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Let p be a fixed prime and G a finite group. A proper subgroup X < G is called
a p-intersection subgroup if X N X# is a p-group for each g € G\ X, but X is not
a p-group. In this paper we classify the p-intersection subgroups in the quasi-sim-
ple and almost simple finite groups.  © 1998 Academic Press

1. INTRODUCTION

Let G be a finite group containing a proper subgroup X such that
X NX&=1foreach g G\ X, ie, X is a self-normalizing TI-subgroup
in G. Because of a classical theorem of Frobenius, G contains a nontrivial
normal subgroup N such that G is a semidirect product of N and X.
Nowadays such groups are called Frobenius groups for obvious reasons.

In this paper we generalize the concept of Frobenius groups in the
following way.

DerINITION 1.1. Let & be a property of groups and G a finite group.

(i) A proper subgroup H < G will be called an &-intersection sub-
group if H does not have property &, but H N H# has property & for
every g € G\ H. The set of &-intersection subgroups will be denoted by
S or 7 (G).
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(i) If 7 is a set of primes and & is the property of being a 7-group,
then an &-intersection subgroup will be called a m-intersection subgroup, or
a p-intersection subgroup if a = {p}. The corresponding .7.(G) will be
denoted by .7 (G) or .%,(G), respectively.

Note that if & is the property that a group is trivial, then G is a
Frobenius group if and only if I.(G) # ; in particular, in this situation G
is not simple. This raises the question about structural consequences for
different properties &. As a first natural generalization, we investigate the
case where & is the property of being a p-group for some fixed prime p.
Clearly, this will include the Frobenius groups, but, as the following
example shows, simple groups also occur: take G = GL,(2)and 3, = X €
Z(G).

The main result of this paper is the classification of p-intersection
subgroups in quasi-simple and almost simple finite groups G. Recall that
G is called quasi-simple if G is perfect and G /Z(G) is nonabelian simple;
furthermore, G is called almost simple if § <G < Aut(S) for some
nonabelian simple group S.

The strategy of proof is as follows. First we classify the p-intersection
subgroups of the nonabelian simple groups. This, in turn, will be used to
obtain the corresponding results for the almost simple groups and the
guasi-simple groups, using well-known data on automorphism groups and
Schur multipliers of the simple groups (e.g., consult 2.7, [6], and [18]). In
Section 4 we shall deal with the alternating groups, in Section 5 the
analysis is carried out for finite groups of Lie type, while it is done for the
sporadic groups in Section 6.

It may be worth noting that these results will be used in a forthcoming
paper [14] to classify all primitive permutation groups in which two-point
stabilizers are p-groups.

2. BASIC DEFINITIONS AND RESULTS

G will always denote a finite group and p a prime. The notation used is
standard and can be found in [21] or [15]. In particular, 7(G) denotes the
set of prime divisors of |G|, for any set 7 of primes, 7' is the complement
of o in the set of all primes. Moreover, O,(G) denotes the largest normal
m-subgroup of G, with O,(G) = O,,(G) and O(G) = Oyy(G); Z(G) is the
center of G, and F(G) denotes the Fitting-subgroup of G. For any g € G,
|g| is the order of g; the notation =,, <, etc., will indicate equality or
containment, etc., up to conjugacy in the subgroup H < G. X < -G means
that X is a maximal subgroup of G.
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The sets of Fermat- and Mersenne-primes will be denoted by & and .7,
respectively.

First we record some obvious facts about the set .7.(G) and its ele-
ments.

LEMMA 2.1. Let G be a finite group.

(i) If property non-& is inherited by subgroups, then 7,(G) = &

(i) IfH € 7,(G), then N;(H) = H. If H < G is minimal among the
subgroups of G that do not have property &, then H € 7,(G) if and only if
NG(H) =

(iii)  Suppose that the property & is inherited by subgroups. Then we
have the following:

If U,V €. 7.(G), then either UNV €. 7,(G) or UNV has prop-
erty &.

If H € 7,(G), then N5(S) < H for any S < H not having property &.

If H< G and X €. 7,(G) with H £« X, then either X N H < H has
property & or X N H € 7,(H).

