

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On certain spaces of vector measures of bounded variation $\dot{\mathbf{x}}$

Juan Carlos Ferrando

Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche (Alicante), Spain

article info abstract

Article history: Received 5 May 2010 Available online 22 March 2011 Submitted by Richard M. Aron

To Maite Monsonís. In memoriam

Keywords: Countably additive vector measure of bounded variation Radon–Nikodým property Copy of ℓ_∞ Copy of c_0

If *(Σ, X)* is a measurable space and *X* a Banach space we investigate the *X*-inheritance of copies of ℓ_{∞} in certain subspaces $\Delta(\Sigma, X)$ of *bvca*(Σ, X), the Banach space of all *X*-valued countable additive measures of bounded variation equipped with the variation norm. Among the consequences of our main theorem we get a theorem of J. Mendoza on the *X*-inheritance of copies of ℓ_{∞} in the Bochner space $L_1(\mu, X)$ and other of the author on the *X*-inheritance of copies of ℓ_{∞} in *bvca*(Σ , *X*).

© 2011 Elsevier Inc. All rights reserved.

1. Preliminaries

In what follows *(Ω,Σ)* will always be a measurable space and *X* a Banach space over the field K of real or complex numbers. We shall denote by $ca(\Sigma, X)$ the Banach space of all countably additive measures $F: \Sigma \to X$ provided with *the semivariation norm* $||F||_{\Sigma}$ *, while <i>cca*(*Σ, X*) will stand for the closed subspace of *ca*(*Σ, X*) of all those measures with relatively compact range. We represent by $ca^+(\Sigma)$ the set of positive and finite measures defined on Σ and denote by *bvca*(Σ , X) the Banach space of all X -valued countably additive measures $F: \Sigma \to X$ of bounded variation equipped with the variation norm $|F|_{\Sigma}$. If $\mu \in ca^+(\Sigma)$ then *bvca* $\mu(\Sigma, X)$ stands for the subspace of *bvca*(Σ, X) of all those measures $F \in b\nu ca(\Sigma, X)$ such that $F \ll \mu$. A Banach space *X* is said to have the Radon–Nikodým property (RNP) with respect to a finite measure space (Ω, Σ, μ) if every $F \in b \text{vca}_{\mu}(\Sigma, X)$ has a Bochner μ -integrable *X*-valued derivative. If *X* has the RNP with respect to every finite measure space (Ω, Σ, μ) , it is said that *X* has the RNP [2]. Following [9] we denote by $\mathcal{M}_1(\Sigma, X)$ the (closed) linear subspace of *bvca*(Σ , X) consisting of all measures $F \in b\text{vca}(\Sigma, X)$ with the Radon–Nikodým property, that is, such that for each $\mu \in ca^+(\Sigma)$ with $F \ll \mu$ there exists a density $f \in \mathcal{L}_1(\mu, X)$ with $F(E) = (B) \int_E f d\mu$ for every $E \in \Sigma$. According to [9, Theorem 5.22] the space $\mathcal{M}_1(\Sigma, X)$ is linearly isometric to $ca(\Sigma) \widehat{\otimes}_\pi X$. Thus if $F \in \mathcal{M}_1(\Sigma, X)$ then $F \in cca(\Sigma, X) = ca(\Sigma) \widehat{\otimes}_\varepsilon X$. If X has the RNP with respect to each $\mu \in ca^+(\Sigma)$ then clearly $\mathcal{M}_1(\Sigma, X) = b\vee ca(\Sigma, X)$. Particularly, if *X* has the RNP then $\mathcal{M}_1(\Sigma, X) = b\nu c a(\Sigma, X)$.

