congruence). 

Definition 2.3 (Interpretation, model). An interpretation M of a language L in a 

Cartesian closed category V is a function which assigns objects to basic types (sorts); 

if the language L has some basic constants it is assumed that the category V had them 

prescribed in advance (as the arrows from the terminal object). Then the interpretation 

assigns arrows to terms as follows (using induction on complexity of terms): 

. M($ , . . . ,x,A ,a DX;) = 7$. 

l M(x’:A D *) = 02. If the context were empty then we would have M( D*) = 11. 

l M(x': A D c) = CO,- (here c is a constant). Also we could have empty context, then 

M( DC) = c. 
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0 M(x’:A D xi(t)) = ?‘&f(?:d D t), i = 1, 2. 

0 M(x’:d~ (tl,t2)) = (M(x’:i~ tl),M(x’:At> t2)). 

0 kf(x’:dD(tl’t2)) = E(M(~:ADtl),M(~:ADt2)). 

a M(x’ : A’ D jlfl. t) = (ibf(x’ : 1, y : B D t))*, if x’ : A’ were not there we would have 

M( D@. t) = (fkf(f D t)$,&*. 

Model of a A-theory T is an interpretation such that all equations from T are preserved. 

For an interpretation M : L -+ %? (model M : T -+ 97) and for a Cartesian closed functor 

F : $? ---) 9 by F oM we denote the interpretation N : L + 9 (model N : T 4 9) defined 

as follows: on basic types N(A) = F(M(A)) and on basic constants N(c) = F(M(c)). 

Now it is easy to see that the first equation is actually true for all types and that the 

second equations generalize to the terms with contexts i.e. N(x:ADt) = F(M(x:ADt)). 

So indeed N is an interpretation of L. That N is also a model (if M is one) will follow 

from the soundness below. 

Now we can show soundness of our interpretation but before that we have to give a 

useful technical lemma which can be proved by induction on the complexity of terms: 

Lemma 2.4. Every interpretation M satisfies the following: 

1. M(#l x..,xAn D f(7Q(Z), . . . ,71,(Z))) = M(x;“, . . . ,A$ D j-(X,, . . . ,Xn)). 

Zf jJ:8 is not free in t then: 

2. M(x’:d, y’:B D t) = M(x’:dD t)$ MCBj; 

3. M(x’:d D f(z?, (g(x’))/p)) = M(x’:i: y :B D f(x’, y”))( I,-,M(x’:d D g(z))). 

Proposition 2.5 (Soundness). Let T be a A-theory. Let M be a model of T in a 

Cartesian closed category. Then: 

if T k f =X g then M(XD f) = M(XD g). 

Proof. As usual, this can be proved by induction on the complexity of proofs. 0 

Remark 2.6. Without contexts we would not have soundness - it would be provable 

(using (Sub’), B and (Tran)): 

2xX.f =AxX.gk f =g 

and every interpretation in Set which maps X to empty set is a model of the left side 

but does not have to be of the right side. However, using the rules with contexts we 

get “only” 

2xX. f = M.9 k f =Fv(f,g)u{x} 9 

and the above interpretation is a model for both sides. 
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Definition 2.7 (Internal language). To every Cartesian closed category V we can as- 

sociate a I-language LS (internal language) as follows: 

l The objects become the set of basic types. When we want to be precise, the basic 

type corresponding to an object A we will denote by & (this is required when we 

want to make difference between types such as XJ x X, and XA~B). 

l The arrows from the specified terminal object 1 become the basic constants - but in 

several different ways! More precisely: the basic constants of type F-(X,,, , . . . ,XA~ ) 

(a type built from the basic types X,,, . . . ,X,n) are homq( l,F(Al,. . . ,A,)). (Thus, 

we have (at least) two different constants cf’ :&, x~2 and cf :&, x &, corresponding 

to the same (1 L Al x AZ) E %‘.) 
The standard interpretation M is the interpretation which to every symbol of the 

internal language assigns the intended meaning: X, I--+ A and CJ- : F(&, , . . .X,,” ) ++ f : 

1 --+ Y(AI,...A,). 
The corresponding A-theory Tw contains all equations satisfied by the standard in- 

terpretation: fi =x fi E TV iff bf(XD t) = kf(XD s). 

(We could have included “term constructors” (unary functions) - every arrow A LB 

becomes a term constructor: if t : A is a term then f(t) : B is a new term. However, 

it would not give anything new since among the equations of the theory we would 

have to include f(t) = (f’t) where 1 is the name of the constant corresponding to 

the transpose of j”, i.e. _? = (frri.,)*.) 

Proposition 2.8 (Completeness). For a given l-theory T there exists a canonical 

model M: T 4 VT such that M(XD u) = M(XD v) only if T k u =X v. 

Proof. This is a standard construction and it is given as follows. 

Objects: Objects are types. 

Arrows: They are classes of equivalent terms with contexts. To compare (xl : 

A,,. . . ,x, : A, D f”(+, . . . , x,“~)) with (y~:B~,...,y,:B,r>@(yf’,...,y,B”)) we first 

havetohave(...(AtxA2)x...)xA, ~(...(B~~B~)~~~~)~B,,callitC.(So,assuming 

m<nitsaysthatB,=A,,...,BZGAn_,,,+2andBr ~(...(AlxA~)x...)xA,_,+l.) 
Then we say that they are equivalent iff 

T k f(~l(z), . . . , &2(z)) =z g(m(z), . .9 %?l(z)). 

The class above gives an arrow C + D. 
Composition: (y% D g)$ D f) = (x2 D g(zl(f)/yl,. . . , ?‘cnm(f)/ym)). Here f is of the 

type 3. 

units: 1~ = (x:ADX). 

Cartesian structure: This is going to be defined on the representatives of arrows 

which have one free variable: 

l 0, = (x:AD*). 

. z~,~ = (x :A x B D z(x)). 

l @:A D f(x)),(~:A D g(Y))) = @:A D (f(x),g(x))). (sic!) 
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Closed structure: 

l E,Q = (x:AB x BD (n~(x)‘nz(x))). 

l (x:A x B D f(x))* = (x1 :A D A_Q.~((x~,x~))). 

The equivalence classes which correspond to (DC), where c is a constant from the 

language, we will denote also by c. 

As usual, the first thing to check is independence on representatives. But this is 

true because of the substitution rule (Sub) for typed i-calculus. Second, it would be 

easy to check that this is a ccc. The canonical interpretation which assigns types to 

the same-name-objects, constants to the same-name-arrows is obviously a model of T. 