LEMMA 2.2.  Suppose S is simple and X € 7,(S). Then
X = (U < X|U has property &) = (X N X8|g € S\ X ).

Proof. Without loss we may assume that X # 1, and so S is non-
abelian. Put X* = (X N X%|g € S\ X) and X, = (U < X|U has prop-
erty &£). Note that X* < X and X* < X, < X. By a theorem of Wielandt
([21], Satz V'.1.5), there exists a normal subgroup N < S with N N X = X*,
Since S is not a Frobenius group, X* + 1, and thus N =S as well as
X=Xx*=Xx,. 1

LEMMA 2.3. Let X be a nontrivial proper subgroup of the group G with
7(X) # {p} for some prime p. Then the following are equivalent:

) X es(G).
(i) N,(Y) < X for any nontrivial Y < X with w(Y) # {p}.
(iii)  Xis strongly g-embeddedin G forp #+ q € w(X), i.e.,, N;(Q) < X
for q-subgroups Q # 1 of X.

Proof. The implications (i) = (ii) = (iii) being clear, we assume (iii)
and let g G\ X. Now suppose 1 # Q € Syl (X N X¢) for some prime
g#p. If Q< Q IS Syl (G), then Z(Q) < N;(Q) < X N X8; hence Q <
C(Z(D) <X NX¢ and 0 =0. S0 Q and °Q are in Syl (X). Hence

there is x € X with xg € N;(Q)\ X, a contradiction that finally proves
the claim. |
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LEMMA 24. Let p be a prime, XELYP(G), and H < G. Then the
following hold:

(W) Ifp #q < w(X), then Squ(X) C Squ(G) and ged(| X1, |G : X
is a power of p.

(i) Z(G) < Coreq(X) < 0,(G) N X < O,(X).
(i) If H £ X, then either X N H is a p-group or X N H € %,(H).

Proof.  All claims are immediate in view of Lemma 2.3. |
LEMMA 25. Let N < G, X < G, and let p be a prime.

() If X €7(G) and if X N N is a p-group, then either XN = G or
XN/N €.7(G/N).

(i) If X €4(G) and if X N N is not a p-group, then XN = G and
X NN es(N).

(iii)  Suppose that N < O,(G). Then XN/N € .%(G /N) if and only if
XN €.7(G).

(iv)  Suppose that w(G /N) = {p}. If X is a minimal element of .%,(N)
orif X E(/[,(N) such that X¢ = XV, then Ng(X) EJP(G). In particular,
I(G) # Tiff 7 (N) + &.

Proof.  Assume first that X €.7(G), that X N N is a p-group, and that
XN < G. Clearly, XN/N is not a p-group. Let U/N be a nontrivial
g-subgroup of XN/N for a prime g#p and g€ G with gN €
Ng ,5(U/N). Then we can assume that U = QN for some Q € Syl (U)
with Q < Q € Syl (X) € Syl (G). Since *Q, Q € Syl (U), there is u = yn
e U with ye Q and n € N such that N;(Q) = ug = yng. Therefore
ng € N;(Q), whence gN € XN/N. Hence XN/N €.7(G/N) by Lemma
2.3. This proves part (i).

For part (ii) observe that N is not contained in X, and thus X " N €
~#(N); now apply the Frattini argument to N and some Q € Syl (X N N)
c Syl (N) with p # q € w(X N N).

The claims in (iii) are obvious in view of part (i).

Henceforth assume that 7(G/N) = {p} and X €.7,(N). Let QO = 1 be
a g-subgroup of Y := N;(X) for some prime ¢ #+ p and let g € N;(Q).
Clearly, O < Ny(X) = X, and so Q < X N X& €7(N).

If X is maximal in 7(N), then X N X¢=X, and so g €Y, hence
Y €.7(G) by Lemma 2.3. If X¢ = X", then X¢ = X" for some n € N,
and thus Q < X N X"; therefore n € Ny(X) = X, and so g € Y. Again
we get Y €.7(G).