If each $\mu\in$ $ca^+(\Sigma)$ is purely atomic, then $ca(\Sigma,X)$ contains a copy of c_0 or ℓ_∞ if and only if X contains, respectively, a copy of c_0 or ℓ_∞ [4]. If *X* has the Radon–Nikodým property with respect to each $\mu \in ca^+(\Sigma)$, then $bvea(\Sigma, X)$ contains a copy of c_0 or ℓ_∞ if and only if *X* does [6]. As a consequence, if each $\mu\in ca^+(\Sigma)$ is purely atomic, then $bvca(\Sigma,X)$ contains a copy of c_0 or ℓ_∞ if and only if X contains, respectively, a copy of c_0 or $\ell_\infty.$ If there exists a nonzero atomless measure $\mu \in ca^+(\Sigma)$, the latter statement is no longer true [11]. However, if the range space of the measures is a dual Banach space *X*^{*}, then *bvca*(Σ , X ^{*}) has a copy of c_0 if and only if X ^{*} does [10]. For further information about the inheritance of copies of c_0 or ℓ_∞ in other spaces of vector-valued functions or operators we refer the reader to the excellent tract [1].

[✩] Research supported by project MTM 2008-01502 of the Spanish Ministry of Science and Innovation. *E-mail address:* jc.ferrando@umh.es.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter © 2011 Elsevier Inc. All rights reserved. [doi:10.1016/j.jmaa.2011.03.032](http://dx.doi.org/10.1016/j.jmaa.2011.03.032)

2. Results

In what follows *(Σ, X)* will stand for any closed linear subspace of *bvca(Σ, X)*, i.e. a Banach space of countably additive measures *F* : *Σ* → *X* of bounded variation equipped with the variation norm |*F*|*_Σ*. Given $Δ(Σ, X)$, if *Γ* is a sub-*σ*-algebra of *Σ* and *Y* is a closed linear subspace of *X* we denote by $Δ[Γ, Y]$ the linear subspace of *bvca*(Γ, *Y*) consisting of the *Y*-valued restrictions to *Γ* of the elements of $\Delta(\Sigma, X)$, i.e.

$$
\Delta[\Gamma, Y] = \{ F|_{\Gamma}: F \in \Delta(\Sigma, X), F(\Gamma) \subseteq Y \},
$$

equipped with the norm $|\cdot|_r$ of *bvca*(Γ, *Y*). If $\mu \in ca^+(Σ)$ we represent by Δ_μ [Γ, *Y*] the linear subspace of Δ [Γ, *Y*] consisting of those $G \in \Delta[T, Y]$ with $G \ll \mu|_{\Gamma}$.

Theorem 2.1. If $\Delta(\Sigma,X)$ contains an isomorphic copy of ℓ_∞ then either X contains an isomorphic copy of ℓ_∞ or there exist a *countably generated sub-* σ *-algebra Γ* of Σ, a scalar measure $\mu \in ca^+(Σ)$ and a closed and separable linear subspace Y of X such *that the closure of* $\Delta_{\mu}[\Gamma, Y]$ *in bvca* $_{\mu|_{\Gamma}}(\Gamma, Y)$ *contains an isomorphic copy of* $\ell_{\infty}.$

Proof. Let *J* be an isomorphism from ℓ_{∞} into $\Delta(\Sigma, X)$ and denote by $\{e_n: n \in \mathbb{N}\}$ the unit vector sequence of ℓ_{∞} . For each $pair \, m, n ∈ ℕ$ let { $E^m_{n,i}$; 1 ≤ *i* ≤ *k*(*m*, *n*)} be a finite partition of *Ω* by elements of *Σ* verifying that

$$
|Je_n|_{\Sigma}\leqslant \sum_{i=1}^{k(m,n)}\big||Je_n(E_{n,i}^m)\big||+\frac{1}{m}.
$$

Let us denote by *Λ* the algebra generated by the countable family

$$
\{E_{n,i}^m: 1 \leq i \leq k(m,n); m, n \in \mathbb{N}\}.
$$

Observe that *Λ* is also a countable family [7, 1.5 Theorem C] and denote by *Γ* the *σ* -algebra generated by *Λ*. Since clearly $Ω ∈ Γ$, then Γ is a sub- $σ$ -algebra of $Σ$.