Whole construction is such that “by definition” completeness follows. 0 

Corollary 2.9. The canonical model M : T + %?r c1assiJie.s all models of T in the 

following way: the map W?Z%‘(Wr,9?) -OM --+ Modr9 is bijection. (%%?%?(%?,9) denotes 

the set of all structure-preserving functors (cc-functors) between these two Cartesian 
closed categories, F oM was defined in Definition 2.3 and Modr9 are all models of 

T in 9). 

Proof. Let us just prove surjectivity of the above map. Take a model N : T -+ 9; we 

have to find cc-functor F : %TT + 9 such that N = F o M. F on Ob(%?r) is easily 

defined since Ob(%r) are types of T so F(A) = N(A). Since the arrows of VT are 

classes of equivalent terms with contexts we are going to define F = N on arrows 

(also) (recall the definition of interpretation). Now we have to show that F does not 

depend on the choice of representatives and that F is indeed a cc-functor. The first part 

follows from the completeness, and the second from the definition of the cc-structure 

on VT. 0 

3. On Friedman completeness for typed lambda calculus 

Definition 3.1 (Free CCC). Let L be a I-language and T be the theory on this lan- 

guage with no additional axioms (empty theory). To this T one can associate the 

Cartesian closed category we as in Proposition 2.8. %‘T is then called free Cartesian 

closed category. 

Its universal property is given in Corollary 2.9. Pictorially: 

where M is the canonical model and cp E Modr9 but since the theory T does not 

have additional equations we can say that cp is just an interpretation of symbols. 

This is a generalization of the notion ‘category generated by graph’ since the free 

arrows can be of arbitrary type. This is required if we want to consider these categories 
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as categories of proofs, and also if we want to avoid identification of types in the 

definition of an internal language. We do not have to define a more general notion 

where the free arrows have arbitrary domain - this is included by the definition of 

exponents. If we were to analyze the above diagram we would obtain exactly the 

definition of a free (bi- )cartesian closed category given in [ 11, 61. Let us now recall 

the notion of a “free arrow”. 

Proposition 3.2 (Free arrow). For every Cartesian closed category V and for every 

object C in %? there exists a Cartesian closed category V[l 1 Z(C)] and a cc-functor 

Z : W -+ %?[l 2 Z(C)], such that for every cc-functor F : V + 9 and every arrow 

F( 1) 3 F(C) there exists a unique cc-functor %?[ 1 i Z(C)] 2 $2 such that GoZ = F 

and G(4) = a. This < is called the free arrow. 

Proof. First form the slice category %?/C’ (in general it does not have to be carte- 

sian closed) and consider the canonical functor V -!-+ U/C which maps an object 

A to A x C 3 C and an arrow (A --& B) to (A x C 
(fn1m) 

- B x C). Now, form 

the full subcategory of U/C spanned by the objects from the image of I, i.e. all the 

objects are of the form A x C 3 C. Denote this full subcategory by g//C. It is 

easy to see that U//C is a Cartesian closed category, that the functor Z is a cc-timctor 

and that the whole construct 92 L %?j/C satisfies “up to equivalence” the universal 

property from the proposition - the role of the free arrow 1 5 Z(C) is played by 

the arrow 1 x C (2) C x C. However, to obtain the category which will satisfy 

the above property as stated we take for its objects objects of V and for its arrows 

between A and B we take %‘//C(Z(A),Z(B)). This category we also denote by U//C. 

This construction is described in more detail in [l l] (for an equivalent construction 

see [lo]). 

In the special case when the category %? is a free Cartesian closed category the 

construction can be equivalently described as follows. The category V is obtained 

from a “free A-theory” T as in Definition 3.1, i.e. V = %?r. Now add to the language 

of T a new constant 5: C. Then the new theory, which we denote simply by T U (0, 

has no additional axioms. Now form the category %?rUtc). Z is the obvious functor 

which maps things to the same name things. 0 

Remark 3.3. In [lo] the interpretation of terms of a A-calculus in a Cartesian closed 

category V uses the previous notion of free arrow. Similarly, the notions of the internal 

language LW and the theory T, associated to a Cartesian closed category $7 use not 

only the notion of free arrow but also identifications of types in the theory which we 

avoid. It is not hard to show that this theory is essentially the same as ours - the 

categories associated to them are equivalent. Let us just add that the interpretation of 

i-terms in [13] is the same as ours, but for definition of the theory associated to a 

Cartesian closed category they quote [lo]. 
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Now, we want to enrich the free Cartesian closed category with a lot of free arrows 

so that in this new category 1 generates. But first, we have to show that these new 

arrows do not spoil anything. However obvious it may look, one has to be careful, 

bearing in mind that in a nonfree case it does not have to be true (e.g. adding a free 

arrow from 1 to the empty set in the category of sets “spoils the thing”: the canonical 

functor from Set to the new category is not faithful; moreover, the new category is 

equivalent to a point). In a sense this is the only case when something like that may 

happen as the following easy lemma describes - “nonempty can be inhabited”. 

Lemma 3.4. The following statements are equivalent for any Cartesian closed cate- 

gory 5%: 

l The canonical functor I :V + W[Q is faithful (where V[Q denotes the category V 
with the freely added arrow 5: 1 + C). 

l The terminal arrow 0~: C ---f 1 is epi in V. 

Proof. Assume that I is faithful. If fOc = gOc in V[t] then multiply by r and use 

faithfulness. The other direction is also easy. It is enough to prove faithfulness of I 

on arrows from 1. Take two such arrows f ,g E W. Suppose Z(f) = I(g) in g[<] that 

islxC@?)CxC=lxC (‘y) C x C in ‘8 (see Proposition 3.2). This is the 

same as f rc, = gnl. Multiplying from the right by (OC, 1~) we get f Oc = gOc. Since 

we assumed that 0~ was epi, we have f = g. Cl 

The point which we want to make is that in a free ccc adding of a free arrow is 

safe. For that we use the following proposition which will be proved in Section 4. 

Proposition 3.5 (Free types are nonempty). If f =x g in a free I-calculus and x does 
not occur as a free variable in either f or g then we also have f = g. 

Now, we can establish the following. 

Proposition 3.6 (Key proposition). In a free Cartesian closed category %? every 0~ 

is epi. 

