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Let p be a fixed prime and G a finite group. A proper subgroup X - G is called
a p-intersection subgroup if X l X g is a p-group for each g g G_ X, but X is not
a p-group. In this paper we classify the p-intersection subgroups in the quasi-sim-
ple and almost simple finite groups. Q 1998 Academic Press

1. INTRODUCTION

Let G be a finite group containing a proper subgroup X such that
X l X g s 1 for each g g G_ X, i.e., X is a self-normalizing TI-subgroup
in G. Because of a classical theorem of Frobenius, G contains a nontrivial
normal subgroup N such that G is a semidirect product of N and X.
Nowadays such groups are called Frobenius groups for obvious reasons.

In this paper we generalize the concept of Frobenius groups in the
following way.

DEFINITION 1.1. Let EE be a property of groups and G a finite group.

Ž .i A proper subgroup H - G will be called an EE-intersection sub-
group if H does not have property EE, but H l H g has property EE for
every g g G_ H. The set of EE-intersection subgroups will be denoted by

Ž .II or II G .EE EE

1

0021-8693r98 $25.00
Copyright Q 1998 by Academic Press

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82544009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FLEISCHMANN, LEMPKEN, AND TIEP2

Ž .ii If p is a set of primes and EE is the property of being a p-group,
then an EE-intersection subgroup will be called a p-intersection subgroup, or

� 4 Ž .a p-intersection subgroup if p s p . The corresponding II G will beEE
Ž . Ž .denoted by II G or II G , respectively.p p

Note that if EE is the property that a group is trivial, then G is a
Ž .Frobenius group if and only if I G / B; in particular, in this situation GEE

is not simple. This raises the question about structural consequences for
different properties EE. As a first natural generalization, we investigate the
case where EE is the property of being a p-group for some fixed prime p.
Clearly, this will include the Frobenius groups, but, as the following

Ž .example shows, simple groups also occur: take G ( GL 2 and S ( X g3 4
Ž .II G .2
The main result of this paper is the classification of p-intersection

subgroups in quasi-simple and almost simple finite groups G. Recall that
Ž .G is called quasi-simple if G is perfect and GrZ G is nonabelian simple;

Ž .furthermore, G is called almost simple if S 1 G F Aut S for somey
nonabelian simple group S.

The strategy of proof is as follows. First we classify the p-intersection
subgroups of the nonabelian simple groups. This, in turn, will be used to
obtain the corresponding results for the almost simple groups and the
quasi-simple groups, using well-known data on automorphism groups and

Ž w x w x.Schur multipliers of the simple groups e.g., consult 2.7, 6 , and 18 . In
Section 4 we shall deal with the alternating groups, in Section 5 the
analysis is carried out for finite groups of Lie type, while it is done for the
sporadic groups in Section 6.

It may be worth noting that these results will be used in a forthcoming
w xpaper 14 to classify all primitive permutation groups in which two-point

stabilizers are p-groups.

2. BASIC DEFINITIONS AND RESULTS

G will always denote a finite group and p a prime. The notation used is
w x w x Ž .standard and can be found in 21 or 15 . In particular, p G denotes the

< < Xset of prime divisors of G ; for any set p of primes, p is the complement
Ž .of p in the set of all primes. Moreover, O G denotes the largest normalp

Ž . Ž . Ž . Ž . Ž .Xp-subgroup of G, with O G [ O G and O G [ O G ; Z G is thep � p4 �24
Ž .center of G, and F G denotes the Fitting-subgroup of G. For any g g G,

< <g is the order of g ; the notation s , F , etc., will indicate equality orH H
containment, etc., up to conjugacy in the subgroup H F G. X - ?G means
that X is a maximal subgroup of G.
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The sets of Fermat- and Mersenne-primes will be denoted by FF and MM,
respectively.

Ž .First we record some obvious facts about the set II G and its ele-EE

ments.

LEMMA 2.1. Let G be a finite group.

Ž . Ž .i If property non-EE is inherited by subgroups, then II G s B.EE

Ž . Ž . Ž .ii If H g II G , then N H s H. If H - G is minimal among theEE G
Ž .subgroups of G that do not ha¨e property EE, then H g II G if and only ifEE

Ž .N H s H.G

Ž .iii Suppose that the property EE is inherited by subgroups. Then we
ha¨e the following:

Ž . Ž .If U, V g II G , then either U l V g II G or U l V has prop-EE EE

erty EE.
Ž . Ž .If H g II G , then N S F H for any S F H not ha¨ing property EE.EE G

Ž .If H F G and X g II G with H g X, then either X l H - H hasEE
Ž .property EE or X l H g II H .EE

Ž .LEMMA 2.2. Suppose S is simple and X g II S . ThenEE

² < : ² g < :X s U F X U has property EE s X l X g g S_ X .

Proof. Without loss we may assume that X / 1, and so S is non-
U ² g < : ² <abelian. Put X [ X l X g g S_ X and X [ U F X U has prop-EE

: U Uerty EE . Note that X 1 X and X F X F X. By a theorem of WielandtEEy
Žw x . U21 , Satz V.7.5 , there exists a normal subgroup N 1 S with N l X s X .y
Since S is not a Frobenius group, X U / 1, and thus N s S as well as

UX s X s X .EE

LEMMA 2.3. Let X be a nontrï ial proper subgroup of the group G with
Ž . � 4p X / p for some prime p. Then the following are equï alent:

Ž . Ž .i X g II G .p

Ž . Ž . Ž . � 4ii N Y F X for any nontrï ial Y F X with p Y / p .G

Ž . Ž . Ž .iii X is strongly q-embedded in G for p / q g p X , i.e., N Q F XG
for q-subgroups Q / 1 of X.

Ž . Ž . Ž . Ž .Proof. The implications i « ii « iii being clear, we assume iii
Ž g .and let g g G_ X. Now suppose 1 / Q g Syl X l X for some primeq

˜ ˜ g ˜Ž . Ž . Ž .q / p. If Q F Q g Syl G , then Z Q F N Q F X l X ; hence Q Fq G
˜ g ˜ gŽ Ž .. Ž .C Z Q F X l X and Q s Q. So Q and Q are in Syl X . HenceG q

Ž .there is x g X with xg g N Q _ X, a contradiction that finally provesG
the claim.
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Ž .LEMMA 2.4. Let p be a prime, X g II G , and H F G. Then thep
following hold:

Ž . Ž . Ž . Ž . Ž < < < <.i If p / q g p X , then Syl X : Syl G and gcd X , G : Xq q
is a power of p.

Ž . Ž . Ž . Ž . Ž .ii Z G F Core X F O G l X F O X .G p p

Ž . Ž .iii If H g X, then either X l H is a p-group or X l H g II H .p

Proof. All claims are immediate in view of Lemma 2.3.

LEMMA 2.5. Let N 1 G, X - G, and let p be a prime.y
Ž . Ž .i If X g II G and if X l N is a p-group, then either XN s G orp

Ž .XNrN g II GrN .p

Ž . Ž .ii If X g II G and if X l N is not a p-group, then XN s G andp
Ž .X l N g II N .p

Ž . Ž . Ž .iii Suppose that N F O G . Then XNrN g II GrN if and only ifp p
Ž .XN g II G .p

Ž . Ž . � 4 Ž .iv Suppose that p GrN s p . If X is a minimal element of II Np
Ž . G N Ž . Ž .or if X g II N such that X s X , then N X g II G . In particular,p G p

Ž . Ž .II G / B iff II N / B.p p

Ž .Proof. Assume first that X g II G , that X l N is a p-group, and thatp
XN - G. Clearly, XNrN is not a p-group. Let UrN be a nontrivial
q-subgroup of XNrN for a prime q / p and g g G with gN g

Ž . Ž .N UrN . Then we can assume that U s QN for some Q g Syl UG r N q
˜ gŽ . Ž . Ž .with Q F Q g Syl X : Syl G . Since Q, Q g Syl U , there is u s g nq q q

Ž .g U with g g Q and n g N such that N Q 2 ug s g ng. ThereforeG
Ž . Ž .ng g N Q , whence gN g XNrN. Hence XNrN g II GrN by LemmaG p

Ž .2.3. This proves part i .
Ž .For part ii observe that N is not contained in X, and thus X l N g

Ž . Ž .II N ; now apply the Frattini argument to N and some Q g Syl X l Np q
Ž . Ž .: Syl N with p / q g p X l N .q

Ž . Ž .The claims in iii are obvious in view of part i .
Ž . � 4 Ž .Henceforth assume that p GrN s p and X g II N . Let Q / 1 bep

Ž . Ž .a q-subgroup of Y [ N X for some prime q / p and let g g N Q .G G
Ž . g Ž .Clearly, Q F N X s X, and so Q F X l X g II N .N p

Ž . gIf X is maximal in II N , then X l X s X, and so g g Y; hencep

Ž . G N g nY g II G by Lemma 2.3. If X s X , then X s X for some n g N,p
n Ž .and thus Q F X l X ; therefore n g N X s X, and so g g Y. AgainN

Ž .we get Y g II G .p
Ž . Ž .The remaining claims in part iv are easy consequences of part ii .
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Ž . ŽCOROLLARY 2.6. If G is minimal subject to II G / B relatï e to takingp
.subgroups and factor-groups , then either G is a nonabelian simple group, or

Ž .for any proper normal subgroup N 1 G and X g II G we ha¨e G s NXp
with N l X a p-group.

Ž .COROLLARY 2.7. Let G be a quasi-simple group and L [ GrZ G . Then
Ž . Ž . Ž .II G / B if and only if II L / B and Z G is a p-group. Moreo¨er, eachp p

Ž . Ž .X g II G is the complete in¨erse image in G of some Y g II L , i.e.,p p
Ž . � Ž . < Ž .4II L s XrZ G X g II G .p p

Ž . XProof. Suppose X g II G and let x / 1 be a p -element of X. Byp
Ž . Ž . Ž . gLemma 2.3, X G C x G Z G . now for any g g G_ X, Z G F X l X ,G

Ž . Ž .and so Z G is a p-group. It remains to apply Lemma 2.5 iii .

Ž w x w x .Remark. As Corollary 2.7 indicates, a check using 6 , 18 for instance
whether p divides the order of the Schur multiplier of L for the simple

Ž .groups L with II L / B reduces the quasi-simple case to the simplep
case. This easy treatment is left to the reader.

X X Ž .LEMMA 2.8. Suppose G s G K with K 1 G and G l K F Z G ; more-
X Ž .o¨er, assume that either G F H F G or H s GrZ with Z F Z G . If

Ž . Ž .II H s B, then II G s B.p p

Ž . w x X Ž .Proof. Suppose that X g II G . Note that X, K F G l K F Z Gp
Ž .F X, and thus K F N X s X ; in particular, K is a p-group. In the firstG

Ž . Ž .case, GrH is a p-group, and so II H / B by Lemma 2.5 iv . In thep
Ž . Ž . Ž .second case, Z F X l O G , and so XrZ g II H by Lemma 2.5 iii .p p

LEMMA 2.9. Let G be a finite group and X F X F G with X , X g1 2 1 2
Ž . w x Ž .XII G , and X : X a power of p. If O X / 1, then X s X .p 2 1 p 2 1 2

Proof. By the assumption we have
< < < <XO X XŽ .p 2 1 x< < < <XO X X s s X ? pŽ .p 2 1 1< <XO X l XŽ .p 2 1

Ž . Ž Ž ..X Xfor some x g N. Hence, O X F X , and thus X F N O X F X .p 2 1 2 G p 2 1

THEOREM 2.10. Let G be a finite group, p be an odd prime, and
Ž . Ž . Ž .X g II G with e¨en order. Moreo¨er, let T g Syl X , T [ V T andp 2 1 1
Ž .Q [ O G . Then one of the following holds:

Ž . Ž . Ž .i T is cyclic or generalized quaternion and C T F X, as well asG 1
Ž .G s QC T s QX.G 1

Ž . Ž . Ž . 2 2Ž . aii Q [ O G and GrQ ( SL q or B q , where q s 2 G 4p 2
Ž .and p s q y 1 is a Mersenne prime. Moreo¨er, X s QN T with XrQT (G

Z .p



FLEISCHMANN, LEMPKEN, AND TIEP6

Proof. Note that X is strongly embedded in G, and thus we can apply
w x UBender’s Theorem 2 . In view of Glauberman’s Z -theorem, the claims in

Ž .i are evident. We are left with the situation where G has a normal series
Ž .1 1 Q 1 L 1 G such that Q s O G , and GrL is isomorphic to a sub-y y y

Ž . < < Ž . 2 Ž .group of Out LrQ with GrL odd and LrQ ( SL q , B q , or2 2
Ž . a Ž .PSU q for some q s 2 G 4; moreover, X s QN T for some T g3 G

Ž .Syl G .2
Ž .If Q / O G , we get G s X by 2.3, which, of course, is absurd.p

Ž .Therefore, Q s O G . Now put G [ GrQ as well as X [ X l L; notep 0

Ž . Ž . Ž . � 4that X s N T g II L with 2 g p X / p . Assume first that L (0 L p 0
2Ž . Ž .PSU q . Then X s T : K, where K is cyclic of order q y 1 rd, with3 0

Ž . Ž . Ž . Ž .d s gcd 3, q q 1 . Since N K F N Y for any Y F K, and since N KL L L
2 fŽ . Žg X , K must be a p-group. So q y1 rdsp , with fG1; as gcd qy1,0

.q q 1 s 1, we get q s 2, a contradiction.
2Ž . Ž .So we have L ( SL q or L ( B q ; in any case X s T : K, where K2 2 0

fŽ .is cyclic of order q y 1. Since N K is not contained in X , q y 1 s pL 0
for some f G 1. Now we easily verify that f s 1, and thus p s q y 1 is a
Mersenne prime; in particular, a is prime as well.

Suppose now G / L. As a is prime, we can assume without loss that
² :G s L : A and X s X : A, where A s f ( Z and f acts as the0 a

standard Frobenius field automorphism on L. Now we obtain a contradic-
Ž . Ž .tion, because C f is not contained in X . This proves that G s L; so iiL 0

follows.

We will need the following result, which is an easy consequence of the
classification of finite simple groups.

Ž .LEMMA 2.11. Let S be a nonabelian finite simple group and a g Aut S
< < Ž .an element whose order is coprime to S . Then C a is not nilpotent.S

Proof. We can assume 1 / a . It is well known from the ‘‘classification
theorem’’ that the only nonabelian finite simple groups that have coprime

Ž .automorphisms are among the simple Chevalley groups G q or those of
twisted type. In this case a is conjugate to some field automorphism and

Ž .thus fixes elementwise a subgroup H ( G p , defined over the prime field.
But such a group is never nilpotent.

Ž .COROLLARY 2.12. Let S be a nonabelian simple group, S 1 G F Aut S ,y
ˆ ˆ ˆ ˆŽ . Ž . Ž .and X g II G . Then X [ X l S g II S , G s SX, and X s N X .p p G

ˆProof. Suppose that X is a p-group. Then there is x g X such that
ˆ< < Ž . � 4 Ž . Ž .x s ll g p X _ p . Moreover, C x s C x is nilpotent, and so LemmaS X

Ž . Ž Ž .. Ž .2.11 implies that ll g p S . But then ll g p C x , contrary to p X sS
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ˆ ˆ� 4 Ž . Ž .p . Now Lemma 2.5 ii yields X g II S and G s SX, as well as X sp
Ž .N X .G

3. SOME ARITHMETICAL LEMMAS

When dealing with groups of Lie type, we shall need the following
arithmetical results.

Ž .LEMMA 3.1. Let p be a prime, q g Z an integer coprime to p, and n qp
Ž m . Ž .the p-adic ¨aluation of q. Then the following holds: n q y 1 s n q y 1p p

Ž .q n m if p is odd and dï ides q y 1 or p s 2 and 4 dï ides q y 1. If 4p
dï ides q q 1, then

1 if m is odd
mn q y 1 sŽ .2 ½ n q q 1 q n m if 0 - m is e¨en.Ž . Ž .2 2

Proof. This is well known.

� 4LEMMA 3.2. Let e g "1 and d, m, q g N such that 1 - q and d is a
proper dï isor of m. If

m
qe y 1Ž . 2F qe y 1 ,Ž .dqe y 1Ž .

then

e , q , m , d g "1, q , 2, 1 , y1, q , 3, 1 , y1, q , 4, 2 ,�Ž . Ž . Ž . Ž .
y1, 2, 4, 1 , y1, 2, 6, 3 .4Ž . Ž .