Define $T : \Delta(\Sigma, X) \to \Delta[\Gamma, X]$ by $TF = F|_{\Gamma}$. This map is well defined, linear and bounded since $|F|_{\Gamma} |_{\Gamma} \leqslant |F|_{\Sigma}$ for all $F \in \Delta(\Sigma, X)$. Thus $T \circ J$ is a bounded map from ℓ_{∞} into $\Delta[\Gamma, X]$. Further, given $m \in \mathbb{N}$, by virtue of the definition of Γ one has

$$
|Je_n|_{\Sigma}\leqslant \sum_{i=1}^{k(m,n)}\big||Je_n(E_{n,i}^m)\big||+\frac{1}{m}\leqslant |Je_n|_{\Gamma}|_{\Gamma}+\frac{1}{m},
$$

which implies that $|Je_n|_{\Sigma} = |Je_n|_{\Gamma}|_{\Gamma} = |(T \circ J)e_n|_{\Gamma}$ for every $n \in \mathbb{N}$.

Let *Y* denote the closure in *X* of the linear cover of the countable subset $\bigcup_{n=1}^{\infty} Je_n(\Lambda)$ of *X* formed by the union of the images of the countable set *Λ* by the measures *Je_n*. Let us suppose that $Λ = {A_n: n \in \mathbb{N}}$. Then assume that *X* does not contain a copy of ℓ_{∞} and define $J_n:\ell_{\infty}\to X$ by $J_n\xi=(J\xi)(A_n)$ for each $n\in\mathbb{N}$. Since ℓ_{∞} does not live in X and J_n is a bounded linear operator for each $n \in \mathbb{N}$, all the operators J_n are weakly compact. So, according to [5], there exists an infinite subset *N* of N such that

$$
J_n \xi = \sum_{i=1}^{\infty} \xi_i J_n e_i
$$

for each $n \in \mathbb{N}$ and $\xi \in \ell_{\infty}(N)$. So one has

$$
J\xi(A_n) = \sum_{i=1}^{\infty} \xi_i J e_i(A_n)
$$

in X for every $\xi \in \ell_{\infty}(N)$ and $n \in \mathbb{N}$. But since $Je_i(A_n) \in Y$ for every $i, n \in \mathbb{N}$ and Y is closed, we get that $J\xi(A_n) \in Y$ for every $\xi \in \ell_{\infty}(N)$ and $n \in \mathbb{N}$, i.e. $J\xi(A) \in Y$ for every $\xi \in \ell_{\infty}(N)$ and $A \in \Lambda$. By the classic theorem on monotone classes [7, 1.6 Theorem B], the family $\{E \in \Sigma: J\xi(E) \in Y \,\,\forall \xi \in \ell_\infty(N)\}$ contains the sub- σ -algebra Γ generated by Λ . So we conclude that $J\xi(A) \in Y$ for every $\xi \in \ell_\infty(N)$ and $A \in \Gamma$.

Hence $J\xi|_{\Gamma} \in \Delta[\Gamma, Y]$ for $\xi \in \ell_{\infty}(N)$, i.e. $(T \circ J)\xi \in \Delta[\Gamma, Y]$ for each $\xi \in \ell_{\infty}(N)$ or, in other words, $T(J(\ell_{\infty}(N))) \subseteq$ [*Γ, Y*]. There is no loss of generality by identifying *N* with N.

If $\mu := \sum_{n=1}^{\infty} 2^{-n} |J e_n|_{\Sigma}$ then $\mu \in ca^+(\Sigma)$, and since $Je_n|_{\Gamma} \in b\nu ca_{\mu|\Gamma}(T, Y)$ for all $n \in \mathbb{N}$, setting $\xi^m = (\xi_1, \ldots, \xi_m, 0, 0, \ldots)$ one has $J\xi^{\overline{m}}|_{\Gamma}\in bvec_{\mu|_{\Gamma}}(\Gamma,Y)$ for every $m\in\mathbb{N}$ and $\xi\in\ell_{\infty}.$ Thus $J\xi^{\overline{m}}|_{\Gamma}\ll\mu|_{\Gamma}$ for every $m\in\mathbb{N}$ and $\xi\in\ell_{\infty}.$ But we can go beyond this. Let us show the following.