Proof. Let f and g be two arrows in 59 such that f Oc = gOc. In the corresponding 

free ;l-calculus it gives f =x~ g (see Lemma 2.4.2); here xc does not appear in 5.4. 

By the previous proposition it means f = g in the J.-calculus. Therefore f = g in ?Z 

(by soundness). q 

Corollary 3.7. Let % be a free Cartesian closed category and let 9 be a free carte- 

sian closed category obtained from Q? by adding infinitely many free arrows 1 3 Cj 

for every object Cj E %?. Then the canonical functor I : % -+ 9 is a faithful cc- 

functor. 
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Proof. Adding one free arrow is faithful by Lemma 3.4 and Proposition 3.6. Adding 

finitely many follows by induction. To add infinitely many free arrows consider the 

constructions of a free Cartesian closed category: let %? = %?T for a free J-theory (as 

in the definition of free Cartesian closed category). Then 9 can be constructed as 59~1 

where T’ = T U { ($’ 1 Cj E %?, i E I} (see the end of the proof of Proposition 3.2). 

The functor I is the unique cc-functor which classifies the model T M’iT 9 where 

M’ is the canonical model T’ % 9 and A4’l~ is the reduct of it on T; so we have 

I o M = M’lr. If I were not faithful it would mean that there are two closed terms 

t and s in T such that T y t = s and yet T’ t- t = s. Since every proof uses finitely 

many symbols we would have T” = T U { (7,. , c?} - a finite extension of T such 

that T” E t = s. Since T” is a finite extension we know (by the above induction) that 

it has to be faithful and therefore T t- t = s, contrary to the assumption. 

Alternatively, to add infinitely many free arrows we could form the filtered colimit 

of all the finite extensions. Then use that two arrows are equal in the colimit if they 

were already equal in a finite extension. 0 

To continue the proof of Theorem 1.1 we need the following result which is a 

corollary of the variant of Friedman completeness - this corollary will also be proved 

in the next section. 

Corollary 3.8. Let 9 be a free Cartesian closed category which has infinitely many 

free arrows for every object. Then there exists a faithful, structure preserving functor 

9 5 Set. 

We can recapitulate as follows. 

Proof of our main result - Theorem 1.1. Take a free Cartesian closed category V, 

add infinitely many free arrows to every object in %. Call the new category 9. The 

canonical functor I : W -+ 9 is cc and faithful by corollary 3.7. Also the previous 

fimctor F : 58 --+ Set is cc and faithful. So F o f : %? + Set is the faithful cc-functor. 

Let us prove a corollary, observed by Michael Barr, which emphasizes the usefulness 

of free ccc with free arrows and at the same time its statement does not require this 

notion. 

Corollary 3.9. For every projective (with respect to cc-functors which are surjective 
on arrows) Cartesian closed category there exists a faithful cc-functor into the cate- 

gory of Sets. 

Proof. Let 9 be such a category. Let %? be a free ccc generated by objects and arrows 

from 9. Obviously, 9 is a retract of % and since ‘4? “embeds” in Sets we are done. 

0 
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As we have seen above, the only things which remain to be proved are Proposition 

3.5 and Corollary 3.8. Let us first mention the following obvious fact about I-calculus 

(without additional equalities). 

Lemma 3.10. Let ((plBc’sc) = ((P~~~‘~~) an assume <c is a constant which does d 

not appear in ~1 and 40~. Then qnl = 40~. 

Proof. In the proof of ((plEc’Sc) = ((~2~“g~) re pl ace all the occurrences of tC with 

a brand new variable xc and then use (r]). 0 

Theorem 3.11 (Essentially Friedman [4]). Let L be a free typed I-calculus which has 

infinitely many basic constants for every type. Then there exists a model L 5 Set 
such that N(XD tl) = N(XD t2) implies L k tl =X t2. 

Proof. It is enough to specify N on the basic (free) types and the constants. To do 

that we introduce an auxiliary map - premodel r : L + Set which maps a type A to 

{[( Dt)]: t:A}, [-] denotes an equivalence class (under provable equality), also notice 

that since the context is empty the terms have to be closed. To simplify notation a 

bit we will denote a term with a context only by the name of the term if it does not 

cause confusion. Now if X is a free type (or 1) then N(X) dzf T(X). To give N on 

the arrows we need a family of partially defined surjective maps sA : N(A) -+ T(A), 

A E Types(L). 

Claim 1. Let the family of partial maps s = {SD : D E Types(L)} be dejined as 

follows: 
l sx = l,-(x), X is a free object or I. 

l sAxB(a,b) = [(tl,tz)], where tl E sA(a) and t2 E se(b). 
l Let f E N(C)N(B). Then sCB(f) is defined and equal to [cp] E r(CB) iffor every 

b E Dom(s~) f(b) E Dom(sc) and 

sc(f (b)) = Ncp‘r)l, y E SE(b). (1) 

Then the family is well defined and all components are surjective. 

Proof of Claim 1. The proof is by the induction on the complexity of types. Obviously, 

for the free types and 1 the statement is true. Also for the product types. For the 

exponent type CB, Lemma 3.10 insures that there is only one such [cp] if any. (Assume 

that there are two: [cpr] and [(pz], by induction hypothesis sg is surjective so [l] E 

Im(ss) where 5 is not in cpi, 432. Then from (1) follows (cpr ‘0 = ((~2‘5) and therefore 

cpl = 92.) To show that sc6 is surjective take an arbitrary [cp] E r(CB) then the 

witness f E N(C) NW is chosen so that f(b) E s;‘([q’r]) if b E DomsB (take any 

r E so) and arbitrarily otherwise. 0 
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Now we can define N(t) for to a basic constant. N(c) = d such that SD(d) = [Q 

(if there are several such d E N(D) we choose one of them). 

Claim 2. For every (x’f I,. . . , @ D f ‘) in L and every ai E Dom(sAL) 

Wf)(al,. . . , 4 > E Domb ) 

and 

s&N(f)(al,...,a,)l = [f(ti/xl,...,tn/xn)l, ti E SA,(ai). (2) 

Proof of Claim 2. This is by induction on the complexity of f. If f E rD then by the 

definition of N(5) we have s&N(r)) = [t] and this is indeed (2) since si( 11) = 11. Let 

us check only one case more: fcB 3 Aya. hC. T a k e ai E Dom(sA$ ). We must show that 

W-Y. h)( 4,. . . , a,) E Dom(sp) and s&V(ly.h)(al,...,a,) = [~y.h(tl/xl,...,t,/x,)], 
(fi E s,.&(ai)). It is enough to show that ny.h(tl/xl,...,t,/x,) satisfies (1) in place of 

cp, i.e. for every b E Dom(se ) it holds that 

sc(N(Jy.h)(al, . . . , a,)(b)) = K~y.~(~dxl,. . . , ~n/x,)‘r)l 

r E so, because by the uniqueness of [cp] it will follow that 

scB(N(ny.h)(al,...,an)) = Cny.h(t~/xt,...,t,/x,)l. 