The remaining claims in part (iv) are easy consequences of part (ii). 1
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COROLLARY 2.6. If G is minimal subject to .7 (G) # & (relative to taking
subgroups and factor-groups), then either G is a nonabelian simple group, or
for any proper normal subgroup N < G and X € .%(G) we have G = NX
with N N X a p-group.

COROLLARY 2.7. Let G be a quasi-simple group and L. .= G /Z(G). Then
I(G) # Dif and only if 7,(L) # Dand Z(G) is a p-group. Moreover, each
X €.7(G) is the complete inverse image in G of some Y €. 7(L), i.e.,
7= X/ ZG)IX €.5(G).

Proof. Suppose X €.7(G) and let x # 1 be a p’-element of X. By
Lemma 2.3, X > C;(x) > Z(G). now for any g € G\ X, Z(G) < X N X5,
and so Z(G) is a p-group. It remains to apply Lemma 2.5Gii). 1

Remark. As Corollary 2.7 indicates, a check (using [6], [18] for instance)
whether p divides the order of the Schur multiplier of L for the simple
groups L with .#(L) # J reduces the quasi-simple case to the simple
case. This easy treatment is left to the reader.

LEMMA 2.8. Suppose G = G’K with K < G and G' N K < Z(G); more-
over, assume that either G' <H <G or H=G/Z with Z < Z(G). If
F(H) =, then 5(G) = J.

Proof. Suppose that X €.7(G). Note that [X, K] < G' N K < Z(G)
< X, and thus K < N;(X) = X; in particular, K is a p-group. In the first
case, G/H is a p-group, and so .7 (H) # J by Lemma 2.5(iv). In the
second case, Z < X N OP(G), andso X/Z er(H) by Lemma 2.5(ii). 1

LeEmMMA 2.9. Let G be a finite group and X, < X, < G with X,, X, €
7(G), and [ X, : X;] a power of p. If O,(X,) # 1, then X; = X,.

Proof. By the assumption we have

10,(X)!1X,]
10,(X,) X)| = —————— =|X,|-p*
p( 2) 1 |Opr(X2) lel 1 p
for some x € N. Hence, 0,(X,) < X,, and thus X, < N;(0,(X))) < X;.

THEOREM 2.10. Let G be a finite group, p be an odd prime, and
X €.7(G) with even order. Moreover, let T € Syl,(X), T, == Qy(T) and
Q = O(G). Then one of the following holds:

() T is cyclic or (generalized) quaternion and Co(T,) < X, as well as
G = QCT,) = OX.

(i) Q=0,G) and G/Q = SL)Xq) or *B*(q), where q = 2° > 4
and p = q — 1 is a Mersenne prime. Moreover, X = QN4 (T) with X/QT =
YA

P
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Proof. Note that X is strongly embedded in G, and thus we can apply
Bender’s Theorem [2]. In view of Glauberman’s Z*-theorem, the claims in
(i) are evident. We are left with the situation where G has a normal series
1<9Q <L <G such that Q = O(G), and G /L is isomorphic to a sub-
group of Our(L/Q) with |G/L| odd and L/Q = SL,(q), ’B,(g), or
PSU,(q) for some g = 2° > 4; moreover, X = ON,(T) for some T €
Syl,(G).

If O+ 0,/(G), we get G =X by 2.3, which, of course, is absurd.
Therefore, Q 0,(G). Now put G = G/Q as well as X, == X N L; note
that X, NL(T) ef(L) with 2 € 7(X,) # {p}. Assume first that L =
PSU3(q) Then X, =T: K, where K is cyclic of order (¢ — 1)/d, with

= gecd(3,q + 1). Slnce Ni(K) < N(Y) for any Y < K, and since N;(K)
;{ X,, K must be a p-group. So (g? — 1)/d = p’, with f>1; as ged(q — 1,
g+ =1wegetqg=2a contradlctlon

So we have L = SLz(q) or L =’B,(q); inany case X, = T : K, where K
is cyclic of order ¢ — 1. Since Ny(K) is not contained in X,, ¢ — 1 = p/
for some f > 1. Now we easily verify that f= 1, and thus p =g —1is a
Mersenne prime; in particular, a is prime as well.

