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Three-dimensional structures of protein backbones have been predicted using neural networks. A feed forward neural network was trained on 
a class of functionally, but not structurally, homologous proteins, using backpropagation learning. The network generated tertiary structure infor- 
mation in the form of binary distance constraints for the C, atoms in the protein backbone. The binary distance between two C. atoms was 0 
if the distance between them was less than a certain threshold distance, and 1 otherwise. The distance constraints predicted by the trained neural 

network were utilized to generate a folded conformation of the protein backbone, using a steepest descent minimization approach. 
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1. INTRODUCTION cumbersome) to build a reasonable 3D model of the 
protein’s structure [16-181. 

One current aim of molecular biology is determina- 
tion of the three-dimensional (3D) tertiary structures of 
proteins in their folded native state from their se- 
quences of amino acid residues [ 1,2] _ 

2. MATERIALS AND METHODS 

All secondary structure prediction methods [3-61 
have reached a perform~~e ceiling around 50-70~0. 
This indicates the importance of long-range interactions 
between different local folding domains in the chain of 
amino acid residues [7]. The neural network method 
has been reported [&IO] to perform better than the 
Chou and Fasman method [3]. Recently, neural net- 
works have also been applied to predict specifically the 
beta turns in proteins [ 111. 

The 3D structure of proteins can be determined using 
either X-ray diffraction patterns of the crystalline 
phase, or NMR for proteins in solution [ 121. The latter 
is currently limited to the study of proteins smaller than 
approximately 150 amino acid residues. The rate at 
which (3D) structures are being solved is at least one 
order of magnitude lower than the rate at which new 
protein sequences are being determined. Since the func- 
tional characteristics of a protein are intimately linked 
to its 3D structure [2,13-151, it is important to develop 
tools that can predict the structures corresponding to 
new sequences on the basis of knowledge acquired from 
known tertiary structures. 

If significant sequence and functional homology ex- 
ists between a protein of interest and proteins for which 
the 3D structures are already known, it is possible (but 

We here describe a method for predicting the 3D structure of a pro- 
tein backbone from its amino acid sequence. A neural network (fig.1) 
was trained on matching sets of amino acid sequences and structural 
information of two different types, one being the corresponding 
secondary structure and the other the binary distance constraints, in 
the form of diagonal bands of binary versions of the C, distance 
matrices [ 191. In the case of a training set consisting of 13 proteases 
[20], the network was capable of learning to a level of 99.9% on the 
distance matrix output and 100% on the associated secondary struc- 
ture assignment. The distance matrix for a protein novel to the net- 
work was generated by the trained network. The width of the diagonal 
band of the distance matrix was chosen to be 61. Because of sym- 
metry, only the lower half was used, giving 30 distance constraints for 
each amino acid residue. Subsequently, steepest descent minimization 
was used to fold the protein’s backbone until a maximally attainable 
number of the distance constraints were satisfied. These constraints 
are derived from the distance matrix. Each trace in the distance matrix 
comprises a prescription for local folding features, within the limita- 
tion imposed by the 30-residue horizon. In order not to exclude any 
potentially useful information, we adopted a procedure which took 
into account the entire number of constraints arising from the 
distance matrix prediction (which in principle could be as large as thir- 
ty times the number of amino acid residues). The combination of the 
two techniques thus constitutes a full attempt at protein folding from 
primary structure to tertiary structure of the backbone. In the training 
set consisting of the 13 proteases, all 61-residue windows were unique. 
Most secondary structural elements are defined within such a 
61-amino-acid window. Exceptions are the linings of beta barrel 
structures [21] and very long-range parallel beta sheets. 

3. RESULTS 

Correspondence address: S.B. Petersen, NOVO-Nordisk Research 
Institute, Novo Alle, DK-2880 Bagsvaerd, Denmark 

The following figures present the main results of the 
current investigation. Fig.Za shows the binary distance 
matrix of the trypsin 1TRM (rat trypsin), which is 223 
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Fig.1. The architecture of the 24ayer (of connections) feed forward 
neural network used for predicing distance constraints from the se- 
quence of amino acid. The input to the network is the amino acid se- 
quence (here indicated in the one letter code). This sequence is moved 
stepwise through a window of 61 letters. The input information passes 
through a hidden level of neurons (needed for processing data inter- 
nally), down to the output level. At the latter, a set of binary 
distances, between the centrally positioned amino acid and those lying 
to the left of it in the input window, is produced. Secondary structure 
assignments, in the 3 categories of helix, sheet and coil, are also given 
at the output level. Regarding the binary distance matrix, the network 
is trained to report which of the 30 preceding C, atoms are positioned 
within a threshold distance of 8 A to the centrally placed amino acid. 
The number of hidden units was 300 for an 8 A threshold and 400 
when the threshold was set to 12 A. The input level had 1220 
(20 x 61) units, the hidden level had 300 units, and the output had 33 

units. 

residues long. The network’s ability to correctly assign 
structural information is amply illustrated in fig.2b, 
where the network is predicting the structure for a 
trypsin-like sequence, although the training set con- 
sisted of both trypsin and subtilysin. Although a signifi- 
cant degree of homology exists between the trypsin in 
question and the trypsins included in the training set, 
not a single input window presented to the network was 
identical to any window in the training set. 