But first we have to check that (N(ily.h)(al,. . .,a,))(b) E Dom(sc); this is so by 

the induction hypothesis since N(Ay.h)(ai, . . . , a,)(b) = N(h)(al,. . . , a,,, b) (and ai E 

Dom(sA,), b E Dom(ss)). Again by the induction hypothesis sc(N(h)(al,. . . , a,,, b)) = 

W(~l/xl,..., t,, lx,, r/y)], so indeed 

sc(N(iy.h)(ar,. . .,a,)(b)) = W(th,. . . ,tnh,dy)l = [(~~.4hh,. . .,~n/~nP)l 

(recall ti E sA,(ai) and r E sB(b)). 0 

Now it is clear that N reflects equality: let N(# D f”) = N(J? D #), then for every 

a E Dom(sA), sB(N(f)a) = se(N(g)a) and so by (2) we have f(</x) = g(</x) (take 

a E s,‘(t), < @ f,g). By Lemma 3.10 we have f =x g. 0 

Remark 3.12. The typed I-calculus for which Friedman proved the theorem did not 

have product types nor the terminal type nor additional (“functional”) constants. Also 

the equations did not have contexts. In his case T(A) = {[t] : t : A} (t not necessarily 

closed). Obviously, for A = 1 it would not work in our case. So we had to take only 

closed terms and therefore we had to introduce “many” constants. Let us also add that 

the above theorem was proved independently (and later) by Kennison [9]. 

And finally, we can give: 

Proof of Corollary 3.8. Let L be the free A-calculus such that %?L = 9. Then by 

the previous theorem there is a model N of L in Set which reflects equality. Then, 
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by Corollary 2.9 there exists a cc-functor G@ 5 Set such that N = F o M (M is the 

canonical model M :L --+ WL). F is faithful by the construction of %?L and faithfulness 
ofN. 0 

Remark 3.13. It is easy to show that we cannot get fullness (and even some weaker 
properties) in the above theorem. Also, not every ccc can be faithfully mapped in 
Set, as a matter of fact not even in a Boolean topos as observed in [ 151 ( UU % U 
implies U E 1 in a Boolean topos). However, every small ccc can be mapped in a 
De Morgan topos by a full and faithful cc-functor - we will elaborate on that 
elsewhere. 

4. Mints’ reductions 

To finish off the proof of Theorem 1.1 we need to prove Proposition 3.5. For that 
we need a confluent system of reductions for (a free) typed I-calculus as given above, 
which does not introduce new variables. So not only products but also the terminal 
object are included and not all types are inhabited. There are only two references (that 
we are aware of) where such a system is given: [12, 31. We prefer the system given 
by Mints and we are going to use that one. The main reason for our choice is that 
these reductions are closer to Prawitz’ reductions for natural deduction and they are 
simpler than the ones in [3]. 

The reductions in [3] are 9’ (see below) but in the opposite direction (and no 
restrictions), Wz and in addition infinitely many reductions which are introduced to 

take care of “Obtulowitz’ pairs” e.g. x1 ‘A - Sp-’ (rc’(X’XA), R~(X’X~)) I (*, rc&c’XA)). 
Because of these pairs they have to add new reductions and by a kind of Knuth-Bendix 
procedure they add infinitely many reductions but neatly classified in four groups. The 
above pair they “connect” by an Sptop reduction: (*, x2(xlXA)) --) xlxA. 

Let us briefly introduce some terminology related to the notion of reduction. A binary 
relation 9 on a set of terms is called a reduction; traditionally (t,s) E W is denoted 

t 3 s. A term t is W-normal if there is no term s such that t -% s. A term t is weakly 

normalizing if there is a finite sequence t s to 5 . . + 5 t,, such that t,, is %?-normal. 

A term t is strongly normalizing if every sequence t z to 5 . . . 5 tn 3 . . . 

is finite. We say that J% is weakly (strongly) normalizing if every term t is weakly 
(strongly) normalizing. The transitive and reflexive closure of W we will denote by 
&?*. 

A diagram such as 

a”b 

p lY I $ 
c- -$ -,d 
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is actually a statement which says: if a -% b and a -% c then there exists d such 

that b 2 d and c A d, where a, /?, y and b are possibly different reductions. 

We say that 9 is locally confluent/locally Church-Rosser if 

also we say that W is confluent/Church-Rosser if 

Notation: We will write t[x] when we refer to a particular occurrence of the variable 

x (free or bound - but of course not in Ix. position); t[s/x] denotes a term equal 

to t except that instead of x is written s (so it means that we do not care about 

clashes of variables here). Example: let t[x] = Ix. (x,x) where we are pointing to 

the left occurrence of x in (x,x). Then t[f(x)/x] = Ax. (f(x),x). We can see that 

also t[f(x)/x] = t[f(x)/y] where t[y] G Ax.(y,x). The same thing is true in general, 

namely writing t[s/x] we can always assume that the variable x occurred only once 

in t[x] (again not counting the occurrences in Ax.). We will try to use just t[s] instead 

of t[s/x] as often as convenient. (We just defined the notion of “context”, but since 

we used this word earlier for a different thing, here we will not give a particular name 

to it.) 

Mints’ system of reductions 9 is the following: 

C[tB’l L C[Ax.(t‘x)] x $Z IV(t) provided neither t E 1y.s 

91 

nor C[t] E @(t‘s)] 

WXBl 5 C[(m(t), ~2(t)jl provided neither t E (~1, 82) 
nor C[t] E D[7q(t)], 

I C[t’] r, C[*] if t’ $* 

932 C[(Ax.t‘s)] JL C[t(s/x)] 

C[%((tl,tZ))l z C[til i = 1,2. 