Suppose now G # L. As a is prime, we can assume without loss that
G=L:A and X=2X,: A, where A=(¢)=7, and ¢ acts as the
standard Frobenius field automorphism on L. Now we obtain a contradic-
tion, because Cz() is not contained in X,. This proves that G = L; so (ii)
follows. |

We will need the following result, which is an easy consequence of the
classification of finite simple groups.

LEMMA 2.11.  Let S be a nonabelian finite simple group and a € Aut(S)
an element whose order is coprime to |S|. Then C(() is not nilpotent.

Proof. We can assume 1 # «. It is well known from the *“classification
theorem” that the only nonabelian finite simple groups that have coprime
automorphisms are among the simple Chevalley groups G(g) or those of
twisted type. In this case « is conjugate to some field automorphism and
thus fixes elementwise a subgroup H = G(p), defined over the prime field.
But such a group is never nilpotent. ||

COROLLARY 2.12. Let S be a nonabelian simple group, S < G < Aut(S),
and X € 7(G). Then X ==X N S €.7(8), G = SX, and X = N;(X).

Proof. Suppose that X is a p-group. Then there is x € X such that
lx| =7 € 7 (X)\{p}. Moreover, Cs(x) = C,(x) is nilpotent, and so Lemma
2.11 implies that /€ 7(S). But then /€ 7(Cs(x)), contrary to w(X) =
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{p}. Now Lemma 2.5(ii) yields X €.7(S) and G = SX, as well as X =
Ng(Xx). 1

3. SOME ARITHMETICAL LEMMAS
When dealing with groups of Lie type, we shall need the following
arithmetical results.

LemMA 3.1.  Let p be a prime, q € Z an integer coprime to p, and v,(q)
the p-adic valuation of q. Then the following holds: v,(q™ — 1) = v,(q — 1)
+ v,(m) if p is odd and divides g — 1 or p = 2 and 4 divides q — 1. If 4
divides q + 1, then

w1y 1 if mis odd
va(g" = 1) = v,(q + 1) + v,(m) if 0 <miseven.

Proof. This is well known. ||

LEMMA 3.2. Let e € {+1} and d,m,q € N such that 1 < q and d is a
proper divisor of m. If

(ge)" -1

g 1| =" 1),

then

(e.q.m,d) €{(+1,4,2,1),(-1,4,3,1),(-1,4.4,2),
(—1,2,4,1),(-1,2,6,3)}.

Proof. If e=1, then g> —2g+1>1+q"+q** + - +q9m/4°D
implies d =1 and m = 2. Hence, in the following we suppose that
e= —land put X = [(—¢)" — D/(—g)* — D).

Incase m =d =1 mod2, we have g2 + 2g + 1 > X = (¢¢ — Dlg™ ¢
+ g™ * + -+ +49] + 1. This yields d = 1 and, consequently, m = 3.

Suppose next that m =d =0 mod2. Then X=1+¢q%+ - +
qim/a=Y < g2 + 2g +1 < ¢+ 1,and thus d = 2, as well as m = 4.

Finally, we consider the case m = 0 mod2 and d =1 mod2. If m =
2mod 4, then, using the previous considerations,

qm_l qm/2+l
g"’*+1 q'+1

s(q—l—l)2
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implies m/2 =3,d =1, or d = m/2. In the first case we get the contra-
diction (¢ — 1)(g¢®> — q + 1) < g® + 2¢q + 1. The second possibility leads
tom=2,d=1o0rtoqg=2 m=6,d=3.If m=0mod4, then, again
together with the previous results,

qm_l qm/2_l
q’"/z—l qd—|—l

<(q+1)°

implies m =4,d =1,and g = 2. |

CoROLLARY 33. Let qe Z\{0+1},aeN,a>1 with |q° — 1] =
lg — 1l-lgcd(g — 1, a)l. Then (g, a) € {(—2,2),(-2,3),(—3,2)}.

Proof. By Lemma 3.2, a € {2,3,4}. Now the result follows from a direct
inspection of these cases. I

LEMMA 3.4. Let 1 #+ g € Z be an integer and m € N. Then (g™ — 1)/
(g — Dged(g — 1,m) € Z.