Proof. If e s 1, then q2 y 2 q q 1 G 1 q q d q q2 d q ??? qq dŽm r dy1.

implies d s 1 and m s 2. Hence, in the following we suppose that
<ŽŽ .m . ŽŽ .d . <e s y1 and put X [ yq y 1 r yq y 1 .

2 Ž d .w my 2 dIn case m ' d ' 1 mod 2, we have q q 2 q q 1 G X s q y 1 q
my 4 d d xq q q ??? qq q 1. This yields d s 1 and, consequently, m s 3.

Suppose next that m ' d ' 0 mod 2. Then X s 1 q q d q ??? q
q dŽm r dy1. F q2 q 2 q q 1 F q3 q 1, and thus d s 2, as well as m s 4.

Finally, we consider the case m ' 0 mod 2 and d ' 1 mod 2. If m '
2 mod 4, then, using the previous considerations,

q m y 1 q m r2 q 1 2F q q 1Ž .m r2 dq q 1 q q 1
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implies mr2 s 3, d s 1, or d s mr2. In the first case we get the contra-
Ž 3 .Ž 2 . 2diction q y 1 q y q q 1 F q q 2 q q 1. The second possibility leads

to m s 2, d s 1, or to q s 2, m s 6, d s 3. If m ' 0 mod 4, then, again
together with the previous results,

q m y 1 q m r2 y 1 2F q q 1Ž .m r2 dq y 1 q q 1

implies m s 4, d s 1, and q s 2.

� 4 < a <COROLLARY 3.3. Let q g Z_ 0 " 1 , a g N, a ) 1 with q y 1 s
< < < Ž . < Ž . �Ž . Ž . Ž .4q y 1 ? gcd q y 1, a . Then q, a g y2, 2 , y2, 3 , y3, 2 .

� 4Proof. By Lemma 3.2, a g 2, 3, 4 . Now the result follows from a direct
inspection of these cases.

Ž m .LEMMA 3.4. Let 1 / q g Z be an integer and m g N. Then q y 1 r
Ž . Ž .q y 1 gcd q y 1, m g Z.

Ž m . Ž . Ž .Proof. Put X [ q y 1 r q y 1 gcd q y 1, m and let p be a prime
Ž .dividing q y 1. If p does not divide m, then n X G 0. So assume that pp

Ž . < Ž . Ž .divides gcd q y 1, m . If 2 - p or 2 s p and 4 q y 1, then n X s n mp p

Ž Ž .. < Ž . <yn gcd q y 1, m G 0 by Lemma 3.1. If p s 2 gcd q y 1, m and 4 q qp

Ž . Ž m . Ž Ž ..1, then n X s n q y 1 y 1 y n gcd q y 1, m G 0, and we are2 2 2
done.

� 4LEMMA 3.5. Let q g Z_ 0, " 1 and m g N odd, m ) 1. Then

mq y q
s m m q , m s y2, 3 .Ž . Ž .

q y 1

<Ž m . Ž . < < <Proof. Suppose that q y 1 r q y 1 s m. Since 1 q q q
< < 2 < < my 1 X XŽ X .q q ??? q q ) m, we get q [ yq ) 1. Now m s 1 q q q y 1
Ž X 2 Ž X 2 .Žmy3.r2 . XŽ X .Žmy1.r21 q q q ??? q q G 1 q q q y 1 G m; this in turn

Ximplies m s 3 and q s 2.

� 4LEMMA 3.6. Let q g Z_ 0, " 1 , m g N, and p be a prime such that

mq y 1
ss p ) 1.

q y 1 gcd q y 1, mŽ . Ž .

Then one of the following holds:

Ž .i m is an odd prime dï iding p y 1.
Ž . sq1ii m s p s 2 and q s "2 y 1.
Ž . Ž s. �Ž . Ž . Ž .4iii q, m, p g y2, 4, 5 , y2, 6, 7 , y3, 4, 5 .
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Ž m . Ž . Ž .Proof. Put X [ q y 1 r q y 1 and X [ X rgcd q y 1, m . Also0 0
note that m ) 1.

Suppose first that m s bc with 1 - b, c. Now we get X s ABCD, with
Ž m . Ž b . Ž b . Ž b . Ž .A [ q y 1 r q y 1 gcd q y 1, c , B [ gcd q y 1, c rgcd q y 1, c ,

Ž . Ž . Ž . Ž b . Ž .C [ gcd q y 1, c gcd q y 1, b rgcd q y 1, m , D [ q y 1 r q y 1
Ž . < < agcd q y 1, b , and A, B, C, D g Z. Note that A s p with a G 1, be-

b � 4cause otherwise Corollary 3.3 implies q g y2, y3 , which, of course, is
Ž m . Ž b . . Ž .absurd. Moreover, observe that gcd q y 1 r q y 1 , D s gcd c, D .
Ž . Ž .Suppose, in addition, that gcd c, p s 1, and thus 1 s gcd c, D s

Ž . < <gcd A, D . Since a G 1, we get D s 1, and so Corollary 3.3 yields

q , b g SS [ y2, 2 , y2, 3 , y3, 2 . 1� 4Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .If gcd p, m s 1, then gcd p, b s 1 and thus q, c g SS as well; noting
Ž . Ž . < <that q, m s y2, 9 yields the contradiction X s 57, we easily verify

Ž .that the remaining possibilities lead to case iii .
Ž .Suppose now that p divides m. The arguments leading to 1 now show

� 4 < < athat c is a prime different from p s b g 2, 3 . Evaluating A s p for
Ž .each of the three possibilities in 1 , we easily derive a contradiction now.

Suppose next that m s pr for some r g N.
Ž . < Ž .UAssume that p is odd. Then k [ ord q gcd p y 1, m s 1, and soZ p

Ž . Ž .k s 1 and p divides q y 1. Now 3.1 implies n X s n m s r, and thusp 0 p
< < Ž . Ž .X s m. But now Lemma 3.5 implies q, m s y2, 3 , which in turn0

< <leads to X s 1, a contradiction.
Ž .So we have p s 2, and q is odd. Clearly, if r s 1, then case ii holds. So

we suppose that r ) 1. If 4 divides q2 ry 1 y 1, then q2 ry 1 q 1 s 2, a
2 ry 1 2 ry 1

< <contradiction. If 4 divides q q 1, then q y 1 s q y 1 , which im-
plies q s y2 and r s 2, a contradiction.

We are left with the situation where m is a prime different from p. If
Ž . Ž .p s 2, then q and m are odd, and so we get s s n X s n m s 0 by2 2

Lemma 3.1, a contradiction. Therefore, p is odd.
Ž . Ž m .UNow let k [ ord q , where r s n q y 1 G 1. Note that k dividesZ prp

Ž . � 4 Ž . Ž .gcd m, p y 1 g 1, m . If k s 1, we get 1 F s s n X s n X s 0, ap p 0

contradiction. Hence we have k s m, and so m divides p y 1. This is case
Ž .i .

� 4COROLLARY 3.7. Let q g Z_ 0, " 1 , m g N, and p be a prime suchi
that

m iq y 1
sis p ) 1

q y 1 gcd q y 1, mŽ . Ž .i

for i s 1 and 2. Then m s m .1 2
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Proof. In view of Lemma 3.6, only the case p ) 2 has to be considered.
We can assume that m - m are primes dividing p y 1. Then pm1

1 2
Ž m1 m2 .divides gcd q y 1, q y 1 s q y 1, and we get the contradiction m s1

m1ŽŽ . Ž . Ž ..n q y 1 r q y 1 gcd q y 1, m s 0.p 1

LEMMA 3.8. Let r be a prime, q s r m, e s "1, and q y e s 3 ? 2 x, with
� 2 24m ) 1 and x ) 0. Then e s 1 and q g 5 , 7 .

Proof. If e s y1, then q q 1 s 3 ? 2 x; hence the order of r modulo
Ž . xq q 1 is 2m and divides f q q 1 s 2 . Hence m is a power of 2. We get

m Ž .m Ž .r ' "1 ' 1 mod 3 , and 3 divides q y 1 but not q q 1. So we
conclude e s 1.

Ž . Ž . x tThe order ord r s m divides f q y 1 s 2 . Hence m s 2 andqy1
Ž m r2 .Ž m r2 . x m r2r y 1 r q 1 s 3 ? 2 . Suppose that 3 divides r y 1. Then
r m r2 q 1 s 2 s; hence m s 2 and r s 2 p y 1 g MM is a Mersenne prime.

Ž py1 . yMoreover, r y 1 s 2 2 y 1 s 3 ? 2 . We conclude y s 1, p s 3, and
r s 7. Suppose that 3 divides r m r2 q 1. Then m s 2 and r y 1 s 2 s, i.e.,

2 t Ž 2 ty1 .r s 2 q 1 g FF is a Fermat prime with t ) 0. From r q 1 s 2 2 q 1
ys 3 ? 2 , we conclude y s 1, t s 1, and r s 5.

4. THE ALTERNATING GROUPS

In this section we classify all p-intersection subgroups of the simple
alternating groups AA .n

Ž .THEOREM 4.1. Let G ( AA , with n G 5, p g p G , and suppose thatn
Ž . Ž . Ž .X g II G . Then X s N Q , with Q g Syl G for a suitable prime q;p G q

moreo¨er, one of the following holds:

Ž .i n s 5, p s 3, q s 2, and X ( AA ;4

Ž . 2ii n s 6, p s 2, q s 3, and X ( 3 : Z ;4

Ž . fiii q s n y 2 s 2 q 1 g FF, p s 2, and X s Q : K, where Q ( Zq
and K ( Z .qy1

Ž . Ž . fiv q s n y 1 is odd, q y 1 r2 s p , and X s Q : K, where Q ( Zq
and K ( Z .Žqy1.r2

Ž . Ž . fv q s n is odd, n y 1 r2 s p , and X s Q : K, with Q ( Z andn
K ( Z .Žny1.r2

Proof. The subgroup structure of the groups AA with 5 F n F 8 is welln
known, and it is an easy exercise to verify the claimed results for these

Ž .cases. Henceforth we assume that X g II G , that n G 9, and that q isp
< <the minimal prime divisor of X with q / p.
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< <If q s 2, then X is even and p is odd; but then Theorem 2.10 provides
a contradiction. Therefore, q is odd and X contains a product a s b b1 2

Ž .??? b of k pairwise disjoined q-cycles. Now X G C a 2 b , and so wek G 1
²Ž .: Ž .can assume ZZ [ 123 ??? q - X. Note that N [ N ZZ F X.G

< <Suppose now that q F n y 2. Then 2 divides N , and the choice of q
implies p s 2. If q F n y 3, then N contains a 3-cycle; thus q s 3. Now

Ž .N ( Z = AA : Z is a maximal subgroup of G; hence X s N. But now3 ny3 2
g g Žwe find a G-conjugate N of N such that N l N G Z = AA =3 ny6

.Z : Z . This contradiction proves that q s n y 2; in particular, q and n3 2
are odd and N s ZZ : K, where K is cyclic of order q y 1. The minimality

f f Ž . � 4of q now implies q y 1 s 2 ; so q s 2 q 1 g FF. If p X / 2, q , then
Ž . � 4the choice of q ensures p X s 2, q, n , and so X contains a subgroup

Ž .R ( Z . But now X G N R ( Z : Z , and so n y 1 is a power of 2n G n Žny1.r2
Ž . � 4as well; now we get n s 5, a contradiction. Hence we have p X s 2, q .

� 4In particular, X cannot be transitive on n [ 1, 2, . . . , n , and thus q [
� 4 � 41, 2, . . . , q and V [ n y 1, n are the X-orbits on n. In particular, X is

Ž .isomorphic to a solvable subgroup of S . Since n is odd, Q [ O Xny2 2
Ž .has fixed points on both q and V; hence Q s 1 / O X , and thusq

X s N.
Suppose next that q s n y 1. Since n G 9, q is odd, and N s ZZ : K,

Ž .with K being cyclic of order q y 1 r2. The choice of q implies that
Ž . f Ž . � 4q y 1 r2 s p for some f G 1; hence p X s p, q ; in particular, X is

< <solvable. If X acts transitively on n, then n divides X , and so p s 2 and
Ž f .n s q q 1 s 2 2 q 1 is a power of 2. We get the contradiction f s 0.

Ž . Ž .Therefore X F G ( AA . Since q ' 1 mod p , the group O X hasn ny1 p
fixed points on q, while X is transitive on q. From this we deduce

Ž . Ž .XO X s 1 / O X , and hence X s N.p p
We are left to consider the case where q s n. Then N s ZZ : K, with K

Ž .being cyclic of order n y 1 r2. As in the previous case, we see that
Ž . f Ž . � 4 � 4 Ž .n y 1 r2 s p and p X s q, p s p, n , as well as O X s 1; thusp
X s N.

Ž .COROLLARY 4.2. Let AA 1 G F Aut AA , with n G 5, and suppose thatn n
Ž .X g II G . Then p s 2, and one of the following holds:p

Ž . Ž . Ž .i n s 6, X s N Q , with Q g Syl G .G 3

Ž . Ž . f � 4ii X s N Q , where Q ( Z , with q s 2 q 1 g n y 2, n y 1, nG q
l FF.

Proof. Put X [ X l GX. Since X is not a 2-group, X / 1. If X is a0 0 0
Ž . � 4p-group, then X is a proper normal subgroup of X and p X s 2, p ;0

but then Theorem 2.10 yields a contradiction. Hence, by Lemma 2.4,
Ž X.X g II G , and the claim follows from the previous theorem, noting that0 p

Ž .p s 2 by Theorem 2.10, and neither AA nor S are in II S .4 4 3 5
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TABLE I
p-Intersection Maximal Subgroups in Alternating and Symmetric Groups

G p X

AA 3 AA5 4
Ž .AA F G F S 2 N Z5 5 G 3

2Ž . Ž .AA F G F Aut AA 2 N 36 6 G
� 4 Ž . Ž .AA , S e G F Aut AA 2 N Z6 6 6 G 5

f� 4 Ž . Ž²Ž .:.AA , n prime f 7, 11, 17, 23 p with n y 1 r2 s p N 12 ??? n ( Z : Zn G n Žny1.r2
Ž²Ž .:.S , 5 F n g FF 2 N 12 ??? n ( Z : Zn G n ny1

Ž .COROLLARY 4.3. Let AA 1 G F Aut AA with n G 5, and suppose thatn ny
Ž . Ž .X g II G is maximal in G. Then the triple G, p, X is as listed in Table I.p

� 4Proof. The claims for n g 5, 6 can be verified directly, using the well
Ž .known subgroup structure of S and Aut AA . Henceforth we assume that5 6

n G 7.
Ž . Ž .Applying Theorem 4.1, we see that cases iii and iv have to be

Ž� 4.discarded, because then X is not maximal in G: X - St 1, 2, . . . , q . AG
Ž .similar argument shows that in the case of Corollary 4.2 ii we must have

q s n g FF.
Now let X be as listed in the last two lines of Table I and suppose X is

not maximal: X - M - G. Since M is transitive of prime degree n,
well-known theorems of Galois and Burnside imply that M is a doubly

Ž .transitive permutation group, S [ soc M is nonabelian simple, and S 1y
Ž .M F Aut S . Using the list of doubly transitive permutation groups with

Ž w x w x.nonabelian socle see 4 or the main result of 19 , one arrives at one
� 4of the following exceptions: n g 7, 11, 17, 23 , and X - M - G ( AA isn

Ž .one of the ‘‘exceptional’’ embeddings 7 : 3 - PSL 7 - AA , 17 : 8 -2 7
Ž .PSL 16 : 4 - AA , 11 : 5 - M - AA , and 23 : 11 - M - AA .2 17 11 11 23 23

5. FINITE GROUPS OF LIE TYPE

Ž . ŽIn this section LIE r denotes the set of finite simple twisted or
.untwisted groups of Lie type defined over a finite field of characteristic r.

Ž . Ž .THEOREM 5.1. Let G g LIE r , and suppose that X g II G with r gp
Ž .p X .

