identified for study inclusion. Sildenafil was the most common initial treatment (n = 455 patients), followed by bosentan (n = 251 patients) and ambrisentan (n = 21 patients). On average, ambrisentan patients received one pill/day with a daily dose of 7mg, bosentan patients received 2 pills/day with a daily dose of 222 mg, and sildenafil patients received 3 pills/day with a daily dose of 61mg. Approximately 35% of ambrisentan, 25% of bosentan, and 25% of sildenafil patients experienced a dose increase (p<0.013) during the follow-up period. PAH-related inpatient and emergency department utilization were similar among the groups, while ambulatory visits differed among the groups; with average monthly counts of 1.2, 0.8, and 0.5 visits for ambrisentan, bosentan, and sildenafil patients (p<0.001). Follow-up total PAH-related costs were significantly different among the groups, with average monthly costs of $6820, $5332, and $3632 for ambrisentan, bosentan, and sildenafil patients (p=0.020). Cost differences were primarily driven by PAH-related pharmacy costs, which were consistently higher in bosentan patients. In contrast, sildenafil patients had significantly lower inpatient costs (p<0.001).

CONCLUSIONS: Of the three oral PAH treatments studied, sildenafil was the most frequently prescribed, and was associated with lower pharmacy and overall costs than either ambrisentan or bosentan.

CARDIOVASCULAR DISORDERS – Conceptual Papers & Research on Methods

PCV153

FAILURE OF THE BLAND-ALTMAN METHOD TO IDENTIFY CLINICALLY IMPORTANT DISAGREEMENT BETWEEN MEASURES OF THE INTERNATIONAL NORMALIZED RATIO

The Johns Hopkins Medical Institutions, Baltimore, MD, USA

OBJECTIVES: The Bland-Altman method is often upheld as the optimal method to assess agreement between alternate measures of the same clinical parameter. However, recent research has shown that group demonstrates the Bland-Altman method does not estimate agreement in a clinically meaningful way. The objective was to determine if the Bland-Altman method distinguished between two point-of-care (POC) INR devices. These devices were previously shown to have significantly different levels of agreement with our core laboratory. METHODS: In a previous experiment, 170 patients provided three separate INR measures at the same clinic visit—two by POC (Aviosure™ and ProTime™ devices) and one venous sample analyzed at our core laboratory (considered the standard measure). Agreement was achieved when the POC and lab INR values differed by no more than 0.3 on either side of the decision. Differences in agreement between the POC devices and laboratory were assessed by McNemar’s test. In the current study, we applied the Bland-Altman method to determine if differences regarding agreement between the POCs and laboratory were identical to the previous experiment where clinical decisions defined agreement. RESULTS: The Aviosure device was significantly more likely to lead to the same clinical decision as the laboratory versus the ProTime device (80% vs. 66%, respectively, p<0.001). However, the Bland-Altman method produced virtually identical mean bias (0.4 and 0.5 INR units, respectively) and did not distinguish between the devices. Statistical analysis of the Bland-Altman method produced the same findings for each device: significantly different standard deviations between the POC and the laboratory (p<0.001), significant bias in each device (p<0.001), and high correlations between the POCs and the laboratory (0.925 and 0.926, respectively). CONCLUSIONS: The Bland-Altman method did not detect clinically important differences between the POC INR devices. Clinically meaningful agreement between measures of INR is optimally assessed by a method that directly observes or explictly estimates clinical decisions.

PCV154

USING DIFFERENT MEASURES TO DETERMINE TIME IN THERAPEUTIC INR RANGE AMONG WARFARIN-TREATED PATIENTS FOLLOWING TOTAL HIP OR KNEE REPLACEMENT

Nordström B1, Kachroo S2, Nuteau E, Schein J, Fishier A1, Bookhart B1

1United BioSource Corporation, Lexington, MA, USA. 2The University of Illinois at Chicago, Chicago, IL, USA. 3OrthoMcNeil Janssen Scientific Affairs, LLC, Partan, NJ, USA

OBJECTIVES: To determine the proportion of the post-surgery prophylaxis period that warfarin-treated patients undergoing total hip or total knee replacement (THR/TKR) spent in the American College of Chest Physicians (ACCP)-recommended therapeutic range (2–3) were similar in this post-surgical cohort of THR/TKR patients. Regardless of the method, the majority of INR values among all patients were outside of the ACCP-recommended therapeutic range.