To be more precise, we should have said that C[z] has exactly one occurrence of 

the variable z and then the above reductions would have looked, e.g. as follows: 

C[F/z”“] -5 C[(/lx.(t‘x))/z] x $2 W(t) 

provided neither t E 2y.s nor C[z] = D[(z‘s)/w] for any two terms D[w], S. 
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The terms in the brackets on the left we call redexes. The positions above which 
are excluded we call restricted positions. If t is a redex of a reduction y (y-redex) 
and if t 2 s is a y-reduction on t then y(t) will denote the term s. We also write 

t 5 s if there is a reduction y E 9 such that t L s or t - s. (So again we are 
abusing notation a bit: B denotes (at the same time) its reflexive closure.) The smallest 
equivalence relation containing 93 we will denote N1, so t Eg s if and only if there 

exists a sequence of terms t e to, tl, . ..,t,,=ssuchthatforeveryO<i<nti%ti+i 

or ti+l -% ti. Often, we want to be precise and to write t $s if there is a sequence 
as above so that X = FV(to, . . . , t,). The system of reductions in which the restrictions 
(on the position as well as on the shape of terms) are omitted, we call unrestricted 

reductions and we denote it by .P’. 
The restrictions in the above system are the obvious ones to prevent nontermination 

_ it is interesting that this is “the right” choice, i.e. with these restrictions the system 
is strongly normalizing and also sufficient for the A-calculus in the following sense: 

Proposition 4.1. For every set of variables X, t t =xs ifs t ’22s. 

Proof. To prove that we need a very simple fact which is going to be used once more: 

Lemma 4.2. For every two terms t and s, t E:s iff t 2;” s. 

Proof. In both directions, the proof is by induction on the length of the chain which 
witnesses the appropriate relation. The only thing which has to be checked is the base 
of induction in the proof from right to left, and the only four cases worth checking 
are the applications of unrestricted reductions when the subterm on which we act is 
in the restricted position or of restricted shape (or both). Let us check just two cases: 
suppose that a term (tl, t2) appears as a subterm of a term r, we can write this as 
r[(tl, tz)], and suppose that the unrestricted SP was applied on t, i.e., 

r[(tl,t2)1 3 r[(711((tl,t2)),712((tl,t2)))1. 

In the restricted case these two terms can be connected as follows: 

r[(tl,t2)1 y r[(711((tl,t2)),712((tl,t2)))1. 

(Notice that we do not have to separate the case when the term (ti, t2) appears in the 
restricted position.) For the second case we choose the following: suppose 

r[(F’$)] -C r[(M.(tAB’2)‘sB)]. 

These two terms van be connected in the restricted case as follows: 

r[(/‘sS)] P r[(k?.(tAB’2)‘?)]. 

(Again we need not have to separate the case when t E 2y.u.) The other cases are 
equally easy. 0 
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To prove the above proposition we just have to prove that k t =X s iff t g: s but 

this is standard; for a simpler situation see, for example, Proposition 3.2.1 in [2]. 0 

The key observation is that 9; and 99; commute. More precisely we have the 

following. 

Proposition 4.3. 

aW;b 

From this proposition, using some more or less obvious properties of the above 

system of reductions, we can establish several interesting corollaries e.g. confluence, 

strong normalization (giving also a particular, nice normalization strategy) and also 

confluence of the system same as the above one but without restrictions. 

The proof will be divided in several lemmas, but before that we need to introduce 

some notation and some definitions. 

The following notion makes sense in general: if t[s/x] -% t’ then the p-residual of 

s is whatever remains in t’ of s. We are going to use that notion only when p is one 

of the %,-reductions and s is not the redex on which we apply p. Let us just add that 

the notion of residual as well as the concept of minimal development are standard in 

the literature, see for example [7]. 

Definition 4.4 (921~residual). Let y be one of the WI-reductions and let t[s/x] L t’ 
be on a y-redex R such that R $ s. The y-residual of s is defined as follows: first, if R is 

disjoint from s, i.e. t[s/x] = T[s/x, R/y] for some term T[x, y] then t’ E T[s/x, y(R)/y] 
and in this case s is the residual of s. Second, if R is a proper subterm of s, i.e. 

s c S[R/y] for some term S[y] f y, then t’ E t[S[y(R)/y]/x] and the residual of s is 

S[y(R)/y]. Third, ifs is a proper subterm of R, i.e. R G r[s/x] for some term r[x] $ x 

and t[x] E T[r[x]/y] for some term T[y]. Then we have two cases depending on y: 

if y = q then t’ E T[(Az. r[s/x]‘z)/y] and this s is the residual of s; if y = SP then 

t’ E T[(n(r[s/x]), n’(r[s/x]))/y] and these two occurrences of s are the residuals of s. 

The residual of a residual of some term s we will call again the residual of s. 

Notice that every residual of a redex remains a redex. Also that residuals of disjoint 

terms remain disjoint. The only case when a term t can have more then one residual 

is when we perform an SP reduction on a term that contains t. 

Definition 4.5 (92, -minimal development). Let R,, . . . , R, be a set of y-redexes in a 
* 

term t (y E 91 or y = 91). Then t A s is a minimal development (denoted y”) on 
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R,, . . . ,R, if in each step we reduce a redex which is a residual of one of R,, . . .,R, 
(one of them at the first step) and minimal among them (with respect to the subterm 

relation). When we write a set of redexes for a minimal development as above we 

assume that if i < j then Rj $ Ri (Rj is not a subterm of Ri). 

Two minimal developments performed one after another do not have to make a 

minimal development, but if the redexes of the second one do not contain any of the 

redexes of the first then they do make one minimal development on the union of the 

two sets of redexes. Although we are not going to use it we can notice that the above 

remarks on residuals tell that every minimal development on R,, . . . , R, ends in n steps 

(since we never apply SP-reduction on a redex containing a redex from the prescribed 

list). 

Lemma 4.6. A set of redexes determines the result of minimal development in the 
Im rrm 

following sense: if t 2 s’ and t L s” on the same set of redexes then s’ 3 s”. 

Proof. Induction on the number of redexes. Zero redexes do not make a problem. 

Neither does one. Since the order of reductions for the disjoint redexes is irrelevant we 

can assume that all the maximal redexes are reduced at the end. Suppose now that we 

omit all the maximal redexes. By the induction hypothesis without them both minimal 

developments give the same result (new minimal developments are “initial segments” 

of the old ones). Moreover (again by the induction hypothesis), the residuals of the 

maximal redexes are the same in both cases and, as observed earlier, they are disjoint 

(and they do not multiply). Reducing them in whatever order gives the same result. 

The main use of minimal development is in the following lemma. 