Ž . Ž . Ž .i If X s N U for some U g Syl G , then r / p.G r



p-INTERSECTION SUBGROUPS 13

Ž . Ž . Ž .ii If r / p, then X s N U s U : T , where U g Syl G , T / 1 is aG r
cyclic p-group, and exactly one of the following fï e cases occurs:

Ž . Ž . 2 Ž . q1 G ( SL q or G ( B q , where q s 2 G 4 and p s q y 1 is2 2
a Mersenne prime.

Ž . Ž m. m x2 G ( PSL r , where r s 2 ? p q 1 with odd primes r and p;2
moreo¨er, if m / 1, then r s 3 and m is an odd prime dï iding p y 1.

Ž . Ž . Ž . Ž .3 G ( PSL q with p s 2 and q s r g FF or q, r s 9, 3 .2

Ž . Ž . � 44 G ( PSU r with s p s 2 and r g 3, 5 .3

Ž . 2 Ž .X Ž 3.5 G ( G 3 ( PSL 2 with p s 2 and r s 3.2 2

In particular, G has Lie-rank 1 and X is a Borel subgroup of G.

Ž . Ž .Proof. For i just observe that X s U : T , with T / 1 and N T / T.G
Ž .Henceforth we assume that r / p and seek to prove the claims in ii .

Ž .Clearly, as X is strongly r-embedded in G, X G B [ N U s U : T forG
Ž .some U g Syl G and a suitable complement T of U in B. If G has ar

Lie-rank of at least 2, then G is generated by the maximal parabolic
² Ž . < :subgroups containing B, and hence G s N R 1 / R F U F X, which,G

of course, is absurd. Therefore G has Lie-rank 1 and thus is isomorphic
Ž . Ž . 2 Ž . 2 Ž .Xto one of the following groups: PSL q , PSU q , B q , G q . Note2 3 2 2

that q s 22 mq1 G 8 in the third case and q s 32 mq1 G 3 in the last
Ž . Ž . Ž 2 .case. Moreover, T is cyclic of order q y 1 rgcd q y 1, 2 , q y 1 r

Ž .gcd q q 1, 3 , q y 1, or q y 1, respectively. Since B is maximal in G and
² Ž .: Ž .G s B, N T , we see that X s B and N T is not contained in X ; inG G

Ž .particular, T g Syl B .p
Ž .Now suppose that p ) 2. If r s 2, then 2 g p X , and so Theorem 2.10

Ž .shows that case 1 holds. Thus we may assume that r is odd; in particu-
Ž . m xlar, G ( PSL q , with q s r s 2 ? p q 1. Observe that m is odd and2

Ž m . Ž . Ž . xX Xr y 1 r r y 1 gcd r y 1, m s p with x F x.
Now suppose that m ) 1 and thus xX ) 0. Then Lemma 3.6 shows that

<m is a prime divisor of p y 1. If p r y 1, then Lemma 3.1 implies
X ŽŽ m . Ž . Ž .. Ž .x s n r y 1 r r y 1 gcd r y 1, m s n m s 0, a contradiction.p p

Ž . m xThus we have gcd p, r y 1 s 1. As r y 1 s 2 p , we then get r s 3.
Ž .This is case 2 .

Ž . < < x � 4If p s 2 and G \ PSU q , then T s 2 ) 1 implies q g FF j 9 ; in3
2 Ž . Ž . Ž .particular, B q does not occur. This leads to case 3 or to case 5 . If2

Ž . < < Ž 2 . Žp s 2 and G ( PSU q , then, by Lemma 3.8, T s q y 1 rgcd q q3
x. � 4 Ž .1, 3 s 2 ) 1 implies q g 3, 5 , i.e., case 4 holds.

THEOREM 5.2. Let G be a finite nonabelian simple group, p be a prime,
Ž . Ž . � 4 Ž .and X g II G . If there exists q g p X _ 2, p such that Q g Syl X isp q
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not cyclic, then one of the following holds:

Ž . Ž m. m xi G ( PSL 3 , q s 3, and 3 s 2 p q 1, with odd primes, m, p2
such that m dï ides p y 1; moreo¨er, X is a Sylow 3-normalizer of G.

Ž . Ž . 2ii G ( PSL 9 ( AA and X ( 3 : Z with q s 3 and p s 2.2 6 4

Ž . Ž . 1q2 � 4iii G ( PSU q and X ( q : Z with q g 3, 5 and p s 2.3 8

Ž . Ž . 2iv G ( PSL 4 and X ( 3 : Q with q s 3 and p s 2.3 8

Ž . 2v G ( M and X ( 3 : SD with q s 3 and p s 2.11 16

wProof. Since X is strongly q-embedded in G, we can apply 16, Theo-
xrem 24.1 , and obtain a well-specified list of possibilities for the pairs

Ž . w xG, q . using Theorem 5.1 together with the information in 6 on the
subgroup structure of the groups in the list obtained, it is now an easy

Ž . Ž .exercise to reduce to the cases i ] v of Theorem 5.2.

Now we set up some notation concerning maximal tori in simple groups
of Lie type.

Let S be such a simple group. Then S occurs as a section of a suitable
˜ ˜finite group of Lie type, i.e., a group S [ S of F-fixed points of aF

˜connected reductive algebraic group S, defined over F with Frobeniusq
˜ ˜endomorphism F : S ª S.

˜ ˜Each S contains a maximally split F-stable maximal torus, i.e., a torus T
˜contained in an F-stable Borel subgroup. Recall that the S -conjugacyF

classes of maximal F-stable tori are classified by the F-conjugacy classes of
˜ X X y1Ž . Ž .W [ N T , where w, w are F-conjugate if and only if w s w wF w for˜ ˜S̃

suitable w g W.˜
˜ y1 g ˜Ž . Ž .For each g g S, let LL g [ g F g . If T is an F-stable maximalF

˜ ˜Ž .torus of S, then LL g T g W andF

g g˜ ˜T s T .Ž . ž /F LL Ž g .FF

˜By Lang’s theorem, for any element w g W, there is a g g S with
˜ ˜ g ˜ ˜ ˜ ˜Ž . Ž .LL g T s w, hence a ‘‘finite torus’’ T [ T F S. If S [ SrZ S orF w w?F

X̃ X̃ ˜ ˜ ˜ X̃ X̃Ž . Ž . Ž . Ž .S rZ S , then T will always denote T rZ S or T l S rZ S . Anw w w
Ž .0˜element t g T is regular if the connected centralizer C t is equal to the˜w S

g ˜ g ˜ ˜torus T [ T. Here T and T are related as above, and t will alwaysw w
˜denote a preimage of t in S. We will call T a maximal torus of S.w

˜Ž . Ž .XLEMMA 5.3. Suppose that t g T is regular; then N T s N T r˜w S w S w
X̃Ž .Z S .

˜ X̃Ž . Ž . Ž .XProof. Clearly, N T G N T rZ S . Suppose that t g T is regu-˜S w S w w
x̃ x̃˜ ˜ ˜ ˜ ˜Ž . Ž .˜ ˜lar and x g N T . Then t g T l T l S F T l T . Since t is regu-S w w w w w

˜Ž .Xlar, x g N T .˜ S̃ w
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A key ingredient of our further arguments is the following statement:

Ž . Ž .LEMMA 5.4. Let S g LIE r and X g II S . If X is not conjugate to ap
Ž .Borel group of S, then X contains at least one normalizer N T of a maximalS w

Ž . Xtorus T of S. If , moreo¨er, r f p X , then any p -element t of X isw
Ž .contained in such a unique maximal torus T F N T F X and is regular inw S w

there.

Ž .Proof. If r g p X , we can assume that r s p by 5.1. Hence, in any
� 4Xcase X contains a p, r -element t / 1. Since every semisimple element of

˜ ˜ Ž .S is contained in a maximal torus of S and since C t F X, we get theS
first assertion.

Ž .Now suppose that r f p X . According to a classical result on central-
Žizers of semisimple elements of groups of Lie type cf. Theorem 3.5.4 of

w x w x .5 , also see Theorem 4.2.2 of 17 for a more expanded version , the
Ž .0 Ž .˜ ˜connected centralizer C t is reductive, and hence C t contains a˜ ˜S S

Ž .central product of finite groups of Lie type H g LIE r and a torus. Since
˜ ˜ X̃ ˜Ž < Ž . <. Ž w x. Ž .̃gcd r, Z S s 1 s gcd r, S : S , we get C t ( T , a maximal torus inS̃ w

˜˜ ˜which t is regular. Hence t does not lie in any other maximal torus of S, so
T is the only maximal torus of S containing t.w

In view of the last result, it is important to have more information on
˜overgroups in S or S of given maximal tori. In particular, the following

result on solvable overgroups of maximal tori will be very useful:
m ˜ ˜Ž w x.THEOREM 5.5 Seitz 30 . Let q s r , T be a maximal torus of S, and

˜ ˜ ˜T F X F S.

˜ ˜ ˜ ˜ ˜Ž . Ž . Ž . Ž .i If q ) 7 and if X is sol̈ able, then X s O X N T and O X is˜r X r
˜ ˜a product of T-root subgroups of S.

˜ ˜Ž .ii If r ) 3 and q ) 11, then the normal closure of T in X is generated
˜ ˜ ˜ ˜by T and the T-root subgroups of S contained in X.

˜ ˜Notice that T-root subgroups of S are either r-subgroups or products of
certain finite groups of Lie type.

˜Ž .Now we will explain more precisely which pairs of groups S, S we are
looking at:

DEFINITION 5.6. Let r be a prime, m g N, and q s r m. In the sequel
˜Ž .S, S will be one of the following pairs of groups:

˜ eŽ . Ž . Ž .A For Dynkin type A , n ) 1: S [ S q s SL q if e s 1 andny1 n n
e ˜ ˜Ž . Ž . Ž . Ž .SU q if e s y1 and S s PS q [ SrZ S s PSL q if e s 1 andn n n

Ž .PSU q if e s y1.n

˜Ž . Ž .B For Dynkin type B , n ) 1, q odd: S [ SO q , the specialn 2 nq1
˜ XŽ . Ž .orthogonal group and S [ S ( PV q .2 nq1



FLEISCHMANN, LEMPKEN, AND TIEP16

˜Ž . Ž .C For Dynkin type C , n ) 1: S [ Sp q , the symplectic groupn 2 n

˜ ˜Ž . Ž .and S [ SrZ S s PSp q .2 n
e ˜ eŽ . Ž .D For Dynkin type D , n ) 3: S [ SO q , the special orthogo-n 2 n

˜ X̃ eŽ . Ž .nal group and S [ SrZ S s PV q ;2 n
2 3 Ž2. Ž2. Ž2. ˜Ž .E For Dynkin type B , D , G , F , E , E , and E : S2 4 2 4 6 7 8

Ž .denotes the finite group of Lie type possibly twisted , coming from the
simply connected algebraic group of the same Dynkin type: whereas

˜ ˜Ž .S [ SrZ S .

Ž . Ž . Ž .In all cases we exclude the solvable groups PSL 2 , PSL 3 , PSU 2 ,2 2 3
2 Ž . Ž . Ž .B 2 , etc.; moreover, in B and C we exclude the exceptional case2

˜Ž . Ž . Ž . Ž .n, q s 2, 2 , in which S, S ( S , AA .6 6
˜Now we give a more precise description of the maximal tori in S and S

for groups of classical type. Let S be one of the following algebraic groups:
Ž . Ž . Ž . Ž . Ž .S s SL F in case A , S s SO F in case B , S s SP F in casen q 2 nq1 q 2 n q

Ž . Ž . Ž .C , and S s SO F in case D .2 n q
In each of these cases a maximally split torus can be described as the set

U U
N˜ Ž . � 4 Ž .T s F of functions f : N [ 1, 2, . . . , n ª F , where in case A weq q

Ž .have to restrict to those functions that satisfy Ł f i s 1, e.g.,ig N

t 0 ??? 0 ??? 0 ???1

0 ??? t ???2 ˜f s t s g T F SL Fž /n q0 ??? ??? ???� 00 ??? ??? ??? tn

or

t 0 ??? 0 ??? 0 ???¡ ¦1

0 ??? t ??? ??? 02

0 ??? ??? ??? ???
0 ??? ??? ??? tn

f s t s y1t 0 ??? 0 ??? 0 ???1

y10 ??? t ??? ???2

0 0 ??? ??? ??? ???
y1¢ §0 ??? ??? ??? tn

˜g T F Sp F .ž /2 n q

˜ ˜Ž .All Weyl groups W s N T rT of classical groups are subgroups of theG
Ž . Ž .wreath product Z X S , which is the Weyl group in cases B and C . So2 N

˜ Ž z, s .Ž . Ž .W is acting naturally on T viewed as a set of functions by f i s
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Ž Ž y1Ž ...y1 zŽ i. Ž . � 4 Ž .f s i , where z i g 0, 1 . In case A we have W s S , whereasN

Ž .in D , W is the subgroup of index 2 of Z X S consisting of elements2 N
n ˜with an even number of 1’s in the base group Z . The action of F on T can2

Ž . Ž .Ž . Ž .e q Ž .be described as follows: in case A : F f i s f i ; i g N; in cases B ,
Ž . Ž . Ž . Ž .Ž . Ž .q Ž .C , and D with e s 1 ; F f i s f i ; i g N; in case D with

Ž .Ž . Ž .q � 4 Ž .Ž . Ž .yqe s y1, F f i s f i ; i g N_ n and F f n s f n .
w x qLet w g W be a representative of the F-class w ; then w contains ni

y n Ž q y.positive and n negative pairwise disjoint i-cycles with Ý i ? n q ni is1 i i
Ž Ž .ys n. A negative i-cycle 1, 2, . . . , i maps 1 ¬ 2 ¬ 3 ??? ¬ i ¬ y1 ¬

.y2 ??? and has order 2 i .
Now the F-conjugacy classes of W and the corresponding tori are given

as follows:
Ž . Ž . Ž .In the cases A to C and D with e s 1, the F-conjugacy classes

Ž .coincide with conjugacy classes of W. In case D and e s y1, they can be
Ž y. Ž y.identified with the W -orbits in the coset W ? n : W , where n isD D Bn n n

the negative 1-cycle n ¬ yn in W .Bn y ˜Ž .In case A all cycles are positive, i.e., n s 0 for all i and T isi w?F
isomorphic to a subgroup of index q y e in the corresponding maximal

ˇtorus T of the general linear or unitary group withw?F

n qniˇ i iT ( Z .Łw?F q ye
is1

Ž . Ž .In cases B to D and e s 1,

n q yn ni i˜ i iT ( Z = Z ,Ž . Ž .Łw?F q y1 q q1
is1

Ž . Ž .where in case D the number of negative cycles is even. In case D and
˜e s y1, T is given in the same way as in the case e s 1, if the cyclew?F

Ž y.type of w is replaced by that of w ? n . In particular, the number of
negative cycles has to be odd.

˜ ˜For Coxeter tori we will use the notation T [ T and T [ T .co x w co x wc o x c o x

Ž . Ž . Ž .yNotice that w s w 12 ??? n in case A , w s w 12 ??? n in casesco x co x
Ž . Ž . Ž .yŽ .y Ž .B and C , and w s 12 ??? n y 1 n in case D and e s 1. In caseco x
Ž . Ž .yD and e s y1, we define w [ 12 ??? n y 1 . For quasi-split tori weco x

˜ ˜will use the notation T [ T and T [ T .1 i d 1 i d
˜ ˜Ž . Ž . Ž .In all cases, except D and e s y1, we have N T rT ( C w ,S̃ w w W

˜ ˜ yŽ . Ž . Ž Ž ..whereas in case D and e s y1, N T rT ( C w n . Clearly,S̃ w?F w W
˜Ž . Ž .N T G N T .˜ ˜S w S w

Ž .The following theorem classifies the elements in II S for p ) 2.p
Ž .Because of Theorem 2.10 we can assume in this case that X g II S hasp

odd order.
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˜Ž . Ž .THEOREM 5.7. Let p ) 2, S, S as abo¨e, and X g II S of odd order.p
If X is not a Borel-subgroup in S, then one of the following holds:

Ž .In case A
Ž . e Ž .i n s p q 1, S ( PS q , andpq1

X s N T ( Z p : Z ,Ž .S S Ž12 ? ? ? p. <ŽŽ e q. y1.rgcdŽe qy1, pq1. < p

Ž . x Ž .with q y e s gcd q y e , p q 1 ? p for some x g N; moreo¨er, q, e , p /
Ž .2, y1, 3 .