PCV155

LINKING CLAIMS AND ELECTRONIC MEDICAL RECORD (EMR) DATA FOR A HYPERTENSION STUDY

Ge Healthcare, Lifetab, OR, USA. 2Thomson Reuters, Washington, DC, USA. 3Thomson Reuters, Hanperton, ME, USA

OBJECTIVES: To develop a methodology to link patients from two de-identified datasets and leverage unique data elements from both to measure the impact of blood pressure and clinical findings on total costs. METHODS: Hypertensive patients (ICD-9 diagnosis 401.xx-403.xx) were identified from the MarketScan Commercial and Medicare Supplemental administrative claims databases (MarketScan) and the Ge Centricity Electronic Medical Record (EMR) database (Centricity) for the years 2004–2008. A hybrid approach of deterministic and probabilistic matches was developed to identify common patients. Patients were included if they matched on zip code, gender and month of birth, and had at least three matching office visit dates at a rate of 75% or higher. Patients were followed for 12 months after the initial diagnosis. MarketScan provided data on enrollment, all reimbursed services (medical and drug) and costs, and Centricity provided clinical and biometric details, such as body mass index (BMI) and blood pressure. RESULTS: Among the 3 million MarketScan and 1.5 million Centricity patients with hypertension, 31,786 met the matching criteria. Mean age was 59.7 years and 54% were female. The demographic and clinical characteristics of these patients did not vary substantially from those of the two data sources. Among the 31,786 patients, 84% received drug treatment, 56% had a BMI over 30 and mean systolic and diastolic values were 134 and 81, respectively. Mean unadjusted costs were $9,338 per patient with consistently controlled (first and last systolic <140 and diastolic <90) hypertension and $8,773 for patients not consistently controlled. CONCLUSIONS: A combined probabilistic and deterministic approach of linking patients yielded a sample size large enough to conduct a study and leverage the strengths of administrative and EMR data. Initial findings suggest that controlled patients incur higher costs, however, adjustments have not been made for additional demographic, clinical, and treatment characteristics.

PCV156

MODELING TRANSFORMED HEALTH CARE COSTS WITH UNKNOWN HETEROSEDASTICITY

Burris G1, Yack H2

1STAREMED Research / University of Michigan, Ann Arbor, MI, USA. 2STAREMED Research / City University of New York, New York, MI, USA

OBJECTIVES: Log models are widely used to deal with skewed outcomes, such as health care costs. They improve precision of estimates and diminish the influence of outliers. Smearing estimation suggested in literature only works with homoskedastic or heteroskedastic errors due to categorical variables. Generalized linear models (GLM) have been proposed as an alternative to deal with any kind of heteroskedasticity but recent literature shows that log models are superior to GLM under certain conditions. We present a method using log transformation that accounts for any kind of heteroskedasticity in the estimation of health care cost METHODS: Assume there is a population represented by the random vector of explanatory variables (ex. patient and clinical characteristics) and with the scalar response variable (ex. health care costs) y not a constant to estimate unknown parameters. Assume that error terms are in function of explanatory variables, and therefore heteroskedasticity exists. By modeling heteroskedasticity separately, we created a weighted function and using this weight in an outcomes model, we corrected the heteroskedasticity in the log transformed model. Retransformation was done by adjusting for heteroskedasticity. RESULTS: As a case study, we calculated the burden of illness of venous thromboembolism (VTE). The difference between the cost of VTE and non-VTE patients was estimated to be $6,345 and $8,239 depending on whether the proposed or a GLM model is used. The standard errors changed significantly depending on the model. The difference was significant with the log transformed model with heteroskedasticity-adjusted standard errors and the GLM model. However, the difference was insignificant when the adjustment was not done. CONCLUSIONS: Log transformation provides more efficient estimates than GLM models under certain conditions (ex. if there is excess kurtosis) and heteroskedasticity can be adjusted even if its form is unknown.

PCV157

ACCOUNTING FOR TRIAL-EXCLUDED MEDICAL CONDITIONS WHEN SIMULATING MORTALITY IN CLINICAL TRIAL POPULATIONS

Smolen H, Klein R, Myers J

Medical Decision Modeling Inc., Indianapolis, IN, USA

BACKGROUND: Clinical trials frequently exclude patients likely to die within the trial timeframe (e.g., those with terminal cancer). Therefore, a patient population with heterogeneous mortality outcomes relative to the age- and gender-matched general population. OBJECTIVES: To capture the effect that clinical trial exclusion criteria have on intermediate-term (i.e., one- to five-year) death probabilities in study subjects with substantial asymp-tomatic carotid artery stenosis. METHODS: We “phased-in” certain relevant death probabilities in a microsimulation model using data from the Asymptomatic Carotid Atherosclerosis Study (ACAS). The phase-in process initially eliminates or greatly reduces the mortality probability from a condition (reflecting patients excluded with
that condition) and increases the mortality probability as time progresses (reflecting patients that entered the trial with less severe and undiagnosed cases of the condition or who developed the condition during the trial). Mortality was phased-in for four conditions reflective of their high prevalence and consistency with exclusion criteria: CHD, malignancy, liver disease, and chronic respiratory disease.