Proof. Put X := (g™ — 1)/(q — Dgcd(g — 1, m) and let p be a prime
dividing ¢ — 1. If p does not divide m, then »,(X) > 0. So assume that p
divides gcd(qg — 1,m). If 2 <p or 2 = p and 4|g — 1, then »,(X) = »,(m)
—v,(ged(g — 1,m)) > 0 by Lemma 3.1. If p = 2|gcd(q — 1,m) and 4|q +
1, then v (X) = v,(¢" — 1) — 1 — v,(gcd(g — 1,m)) > 0, and we are
done. 1

LEMMA 3.5. Let g € Z\{0, + 1} and m € N odd, m > 1. Then

m

q —q
q-—-1

‘=m<=(q,m) = (—-2,3).

Proof. Suppose that |(g” — 1)/(q — 1| = m. Since 1 + |g| +
lgl? + - +lgI™ ' >m, we get ¢ == —g>1. Now m=1+qg'(g — 1)
A+ g%+ +(gHm32) > 1+ ¢'(¢ — D" Y2 > m; this in turn
implies m =3and ¢ =2. |

LEMMA 3.6. Let g € Z\{0, + 1}, m € N, and p be a prime such that
qg" —1
(¢ — 1)ged(g — 1, m)

Then one of the following holds:

=p’>1

(i) m is an odd prime dividing p — 1.
(i) m=p=2andqg=+2""1—1
(i) (g, m, p*) € {(-2,4,5),(—2,6,7),(—3,4,5)}.
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Proof. Put X, =(q"™ —1/(g—1 and X = X,/gcd(g — 1, m). Also
note that m > 1.

Suppose first that m = bc with 1 < b, c. Now we get X = ABCD, with

=(¢™ — 1) /(g° — Dgcd(g® — 1,¢), B == ged(g® — 1,¢)/gcd(q — 1, ¢),
C = gcd(g — 1,c)ged(qg — 1, b)/ged(g — 1, m), D = (q¢* — /(g — 1
ged(g — 1,b), and A4, B,C,D € Z. Note that |A| = p* with o« > 1, be-
cause otherwise Corollary 3.3 implies g” € {—2, —3}, which, of course, is
absurd. Moreover, observe that gcd(g” — 1)/(q” — 1), D) = gcd(c, D).

Suppose, in addition, that gcd(c, p) =1, and thus 1 = gcd(c, D) =
ged(A, D). Since a > 1, we get |D| = 1, and so Corollary 3.3 yields

(¢.0) €7={(-22),(-23),(-3,2)}. (1)

If gcd(p, m) = 1, then ged(p, b) = 1 and thus (g, ¢) €% as well; noting
that (g, m) = (—2,9) yields the contradiction |X| = 57, we easily verify
that the remaining possibilities lead to case (iii).

Suppose now that p divides m. The arguments leading to (1) now show
that ¢ is a prime different from p = b € {2,3}. Evaluating |A| = p* for
each of the three possibilities in (1), we easily derive a contradiction now.

Suppose next that m = p” for some r € N.

Assume that p is odd. Then k = ordz*(q)lgcd(p —1,m) =1, and so
k = 1 and p divides ¢ — 1. Now 3.1 implies » (X)) = v, (m) = r, and thus
| X, = m. But now Lemma 3.5 implies (q,m) = (-2, 3) which in turn
leads to | X| = 1, a contradiction.

So we have p = 2, and q is odd. Clearly, |f r = 1, then case (||) holds. So
we suppose that r > 1. If 4 divides g2 — - 1, then ¢ '+1=2 a
contradiction. If 4 divides g2 " + 1, then g2 " — 1 = |g — 1], which im-
plies ¢ = —2 and r = 2, a contradiction.

We are left with the situation where m is a prime different from p. If
p = 2, then ¢ and m are odd, and so we get s = v,(X) = v,(m) = 0 by
Lemma 3.1, a contradiction. Therefore, p is odd.