Ž . Ž . Ž 3.ii p s 3, S ( L 3 , and X ( E 3 : Z : Z ; moreo¨er, S con-4 13 3
tains two conjugacy classes of 3-intersection subgroups of the gï en type.

Ž . e Ž .iii n s p, S ( PS q , andp

X s NS T ( Z p : Z .Ž .S co x <ŽŽ e q. y1.rŽe qy1.gcdŽe qy1, p. < p

Ž .In case D
Ž . " Ž . Ž ." n ni nsp, S(PV q , Ss N T (Z :2 p S S Ž123 ? ? ? p. Žq ye .rgcdŽq ye , 4. <

Ž . xZ , and q y e s gcd q y e , 4 ? p for some x g N. Here the q corre-p
sponds to e s 1 and the y to e s y1.

Ž . q Ž . Ž .ii n s p s 5, S ( PV 5 , and X s Q : N, with Q s O X10 5

being elementary abelian of order 55 or 510 and N ( Z : Z .781 5

Ž .In case E
e Ž . Ž . Ž w x. Ž .S ( E q , p s 3, X s N T , with T [ T see 11 , N T rT (6 S S 24 S

Z , and T ( Z 6 3 .9 Žq qe q q1.rgcdŽqye , 3.

Ž .Proof. By Lemma 5.4 we know that X G N [ N T for some maxi-w S w
< Ž . < < <mal torus T of S. Since C w divides N , W cannot contain thew W w

˜ Ž2. Ž2.element w s yid; therefore S is of type A, D with n odd or of type0 n
Ž2.E .6

Ž . Ž .1 Suppose we are in case A . If w consists of n cycles of length i,i
< < nithen N rT is divisible by Ł i n !. Since this is an odd number, wew w i i

conclude that n G 3; furthermore, n s 0 whenever i is even and n F 1 ifi i
i is odd. Moreover,

1 i < <e q y 1 ? i divides N .Ž .Ž .Ł we q y 1 gcd e q y 1, nŽ . Ž . i odd, n s1i

If a is odd with n ) 0 and 1 - a - n y 1, then there exists t sa a
g e q e q ay 1 ˜ qŽ . Ž . <ŽŽ . . Ž . <c, c , . . . , c , 1, . . . , 1 Z S g X of order e q y 1 r e q y 1 ,

Ž .which is not regular in T , hence C t has even order. By Lemma 3.6 wew S a
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<ŽŽ .a . Ž . <see that e q y 1 r e q y 1 is a power of p and a is a prime dividing
p y 1.

If 1 - a - b - n with n , n ) 0 and thus a q b F n, thena b

a a b
e q y 1 e q y 1 e q y 1Ž . Ž . Ž .

xw.l.o.g. 1 / p s s gcd ,ž /e q y 1 e q y 1 e q y 1

Ž .gcd a , b
e q y 1Ž .

s s 1,
e q y 1

Ž . Ž .a contradiction. So either w is conjugate to 1 234 ??? n and n is even, or
Ž .w is conjugate to 123 ??? n and n is odd.

Now define n [ n if n is odd and n [ n y 1 otherwise. Suppose that˜ ˜
ŽŽ .ci . Ž . ŽŽ .ny1n s c c with 1 - c , c - n. Since e q y 1 r e q y 1 divides e q˜ ˜1 2 1 2

. Ž . ŽŽ .n . Ž . Žy 1 rgcd e q y 1, n if n s n y 1 and e q y 1 r e q y 1 gcd e q y˜
. <ŽŽ .ci1, n otherwise, the same argument as above shows that the e q y

. Ž . <1 r e q y 1 are p-powers and c s c is an odd prime dividing p y 1. So1 2
we may assume that n s c2 with prime c / p. Then c is again the order of˜
a suitable element of a maximal torus T X F X. By our previous argumentsw
we must have

nny1
e q y 1 e q y 1Ž . Ž .

< < < <XT s T s or ,w w gcd e q y 1, n e q y 1 gcd e q y 1, nŽ . Ž . Ž .

Ž .c2
<respectively. We conclude: 0' e q y1'e qy1 mod c, hence c e q y 1.

< < <This implies that X contains a quasi-split torus T \ T . Since n! N ' 0id w id
mod 2, we derive a contradiction.

So n is a prime. If n / p, we conclude, with c replaced by n, that n˜ ˜ ˜ ˜
� 4divides e q y 1, leading to a contradiction. Hence n s p and n g p, p q 1˜

Ž .in case A .

Ž . Ž .2 Consider the case A with n s p q 1. Now we may assume
Ž . pthat X G N [ N T ( Z : Z . HenceS Ž12 ? ? ? p . <ŽŽ e q . y 1.rgcdŽe qy 1, pq 1. < p

Ž . Ž . < <q y e rgcd q y e , p q 1 divides X . If an odd prime s / p divides this
Ž .number, then X would contain a conjugate of N T with even order, aS id

Ž . xcontradiction. So we have q y e s gcd q y e , p q 1 ? p .

Now let t g N l N g be a pX-element and g g S_ N. Then t g T l T g

< <̃with T [ T . Hence t is singular in T. So the order t of a preimageŽ12 ? ? ? p.
˜ p iŽŽ . Ž . .t̃ g S must be a divisor of gcd e q y 1, e q y 1 s e q y 1 with some

˜ yp p x ˜Ž . Ž .˜ ˜1 F i - p, and t is S-conjugate to diag c, c, . . . , c, c . Hence t g Z S
p x Ž .and t s 1. So t s 1, and either N g II S or N is a p-group.p
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Using Fermat’s Theorem together with Lemma 3.1 and Lemma 3.5, we
Ž . Ž .easily verify that N is a p-group iff q, e , p s 2, y1, 3 . Moreover, an

Ž Ž ..easy inspection shows that II U 2 s B. Henceforth we may assume that3 4
Ž . Ž . Ž . Ž .q, e , p / 2, y1, 3 and N g II S as well as N F X g II S . Now wep p
want to prove that N s X.

< <For that we assume first that r is a prime divisor of X and thus r s p
Ž . mas well as q y e s gcd q y e , p q 1 , with q s r for some m G 1.

Assume that e s 1. Then we get m s 1, q s p s 3, and N ( Z : Z ;13 13
Ž .moreover, an inspection of the subgroup structure of S ( L 3 reveals4

Ž . Ž . Ž 3.that either X s N or X s O X : N with O X ( E 3 . In any case X3 3
is not maximal in S.

Assume now that e s y1. Then we get m s 1, q s p, and T (
Z p as well as NrT ( Z . Now observe that T is minisotropicŽŽ p. q1.rŽ pq1. p
Ž .i.e., is not contained in a proper parabolic subgroup of S . As X is

Ž . Ž . X
Xsolvable and O X s 1, we have O X / 1. Since any p -element of Xp p

Ž . < <is contained in a conjugate of T and since N g II S , S : N is a power ofp
p; so Lemma 2.9 implies X s N.

X ˜ ˜Next assume that X is a r -group and consider preimages X G N (
Z p : Z of X and N and their action on the natural module V ( F pq1.q ye p q
Let s be a Zsigmondy prime of q2 p y 1 if e s y1 and a Zsigmondy prime

p Ž llof q y 1 if e s 1 a prime s is called a Zsigmondy prime of q y 1 iff it
ll m .divides q y 1 but not q y 1 for 1 F m - ll . Also observe that such an

s exists, because otherwise a well-known result of Zsigmondy would lead to
Ž . Ž . p iq, e , p s 2, y1, 3 , a contradiction. Now s divides q y e but no q y e

˜ < < < Ž .for any i - p. Let t g T with t s s; then V ( V [ W with dim VX̃ 1 F 1q

˜Ž .F 1, t acts trivially on V and irreducibly on W. Let K [ C V 1 X ;˜1 X 1 y
Ž . ² :clearly, K acts faithfully on W. Let Y [ O K and consider H [ Y : t .p 1

Then H acts faithfully and irreducibly on W. Now we easily deduce that1
all characteristic abelian subgroups of Y are cyclic, so Y is of symplectic
type. Since p ) 2, we have Y s EE ) Z with EE extraspecial of type p2 aq1,

Ž .Z s Z Y cyclic, and EE char Y.
Ž . Ž . <Suppose that 1 / EE. Since p s ord q mod s s y 1, we have p - s

j j ˜w Ž .x Ž . Ž .and t, Z EE s 1. If 1 / t g C EE , then EE F C t F T , a contradic-˜² t: S
w x Ž² :.tion. Hence we can apply 1, 36.1, p. 192 ; since C t s 0 we get p s 2,W

a contradiction.
w xThis shows that EE s 1 and Y is a cyclic p-group with Y, t s 1.

˜ ˜Ž . Ž . Ž .X XSuppose O X s 1; then O X F Z X . Considering the Fitting groupp p
Ž . Ž . Ž . Ž Ž .. Ž .XF K s Y = O K , we get t g C Y s C F K F F K , and thusp K K

˜Ž . Ž .Xt g Z X , a contradiction. So O X / 1 and X s N by Lemma 2.9.p

Ž . Ž . g3 Now we consider the case A with n s p. If t g N l N is a
X ˜ ˜˜p -element and g g S_ N, then, as above, a preimage t of t in T [ TŽ12 ? ? ? p.

˜ ˜g ˜ < <̃satisfies t g T l T and is not regular in T. Hence the order t divides
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˜Ž . Ž .˜e q y 1 and t g Z S . Again we see that N g II S . The proof that X s Np
Ž .for any N F X g II S is similar to that given in the previous case. Inp

˜˜particular, any noncentral element t g T acts faithfully and irreducibly on
V ( F p.

Ž . Ž . Ž .4 Next suppose we are in case D with n odd. Let N s N T Fw S w
< Ž . < < <X. Then C w r2 divides X and thus is odd. This requires w to consistWBn Ž . Ž .of exactly one positive if e s 1 or one negative if e s y1 n-cycle.

< < ŽŽ n . Ž n ..In particular, N s q y e rgcd q y e , 4 ? n. Suppose that n sw
Ž . Ž c .c c with 1 - c - n. Then, as in case A , we conclude that q i y e r1 2 i

Ž . x igcd q y e , 4 s p , and hence c s c s c an odd prime divisor of p y 1.1 2
Ž . Ž c2 . Ž .Again as in case A , c divides q y e rgcd q y e , 4 , hence c divides

q y e , from which we get the contradiction N F X or N F X fori d yi d
e s 1 or y1, respectively. So n is an odd prime. If n / p we can apply the
previous argument to n instead of c and get a contradiction again. So

Ž p . Ž . Ž . Ž .n s p. Notice that n q y e s n q y e . Since q y e rgcd q y e , 42 2
< < Ž . Ž .divides X , the arguments above show that q y e rgcd q y e , 4 must be

Ž .a power of p. If this is the case, then we see, similar to the cases in A ,
X Ž ."that all p -elements of N [ N T are regular elements ofS Ž123 ? ? ? p.

Ž ."T and N g II S .Ž123 ? ? ? p. p

Ž .Next we want to see that N s X for any N F X g II S . Assume firstp
< <that r divides X and thus r s p s n G 5. In particular, we then have

Ž .q y e s gcd q y e , 4 and hence q s r s p s n s 5 as well as e s 1;
Ž . Xmoreover, T ( Z and C t s T for 1 / t g T . Since any p -elementw 781 S w w

Ž .of X has a conjugate in T and since X is solvable, we get X s O X : N.w 5
Ž . q Ž .If O X / 1, then an inspection of the subgroup structure of S ( PV 55 10

Ž . 5 10shows that O X is elementary abelian of order 5 or 5 .5
Finally, we assume that X is an rX-group. Now the proof that X s N for

Ž . Ž .any N F X g II S is similar to the one in 2 .p

Ž .5 In the case of exceptional groups, the only maximal torus Tw
Ž2. Ž .whose normalizer in S has odd order occurs in case S ( E q , with6

Ž 6 3 . Ž . Ž .T [ T of order q q e q q 1 rgcd q y e , e and N T rT ( Z . Alsow S 9
w xrecall that in the notation of 11 , T can be identified with T . Henceforth24

Ž .we can assume that X G N [ N T .S
< <Since S involves sections isomorphic to S , since X is odd and since3

Ž . 6 33 g p X , we have p s 3. Note that 3 / q q e q q 1 k 0 mod 9; there-
fore T is a nontrivial 3X-group. Now let g g S_ N and let t g N l N g be a
3X-element. Then t g T l T g and so t is singular; hence t s 1. So we have

Ž .N g II S .3
Now we proceed to show that X s N. If q ) 7, then this follows from

Theorem 5.5, since in our case T is minisotropic, so there are no nilpotent
Ž .T-root subgroups and we get O X s 1, whence X s N. So suppose thatr



FLEISCHMANN, LEMPKEN, AND TIEP22

˜ ˜� 4q g 2, 4, 3, 5, 7 . Let T denote the complete preimage of T in S; so
˜ ˜ ˜ ˜ ˜Ž . Ž . Ž . Ž . Ž .X XT s Z S = O T with T ( O T . Now observe that C t rZ S s˜3 3 S

˜ ˜ ˜Ž Ž .. Ž . Ž < < < Ž . <. w xXC tZ S for any 1 / t g O T , because gcd t , Z S s 1. From 11S 3
X ˜ X ˜ ˜Ž . Ž . Ž .we see that C t s T for all t g T _ Z S ; hence C t s T for anyS̃ w S

Ž .1 / t g T. Since X is solvable, we have 1 / K [ O X for some primek
< <k. A look at orders of Sylow groups of S and at T shows that T cannot act

Ž . Ž .fixed-point freely on Z K . Hence there is 1 / z g Z K and 1 / t g T
w x Ž . Ž .with t, z s 1. So z g Z K l T and T s C z G K. So T sS

Ž .C K char X. We conclude that X s N.S

Now we consider 2-intersection subgroups. Because of Theorem 5.1 we
Ž .know that any X g II S is conjugate to a Borel subgroup of S if2

Ž . Ž .2 / r g p X and S g LIE r .
We will need the following technical lemmas:

Ž . Ž .LEMMA 5.8. Let H s YT , where Y s O H g Syl H and T is cyclic2 2
2 k m Ž .of order q q 1, with k G 1, q s r , and r an odd prime such that C t F TH

Ž .for all 1 / t g O T . If V is a faithful F H-module with dim V gq Fq
� kq1 kq1 kq1 4 Ž Ž Ž ...2 , 2 q 1, 2 q 2 and dim C O T F 1, then either Y is cyclicF V 2q

Ž . Ž .or k, q s 1, 3 .

Ž . Ž .Proof. Put T [ O T and T [ O T ; note that T ( Z . Suppose by0 1 2 1 2
Ž . Ž .way of contradiction that Y is noncyclic and that k, q / 1, 3 .

Observe first of all that q2 k q 1 is not a power of 2. Now let s be an odd
2 k Ž 2 k j . Xprime dividing q q 1. Then gcd q q 1, q y 1 s 1 for all 1 F j -2

kq1 Ž . kq1 < kq1
U2 , and thus ord q s 2 x y 1; in particular, 2 q 1 F s. LetZ s

<t g T be of order s. Since t does not act trivially on V, V must contain² t:

an irreducible subspace of dimension G 2 kq1.

Ž . Ž . Ž .1 Put d [ dim V and D [ End V . Note first of all that bothF Hq

² : kq1t and H act irreducibly on V whenever d s 2 .