1TRM ITRM 

In the figure, there is a clear distinction between 
alpha-helices, anti-parallel and parallel beta sheets, as 
well as other tertiary motifs; the helices being bands 
parallel to the diagonal and anti-parallel sheets being 
stripes orthogonal to the diagonal. 

Fig.2c shows the binary distance matrix of the folded 
backbone structure of this trypsin, using 4PTP as the 
starting configuration and the predicted binary distance 
matrix for the distance constraints. Although 1TRM is 
74% homologous 1221 to 4PTP, none of the 223 win- 
dow configurations with 61 consecutive residues that 
could be generated from ITRM, were represented in the 
training set. The result of that minimization is shown in 
fig.3a,b, and it agrees with the correct 3D structure of 
ITRM, to within 3.0 A rms. In this particular case, the 
length of the sequence used for the starting configura- 
tion was identical to that of the protein to be fitted. 
When the sequences are of unequal length, on the other 
hand, it is clear that additional considerations would 
have to be taken into account during the fitting process. 

In order to test the performance of the steepest des- 
cent method, we also used a 223-residue coiled alpha 
helix as the initial configuration for the folding of 
ITRM. The steepest descent minimization generates 
two subdomains separated by a 20-residue random coil 
domain. This result is remarkable because the folding 
motif of 1TRM (as well as that of other trypsins) clearly 
consists of two domains separated by a similar length of 
random coil segment at approximately the same posi- 
tion. 

For large proteins, where the band of distance con- 
straints does not cover all spatial contacts, local folding 
domains may acquire different chiralities, leading to 
improper packing of the domains in the protein. 
However, for 6PTI (bovine pancreatic trypsin in- 
hibitor), which is only 56 residues long, we have been 
able to generate a correctly folded backbone structure 
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Fig.2. Binary distance matrices for 1TRM. The matrices (223 x 223) show which C, atoms are within an 8 A distance to each other C, atom in 
the folded protein. a) The matrix corresponding to the structure determined from the X-ray data (8 A threshold). b) Neural network prediction 
of an 8 A distance matrix. A 61-residue band centered along the diagonal is generated. The network predicts this band with an accuracy of 96.6% 
C) The matrix corresponding to the structure produced by steepest descent minimization, using the neural network prediction as a starting point. 
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Fig.3. Backbone conformations for the trypsin 1TRM (223 residues long) and the trypsin inhibitor 6PT1(56 residues long). a) The crystal structure 
for ITRM, as determined by the X-ray data. This corresponds to fig.2a. b) The predicted structure of 1TRM superimposed on the crystal structure. 
The rms deviation was 3.0 A for all the C, atoms. The largest deviations were present in surface loops, which in the crystal structure are fixed 
by several disulphide bridges. c) The crystal structure for 6PTI superimposed on the structure generated from the full distance matrix (56 x 56) 
at 8 A, using the steepest descent method with a totally randomized initial configuration of the backbone. The distance matrix was obtained from 
the crystal data for 6PTI. The rms of the fit was 1.2 A. This demonstrates that the steepest descent approach is capable of producing an essentially 

perfect fit to the X-ray data. 

using the steepest descent method. The full binary 
distance matrix used for the minimization was 
generated from crystallographic data for 6PTI. Follow- 
ing convergence, the errors between the fitted and the 
correct structure lay within 1.2 A rms (fig.3c). 

4. DISCUSSION 

The main achievement of this study has been the 
generation of a 3D structure of a protein from its amino 
acid sequence; the novel approach involving first the 
prediction of distance matrices using a neural network 
and thereafter a minimization fitting procedure. The 
results reported here are predictions of folded confor- 
mations, illustrated with the trypsin ITRM. Our neural 
network is clearly capable of generalizing the folding in- 
formation stemming from known proteins with 
homologous function. We are presently investigating in 
detail, how sequence homology between a protein and 
the proteins in the training set influences the quality of 
this approach’s predictions. Distance constraints can 
also be derived from experimental procedures such as 
NMR, in which they take the form of nuclear 
Overhauser enhancement (NOE) factors. Structural in- 
formation can be successfully derived from such data 
using restraint dynamics 123-261 which in its essential 

form bears some resemblance to the approach 
employed here, the most salient difference being that 
the potential energy function in our work is much 
simpler. 

Finally, we note that further studies are necessary to 
clarify whether proteins with low levels of homology to 
other proteins of known structures can be predicted, if 
the neural network is trained on a much larger set of 
protein structures than is reported here. 
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