Lemma 4.7. If every 
condition: 

aP_b 

reduction p E 92, and every y E 9%?,, satisfy the following 

then 9?; and 92; commute, i.e., 
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Proof. Induction on the length of 2’;. When the length is 1 notice that every one step 

reduction y is a minimal development and use the assumption plus induction on the 

length of 9;. The above argument is also used when passing from “n-l” to ‘3~“. 0 

Notation: Let y E 91. Then yOP = /I* if y = q and y”P = Pr” if y = SP (notice that 

Y Or* = r”P). Also 

for example, 

(of course 2 6 W(t)). 

From now on we will write just t[a] instead of t[a/x] whenever possible. 

Lemma 4.8. Let a[b] 2 c be a minimal development on redexes RI,. . . ,Ri, . . . ,Ri+j, 

Ri+j+l[b], . . ., Ri+j+k[b], where the redexes RI,. . . , Ri are proper subterms of b and the 

term b appears exactly where shown. Then c E a’[y”(b’), . . . , y’(b’)] so that a[x] 3 

a'[x, . . . ,x] on the redexes Ri+ 1,. . . , Rt+j, Ri+j+l+u[x], . . . , Ri+j+k[X] and b L b’ on 

RI,..., Ri; here u = 0 ifRi+j+l[b] f b and u = 1 ifRi+j+l[b] z b. 
Our assumption on the order of writing of redexes for a minimal development gives 

Ri+j+l [b] 4 ’ . . < Ri+j+k[b] (the relation 4 stands for “proper subterm”). 

(Sometimes we wiN use the following form of the lemma: let a[b] 2 c be a 
minimal development on redexes RI,. . . , Ri, . . . , Ri+j, Ri+j+l [b], . . . , Ri+j+k[b], where 
the redexes RI,..., Ri are subterms of b and the term b appears exactly where shown 

as a proper subterm and maybe Ri E b. Then: c 5 a’[y“(b’),. . , , y”(b’)] so that 

a[x] 3 a'[x, . . ,x] on the redexes Ri+l, . . . , Ri+j, Ri+j+l [xl,. . . , Ri+j+k[X] and b 3 b’ 

on RI,... ,Ri_,;here~=OifRi$bandu=l ifRi=b). 

Proof. If all the redexes are disjoint from b then the statement is almost a tautology. 

There are two other cases - the first one is when there is a maximal redex properly 

contained in b. By Lemma 4.6 we can assume that we first do the reductions in b, 

i.e. a[b] L a[b’] and then the reductions on the redexes disjoint from b’. Since the 

reduction a[b’] 3 d on a redex Rd disjoint from b’ satisfies the statement, i.e. d c 

a’[b’] so that a[x] 3 a’[x] on Rd (it can be proved by induction on the complexity of 

a[x]), we have proved the lemma in this case. The proof now continues by induction 

on the index k; the previous part is just the base of induction k = 0, i.e. there is no 

redex containing b. So let R denote the maximal redex containing b (it can be b itself), 

i.e. in the notation above R = Ri+j+k+l[b]. Our minimal development is a[b] z c 
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on the set of redexes as in the statement of the lemma plus R. By Lemma 4.6 we 

can assume that R is the last one reduced. Consider now the minimal development 

without the last step. Since a[b] E A[R/y] (f or an appropriate term A) we can apply 

the induction hypothesis and conclude that 

WVYI s A’B’IYI 

on the redexes without R so 

A[y] L A’[y] 

that 

on the redexes outside of R - these are some of Ri+ 1,. . . , Ri+j and 

m 
R 2 R’ 

(3) 

(4) 

(5) 

on the rest of the redexes - they are Rf,. . . ,R,, the redexes from Ri+l,. . . ,Ri+j which 

are in R and Ri+j.+l [b], . . . , Ri+j+k[b]. Applying the induction hypothesis to (5) (actually 

just the base of induction) we have R’ E R’[yU(b’), . . . , y”(b’)] so that 

R[x] L R’[x, . . . ,x] (6) 

on the redexes from Ri+l, . . . , Ri+j which are in R and R<+j+l+u[X], . . . , Ri+j+k[X], and 

also 

..m 
b i-t b’ (7) 

on RI,... ,Ri. Taking (4) and (6) we get 

~[Rbllyl 3 A’P’k.. . ,xl/vl (8) 

on Ri+l,...,Ri+j,Ri+j+l+,[Xl,..., Ri+j+k[X]. NOW, if we reduce R’[x,. . .,x] (which is 

indeed a redex) we have 

-Wxllyl -f+ A’W’[x,. . . ,xIYYI (9) 

on Ri+l,..,,Ri+j)Ri+j+l+l[Xl,..., Ri+j+k+l[X]. Since A[R[x]/y] E a[x] we can use 

a’[x, . . . ) x] to denote A’[y(R’[x,. . . , x1)/y]. This together with (7) finishes the proof. 

Lemma 4.9. With the above notation 

1. y”(y”(t)) -f+ yU”“(t), 

2. a[y(b)] z u[b], providing b is 
b E lx. bl) or in a restricted position 

the following hold: 

of the “forbidden shape” (i.e. b E (bl, b2) or 
or both. 
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Lemma 4.10. The conditions of Lemma 4.7 are satisjed when p is any 91 reduction. 

Proof. Case 1. p E Pr (and y G q or y E SP). So suppose we have 

Pr 4b,l 

Yrn I 
a’[r”(~((r”(b;>,b~>))/x,. . . ,y”(N(y”(b’J9 WWI, 

where the minimal development ym is done on the redexes RI,. . . ,Ri,. . . ,Ri+j, 

Ri+j+l [n((bl,b2) 11, *. . > Ri+j+k[X( (bl, bz))], where the redexes RI,. . . , Ri are subterms 

of bl, redexes which are in b2 are not even shown and the term rc( (bl, b2) ) is exactly 

where shown. By Lemma 4.8 the result of the minimal development has to be as above 

(since we cannot apply y on (bl , b2) - either the types do not match or the shape is 

forbidden) where a[x] L a’[.~, . . . ,x] on Ri+l, . . . , Ri+j, Ri+j+l+,[X] , . . . , &+j+k [xl ad 

bl 3 b’, on R1,...,Ri_“. 
For the sake of simplicity, we will write just a’[x] instead of a’[~, . . .,x1 and sim- 

ilarly a’ErYrW’(b~ ), bi)))l for 4Y‘(4(y”(b{ 1, Q)Yx,. . . , ?‘(4y”(b{ ), bi)))/xl and so 
on. But we do not write Pr instead of Pr* (e.g. the following diagram). Applying Pr* 

we have 

Pr 
m 44 

Yrn 
I 

a’[y*(n((y”(b;),b;)))lprta’[r”(y”(b’l))l. 