Suppose now that d s 2 kq1 q 1 and that V is an irreducible F H-mod-q

Ž .ule; so V is absolutely irreducible as DH-module, and dim V dividesD
Ž < < . Ž .gcd H , d . Moreover, dim V G 2, because H is not cyclic. Since oddD

< < kq1 Ž .prime divisors of H are greater than 2 , dim V s d is an odd primeD
< <dividing H ; in particular, D s F .q

<Now observe that V [ V m F is irreducible and that V splits intoYq
Xlinear F Y-modules; hence Y F ker V s 1 and so Y is abelian.q

<If V s V [ ??? [ V with one-dimensional homogeneous componentsY 1 d
Ž . Ž . d Ž < <V , 1 F i F d , then each V has inertia-group I V s YT ; as gcd T ,i i i

. 2 d Ž . 2 d 2 k
q y 1 s 2, we get T F Ker V and thus T s 1. In particular, q q 1i

< < Ž . Ž .s T s 2 d; this in turn leads to k, q s 1, 3 , a contradiction. Therefore,
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<V is homogeneous. As Y is abelian, we easily conclude now that Y isY

cyclic, again a contradiction.
We have shown that V s V [ V with irreducible H-modules V and0 1 0

Ž . Ž .V such that dim V s 1 and dim V s d y 1.1 F 0 F 1q q
Ž < < . Ž . < Ž . < < <As gcd T , q y 1 s 2, C V G T with T : C V F T : T s 2.T 0 0 T 0 0
w Ž . Ž .x Ž . Ž . Ž .Note that C V , C V F C V s 1, and hence C V F C T sH 0 H 1 H H 1 H 0
Ž . Ž . Ž . Ž .T. As O H s 1 and C V F Core T , we get C V F T . SinceH 1 H H 1 1

Ž Ž .. Ž . Ž .dim C T F 1 and dim V G 4, we have C V s 1. Hence H actsV 1 1 H 1
irreducibly and faithfully on V .1

Suppose next that d s 2 kq1 q 2 and assume first that H acts irre-
Ž < < kq1 . Ž k .ducibly on V. Then dim V divides gcd H , 2 q 2 s 2 gcd T , 2 q 1D

s 2, and we conclude that dim V s 2 and D ( F 2 kq1. Hence H embedsD q

Ž 2 kq1 . < < X Ž 2 k 2 kq1 . Xinto GL q and T is a divisor of gcd q q 1, q y 1 s 1 or22 2
Ž 2 k 2 kq1 . Xgcd q q 1, q q 1 s 1, a contradiction.2

Assume now that V s V [ V with irreducible F H-modules V and V0 1 q 0 1
of dimension 1 and d y 1, respectively. Then, in the same way as above,

Ž .we see that C V s 1. Now we get a contradiction to the result in theH 1
previous case.

Hence V s V [ V with an irreducible F H-module V of dimension0 1 q 1
d y 2 and an F H-module V of dimension 2. As before, we see thatq 0

Ž .C V s 1.H 1
In any case, we have an irreducible and faithful H-module W [ V of1

dimension 2 kq1, such that W is irreducible for any 1 / t g T of odd<² t:
prime order.

Ž .2 Let A be a characteristic abelian subgroup of Y. Then W s
H w xW  for some irreducible F I-module with A F I F H. Hence H : I1 q

divides 2 kq1, so without loss, T F I and W s W. We conclude that W is0 1 < A
homogenous. In particular, all albelian characteristic subgroups of Y are
cyclic. Hence Y is of symplectic type, i.e., Y ( EE ) R with EE extraspecial

Ž . Žb b bor 1 and R s Z Y cyclic or R ( Q , D , SD with b G 4 SD stands2 2 2
.for semidihedral . In the latter case, Y contains the normal cyclic subgroup

Ž Ž Ž ... by1 Ž .N [ Z C F Y of order 2 , and since N > C T F Y l T ( Z ,Y Y 2
Ž .we get a contradiction. So we can assume that Y ( EE ) Z Y with cyclic

center.

² :Suppose that 1 / EE. Consider the group H [ Y : t with 1 / t g T ans
Ž . Ž . Ž .element of odd prime order s. Then Z Y F Y l T ; hence Z Y s Z EE

Ž . w ² :x 2 aq1s C t and Y s Y, t is extraspecial of order 2 . Notice thatY
Ž . Ž Ž j. .C Y s 1 otherwise Y F C t s T for some 1 F j - s . So we can² t: H
Ž . w xapply 36.1 in 1 .

Ž² :. aSince C t s 0, we conclude that s s 2 q 1 is a Fermat prime;W
2 k ll Ž X. Xmoreover, q q 1 s 2 s . Since C t s 1 for each 1 / t g T , weY r ZŽY . 0



FLEISCHMANN, LEMPKEN, AND TIEP24

< Ž . < 2 a Ž . llget YrZ Y y 1 s 2 y 1 s s y 2 s s ms for some m g N. Hence
2 k Ž a . aq1ll s 1 and m s s y 2. So q s 2 2 q 1 y 1 s 2 q 1 and k ) 0 im-

ply k s 1 and q s 3, a final contradiction.

² : ² : < < k < <kLEMMA 5.9. Let T s t = c ( Z F G with t s 2 and 1 - c2 ll
Ž² :. Ž² :. Ž .s ll odd, such that C t s C c s T. Let N [ N T - X F GG G G

Ž .such that X is sol̈ able and N is maximal in X. Then O X / 1.

Ž . Ž . Ž Ž ..Proof. Suppose that O X s 1. Then 1 / O X and C O X F2 X 2
Ž . w Ž . ² :x Ž . ² : Ž .O X . We have O N , c F O N l c s 1; hence O N s2 2 2 2
Ž . Ž . ² : Ž .O T and O X l N F t . In particular, O X is not contained in N.2 2 2

Ž .² : ² : ² :Define Y [ O X t ; since Y ) t and Y l N s t , there is an ele-2
Ž² :. Ž² :. ² : ² :ment y g N t _ N. Hence N t G N, y s X. So t 1 X andY X y

Ž² :. Ž .T s C t 1 X F N T , a contradiction.X Gy
m ˜Ž .THEOREM 5.10. Let q s r and let S, S be as in Definition 5.6.

Ž . Ž .Suppose that X g II S such that r f p X whenë er r / 2. Then one of2
the following holds:

Ž .In case A and n s 2
Ž . Ž . Ž .i S ( PSL q , X s N T ( D with 2 - q f2 S S id 2Ž1 qy1.rgcdŽ2, qy1.

� 4 Ž .FF j 9 or X s NS T ( D with 2 - q f MM ;S co x 2Žqq1.rgcdŽ2, qy1.

Ž . Ž . Ž i.ii S ( PSL 7 , X s S , i s 1 or 2. S acts 2-transitï ely on the2 S 4
Ž . Ž1.se¨en points and the se¨en lines of P 2, 2 . The group Ý represents a4

conjugacy class of point stabilizers, SŽ2. represents a conjugacy class of line4
< Ž i. Ž i. g

< Ž i.stabilizers. In particular, S l S s 4 for g g S_S .4 4 4

Ž .In case A , n ) 2 and e s 1
Ž . Ž . Ž . 2i n s 3: S ( PSL q , X s N T ( Z : Z3 S S Ž12. Žq y1.rgcdŽ3, qy1. 2

with q s 3 ? 2 x q 1 or q s 2 x q 1 and x ) 1.
Ž . Ž . Ž . � < Ž .ii S ( PSL 4 , II S s X F S X s N T ( Z : Z , X3 2 S S Ž12. 5 2

Ž 4 . 2 4s Z : Z ? Z , X s Z : Q - ?S .S 2 5 2 S 3 8

Ž . Ž . Ž . u 2iii n s 4: S ( PSL q , X s N [ N T ( Z : Z4 S S co x 2 Žq q1.r2 4
with q s 2u y 1 g MM ;

Ž . Ž . Ž . 4iv n s 5; S ( PSL 3 , X s N T ( Z : Z .5 S S Ž1234. 2 5 4

Ž .In case A and e s y1
Ž . Ž . Ž . 2i n s 3: S ( PSU q , X s N T ( Z : Z3 S S Ž12. Žq y1.rgcdŽ3, qq1. 2

with q s r s 3 ? 2 x y 1 or q s 2 x y 1 and x ) 1, q ) 3.
Ž . Ž . Ž . t2 2ii n s 4: S ( PSU q , X s N T ( Z : Z4 S S co x 2 Žq q1.rgcdŽqq1, 4. 4

2 t � 4with q s 2 q 1 g FF j 9 .
Ž . Ž . � 4 Ž . 4iii n s 5: S ( PSU q , q g 3, 9 , X s N T ( Z : Z5 S S Ž1234. 2 5 4

and Z 5 : Z , respectï ely.2 41 4
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Ž .In case B
k ˜ kŽ . Ž . Ž .kq 1 2n s 2 : S ( PV q , X s N T with N T ( Z ?˜2 q1 S S co x S co x q q1

Z kq 1.2

Ž .In case C
k Ž . Ž . kkq1 2 kq1n s 2 : S ( PSp q , X s N T ( Z : Z .2 S S co x Žq q1.rgcdŽqy1, 2. 2

Ž .In case D and e s 1
k ˜ kŽ . Ž . Ž . Ž 2n s 2 q 1: S ( PV q , X s N T , N T ( Z =˜2 n S S co x S co x q q1

. kq 1Z ? Z with q g MM.qq1 2

Ž .In case D and e s y1
k y ˜ kŽ . Ž . Ž . Ž 2n s 2 q 1: S ( PV q , X s N T , N T ( Z =˜2 n S S co x S co x q q1

. � 4kq 1Z ? Z , with q g FF j 9 .qy1 2
k y ˜ kŽ . Ž . Ž .y 2n s 2 : S ( PV q , X s N T , N T ( Z ?˜2 n S S Ž12 ? ? ? n. S Ž12 ? ? ? n. q q1

Z k .2

Ž . 2 Ž . 2 nq1In case E and S of type B q with q s 2 and n G 12

Ž .X s N T with T ( Z , Z or Z and XrT (S S qy1 qq 2 q q1 qy 2 q q1' '
Z , Z or Z , respectï ely.2 4 4

Ž . 2 Ž . 2 nq1In case E and S of type G q with q s 3 and n G 12

Ž .X s N T ( Z : Z .S S 1 qy1 2

Ž . 3 Ž .In case E and S of type D q4

Ž . Ž w x .4 3X [ N T ( Z ? Z see 23 for notation .S 5 q yq q1 4

Ž .In case E and Dynkin type F4

Ž . Ž . Žy 4 yS ( F q , X s N T ( Z : Z . T is a Coxeter torus4 S S Ž1234. q q1 8 Ž1234.
Ž . Ž ..of B q F F q .4 4

Ž .In case E and Dynkin type E6

Ž . Ž . � 42 4S ( E q , X s N T ( Z : Z , q g 3, 76 S S 19 Žq y1.Ž q q1.rgcdŽqy1, 3. 8
Ž w x .see 11 for notation .

Ž .In case E and Dynkin type E6
2 Ž . Ž . � 42 4S ( E q , X s N T ( Z : Z , q g 3, 56 S S 19 Žq y1.Ž q q1.rgcdŽqq1, 3. 8

Ž w x .see 11 for notation .

� Ž . < Ž .4 Ž .XProof. Let II [ Y g II S r f p Y and suppose that X g II S .2, r 2 2
In view of Theorem 5.2, we may assume that X and hence S has cyclic

Ž .Sylow s-subgroups for any odd prime s g p X . Moreover, by Theorem
Ž .5.1, we can assume that r f p X whenever r / 2.
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I. Classical Groups

Ž . Ž . Ž .1 First we consider the case A with n s 2 and thus S ( PSL q .2
It is easy to see that each nontrivial element of odd order in T and T isid co x

Ž . Ž . Ž .regular. Hence N T and N T are contained in II S . Moreover,S id S co x 2
w xusing Dickson’s complete list of subgroups given in 21, p. 213 , we easily

Ž . Ž .verify that N T and N T are maximal in S, unless possibly q gS id S co x
� 44, 5, 7, 9, 11 ; but for these remaining cases the claims follow by a trivial
check.

Ž .In what follows we may assume that n ) 2 in case A .

Ž .2 Note that each element of X of odd prime order lies in a finite
� 4maximal torus of S. We take i g 1, . . . , n to be minimal such that there is

an odd prime s dividing q2 i y 1 and an element x g X of order s. Let
˜ ˜ ˜ X̃ ˜Ž . Ž .X F S be such that X s X l S rZ S and let x be a preimage of x˜

˜in X.
Ž .3 In this section we handle the case where i s 1; so s divides

either q y 1 or q q 1.

Recall that the Sylow s-subgroups of X and hence of S are cyclic;
Ž . Ž . Ž .therefore S cannot involve sections isomorphic to L q = L q ( U q2 2 2

Ž . Ž . Ž .= U q . Hence S is isomorphic to L q or to U q .2 3 3
Ž .Assume now that S ( L q . As S contains subgroups isomorphic to3

Z = Z , s divides q q 1. Without loss we may assume that Xqy1 qy1

Ž . 2contains the group N [ N T of order 2 ; moreover,Ž12. S Ž12. Žq y1.rgcdŽ3, qy1.
Ž .as p X does not contain any odd prime divisor of q y 1, we have

Ž . xq y 1 s gcd 3, q y 1 2 with x G 0.
If q F 9, then all of the claims can be verified by straightforward checks

Ž w x.using the subgroup structure of S e.g., see 6 . Henceforth we may
assume that q G 13 and thus x G 2 as well as r G 3. Note that Lemma 3.8
now even implies r G 5; hence by Theorem 5.5 we get X s N . Finally, itŽ12.

Ž . Xis easy to see that all elements t g T are regular; moreover,Ž12. 2
< < Ž .N rT s 2, and thus X s N is indeed contained in II S .Ž12. Ž12. Ž12. 2

Ž .Suppose next that S ( U q . Suppose in addition that s divides q q 1.3
Ž .3Then we may assume that X contains the image T of order q q 1 r1

˜Ž .gcd 3, q q 1 of a ‘‘diagonal’’ torus of S. Since Sylow s-subgroups of X are
cyclic, we get s s 3 and q q 1 s 3 ? 2 x for some x G 0. But now observe

Ž . ² :that X G N T G T : d with d being the image ofS 1 1

0 1 0
0 0 1ž /1 0 0
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Ž .in S and o d s 3, which in turn shows that Sylow 3-subgroups of X
cannot be cyclic. This contradiction shows that s divides q y 1.

Now we can assume that X contains a maximal torus T of orderw 0
Ž 2 . Ž . Ž .q y 1 rgcd q q 1, 3 . As q ) 2 and as p X cannot contain any odd

Ž . xprime divisor of q q 1, we get q q 1 s gcd 3, q q 1 ? 2 with x G 1.
Using Lemma 3.8 and Fermat’s Theorem, we find that q s r.

� 4If q g 3, 5, 7, 11 , we easily verify the claims using the subgroup struc-
w xture of S as can be found in 6 . Henceforth we may assume that

q s r G 13.
As before, we can now apply Theorem 5.5 to conclude that X s N [
Ž . gN T . Finally, notice that NrT ( Z . Let t g X l X for some g g SS w w 20 0

be an element of odd order. Then t g T l T g . If g f X, then thew w0 0

˜Ž .preimage of t in S is singular and conjugate in S to

a 0 0
qy1 .0 a 0

yq� 00 0 q

If a s aqy1, then aq s a2; hence a4 s aq 2 s a and ayq s a, i.e., t s 1.
yq qy1 yq qq1 < <The same follows if a s a . If a s a, then a s 1; hence t

Ž . Ž .divides q q 1 rgcd 3, q q 1 , which is a power of 2. This shows that N is
in fact a 2-intersection subgroup.

Ž .4 In the remainder we can suppose that 1 - i. In particular,
Ž < <. Ž .gcd 3, X s 1, because otherwise we get r s 3 g p X , a contradiction.
Ž . Ž .4a First we deal with the case A . Let ll be the order of qe

modulo s and observe that 2 - ll F n; moreover, either ll s i is odd or
ŽŽ . ll .Ž .ny ll Ž . Žll s 2 ? i. Also note that s divides qe y 1 qe y 1 r qe y 1 gcd qe

.y 1, n , which is the order of a maximal torus T containing the element
x g X of order s. Hence

ll ny llqe y 1 qe y 1Ž . Ž .Ž .
< < < < < <? ll ? n y ll ! N T X .Ž . Ž .Sqe y 1 gcd qe y 1, nŽ . Ž .

Now suppose that ll is a prime and let m denote the order of qe
< <modulo ll ; clearly, m F ll y 1 s i y 1. On the other hand, ll divides X

Ž .2 m 2 mand qe y 1 s q y 1; so the choice of i implies i F m, a contradic-
tion. Hence ll is not a prime.