Now let k = ordz*(q) where r = (g™ — 1) > 1. Note that k divides
ged(m, p — 1) € {1, mh. If k=1, we get 1 <5 =p,(X)=1,(X,) =0, a
contradiction. Hence we have k = m, and so m d|V|des p — 1. This is case

®. 1

CoROLLARY 3.7. Let g € Z\{0, + 1}, m; € N, and p be a prime such
that

q" -1
(¢ —1)ged(g — 1,m;)

:p5i>1

fori =1 and 2. Then m, = m,.
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Proof.  In view of Lemma 3.6, only the case p > 2 has to be considered.
We can assume that m, <m, are primes dividing p — 1. Then p™
divides gcd(¢™ — 1,q¢™2 — 1) = g — 1, and we get the contradiction m; =
(g™ — 1) /(q — Dged(g — 1,m)) = 0. 1

LEMMA 3.8. Letrbeaprime, q =1", e = +1,andq — € = 3-2%, with
m > 1andx > 0. Then € = 1 and q € {5%,7%}.

Proof. If e= —1, then g + 1 = 3-2%; hence the order of r modulo
g + 1is 2m and divides ¢(g + 1) = 2*. Hence m is a power of 2. We get
" =(+1" =1 mod (3), and 3 divides ¢ — 1 but not ¢ + 1. So we
conclude € = 1.

The order ord,_,(r) = m divides ¢(q — 1) = 2*. Hence m =2' and
(rm/?2 — 1)(r™/? + 1) = 3-2*. Suppose that 3 divides r™/2 — 1. Then
rm/2 4 1=2%hence m=2and r=2” — 1 €.# is a Mersenne prime.
Moreover, r — 1 = 2(27~* — 1) = 3-27. We conclude y =1, p = 3, and
r = 7. Suppose that 3 divides /2 + 1. Then m =2 and r — 1 = 2°, i.e,,
r=2%+ 1€ isaFermat prime with ¢ > 0. From r + 1 = 2(2* "' + 1)
=3-2", weconclude y=1,¢t=1and r=5. |

4. THE ALTERNATING GROUPS

In this section we classify all p-intersection subgroups of the simple
alternating groups «7,.

THEOREM 4.1. Let G =&/, with n > 5, p € w(G), and suppose that
X €7(G). Then X = Ng(Q), with Q € Syl (G) for a suitable prime q;
moreover, one of the following holds:

() n=5p=3,¢g=2,and X =,

(i) n=6,p=2,qg=3,and X =3:7,;

(i) ¢q n—2=2f+l€Zp=2,andX=Q:K,whereQEZq
and K =7, _,.

(v) g=n—1lisodd,(q—1)/2=p’,and X = Q: K, where Q = Z,
and K = 7,4, .

W g=nisodd,(n—1/2=p/, and X = Q: K, with Q = 7, and
K=7Zg 1,

Proof.  The subgroup structure of the groups 7, with 5 < n < 8 is well
known, and it is an easy exercise to verify the claimed results for these
cases. Henceforth we assume that X €.7(G), that n > 9, and that g is
the minimal prime divisor of | X| with g # p.
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If ¢ = 2, then | X|is even and p is odd; but then Theorem 2.10 provides
a contradiction. Therefore, ¢ is odd and X contains a product « = B, 3,
-+ B, of k pairwise disjoined g-cycles. Now X > C;(a) = B;, and so we
can assume 2 := {(123--- ¢)) < X. Note that N = N4(2) < X.

Suppose now that g < n — 2. Then 2 divides |N|, and the choice of ¢
implies p = 2. If ¢ <n — 3, then N contains a 3-cycle; thus ¢ = 3. Now
N =(Z,X%,_3): 7, is a maximal subgroup of G; hence X = N. But now
we find a G-conjugate N8 of N such that NN NS > (Z, X, 4 X
Z;):Z,. This contradiction proves that ¢ = n — 2; in particular, ¢ and n
are odd and N =2: K, where K is cyclic of order g — 1. The minimality
of ¢ now implies ¢ — 1 =2/;s0 ¢ =2+ 1 €5 If 7(X) # {2, g}, then
the choice of ¢ ensures w(X) = {2, g, n}, and so X contains a subgroup
R=7,ButnowX > N;(R)=72,:Z,_,,,,,and so n — 1is a power of 2
as well; now we get n = 5, a contradiction. Hence we have 7(X) = {2, g}.
In particular, X cannot be transitive on n == {1,2,...,n}, and thus g =
{1,2,...,q}and Q = {n — 1, n} are the X-orbits on . In particular, X is
isomorphic to a solvable subgroup of %, _,. Since n is odd, Q = 0,(X)
has fixed points on both ¢ and ; hence Q =1+ O,(X), and thus
X=N.