RESULTS: To statistically compare the CALAS simulated versus actual mortality survival curves, we calculated the absolute differences between the curves and performed a standard equality of probabilities test on the curves at 12, 24, 36, 48, and 60 months. For all ADEs, even without mortality phase-in, at all times t before 60 months the simulated and actual curves had a statistically significant difference (0.00 < p < 0.04). With mortality phase-in, there was no evidence at any time t that the simulated and actual curves had a statistically significant difference (0.62 < p < 0.95).

CONCLUSIONS: Phasing in mortality probabilities from trial excluded conditions can simulate mortality survival curves that reflect the control arms of clinical trials.

RARE EVENT BIAS IN RETROSPECTIVE ANALYSIS OF OUTCOMES MEASURES

Baser Q, Yuce H, Wang L

STATeMED Research / University of Michigan, Ann Arbor, MI, USA

OBJECTIVES: It is well documented that standard logit regressions are biased in rare events. We wanted to illustrate how to analyze rare events in observational analysis using Medicare claims data. In particular, we compared the operational mortality for patients with hip fracture surgery and any suffered venous thromboembolism (VTE).

METHODS: We applied two correction methods to address possible rare event bias. The first method involved obtaining information about the fraction of those in the population and the observed fraction of those in the sample. We estimated the adjusted constant coefficient in the logit model. In the second method, we weighted the proportion of ones and zeros in the sample to equal the true proportion in the population. We tested for differences in predicted probabilities using a non-parametric test. The Mann-Whitney U test and Kolmogrov-Smirnov two sample test can both be used on predicted probabilities of logit regression to see whether differences exist.

RESULTS: To apply the methodology, we constructed a retrospective cohort study comparing the operational death rate between who patients who underwent hip replacement surgery who suffered VTE and patients who did not suffer VTE, 60,243 patients with hip fracture were identified from claims database for example, 98,421 patients without VTE. Mortality was rare (0.81% vs. 3.34% for patients with non-VTE vs. VTE). Using Monte Carlo simulation, the unadjusted rate was 0.97% for non-VTE patients and 4.36% for VTE patients. The odds ratio was 3.98 for the standard model, 3.98 for the prior correction method, and 4.57 for the weighted mechanism. The predicted event probabilities were significantly different. CONCLUSIONS: Standard logit regression is proven to underestimate probabilities with rare events. We examined two correction methods. The predicted event probabilities adjusted for rare event bias were significantly different from the unadjusted ones.

COMPARATIVE EFFECTIVENESS INDEX: A CONCEPTUAL APPROACH TO COMPARATIVE EFFECTIVENESS RESEARCH

Hagan M, Lee EH, Arkias S, Pazi L

Daichi Sankyo, Inc., Parsippany, NJ, USA

American Society of Pharmacists, Philadelphia, PA, USA

GENUINE BioPharma Group, New York, NY, USA

OBJECTIVES: The Comparative Effectiveness Index (CEI) provides a quantitative method of transforming efficacy data into effectiveness indices. In lieu of head-to-head randomized controlled trials, the CEI uses efficacy, adherence, and safety data to facilitate the drug evaluation process by providing a single value index for each therapeutic alternative. METHODS: Efficacy data from clinical trials serve as surrogate markers of effectiveness. In analyzing two hypothetical anti-hypertensive drugs, A and B, the efficacy of each drug is ranked on a nominal scale based on the literature: A = 10 and B = 8. The drug with the highest nominal value is the most efficacious. However, this value needs to be moderated by adherence and safety data. Adherence rates, calculated from claims databases for example, are: A = 60% and B = 90%. The formula for calculating the Modified Efficacy Score (MES) of each drug is the adherence rate * efficacy score/t00: A = 6 x 0.60 + B = 7.2. Adverse events (AE) reported in the clinical trials are ranked based on severity, the scale is anchored at 0 and 100 where 0 = No AE and 100 = Death. Each AE is assigned a value depending on its severity then multiplied by the probability of its incidence. This is repeated for each AE and summed. The inverse of the sum, the Adverse Events Score (AES), is used in the final computation so that both MES and AES modifiers have a direct relationship with the summed. The inverse of the sum, the Adverse Events Score (AES), is used in the final computation so that both MES and AES modifiers have a direct relationship with the summed. The inverse of the sum, the Adverse Events Score (AES), is used in the final computation so that both MES and AES modifiers have a direct relationship with the summed.