Suppose next that there exists a divisor ¨ of i with 1 - ¨ - i. Then
<ŽŽ .¨ . Ž . < < <qe y 1 r qe y 1 divides X , and so the minimal choice of i implies
<ŽŽ .¨ . Ž . < m < < <qe y 1 r qe y 1 s 2 with m G 1; moreover, since ¨ X and thus
¨ / 3, application of Lemma 3.6 and Corollary 3.3 now yields ¨ s 2. We
have shown that either i is a prime or i s 4; in particular, ll s 2 i.
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Ž . iIf s divides qe y 1, then without loss X contains a torus of order
ŽŽ . i .2Ž .ny ll Ž . Ž .qe y 1 qe y 1 r qe y 1 gcd qe y 1, n with noncyclic Sylow s-

Ž . isubgroups; but this is impossible. Therefore s divides qe q 1. In particu-
ŽŽ . i . Ž . < < < ŽŽ . i . Ž .lar, as qe y 1 r qe y 1 X , we now see that qe y 1 r qe y 1 s

2 m with m G 1. Using the same arguments as above, we find i s 2 and
l s 4. Furthermore, if e s 1, then q s 2 m y 1 g MM ; if e s y1, then

m � 4q s 2 q 1 g FF j 9 .
Ž . < < < Ž .As n y ll ! X and 3 f p X , ll F n F ll q 2. If n s ll q 2 s 6, then s

Ž . Ž .divides the order of a section isomorphic to L q or U q according to4 4
e s 1 or e s y1, respectively. In any case, we easily see that then X

Ž . Ž . Ž .contains a section isomorphic to L q ( U q , contrary to 3 f p X .2 2
� 4Therefore n g 4, 5 .

<Ž . Ž . <Assume now that n s ll q 1 s 5. Then qe y 1 rgcd qe y 1, 5 divides
< <X , and thus is also a power of 2. From this we readily deduce that
Ž . �Ž . Ž . Ž .4q, e , s g 3, 1, 5 , 3, y1, 5 , 9, y1, 41 . A straightforward check using
the relevant subgroup structure now yields the claims as stated for the
three cases just given.

Ž .Henceforth we have n s ll s 4. Moreover, N [ N T F X withS Ž1234.
Ž .m 2 m 2N ( Z : Z g II S if e s 1 and with N ( Z :2 Žq q1.r2 4 2 2 Žq q1.rgcdŽqq1, 4.

Ž .Z g II S if e s y1. Whenever q ) 11, we can use Theorem 5.5 to4 2
prove X s N. If q F 11, again an easy check using the subgroup structure

Ž . Ž . Ž . Ž . Ž . Ž .of the groups L 3 , L 7 , U 2 , U 3 , U 5 , and U 9 shows that X s N.4 4 4 4 4 4

Ž . Ž . Ž .4b We are left to deal with the cases B to D . Recall that s
� 4divides q q d for some d g y1, 1 . Now suppose that i s a ? b with

1 - b - i and b odd. Then q a q d divides qi q d , and so minimality of i
implies that q a q d is a power of 2. As a G 2, we now deduce that
Ž . Ž . 2 bq, a, d s 3, 2, y1 ; but then s divides q y 1, contrary to the choice of

k < ii. We have shown that either i s 2 G 2 and s q q 1 or i is an odd prime.
Ž . Ž . Ž .4c Now we first consider the cases B and C . We can assume

that x g T ". Since x is regular, we must have i s n. Suppose that iŽ12 ? ? ? i.
gŽ q q iy1. "is odd; then it is a prime and we have x s t, t , . . . , t Z g T .Ž1, 2, . . . , n.

Ž ."Since N T F X, there is an element w of order n in X. Suppose˙S Ž1, 2, . . . , n.
x g T ; then q y 1 is a power of 2. By minimality of n s i, theŽ1, 2, . . . , n.
element w is contained in a maximal torus of order q n y 1 or of order˙
q n q 1. The first case implies 0 ' q n y 1 ' q y 1 mod n; hence n s 2.
The second case implies that a torus T y is contained in X andŽ1, 2, . . . , n.
hence q q 1 is a power of 2. We get 0 ' q n q 1 ' q q 1 mod n, and again

iy1q qŽ . yn s 2. Similarly, the assumption t s t, t , . . . , t g T yieldsŽ1, 2, . . . , n.
n s 2. But this is a contradiction to i ) 2.

Hence 1 - i s 2 k s n, x g T ( T k y, and each y g T ofco x Ž1, 2, . . . , 2 . co x
˜< <odd order is regular in T . Moreover, all odd prime divisors of X areco x
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‘‘Zsigmondy primes’’ of q2 k q 1, i.e., they do not divide any q2 i y 1 with
k w xi - 2 . In particular, we see that X : T is a power of 2; hence there isco x

˜ ˜ ˜ ˜ ˜ ˜Ž . Ž .Q g Syl X such that X s T Q s QT . Notice that N [ N T F˜2 co x co x S co x
˜ ˜ ˜Ž . Ž .kX, NrT ( Z , and N [ N T g II S . Since X is the product ofco x 2 S co x 2

˜the nilpotent groups T and Q, it is solvable by the theorem of Kegel andco x
w xWielandt 21, 4.3, p. 674 . We claim that T 1 X. By Lemma 2.9 itco x y

< Ž . <suffices to show that O X ) 1.
˜ kq1We consider the natural module V of S of dimension 2 q 1 in case

kq1 ˜ Ž .kq 1B or 2 in case C . Suppose that r s 2. Then S s S ( Sp q , andn n 2
we see, as in Lemma 5.8, that V is irreducible and faithful. HenceX

Ž . Ž .O X s 1 and O X / 1. So we can assume that r ) 2.2
˜Ž .Suppose that Y [ O X / 1. Now we can apply Lemma 5.8 with2

˜ Ž . Ž .H [ Y.T . If Y is not cyclic, then we conclude S ( PSp 3 ( PV 3 .co x 4 5
Ž .This simple group is also isomorphic to SU 2 , and we are reduced to the4

Ž .groups of case A . Now our previous results give a contradiction. So
˜ ˜Ž . Ž . Ž .Y s Z Y ( Z F Z X . Now we consider the Fitting group F X s2

˜ ˜ ˜ ˜ ˜Ž . Ž Ž .. Ž Ž .. Ž . Ž Ž ..O X = O F X . Since C F X F F X , we get 1 / O F X and˜2 X
Ž .thus 1 / O X .

Ž . Ž . Ž .4d Next we deal with the case D . As in 4a , we see that
n F i q 1. Suppose that n s i q 1 and i is an odd prime. Then s divides
qi " 1. In case e s 1, we get

< i < < < < <X . .s q " 1 q " 1 i s N T X ,Ž .Ž . XŽ .Ž . Ž .S Ž12 ? ? ? i. Žn.2 2

whereas in case e s y1 we get

< i < < X < < <X " .s q " 1 q . 1 i s N X .Ž . Ž 1Ž .Ž . 2S 2 . . . i. Žn.2

2 j Ž .Let j F n be such that i divides q y 1. Then i F j by the choice of s ;
hence j s i or i q 1. If j s i q 1, we get 0 ' q2Ž iq1. y 1 ' q4 y 1 mod
Ž . < <i . Since i is an odd divisor of X , we get the contradiction i F 2. If j s i,
then we conclude in a similar way that i divides q2 y 1, yielding the
contradiction i s 2.

Now suppose that n s i is an odd prime. Then s divides q n " 1. In case
<ŽŽ n . . Ž < Ž . <. < < <X Xqe s 1, we get s q y 1 n s N T X , whereas in case2 S Ž12 ? ? ? n. 2
<ŽŽ n . . Ž < Ž . <. < < <X Xye s y1 we get s q q 1 n s N T X .2 S Ž12 ? ? ? i. 2

Let j F n be such that i divides q2 j y 1. Then j s i s n, and we get
2 n 2 Ž .0 ' q y 1 ' q y 1 mod i , yielding the contraction i s 2. Therefore

i s 2 k and n s i or n s i q 1.
Suppose that n s i. Then, by the order formulae for Chevalley groups, s

n Ž 2 j 2 k . <divides q q 1; since gcd q y 1, q q 1 2 for all j - n, we conclude
that without loss of generality, s g T [ T y; in particular, we haveŽ12 ? ? ? n.
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e s y1. It is easy to see that all elements of odd order in T are regular,
Ž . Ž .and hence N [ N T g II S . The proof that N s X for any N F X gS 2

Ž . Ž .II S is similar to that given in 4c : We consider the natural module2
2 kq 1 ˜ ˜ ˜w xV ( F for S. As above, we can assume that X : T is a power of 2 andq

˜ ˜Ž .X is solvable. If r s 2, we see, as above, that O X s 1, so we can2
˜ ˜Ž .assume r ) 2, and apply Lemma 5.8 with H [ Y.T and Y [ O X . If Y2

is noncyclic, we get the contradiction n s 2, so Y is cyclic and we can
Ž .finish as in 4c .

Finally, we suppose that n s i q 1. Then s divides q ny1 q 1, and the
only maximal tori of order divisible by s are the Coxeter tori T sco x
T k y y in case e s 1 and T s T k y q in case e s y1. InŽ12 ? ? ? 2 . Žn. co x Ž12 ? ? ? 2 . Žn.

particular, q q 1 s 2 m, so q g MM is a Mersenne prime if e s 1 and
m � 4q y 1 s 2 , so q g FF j 9 is a Fermat number if e s y1. So r ) 2, and

Ž .it is easy to see that N T is a 2-intersection subgroup. To proveS co x
‘‘X s N,’’ we can use Lemma 5.8 once more and proceed in a way similar

Ž .to 4c .

II. Exceptional Groups

< <Let s be an odd prime divisor of X and recall that s / r.

Ž . 2 Ž . 2 aq15 Suppose first that S ( B q with q s 2 G 8. Then all of2
wthe claims can be verified easily by using the information given in 3,

xChapt. XI.3 .
Ž . 2 Ž . 2 aq1 Ž6 Suppose that S ( G q with q s 3 and a G 1. Recall that2

2 Ž . Ž . . Ž .G 3 ( L 8 : Z . As r s 3 f p X , we readily deduce from Theorem2 2 3
w x Ž . < <C in 24 that X G N [ N T only for tori T ( Z with N : T s 2;S qy1

< < < <moreover, X : N is a power of 2 dividing S : N s 2, and thus X s N.2

w x 3From 3, 13.2, p. 292 we see that S is doubly transitive of degree q q 1
with two-point stabilizer S s T such that any three-point stabilizer hasa , b

Ž .order 2. This shows that N g II S .2

Ž . Ž . 6Ž 6 .7 Now let S be the simple group G q of order q q y 12
Ž 2 . Ž Ž ..X Ž .q y 1 . Since G 2 ( U 3 , we can assume that q ) 2.2 3

Ž . Ž .Observe next that S involves a section isomorphic to L q = L q2 2
Ž w x w x.e.g., see 7 and 24 . Since Sylow s-subgroups of S are cyclic, we conclude
that s does not divide q2 y 1; in particular, s / 3. Consequently, s divides

2 w x Ž .q " q q 1. Using the information given in 20 , we now get N [ N T FS
2 < <X with a maximal torus T of order q " q q 1; as NrT s 6, we reach a

Ž .contradiction proving that II S s B.2

Ž . 3 Ž .8 Next let S be isomorphic to the simple group D q . The4
w xmaximal subgroups of S have been determined by Kleidman 23 ; informa-
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w xtion on maximal tori can be found in 10 , from which we take the notation
here.

Since the Sylow s-subgroups of X are cyclic, we easily verify that
Ž . 4 2X G N [ N T only for maximal tori T of type T ( Z withS 5 q yq q1

w xNrT ( Z . Moreover, we see from 10 that all nontrivial elements of T4
Ž . Žare regular; hence N g II S . Since N is a maximal subgroup of S see2

w x.23 , we conclude X s N.

Ž . 2 Ž .9 Next let S be isomorphic to the simple group F q with4
q s 22 mq1. The maximal subgroups of S have been determined by Malle
w x w x29 ; using Propositions 1.2 and 1.3 of 29 together with the fact that S has

Ž .cyclic Sylow s-subgroups, we ready deduce that II S s B.2

Ž . Ž . 24 Ž 12 .10 Here let S be the simple group F q of order q q y 14
Ž 8 .Ž 6 .Ž 2 . Ž .q y 1 q y 1 q y 1 and let H be the subgroup of type B q . Then4

Ž . Ž .H s Spin q and is a central 2-extension of SO q . Let P [9 9
� 4a , a , a , a be a base of the root system F with a and a long1 2 3 4 F 1 24

Ž .roots. If X g II S , then either H F X, or X l H is a 2-group, or2
Ž .X l H g II H .2

Suppose that H F X. Then r s 2 and X g X for i s 1, 2, 3. Hence" a i
Ž² :.X F C X F X and S s X, a contradiction." a S " a4 1 16 Ž 2 .Ž 4Suppose that X l H is a 2-group. Since H has order q q y 1 q y

.Ž 6 .Ž 8 . 4 21 q y 1 q y 1 , we see that s must be a divisor of q y q q 1 and
< < Ž 4 2 . w xcoprime to S r q y q q 1 . By 32 there is only one class of maximal

Ž < < < <. Xtori T such that gcd H , T s 1. A representative T of this class has2 w
4 2 < Ž . < < < < < <order q y q q 1 and N T rT s 12. So 3 X as well as H , aS w w

Ž .contradiction. We conclude that X l H g II H ; hence X l H is conju-2
Ž . w x w xy ygate in H to N T . From 31 and 32 we see that T is also aH Ž1234. Ž1234.

maximal torus of S such that all elements whose order is not a power of 2
Ž . Ž .yare regular. In particular, N T g II S .S Ž1234. 2

Ž . e Ž .11 Let S be the simple group E q where e s y1 in the twisted6
< < 36 Ž 12 .Ž 9 .Ž 8 .cases and e s 1 otherwise. Note that S s q q y 1 q y e q y 1

Ž 6 .Ž 5 .Ž 2 .Ž Ž .. �q y 1 q y e q y 1 1rgcd q y e , 3 , and let P [ a , a , a , a ,1 2 3 4
4 � 4a , a be a base of the root system, such that a , a , a , a , a form a5 6 1 2 3 5 6

Ž w x . Ž .Dynkin diagram of type A . See 11 for further notation. Let X g II S5 2
e Ž . Ž .and H s A q . Since II H s B, X l H is a 2-group or H F X. Sup-5 2

pose that H F X. Then X F X for i / 4. But X s X F" w a x " w a x qai 4 4
Ž² :. ŽC X F X, so we get the contradiction S s X. Notice that in theS " w a x1

2 Ž . w x � 4 w x � 4 w x .case of E q , a s a , a , a s a , a , and a s a for i s 3, 4.6 1 1 6 2 2 5 i i
Ž < < X < « Ž . < X . < e Ž . < 15Ž 6 .Ž 5 .So gcd X , A q s 1 with A q s q q y 1 q y e2 25 5

Ž 4 .Ž 3 .Ž 2 . Ž . 4q y 1 q y e q y 1 rgcd q y e , 6 . Hence s divides q q 1,
Ž 9 . Ž 3 . 6 3 Ž 6 . Ž 2 . 4 2q y e r q y e s q y e q q 1, or q q 1 r q q 1 s q y q q 1.
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6 3 Ž .If s divides q y e q q 1, then we can assume that N [ N T F XS 24
< < Ž 6 3 . Ž . < < 2with T s q y e q q 1 rgcd q y e , 3 . But NrT s 3 , and we get24 24

< Ž < < X < e Ž . < X.the contradiction 3 gcd X , A q .2 25
4 2 Ž .Suppose that s divides q y q q 1, then w.l.o.g. N [ N T F X withS 23

< < Ž 2 .Ž 4 2 . Ž . < < 2T s q q q q 1 q y q q 1 rgcd q y 1, 3 and NrT s 2 3, giv-23 23
ing the same contradiction.