Suppose next that ¢ =n — 1. Since n > 9, ¢ is odd, and N =Z: K,
with K being cyclic of order (¢ — 1)/2. The choice of g implies that
(g — 1) /2 = p’ for some f > 1; hence w(X) = {p, g}; in particular, X is
solvable. If X acts transitively on n, then n divides | X1, and so p = 2 and
n=qg+1=22’+1)is a power of 2. We get the contradiction f = 0.
Therefore X < G, =.,_;. Since ¢ =1 mod (p), the group O,(X) has
fixed points on ¢, while X is transitive on ¢. From this we deduce
0,(X) =1+ 0,(X), and hence X = N. -

We are left to consider the case where g = n. Then N =2 K, with K
being cyclic of order (n — 1)/2. As in the previous case, we see that
(n —1/2=p/ and 7(X) = {q, p} = {p, n}, as well as 0,(X) = 1; thus
X=N. 1

COROLLARY 4.2. Let &/, < G < Aut(«,), with n > 5, and suppose that
X €.7(G). Then p = 2, and one of the following holds:

() n =26, X=N;Q),with Q € Syl,(G).
(i) X = Ng(Q), where Q = 7, with q = 2f+1emn—-2,n—-1,n
NF.

Proof. Put X, =X N G'. Since X is not a 2-group, X, # 1. If X, isa
p-group, then X, is a proper normal subgroup of X and #(X) = {2, p};
but then Theorem 2.10 yields a contradiction. Hence, by Lemma 2.4,
X, €7,(G'), and the claim follows from the previous theorem, noting that
p = 2 by Theorem 2.10, and neither &7, nor 3, are in .%(3;). |
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TABLE |
p-Intersection Maximal Subgroups in Alternating and Symmetric Groups

G p X

Ay 3 s
o <G <3 2 Ng(Z5)
oy < G < Aut() 2 N;(3?)
{(%,36) 2 G < Aur(s) 2 N,(Zs)

o, nprime & (7,11,17,23} pwith(n — 1)/2 =pf  N;KQ2— ) =Z,:Z, 4y,
S,.5<nex 2 NKQ2- ) =2,:2,_,

COROLLARY 4.3. Let &/, I G < Aut(%/,) with n > 5, and suppose that
X EQYP(G) is maximal in G. Then the triple (G, p, X) is as listed in Table I.

Proof. The claims for n € {5, 6} can be verified directly, using the well
known subgroup structure of X and Aut(s). Henceforth we assume that
nx=7i.

Applying Theorem 4.1, we see that cases (iii) and (iv) have to be
discarded, because then X is not maximal in G: X < St;({1,2,...,¢}). A
similar argument shows that in the case of Corollary 4.2(ii) we must have
q=n€cEs

Now let X be as listed in the last two lines of Table | and suppose X is
not maximal: X <M < G. Since M is transitive of prime degree n,
well-known theorems of Galois and Burnside imply that M is a doubly
transitive permutation group, S == soc(M) is nonabelian simple, and S <
M < Aut(S). Using the list of doubly transitive permutation groups with
nonabelian socle (see [4] or the main result of [19]), one arrives at one
of the following exceptions: n € {7,11,17,23}, and X <M < G =4/, is
one of the “exceptional” embeddings 7:3 < PSL,(7) <./, 17:8 <
PSL,(16):4 <&/;,11:5 <M, <&, and 23:11 < My, <s7,5. |

5. FINITE GROUPS OF LIE TYPE

In this section LIE(r) denotes the set of finite simple (twisted or
untwisted) groups of Lie type defined over a finite field of characteristic r.