By Lemma 4.9 we can add one more arrow: 

I / a’[y”““Wl 
Yrn 

YOP 

a’[y”(n((~“W,h W)N pr’ ~‘b”(~“W)l. 

NOW, if uvu = 0 it is obvious that u[bl] z u’[b’,] on RI,. . . ) Ri, . . .) Ri+j, Ri+j+t [bl], . . . , 

Ri+j+k[bl] finishes the proof. Therefore, suppose u V u = 1. If bl is of “forbid- 

den shape” or in a restricted position (it could not be both because we would have 

u V u = 0) then by Lemma 4.9 u’[r(bi)] z u’[b{] and again the added ym is per- 

formed on all the redexes except the one which caused u V u = 1, i.e., RI,. . . ,Ri-,, 
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And finally, if bl is not of “forbidden shape” nor in a restricted position (and still 

u V v = 1) then a[b{] 2 a[y(b{)] can be performed so we have 

where the new y” is performed on RI,. . . , Ri_(uAv), Ri+l, . . . , Ri+j, Ri+j+l [bl], . . . , 

Ri+j+k[bl]. This finishes the proof of the first case. 

Case 2: p E fl (and y E q or y E SP). So assume we have 

4(~y.b‘41 ’ 4Wy)l 

Yrn I 
u'[r"(~y.r"(b'>‘r"(c'>>1, 

where ym is done on the redexes RI,. . . ,Rl,. . . ,Ri,. . . ,Ri+j, Ri+j+l[(A.y.b‘c)], . . . , 

Ri+j+k[(ly . b‘c)], where the redexes RI,. . . , RI are subterms of b, redexes R/+1,. . . , Ri 

are in c and the term (Ay. b‘c) is exactly where shown. (See the simplification in the 

notation mentioned in the first case.) Again by Lemma 4.8 the result of the minimal de- 

velopment has to be as above (since we cannot apply y on Ay . b) where a[~] 2 a’[~] 

on the redexes Ri+l,. . . ,Ri+j,Ri+j+l+,[X], . . . ,Ri+j+k[X], b -f+ b’ on RI,. . . ,Rl_” and 

c z c’ on RI + , . . . , Ri_w. Without loss of generality, we assume that b has at most 1 

three occurrences of y in it - so b looks like b(y, y, y) where only the leftmost y is 

among the redexes (e.g. RI E y) and only the rightmost y is in the restricted position 

for this y. Applying /?* we have 

a’[yWy. y”(b’(y(y), Y, ~W”(c’))l 5 u’[r”(r”(b’(r(r”(c’)), f”(c’), f'(c'))))l. 

The rightmost occurrence of y”(c’) is in a restricted position (by the assumption) so 

applying y”P we get c’ at this position (we used Lemma 4.9). Also y(y”‘(c’)) z y(c’) 
Yap 

and yU(yU(b’)) --+ y’“” (b’). So, we can add one more “arrow” to the diagram above 
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and now we have 

mY.b(Y,Y,Y)'cN 
B ~4&--/y, C/Y, C/Y))1 

.,m 
I I 

a'~Y"(nY.r"(b'XY(Y),Y~Y~~Y"V))1~a'~Y"""(b'~Y(c'),YwV),c'))1 . 
2 

It is easy to see the redexes for the following minimal development: b(c,c,c) 3 

b(c’,e’,c’). Now we have two cases: c’ of forbidden shape or not (let us just mention 

that the first case is possible exactly when c is of forbidden shape). In the first case 

y(c’) 5 c’ and yw(c’) 3 c’ (in fact, w = 0 in this case). In the second case 

c’ L y(c’) and c’ L yW(c’) (recall that the first two positions of c’ are not restricted 

in b). In any case the two “branches” of the above diagram are little closer, and 

we have 

mY.wY,Y,Y~cN 
B 

- 4Nw,c>l ym -[&,I 

.,m i 
I 

a’[y”(ilY. y”(b’(y(Y),Y,Y))‘y”(c’)),, 
2 

a’[y”” “(b’(y(c’),y”(c’),c’))l~ a’[~” ““&,N, 
Y 

if c has forbidden shape, 

if c has allowed shape 

(passage to b’ also does not create a problem now). Now if the u V v = 0 solution is 

obvious, so assume u V v = 1. So the situation is exactly as in the first case - in any 

case to the above diagram we can add 

@,I 
yrn 

\ 
a’[y’&,)l 

/ 
Y 
OP 

a’[~’ ” “&,)I 

where r = 0 if bo is of “forbidden shape” or in a restricted position and r = 1 

otherwise. (Although ym is not in general a transitive relation here we took care of that 

by reducing “from inside” so that these consecutive ym’s give a minimal development.) 
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Case 3: p E T (and y E q or y E SP). So suppose we have 

a[r’] I” ----+-a[*1 

Yrn I 
a’[t’/x] 

(see again the simplified notation from case 1). The minimal development was done 

on the redexes RI,. . . , Ri, . . . , Ri+j, Ri+j+l [t], . . ., Ri+j+k[t], where the redexes Rl,...,Ri 

are subterms of t and the term t is exactly where shown. By Lemma 4.8 the result 
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of the minimal development has to be as above (since we cannot apply y on t - the 

types do not match) where a[x] 2 a’[x] on Ri+l, . . . ) Ri+j, Ri+j+l [xl,. . . , Ri+j+k[X] and 

t L t’ on R 1,. , , Ri. Since t’ still has type 1 it is obvious that the following holds: 

a[t’] T -a[*1 

Y j IF 
a’[t’/x]ta’[*] 

where the new y”’ is done on Ri+l,...,Ri+j,Ri+j+l[*],..., Ri+j+k[*]. q 

Proof of Proposition 4.3. Just apply the previous lemma and Lemma 4.7. 0 

Lemma 4.11. 9, is canonical (i.e. confluent and strongly normalizing). 

Proof. For details we refer to [12] - this part is correct. Let us just say that by 

Newman’s lemma it is enough to show local confluence and strong normalization. 