Claim. $J\xi|_{\Gamma} \ll \mu|_{\Gamma}$ for each $\xi \in \ell_{\infty}$.

Proof. Since we are assuming that *X* does not contain a copy of ℓ_∞ the linear operators $J_E\!:\!\ell_\infty\to X$ defined by $J_E\xi=$ $J\xi(E)$ for each $E \in \Sigma$ are weakly compact and consequently a standard argument (see for instance the proof of main theorem of [6]) shows that $E \mapsto \sum_{n=1}^{\infty} \xi_n J_E e_n$ is an *X*-valued countable additive measure on *Σ* of bounded variation and that the map $S:\ell_{\infty}\to b$ vca (Σ,X) given by $S_{\xi}(E)=\sum_{n=1}^{\infty}\xi_nJ_Ee_n$ is well defined, bounded and verifies that $S_{\xi}\ll\mu$ for all *ξ* ∈ ℓ_{∞} . Fix *ξ* and note that

$$
S\xi(A_n) = \sum_{i=1}^{\infty} \xi_i J_{A_n} e_i = \sum_{i=1}^{\infty} \xi_i J e_i(A_n) = J\xi(A_n)
$$

for every *n* ∈ N. Consequently *Sξ* coincides with *J ξ* on the algebra *Λ*. Now assume that *A* ∈ *Γ* satisfies that *μ(A)* = 0. Then $S\xi(A) = \mathbf{0}$ since $S\xi \ll \mu$ and hence $x^*S\xi(A) = 0$ for every $x^* \in X^*$. Given that Λ is an algebra and the countably additive measure $x^* J \xi |_{\Gamma}$ is an extension of the bounded, scalarly valued, countably additive measure $x^* S \xi |_{\Lambda}$ to the *σ*-algebra Γ, Hahn's extension theorem [3, Corollary III.5.9] guarantees that $x^* J\xi|_{\Gamma} = x^* S\xi|_{\Gamma}$ and, consequently, that $x^* J\xi(A) = 0$. Since this is true for every $x^* \in X^*$, it follows that $J\xi(A) = \mathbf{0}$. So $J\xi|_{\Gamma} \ll \mu|_{\Gamma}$, which completes the proof of the claim. \Box

Summarizing: first we have seen that $(T \circ J)\xi \in \Delta[T, Y]$ for every $\xi \in \ell_\infty(N)$, where N is an infinite subset of N, and then we have proved that $(T \circ J)\xi \ll \mu|_{\Gamma}$ for each $\xi \in \ell_{\infty}(N)$, so that $(T \circ J)\xi \in \Delta_{\mu}[\Gamma, Y]$ for every $\xi \in \ell_{\infty}(N)$. Consequently, $T \circ J$ is a bounded linear operator from $\ell_{\infty}(N)$ into $\Delta_{\mu}[\Gamma, Y]$. Since $|(T \circ J)e_n|_{\Gamma} = |Je_n|_{\Sigma}$ for every $n \in N$, then $\inf_{n\in\mathbb{N}}|(T\circ J)e_n|_{\Gamma}>0$ and Rosenthal's ℓ_{∞} theorem guarantees that the completion of $\Delta_{\mu}[\Gamma,Y]$, that is, the closure of $\Delta_{\mu}[\Gamma, Y]$ in *bvca*_{$\mu|_{\Gamma}(F, Y)$, contains a copy of ℓ_{∞} . \Box}

Corollary 2.2. If $\Delta_{\mu}[\Gamma, Y]$ is separable for every countably generated sub- σ -algebra Γ of Σ , every $\mu \in ca^+(T)$ and every closed and s eparable linear subspace Y of X, then X contains a copy of ℓ_{∞} if $\Delta(\Sigma,X)$ does.