RESULTS: To statistically compare the ACAS simulated versus actual mortality survival curves, we calculated the absolute differences between the curves and performed a standard equality of probabilities test on the curves at 12, 24, 36, 48, and 60 months. For all ADEs, even without mortality phase-in, at all times t before 60 months the simulated and actual curves had a statistically significant difference (0.00 < p < 0.04). With mortality phase-in, there was no evidence at any time t that the simulated and actual curves had a statistically significant difference (0.62 < p < 0.95).

CONCLUSIONS: Phasing in mortality probabilities from trial excluded conditions can simulate mortality survival curves that reflect the control arms of clinical trials.

RARE EVENT BIAS IN RETROSPECTIVE ANALYSIS OF OUTCOMES MEASURES

Baser Q, Yuce H, Wang L

STATeMED Research / University of Michigan, Ann Arbor, MI, USA

OBJECTIVES: We wanted to illustrate how to analyze rare events in observational analysis using Medicare claims data. In particular, we compared the operational mortality for patients with hip fracture surgery and any suffered venous thromboembolism (VTE).

METHODS: We applied two correction methods to address possible rare event bias. The first method involved obtaining information about the fraction of those in the population and the observed fraction of those in the sample. We estimated the adjusted constant coefficient in the logit model. In the second method, we weighted the proportion of ones and zeros in the sample to equal the true proportion in the population. We tested for differences in predicted probabilities using a non-parametric test. The Mann-Whitney U test and Kolmogrov-Smirnov two sample test can both be used on predicted probabilities of logit regression to see whether differences exist.

RESULTS: To apply the methodology, we constructed a retrospective cohort study comparing the operational death rate between who patients who underwent hip replacement surgery who suffered VTE and patients who did not suffer VTE, 60,243 patients with hip fracture were identified from claims database for example, 98,421 patients without VTE. Mortality was rare (0.81% vs. 3.34% for patients with non-VTE vs. VTE). Using Monte Carlo simulation, the unadjusted rate was 0.97% for non-VTE patients and 4.36% for VTE patients. The odds ratio was 3.98 for the standard model, 3.98 for the prior correction method, and 4.57 for the weighted mechanism. The predicted event probabilities were significantly different. CONCLUSIONS: Standard logit regression is proven to underestimate probabilities with rare events. We examined two correction methods. The predicted event probabilities adjusted for rare event bias were significantly different from the unadjusted ones.

COMPARATIVE EFFECTIVENESS INDEX: A CONCEPTUAL APPROACH TO COMPARATIVE EFFECTIVENESS RESEARCH

Hagan M, Lee EH, Arkias S, Pazi L

Daichi Sankyo, Inc., Parsippany, NJ, USA

American Society of Pharmacists, Philadelphia, PA, USA

GENUINE BioPharma Group, New York, NY, USA

OBJECTIVES: The Comparative Effectiveness Index (CEI) provides a quantitative method of transforming efficacy data into effectiveness indices. In lieu of head-to-head randomized controlled trials, the CEI uses efficacy, adherence, and safety data to facilitate the drug evaluation process by providing a single value index for each therapeutic alternative. METHODS: Efficacy data from clinical trials serve as surrogate markers of effectiveness. In analyzing two hypothetical anti-hypertensive drugs, A and B, the efficacy of each drug is ranked on a nominal scale based on the literature: A = 10 and B = 8. The drug with the highest nominal value is the most efficacious. However, this value needs to be moderated by adherence and safety data. Adherence rates, calculated from claims databases for example, are: A = 60% and B = 90%. The formula for calculating the Modified Efficacy Score (MES) of each drug is the adherence rate * efficacy score/t00: A = 6 x 0.60 + B = 7.2. Adverse events (AE) reported in the clinical trials are ranked based on severity, the scale is anchored at 0 and 100 where 0 = No AE and 100 = Death. Each AE is assigned a value depending on its severity then multiplied by the probability of its incidence. This is repeated for each AE and summed. The inverse of the sum, the Adverse Events Score (AES), is used in the final computation so that both MES and AES modifiers have a direct relationship with the summed.

RESULTS: To statistically compare the ACAS simulated versus actual mortality survival curves, we calculated the absolute differences between the curves and performed a standard equality of probabilities test on the curves at 12, 24, 36, 48, and 60 months. For all ADEs, even without mortality phase-in, at all times t before 60 months the simulated and actual curves had a statistically significant difference (0.00 < p < 0.04). With mortality phase-in, there was no evidence at any time t that the simulated and actual curves had a statistically significant difference (0.62 < p < 0.95).

CONCLUSIONS: Phasing in mortality probabilities from trial excluded conditions can simulate mortality survival curves that reflect the control arms of clinical trials.