Local confluence is easy here. Strong normalization is proved by assigning to each 

term t a natural number #t so that 

t 3 t’ implies #t > #t’. 

For that we first define the rank of a type as the number of the type forming operations 

in it, i.e. #(A x B) = #(AB) = #(A)+#(B)+ 1 and the rank of atomic types and terminal 

type is zero. Second, we define the degree of a redex 

d(R) = 2C#(Ar), 

where A ,, . . . ,A, are types of redexes in t which contain R. Finally, 

#t = C d(Rj), 

where Rj are all (occurrences of) redexes in t. 0 

Lemma 4.12. The reduction 91 is canonical. 
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Proof. A well-known result is that in the typed case Pri and /I are canonical (see, 

for example, [5]). Adding T-contraction will not change much. Local confluence is 

simple to check, and we get strong normalization by showing that all T-reductions 

can be postponed after /?,Pr-reductions. Let us just show that this is so in case of 

/3. Suppose that before a[(Jx.b‘c)] L a[(@~))] there was a T reduction. There 

are only two interesting cases: C[t’] 2 C[*] = c and B[t’/y] 5 B[*/y] - b. 

In the first case the old reduction looked like a[(Ax.b‘C[t’])] L a[(Ax.b‘c)] L 

a[(b(c))/y], we transform it to a[(~x.b‘C[t’])] L a[(b(C[t’]))] 2 u[b(c)]. (By a- 

congruence we insure that there are no clashes of variables.) In the second case the old 

reduction looked as u[(;lx.B[t’/y]‘c)] 2 u[1x.B[*/y]‘c] J+ a[@~)]. We transform 

it to u[(ix.B[t’/y]‘c)] L u[(B[t’/y])(c)] - u[B(c)[(t’(c))/y]] 2 u[B(c)[*/y]] = 

a[@~)]. (Here we assumed that y was not a free variable in c - it was anyway 

denoting just a position.) Even simpler is the proof with Pr instead of /I. Notice 

that in those transformations the number of Pr, /? reductions remains the same and 

they “go up”. So there is no infinite &?z-reduction, if there were it would have to 

have infinitely many Pr, /?-reductions (no terms have infinitely many consecutive T- 

reductions); transforming such a reduction we would get arbitrarily long reduction of 

consecutive Pr, j3 steps which would contradict strong normalizability of this fragment. 

This (and even less) is enough to show that Mints’ reductions are confluent. That 

is also all what we need to finish the proof of the main theorem. For the record: 

Corollary 4.13. Mints’ reductions are conjuent. 

Proof. Suppose we have 

u&b 

J?* 
I 
c 

(Recall 9 = Wi U $82.) Then just apply the induction on the number of changes of 8; 

and 9?; in the branches together with Lemmas 4.11, 4.12 and Proposition 4.3. (That 

was the pattern of the Hindley-Rossen lemma.) 0 

Although not needed for the main lemma we can prove that Mints’ reductions are 

not only confluent but also weakly normalizing. 

Proposition 4.14. Terms in &?I normal form are closed for W;?-reductions, so we 
have that Mints’ reductions are weakly normalizing, the strategy being first do all 
al-reductions then all &-reductions (even more specijcally .B?z cun be separated: 
first all Pr and /I and then all T reductions). 
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Proof. Just notice that application of Pr and j-reductions on the Wi-normal term 

cannot introduce new Wi redexes. For example, if a[k~.b‘c] is an .9i-normal term, 

then a[b(c)] is 9%‘t-normal too; all terms are in even a more restricted position than 

they were before the P-reduction. Also use Lemmas 4.11 and 4.12. 0 

Corollary 4.15 (Akama [l]). Mints’ reductions are strongly normalizing. 

Proof. First observe (examining several cases) that if a term is not in 9&-normal form 

it cannot become Wz-normal after application of Wr-reductions. So assume that we 

have an infinite chain 

4 % Rh Rb+, 
to-t, -...---s&-... 

(ij E { 1,2}). Since .%?I is strongly normalizing as proved above, we have that in the 

above chain infinitely many reductions are of .%&type. Let 6 denote (the unique) Wt- 

normal form of the term ti. Then from the above infinite chain we can obtain (by 

91 -normalization) the following infinite chain: 

_ 9: _ a; Bw; 
to - t1 - ... -t; 

% 
- ... . 

This chain exists by the commutativity of 9; and 9%‘; (Proposition 4.3) and the fact 

that Wi normal forms are closed for 9$?2-reductions (Proposition 4.14). Also we have 

that the chain is infinite by the observation from the beginning of the proof. But this 

contradicts strong normalization of .%?2. 0 

It is obvious that unrestricted Mints’ reductions are not normalizing (for example, XA” 

could be q-expanded and /?-reduced infinitely many times); it is interesting, however, 

that they are confluent. 

Corollary 4.16. Mints’ reductions without the restrictions are confluent. 

Proof. Suppose that 

That implies b Ep c and, by Lemma 4.2, it is the same as b Ege c, and then from the 

confluence of W we have that there exists a term d such that b -% d and c % d. 
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Since % C .W we have 

acb 
I 

co* I :(.#)’ 
t 

c----.d 
9”) 0 

Remark 4.17. Mints’ reductions were given in [ 121. Unfortunately, Lemma 7.l(vi) and 

Theorem 7.3 are not correct. The theorem states that the normalizing strategy is Iirst 

9~2 then 9,. Applying that on x1 xA we get (rc(x), r?(x)). But applying the strategy on 

(n(x),rc’(x)) gives (*,rc’(x)). So two equal terms x and (rc(x),rc’(x)) do not have the 

same normal form. If the calculus were without the terminal object (and the appropriate 

rule) then first 9& and then &?i would be a normalizing strategy; this was suggested 

already in [14, 3.5.2 Normalization theorem] (notice however that the uniqueness of 

the normal form (there called expanded normal form) was not stated, cf. 3.5.3 Strong 

normalization theorem lot. cit.), but also recall that Prawitz considers all first-order 

logical connectives (even absurdity) but not the connective true. 

Let us finally restate and prove 

Proposition 3.5 [bis!]. If f =X g in a free A-calculus and x does not occur as a free 

variable in either f or g then we also have f = g. 

Proof. Since by Corollary 4.13 (free) typed ;l-calculus is confluent for a set of reduc- 

tions which do not introduce new variables, from f =x g we have that there is a term 

t such that f and g reduce to it, therefore f = t and t = g. 0 

The above proof concludes the proof of our main result. 
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