Hence we conclude that s divides q4 q 1. In this case we can assume
Ž . < <2 4that N [ N T F X with T ( Z and NrT sS 19 19 Žq y1.Ž q q1.rgcdŽqye , 3. 19

3 Ž 2 . Ž .2 . Moreover, we see that q y 1 rgcd q y e , 3 is power of 2. If 3 divides
q y e , we get q s 7 if e s 1 and q s 5 if e s y1. It is easy to see that

˜ ˜ Ž .y yT s Z )T F H [ Z ) D q if e s 119 Žqy1.rgcdŽqy1, 3. Ž1. Ž2345. Žqy1.rgcdŽqy1, 3. 5

˜ ˜ 2 Ž .yand T s Z )T , F H [ Z ) D q if19 Žqq1.rgcdŽqq1, 3. Ž1.Ž2345. Žqq1.rgcdŽqq1, 3. 5

Ž 4 .e s y1. Since all q q 1 r2 elements of odd order in T are regular, we19
Ž .see that N g II S .2

Ž . � 4 � 4Now we have to prove that X s N s N T if q g 3, 7 or 3, 5 ,S 19
w x y < < 8respectively. Our arguments show that X : N s 2 and N s 2 ? 1201

Ž . Ž . Ž . < < 7 Ž .for q, e s 7, 1 , with N G Q g Syl S , N s 2 ? 41 for q, e s1201

Ž . Ž . < < 7 Ž . Ž .3, " 1 , with N G Q g Syl S , N s 2 ? 313 for q, e s 5, y1 , with41
˜Ž . Ž . w x Ž .N G Q g Syl S . In particular, N s N Q and S : H s 2 for q, e s313 S 2

˜Ž . w x Ž . �Ž . Ž . Ž .43, y1 and S : H s 1 for q, e g 3, 1 , 7, 1 , 5, y1 .2
˜Ž . Ž .So we can assume that X s QR with R g Syl X and Q g Syl H :2 2

˜ ˜ ˜Ž . Ž . Ž .Syl S . Let R F R g Syl S and R F R with R g Syl H . Thens 2 1 1 2
˜< < < < < < < < w xR r R l R s RR r R F 2; hence X : X l H F 2. From our result1 1 1

˜ ˜Ž . Ž .in case D , we know that Q s O X l H char X l H 1 X ; hence X Fs y
Ž .N Q s N.S

Ž .12 Now let S be the simple group of type E with7

< < 63 18 14 12 10S s q q y 1 q y 1 q y 1 q y 1Ž . Ž . Ž . Ž .

=
1

8 6 2q y 1 q y 1 q y 1 .Ž . Ž . Ž .
gcd q y 1, 2Ž .

� 4Let P [ a , a , a , a , a , a , a be a base of the root system and d1 2 3 4 5 6 7 0
� 4be the highest positive root, such that a , a , a , a , a , a , yd form a1 2 3 4 6 7 0

Ž . e Ž .Dynkin diagram of type A . Let X g II S and H [ A q F S. Since7 2 7
Ž . Ž .II H s B, X g H is a 2-group or H F X. Suppose that H ( A q F X.2 7

Ž² :.Then X F X for i / 5. But X F C X F X, so we get the" a " a S " ai 5 1
2 Ž .contradiction S s X. Suppose that H s A q F X. Then X F X for7 " w a xi

w x � 4 w x � 4 w x � 4i s 1, 2, 3 and 4 with a s a , yd , a s a , a , a s a , a ,1 1 0 2 2 7 3 3 6
w x � 4 Ž² :.and a s a . Hence X F C X F X, and X F4 4 " a S " w a x " a5 1 i

Ž² :. � 4C X F X for i g 1, 2, 3, 6, 7 . Again we get the contradictionS " a 5
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Ž < < X < < X.S s X. So we have gcd X , H s 1 with2 2

< < 28 8 7 6 5H s q q y 1 q y e q y 1 q y eŽ . Ž . Ž . Ž .

=
1

4 3 2q y 1 q y e q y 1 .Ž . Ž . Ž .
gcd q y e , 8Ž .

Ž 9 . Ž 3 . 6 3 Ž 6 . Ž 2 .Hence s divides q y e r q y e s q y e q q 1 or q q 1 r q y 1
s q4 y q2 q 1.

Ž .But then we can assume that N T F X with T s T or T s T ,e 24 23E Žq .6
e Ž . Ž .maximal tori of E q F E q as above. This gives the contradiction6 7

< Ž < < X < < X.3 gcd X , H .2 2

Ž .13 Finally, let S be the simple group of type E with8

< < 120 30 24 20 18S s q q y 1 q y 1 q y 1 q y 1Ž . Ž . Ž . Ž .
= q14 y 1 q12 y 1 q8 y 1 q2 y 1 .Ž . Ž . Ž . Ž .

� 4Let P [ a , a , a , a , a , a , a , a be a base of the root system, such1 2 3 4 5 6 7 8
� 4 Ž .that P_ a forms a Dynkin diagram of type E . Let X g II S and1 7 2
Ž . Ž .H [ E q )Z . Since II H s B, X l H is a 2-group or H F X.7 qy1 2

Suppose that H F X. Then X F X for i ) 1. But X F" a " ai 1
Ž² :.C X F X, so we get the contradiction S s X. Thus we haveS " a 8

Ž < < X < < X. < < Ž . < Ž . < Ž 10 .gcd X , H s 1 with H s q y 1 E q . Hence s divides q q 1 r2 2 7
Ž 2 . 8 6 4 2 Ž 12 . Ž 4 . 8 4q q 1 s q y q q q y q q 1 or q q 1 r q q 1 s q y q q 1

Ž 30 . Ž 10 .Ž 2 .Ž 2 . Ž 8 7 5 4or q y 1 r q y 1 q q q q 1 q y q q 1 s q q q y q y q y
3 .Ž 8 7 5 4 3 .q q q q 1 q y q q q y q q q y q q 1 .

ŽNow consider the following maximal tori T and normalizers N here thei
w x Ž w x.information and notation is taken from 12 see also 9 :

< < 8 6 4 2 < < 2 < < Ž . < < Ž . <T s q y q q q y q q 1 and NrT s 2 5 A q E q ;106 106 5 7

< < 8 4 < < 3 < < Ž . <T s q y q q 1 and NrT s 2 3 E q ;105 105 7

< < 8 7 5 4 3 < <T s q q q y q y q y q q q q 1 and NrT s 2 ? 3 ?104 104
< < Ž . < < Ž . <5 A q E q ;5 7

< < 8 7 5 4 3 < <T s q y q q q y q q q y q q 1 and NrT s 2 ? 3 ?109 109
< < Ž . < < Ž . <5 A q E q .5 7

Ž .Repeating the arguments above, we see that II S s B. Theorem 5.10 has2
been proved.

Now we proceed to consider the automorphic extensions of simple
Ž .groups of Lie type, i.e., groups G satisfying S 1 G F Aut S . Because of

Ž . Ž . Ž .Corollary 2.12, II G / B implies that II S / B. Notice that Aut S sp p
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Ž .D : F .D, where D consists of inner and diagonal automorphisms and
< < < < < <D r S divides S ; F ( Z is the cyclic group of field automorphismsm
Ž m.q s r , and D is the group of diagram automorphisms.

We need the following lemma:

ˆLEMMA 5.11. Let A [ D : F be a semidirect product, X F G F A and
ˆŽ .S F G l D be subgroups such that S 1 A. Moreo¨er, let ll g p X be suchyˆ ˆŽ < <. Ž < < < <. Ž .that gcd ll , DrS s 1 s gcd ll , G r X . Then for any Q g Syl X therell

˜ Ž .is Q g Syl A and a g A such thatll

a ˜ ˜ ˆaQ s Q l S : Q l F l X .Ž . Ž .

ˆ ˆ a< <In particular, if ll dï ides XrX l S , then Q l F / 1.

˜ ˜Ž . Ž .Proof. Choose Q g Syl A such that Q l F g Syl F . Since S 1 A,ll ll y˜ ˜ ˜Ž . Ž .we have Q l S g Syl S ; moreover, Q l S s Q l D g Syl D . Sincell ll
˜ ˜ ˜ ˜< < Ž < < < <. < < < < Ž < < < <.A r Q l S ? Q l F s D ? F r Q l S ? Q l F is coprime to ll , we

˜ ˜ ˜ ˆŽ . Ž . Ž .conclude that Q s Q l S : Q l F . Let Q g Syl X . Then Q is also inll
a ˜ a a ˜Ž .Syl G , and there is a g A with Q F Q. Since S 1 G , Q l S s Q l Sll y

a ˜ ˜ ˆa ˆ ˆŽ . Ž . Ž . < <g Syl S and Q s Q l S : Q l F l X . If ll divides XrX l S ,ll
a a a a˜ ˆthen Q ) Q l S; hence, 1 / Q l F l X F Q l F.

LEMMA 5.12. Let S be a nonabelian simple group of Lie type, S 1 G Fyˆ ˆŽ . Ž . Ž . Ž .Aut S s D : F .D, and X g II G such that C f g X [ X l S for anyp S
Ž < < < <. X

Xf g F. Suppose that gcd X , DrS s 1 and all p -elements of GrS lie inp
ˆŽ . Ž . � 4DrS : F. Then p XrX s p GrS : p .

ˆ Ž .Proof. Notice that G s SX by 2.12. Let H [ D : F 1Aut S . Theny
Ž . Ž .GrG l H ( GrS r G l HrS is a p-group by hypothesis. Moreover,

ˆ ˆXrX l H is isomorphic to a subgroup of GrG l H and hence it is a
ˆ ˆ ˆ ˆ< < < < < <p-group, too. Since XrX s XrX l H ? X l HrX , we can assume that
ˆ < <G F H. Let 1 / x g XrX with x s ll , a prime different from p; then

iˆ < <there is a preimage x g X of x with x s ll . Suppose that ll divides
< < < < < < < < < < Ž .DrS . Since D r S divides S , ll divides S also, and there is Q g Syl Sll

Ž < < < <.with 1 / Q F X ; hence ll divides gcd X , DrS , a contradiction. We
ˆŽ < <. Ž < < < <.conclude that gcd ll , DrS s 1 s gcd ll , G r X . By Lemma 5.11, we

˜ ˜ ˆŽ .can assume that there is 1 / f g Q l F for some Q g Syl X . Hencell
Ž .C f F X, a contradiction.S

Ž .THEOREM 5.13. Let S be a simple group of Lie type and S 1 G F Aut S .
Ž . Ž . Ž . � 4Then II G / B if and only if II S / B and p GrS s p or if p s 2,p p
Ž ll . 2 Ž ll .S ( PSL 2 or S ( B 2 and G s S : F with F cyclic of odd prime2 2

order ll .
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ˆ ˆŽ . Ž .If II G / B, then G s SX for any X g II G and one of the followingp p
holds:

Ž . Ž . � Ž . < Ž . 4i II G s N X X g II S minimal .p G p

Ž . Ž ll .ii p s 2, G s S : F with S s PSL 2 and F cyclic of odd2

Ž . � Ž . < 4prime order ll as well as II G s N T T F S .2 G co x co x

Ž . 2 Ž . lliii p s 2, G s S : F with S s B q , q s 2 and F cyclic of odd2
Ž . Ž .Gprime order ll ; moreo¨er, II G s N T where T is cyclic of order q q2 G

� 4 Ž .'« 2 q q 1 with e g y1, 1 such that 5 g p T .
Ž . Ž . Ž . � Ž . <iv p s 2, S s PSL 4 , G s S : F ( S : 2 and II G s N X3 2 G

Ž .4X g II S .2

Ž .Proof. Assume without loss that S g LIE r for some prime r. Clearly,
Ž . Ž . � 4 Ž .if II S / B and p GrS s p , then II F / B by Lemma 2.5. Sop p

Ž ll . 2 Ž ll .assume that p s 2 and S ( PSL 2 or S ( B 2 as well as G s S : F2 2
Ž .with F cyclic of odd prime order ll ; moreover, let X g II S . By Theorem2

Ž . Ž .5.10 we know that X s N Q , where Q s O X is a cyclic Hall-subgroupS
of S of known order, with XrQ being cyclic of order 2 or 4. Put
ˆ ˆŽ . ² :X s N Q and observe that X s X : f with f of order ll inducing aG

ˆ Ž .field automorphism on S. Now we easily verify that X g II G iff X2
Ž .contains the ‘‘prime subgroup’’ X [ C f .0 S

ll ˆŽ . Ž . Ž .Suppose that S ( PSL 2 and thus X ( SL 2 . Then X g II G iff2 0 2 2
< < ll Ž .Q s 2 q 1, i.e., iff Q is a Coxeter torus in S. In particular, II G s2
� Ž . < 4N T T F S .G co x co x

2 Ž . ll 2 Ž .Assume now that S ( B q with q s 2 ; in particular, X ( B 2 (2 0 2
ˆ Ž . < <F . Since 5 does not divide q y 1, we find that X g II G iff Q s q q20 2

� 4 < < < Ž .'e 2 q q 1, where e s y1, 1 such that 5 Q . So in this case II G s2
Ž .GN Q .G

ˆ Ž .Throughout the remainder we assume that X g II G . By Corollaryp

ˆ ˆ ˆŽ .2.12, we know that X [ X l S g II S and G s SX as well as X sp
Ž .N X .G

First we consider the case that p is odd. As G / S, Theorem 2.10 shows
ˆ< <that X is odd. If X is a Borel subgroup of S, then Theorem 5.1 together

m m ˆŽ Ž .. Ž .with the structure of Out PSL r implies S ( PSL 3 and X s2 2
² :X : f , where f induces a field automorphism on S of odd prime order m

Ž . < Ž . <dividing p y 1; now we obtain X G C f , a contradiction because C fS S
is even. Henceforth we may assume that X is not a Borel subgroup of S,

Ž . Ž . Sand so S, X is one of the pairs in Theorem 5.7; in particular, II S s X ,p
Ž .and conclusion i holds.
ˆ ˆ< <Notice that XrX s GrS F DrS : F, since X is odd and D is a
Ž .Ž . < < < Ž . <2-group. In case A i we have DrS s gcd qe y 1, p q 1 ; suppose

< < Ž < <. Ž . Ž Žll / p is a prime dividing DrS . Then n X s n qe y 1 y n gcd qell ll ll
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.. Ž < < < <. Ž .Ž . < <Xy 1, p q 1 s 0. Hence gcd DrS , X s 1. In case A ii , DrS sp
< Ž . < Ž . < < Ž .gcd qe y 1, p ; in case D DrS divides 4; and in case E , p s 3 and
< < Ž .DrS s gcd 3, q y e . Moreover, in all of these cases, the odd order

Ž . Ž .group X does not contain any ‘‘prime subgroup’’ S r of S, so C f g XS
Ž . � 4for all f g F. Now Lemma 5.12 shows that p GrS s p .

Ž .Now we investigate the case where p s 2. If 2 / r g p X , we use
Ž .Theorem 5.1 again and see that Out S is a 2-group, except when S (

Ž . Ž . Ž . Ž .PSL 8 with Out S ( Z or S ( PSU 5 with Out S ( S . In the2 3 3 3
Ž . Ž .former case conclusion i holds, since G s PSL 8 ? 3 acts 2-transitively2

ˆ Ž . w xon GrX, where X s D . If S ( PSU 5 we use the information in 6 to18 3
< <verify that G : S s 2. So in any of the cases emerging from Theorem 5.1
Ž . S Ž . � Ž . < Ž . 4we have II S s X and II G s N Y y g II S minimal . Hence-2 2 G 2

forth we may assume that X is not a Borel subgroup in S, and so the pair
Ž .S, X occurs in Theorem 5.10.

First notice that the only case where an odd diagram automorphism
3 Ž . m Ž .occurs is S ( D q with q s r and Out S ( Z . Since in this case4 3m

ˆŽ . Ž .X s N T does not contain a Sylow 3-subgroup of S, 3 f p XrX .S 5
Therefore, in all of the possible cases, the 2X-elements of GrS lie in
DrS :F.

Ž m.Now suppose that that S is isomorphic neither to PSL 2 for some2
2 Ž m. Ž . Žm G 2, nor to B 2 for some m G 3, nor to PSL 4 these cases will be2 3
. Ž .dealt with later . Then the ‘‘prime subgroup’’ S r of S is not solvable and

Ž .thus cannot be involved in X ; in particular C f g X for any f g F. NowS
Ž < < < <. Xwe are going to verify that gcd X , DrS s 1.2

Ž . � 4 < <In case A with e s "1 and n g 2, 4 , DrS is a power of 2. This is
also true if n s 3 and q s 2 x q e with x ) 1. If n s 3 and q s 3 ? 2 x q e ,

< < Ž . < <then DrS s gcd q y e , 3 s 3, which does not divide X , unless q s 4,
2 < <e s 1 and X s Z : Q . If n s 5, then DrS s 1 if q s 3 and e s "1. IfS 3 8

< < < < 7q s 9 and e s y1, then DrS s 5, which does not divide X s 2 ? 41 in
Ž . Ž . Ž . < < � 4this case. In the cases B , C , and D , DrS g 1, 2, 4 .