Proof. If $\Delta(\Sigma, X)$ contains a copy of ℓ_{∞} but X does not then Theorem 2.1 provides a countably generated sub- σ -algebra *Γ* of *Σ*, a scalar measure $\mu \in ca^+(Σ)$ and a closed and separable linear subspace *Y* of *X* such that the closure of $Δ_μ[Γ, Y]$ in *bvca*_{$\mu|_{\Gamma}$ (Γ , Y) contains a copy of ℓ_{∞} , contradicting the hypothesis. \Box}

Corollary 2.3. If every closed and separable linear subspace of X has the Radon–Nikodým property, then X contains a copy of ℓ_∞ if $\Delta(\Sigma, X)$ *does.*

Proof. If *Γ* is a sub- σ -algebra of Σ , $\mu \in ca^+(F)$ and *Y* is a closed linear subspace of *X* then, by hypothesis, $\Delta_{\mu}[F, Y]$ is linearly isometric to a subspace of *L*1*(Γ,μ*|*^Γ , Y)*. Hence, if *Γ* is a countably generated sub-*σ* -algebra of *Σ* and *Y* is separable, then $\Delta_{\mu}[\Gamma, Y]$ is linearly isometric to a linear subspace of the separable Banach space $L_1(\Gamma, \mu|_{\Gamma}, Y)$. According to Corollary 2.2 this implies that *X* contains a copy of ℓ_{∞} if $\Delta(\Sigma, X)$ does. \Box

Corollary 2.4. (See Mendoza [8].) If $\Delta(\Sigma, X) = \{F \in \mathcal{M}_1(\Sigma, X): F \ll \mu\}$ with $\mu \in ca^+(\Sigma)$, then X contains a copy of ℓ_∞ if $\Delta(\Sigma, X)$ *does.*

Proof. First note that if *Γ* is a sub-*σ*-algebra of *Σ* then $Δ[Γ, X]$ is isomorphic to a subspace of $L_1(Γ, μ|_Γ, X)$. In fact, if $G \in \Delta[T, X]$ there exists $F \in \mathcal{M}_1(\Sigma, X)$ with $F \ll \mu$ such that $F|_{\Gamma} = G$. So there is $f \in L_1(\Sigma, \mu, X)$ satisfying that $F(E) = \int_E f d\mu$ for every $E \in \Sigma$ and, according to [2, Chapter V, Theorem 4], there exists a unique $E(f | \Gamma) \in L_1(\Gamma, \mu|_{\Gamma}, X)$, the so-called conditional expectation of f relative to Γ , such that $G(A) = \int_A E(f | \Gamma) d\mu|_{\Gamma}$ for every $A \in \Gamma$. Since

$$
|G|_{\Gamma} = \int_{\Omega} ||E(f | \Gamma)(\omega)|| d\mu|_{\Gamma}(\omega)
$$

the map $G \mapsto E(f \mid \Gamma)$ is a linear isometry from $Δ[Γ, X]$ into $L_1(Γ, μ|Γ, X)$. Hence, if Γ is a countably generated sub-*σ* -algebra of *Σ* and *Y* is a closed and separable linear subspace of *X* then [*Γ, Y*] is linearly isometric to a linear subspace of $L_1(\Gamma, \mu|_{\Gamma}, Y)$. Since $L_1(\Gamma, \mu|_{\Gamma}, Y)$ is separable, we apply Corollary 2.2 to get the conclusion. \Box

Corollary 2.5. $\mathcal{M}_1(\Sigma, X)$ contains a copy of ℓ_{∞} if and only if X does.