Ž . < < e Ž . < < ŽIn case E DrS s 1, except for S s E q , where DrS s gcd 3, q y6
. < < Ž . �Ž . Ž .4 < <e . If DrS s 3, then e , q g 1, 7 , y1, 5 , and 3 does not divide X

in these cases.
Thus the hypotheses of Lemma 5.12 have been verified and we get
Ž . � 4 Ž . S Ž . � Ž . < Ž .p GrS s 2 , as well as II S s X and II G s N Y Y g II S2 2 G 2

4minimal .
Ž . Ž . Ž .Suppose next that S ( PSL 4 . Then Out S ( Z = S , and X g II S3 2 3 2

is S-conjugate to a group isomorphic to D , Z4 : D or 32 : Q . Since10 2 10 8
< Ž . < � 4 Ž . Ž .C a g 21, 60 for a g Aut S _S with o a s 3, we easily verify nowS

Ž . Ž . Ž . � 4that II G / B if and only if II S / B and p GrS s 2 , in which2 2
Ž . Ž .case either conclusion i or conclusion iv holds.
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Ž m.We are left to consider the case where S ( PSL 2 for some m G 22
2 Ž m. Ž .or S ( B 2 for some m G 3. Recall that Aut S s S : F with F ( Z ,2 m

and hence G s S : F with 1 / F F F.0 0
Ž . � 4 Ž .Clearly, if p GrS s 2 , then conclusion i holds. Thus we may

ˆŽ .assume that 2 / ll g p GrS . Now X contains a Sylow ll-subgroup of G,
ˆand so we may assume without loss that there exists an element f g F l X0

Ž .of order ll . Note that X is solvable see Theorem 5.10 and that X G
Ž . Ž m r ll . 2 Ž m r ll .C f ( SL 2 or B 2 , respectively. So we get m s ll withS 2 2

Ž . Ž m. Ž . 2 Ž m.3 g p X in case S ( PSL 2 and 5 g p X in case S ( B 2 . In2 2
Ž . Ž .view of the first part of this proof, we reach conclusion ii or iii ,

respectively.

Now we classify those maximal subgroups of automorphic extensions G
Ž .of S that lie in II G . We need some lemmas:p

Ž . Ž .LEMMA 5.14. Let S s PSL q with q ) 3 and S F G F Aut S ; then2
the following holds:

Ž . Ž .i N T is not a maximal subgroup if and only if either G s S andG 1
� 2 4 Ž . Ž 2 .q g 5, 7, 3 , 11 , or G s PGL 5 , or G s PSL 3 ? 2 ( S .2 2 1 6

Ž . Ž .ii N T is not a maximal subgroup if and only if either G s S withG co x
� 24 Ž 2 .q g 7, 3 , or G ( PSL 3 ? 2 ( S .2 1 6

Proof. This is well known and can easily be checked by using Dickson’s
Ž .list of subgroups of PSL q .2

Ž .LEMMA 5.15. i Let G 1 G s G M with M F G . Then M is maximal1 2 1 2y
in G if and only if there is no M-stable subgroup H with G l H - H - G .2 1 1

Ž . Ž .ii Let G 1 G and X g II G . Let X - H - G be such that1 2 p 1 1y
G 2 G1 ˆ� 4 � 4 Ž .H s H . Then X [ N X is not maximal in G .G 22

Ž . w xProof. i For A, B, C F G let A, B denote the inclusion ordered2 C
winterval of C-stable subgroups between A and B. Then the maps a : G1

x w x w x w xl M, G ª M, G , H ¬ MH and b : M, G ª G l M, G , U ¬1 M 2 2 1 1 M
U l G are inverse isotone poset isomorphisms.1

ˆŽ .ii Suppose that X is maximal in G . Since X is not normal in2
ˆ ˆ Ž . Ž .G , G g X and G s G X. Let 1 / Q g Syl X l Syl H with prime1 1 2 1 a a

ˆ g x g xy1
ga / p; then for any g g X, there is x g G with H s H and Q, Qg 1

Ž . y1 y1 Ž .g Syl H . Hence there is h g H with x h g N Q F X, and we geta g G1g x h xg g ˆ Ž .H s H s H s H. So H ix X-invariant, a contradiction by i .

Ž .THEOREM 5.16. Let S be a simple group of Lie type and S 1 G F Aut Sy
Ž .s D : F : D, where D is generated by the inner and diagonal, F by the field,

and D by the graph automorphisms. Then Table II displays all cases where G
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TABLE II
p-Intersection Maximal Subgroups in Finite Groups of Lie Type

ˆS G p X

Ž . Ž .L 4 ( L 5 G s S 2 S , D2 2 3 10
Ž . Ž .PGL 5 2 NN X2

G s S 3 AA4
Ž i.Ž . Ž .L 7 ( L 2 G s S 2 S , i s 1, 22 3 4

Ž . Ž . Ž .G s PGL 7 2 NN X , N T ( D2 1 12
G s S 3 B ( 7 : 3

2Ž .L 9 G s S 2 B ( 3 : 42
1 2G s S ? 2 ( S 2 3 : D6 8

2Ž .G s S ? 2 ( PGL 9 2 3 : 8, D2 2 20
2G s S ? 2 ( M 2 3 : Q , 5 : 43 10 8

2 2 4Ž . w xG s S ? 2 ( PGL 9 2 3 : 2 , 10 : 42
Ž . Ž .L 11 G s S 2 N T ( D2 co x 12

Ž .PGL 11 2 D , D2 24 20
G s S 5 B ( 11 : 5

a a aŽ .L 2 , 2 G 4 G s S p s 2 y 1 g MM B2
Ž . � 4 Ž . � 4 Ž .L q , q f FF j 4, 7, 9, 11 p GrS : 2 2 N T2 1
Ž . � 4 Ž . � 4 Ž .L q , q f MM j 4, 5, 9, 11 p GrS : 2 2 N T2 co x

llŽ . < < Ž .L 2 , ll an odd prime GrS s ll 2 N T2 co x
xŽ .L r , r s 2 p q 1 a prime G s S p ) 2 B2

x3m s 2 p q 1
m <Ž . m p y 1L 3 , G s S p ) 2 BŽ .2 ½ m an odd prime

Ž . Ž .L r , r g FF GrS F Z 2 N B2 2
Ž . � 4 Ž .PSU q , q g 3, 5, 9 GrS F Z 2 N B3 2

X2 Ž . Ž . Ž .G 3 ( L 8 GrS F Z 2 N B2 2 3
2 ll aŽ .B q , q s 2 ) 2, ll odd G s S p s 2 y 1 g MM B2

G s S 2 D2Ž qy1.
X ( Z : Z" q " 2 q q1 4'

< < < < <GrS s ll prime 2 X : Z with 5 X" ll "
2Ž . Ž .L 4 GrS F F ( Z 2 N 3 : Q3 2 8
2Ž .D F GrS F Z = Z 2 N 3 : Q2 2 8

3 Ž . Ž . � 4 Ž .D q p GrS : 2 2 N T4 5
eŽ . Ž . � 4 Ž .PS q , e s "1 p GrS : p p N Tp co x

Ž . Ž . Ž . Ž . Ž .B denotes a Borel subgroup: L q [ PSL q , N H [ N H ; if G ) S, NN X [2 2 G
� Ž . < Ž . 4N X X g II S , maximal in S .G p

ˆ ˆŽ .has a maximal subgroup X that lies in II G . The groups X are listed up top

conjugacy in G.

ˆŽ .Proof. We know from 5.15 i that X - ?S implies X - ?G. In this
� 4G � 4Sproof ‘‘Y is G-stable’’ means that Y s Y .
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Ž .1 First we consider the rank 1 groups occuring in Theorem 5.1.
Since the Borel group B is a maximal parabolic, it is always maximal by a

ˆ ˆ Ž .theorem of Borel and Tits, hence X is maximal in G. Also, X g II G byp
Theorem 5.13.

Ž .2 Next we consider the cases in Theorem 5.7. Here G F D : F. In
Ž .Ž . Ž . Ž .A i , X s N T is contained up to conjugacy in the properS Ž12 ? ? ? p.

G-stable subgroup H of S consisting of matrices

A 0ž /0 b

e ˆŽ . Ž .with A g S q . Hence X is not maximal in G by 5.15 ii .p

Ž . Ž ."In D , X s N T is contained in the normalizer H of a maxi-S Ž12 ? ? ? p.
e ˜ ˜mal rank subgroup of type A . The S-conjugacy class of H is unique, sopy1

there are at most two S-classes of H. Since GrS has odd order, these
ˆclasses are G-stable and X is not maximal in G because of Lemma

Ž .5.15 ii .
ˆŽ . w xIn case E , X is not maximal, as can be seen in 28 .

ˆŽ .Ž . Ž w x w x.In case A ii , X is maximal in S e.g., 25 and 26 ; hence X is
maximal in G.

Ž .3 Finally, we consider the cases in Theorem 5.10.
Ž . Ž .3a Case A with n s 2: by Lemma 5.14 we can assume that

q F 11. Here the information on maximal subgroups of G can be found
w xin 6 .

Ž . Ž . Ž . e Ž .Case A , i and iii with n s 3 or 5 and e s "1: Here S ( PS q ,n
Ž .and X s N T can be chosen to be contained in a properS S Ž12 ? ? ? ny1.

subgroup

A 0H s ž /0 b

e Ž . ² : Ž .yt rwith A g S q . We can assume that GrS F d, f with d [ ? andny1
Ž r . ˆŽ .f s ? ; hence H is G-stable and X is not maximal in G by Lemma

Ž .5.15 ii .
Ž . Ž . Ž .Case i with S ( PSL 4 , GrS F Z = Z and X / N T :3 2 2 S Ž12.

Ž . 2 Ž .Here II S contains the maximal subgroup X s Z : Q , so N X is2 m S 3 8 G m
Ž . Ž . Ž .maximal and in II G for all G. If GrS F F, there is N X g II G2 G 2

Ž 4 . Ž .with X ( Z : Z . Z g II S , which can be chosen in the maximal2 5 2 2
4 Ž . � 4Sparabolic PP [ 2 : SL 4 . Since the conjugacy class PP is G-stable,2

Ž . Ž .N X is not maximal in G by Lemma 5.15 ii .G
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Ž . e Ž . Ž .Case ii n s 4, e s "1: S ( PS q , X s N [ N T and G s4 S S co x
Ž . Ž .S ? N T . There exists an element t g X of order a power of 2 suchG co x

Ž² :. Ž 2 .that X - C [ C t is a maximal rank subgroup of type A q andS 2

Ž . Ž . ² :n ² :H [ N C - S. For each n g N T we have t s t ; henceS G co x
Ž . Ž . � 4G � 4S Ž .N T F N H . We conclude that H s H and N T is notG co x G G co x

maximal in G.

Ž . Ž . Ž . Ž . k3b Cases B , C , D : We first consider the cases n s 2 , S (
Ž . Ž . k " Ž .kq 1 kq1PV q , and PSp q or n s 2 q 1 and S ( PV q . Here X s2 q1 2 2 n S

Ž .N T . Let F be the root system of type B or C . Up to W-conjugacyS co x n n
q˜ ˜ ˜ ˜ ˜there is a unique subsystem F s F j F with F and F of type B1 1 1 2 n r2

˜and C , respectively. This gives rise to unique S-conjugacy classes ofn r2
2 2 ˜Ž . Ž .maximal rank subgroups of type B q , respectively, C q in S,n r2 n r2

˜ ˜ e Ž .which contain conjugates of T . Similarly, if S s SO q , there is aco x 2 n
˜ 2 Ž .unique S-conjugacy class of maximal rank subgroups of type D q thatny1

˜contain conjugates of T .co x

˜In each case we choose such a maximal rank subgroup M and define
˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜Ž . w Ž .x Ž .H [ N M ; then X : N T F 2 and H s MN T ) M. We con-˜ ˜ ˜S M co x H co x

˜ ˜ ˜ ˜Ž .clude X s N T - H - S.H̃ co x

˜ ˜ ˜ ˜ ˜Ž . Ž . Ž .Let X [ XrZ S and S [ SrX S . Since any element of Aut S can
˜Ž . Ž . Ž .be extended to an element of Aut S , we have S F S 1Aut S , X g II S ,2y˜Žand X - H - S notice S s S in case B , S s S in case C , and X s Xn n

.l S in any case . Now Lemma 5.15 implies that for any G with S F G F
ˆŽ . Ž . Ž .Aut S , the group X s N X s N X is not maximal in G. Now sup-G G

ˆŽ . Ž . Ž .pose that S F G F Aut S is such that X [ N X g II G is a2 2 G 2 22
Ž .maximal subgroup. We consider the group G s G ? S F Aut S . Now3 2

Ž . Ž . Ž .Lemma 5.15 ii implies that N X s N X is not maximal in G , butG G 33 3ˆŽ . Ž . Ž .by Lemma 5.15 i N X s N X is maximal}a contradiction.G G 23 3
k y ˜Ž . Ž .yNext let n s 2 , S ( PV q , and X s N T . Then S has a2 n S S Ž12 ? ? ? n.

2 Ž 2 .unique conjugacy class of maximal rank subgroups of type D q thatn r2
contains conjugates of T y. Again we choose a maximal rank sub-Ž12 ? ? ? n.

˜ ˜ ˜ ˜ ˜ ˜Ž . w Ž .xgroup M with H [ N M and get X : N T F 2, as well as X s˜ ˜S M co x

˜ ˜ ˜Ž .N T - H - S. Now the same argument as above shows that for any GH̃ co x
ˆŽ . � 4with p GrS : 2 , X is not maximal in G.

Ž . Ž . 2 Ž .3c In case E with S of type B q , the claims are immediate,2
ˆ 2 Ž . Ž .because X l S is maximal in S. If S is of type G q or F q , there are2 4

only inner and field automorphisms and X is contained in the normalizers
Ž Ž . Ž .of proper G-stable subgroups of maximal rank 2 = PSL q and B q ,2 4

. 3 Ž . w xrespectively . In case D q , Kleidman’s paper 23 contains the informa-4
ˆ ˆtion that X is maximal in G. In the E -cases the groups X are not6

w xmaximal, as can be seen in 28 .
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TABLE III
p-Intersection Subgroups in Sporadic Groups

G p X X - ?G G p X X - ?G

2M 2 3 : SD q He : 2 2 17 : 16 y11 16
0 2 5 : 4 y Co1 11 23 : 11 y
0 5 11 : 5 y Co2 11 23 : 11 y
J 2 S = D q Co3 11 23 : 11 y1 3 10
M 2 5 : 4 y HN 3 19 : 9 y22
0 3 7 : 3 y Fi 2 17 : 16 y23
0 5 11 : 5 y 0 11 23 : 11 y

Ž . Ž .M : 2 2 5 = 2 : 4 y Fi 2 17 = 2 : 16 y22 24
XM 5 11 : 5 y Fi 2 17 : 16 y23 24

0 11 23 : 11 q 0 11 23 : 11 y
2Ž .M 11 23 : 11 y BM 2 17 : 8 = 2 ’2 y24

HiS 5 11 : 5 y 0 23 47 : 23 q
McL 5 11 : 5 y M 29 59 : 29 ??
He 2 17 : 8 y } } } }

Ž . Ž .Here ?? means either 59 : 29 - PSL 59 - ?M or 59 : 29 - ?M. The existence of PSL 592 2
in M is not settled yet.

6. THE SPORADIC SIMPLE GROUPS

Ž .In this section we classify II S for all sporadic simple groups S andp
w xtheir automorphism groups. The result can be derived from the data in 6 ,

together with elementary results from Section 2; so we omit a formal
proof.

Ž .THEOREM 6.1. Let S 1 G F Aut S , where S is a sporadic simple groupy
Ž . Ž .and suppose that X g II S . Then the triple G, p, X is exactly one of thosep

listed in Table III. A q indicates that X is maximal in G.
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