Proof. If J is an isomorphism from ℓ_{∞} into $\mathcal{M}_1(\Sigma, X)$, set $\mu = \sum_{n=1}^{\infty} 2^{-n} |J e_n|_{\Sigma}$. Then let $\Delta(\Sigma, X) := \{F \in \mathcal{M}_1(\Sigma, X) : J F \in \mathcal{M}_1(\Sigma, X) \}$ *F* \ll *μ*} be as in Corollary 2.4 and define π : $M_1(\Sigma, X) \to \Delta(\Sigma, X)$ so that π (*F*) is the *μ*-continuous part of *F* supplied by the Lebesgue decomposition theorem of *F*. The fact that *F* has the Radon–Nikodým property assures that $\pi(F) \in M_1(\Sigma, X)$ and hence $\pi(F) \in \Delta(\Sigma, X)$. Clearly π is a continuous linear projection and, consequently, $T := \pi \circ J$ is a bounded map from ℓ_{∞} into $\Delta(\Sigma, X)$. Since $Te_n = Je_n$ for all $n \in \mathbb{N}$, Rosenthal's ℓ_{∞} theorem ensures that $\Delta(\Sigma, X)$ contains a copy of ℓ_{∞} . So Corollary 2.4 applies. \square

Corollary 2.6. *(See Ferrando [6].) If X has the Radon–Nikodým property with respect to each* $\mu \in ca^+(\Sigma)$ *, then bvca* (Σ, X) *contains* a copy of c_0 or ℓ_∞ if and only if X does.

Proof. Just notice that if *X* has the RNP with respect to each $\mu \in ca^+(\Sigma)$ then clearly $b\text{vca}(\Sigma, X) = \mathcal{M}_1(\Sigma, X)$, so we can use Corollary 2.5. \Box

3. Remark

In [8] the containment of a copy of ℓ_∞ in $L_1(\Omega,\,\Sigma,\,\mu,\,X)$ is reduced by means of [3, Lemma III.8.5] to the presence of a copy of ℓ_{∞} in a space $L_1(\Omega_1, \Sigma_1, \mu_1, X)$, where $(\Omega_1, \Sigma_1, \mu)$ is a separable finite measure space (see also [1, Theorem 1.6.2]) and then, assuming that *X* contains no copy of ℓ_{∞} , an application of Drewnowski's lemma [5] allows to locate a copy of ℓ_{∞} in a space $L_1(\Omega_1, \Sigma_1, \mu_1, X_0)$ with separable X_0 , getting a contradiction. In the proof of Theorem 2.1 we have followed as far as possible a similar (but not identical) strategy, working with the measures rather than with the functions.

Acknowledgments

The author wishes to thank all those who have contributed to improve the paper. Especially the referee for many valuable comments and suggestions.

References

- [1] P. Cembranos, J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math., vol. 1676, Springer, Berlin, Heidelberg, New York, 1997.
- [2] J. Diestel, J. Uhl, Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, 1977.
- [3] N. Dunford, J.T. Schwartz, Linear Operators Part I. General Theory, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1988.
- [4] L. Drewnowski, When does *ca(Σ, Y)* contain a copy of *-*∞ or *c*0?, Proc. Amer. Math. Soc. 109 (1990) 747–752.
- [5] L. Drewnowski, Copies of *-*∞ in an operator space, Math. Proc. Cambridge Philos. Soc. 108 (1990) 523–526.
- [6] J.C. Ferrando, When does *bvca(Σ, X)* contain a copy of *-*∞?, Math. Scand. 74 (1994) 271–274.
- [7] P.R. Halmos, Measure Theory, Grad. Texts in Math., vol. 18, Springer, New York, Berlin, Heidelberg, 1974.
- [8] J. Mendoza, Copies of ℓ_{∞} in $L_p(\mu, X)$, Math. Proc. Cambridge Philos. Soc. 111 (1992) 125–127.
- [9] R.A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math., Springer, London, Berlin, Heidelberg, 2002.
- [10] E. Saab, P. Saab, On complemented copies of *c*⁰ in injective tensor products, in: Contemp. Math., vol. 52, Amer. Math. Soc., 1986, pp. 131–135.
- [11] M. Talagrand, Quand l'espace des mesures à variation bornée est—il faiblement séquentiellement complet?, Proc. Amer. Math. Soc. 90 (1984) 285–288.