THEOREM 5.1.  Let G € LIE(r), and suppose that X € 7(G) with r €
m(X).

) If X = N;(U) for some U € Syl(G), then r # p.
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(i) Ifr#p,thenX =NgU)=U:T, where U € Syl(G), T+ lisa
cyclic p-group, and exactly one of the following five cases occurs:

(1) G =SLy(q) or G =*B,(q), where q = 29 > 4 andp = q — 1 is
a Mersenne prime.

(2) G = PSL,(r™), where r™ = 2 - p* + 1 with odd primes r and p;
moreover, if m # 1, then r = 3 and m is an odd prime dividing p — 1.

(3 G=PSL(q)withp=2andq=recFor(qr)=(923).
(4) G =PSU,(r)with =p =2 andr € {3,5}.
(5) G =°G,(3) = PSL,(2%) withp = 2 and r = 3.

In particular, G has Lie-rank 1 and X is a Borel subgroup of G.

Proof. For (i) just observe that X = U: T, with T # 1 and N (T) # T.
Henceforth we assume that r # p and seek to prove the claims in (ii).

Clearly, as X is strongly r-embedded in G, X > B := N;(U) = U: T for
some U € Syl,(G) and a suitable complement 7' of U in B. If G has a
Lie-rank of at least 2, then G is generated by the maximal parabolic
subgroups containing B, and hence G = (N;(R)I1 +# R < U) < X, which,
of course, is absurd. Therefore G has Lie-rank 1 and thus is isomorphic
to one of the following groups: PSL,(q), PSU,(q), °B,(q), °G,(q). Note
that g = 22"*1 > 8 in the third case and g = 3! > 3 in the last
case. Moreover, T is cyclic of order (¢ — 1)/gcd(qg — 1,2), (¢*> — 1)/
ged(g + 1,3), ¢ — 1, or g — 1, respectively. Since B is maximal in G and
G = (B, N;(T)), we see that X = B and N,(T) is not contained in X; in
particular, T € Sylp(B).

Now suppose that p > 2. If r = 2, then 2 € 7(X), and so Theorem 2.10
shows that case (1) holds. Thus we may assume that r is odd; in particu-
lar, G = PSL,(q), with ¢ = r™ = 2-p* + 1. Observe that m is odd and
(r™ — 1) /(r — Dged(r — 1, m) = p* with x’ < x.

Now suppose that m > 1 and thus x’ > 0. Then Lemma 3.6 shows that
m is a prime divisor of p — 1. If plr — 1, then Lemma 3.1 implies
x' = v((r™ = 1/(r — Dged(r — 1, m)) = v,(m) = 0, a contradiction.
Thus we have ged(p,r — 1) =1. As r" — 1 =2p*, we then get r = 3.
This is case (2).

If p=2and G £ PSU,(¢g), then |T|=2*> 1 implies g € FU {9}; in
particular, °B,(¢q) does not occur. This leads to case (3) or to case (5). If
p =2 and G = PSU,(q), then, by Lemma 3.8, |T| = (¢* — 1)/gcd(q +
1,3) = 2* > 1 implies g € {3,5}, i.e., case (4) holds. |

THEOREM 5.2.  Let G be a finite nonabelian simple group, p be a prime,
and X € 7(G). If there exists q € w(X)\{2, p} such that Q € Syl (X) is
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not cyclic, then one of the following holds:

() G =PSL,(3™), q =3, and 3" = 2p* + 1, with odd primes, m, p
such that m divides p — 1; moreover, X is a Sylow 3-normalizer of G.
(i) G=PSL,9) = and X =3?:7, withq =3 andp = 2.
(iii) G = PSU,(q) and X = q**?:7Z4 with q € {3,5} and p = 2.
(iv) G =PSLy4) and X = 3%:Qq withq =3 and p = 2.
) G=M, and X = 3°:SD; withq =3 and p = 2.

Proof. Since X is strongly g-embedded in G, we can apply [16, Theo-
rem 24.1], and obtain a well-specified list of possibilities for the pairs
(G, q). using Theorem 5.1 together with the information in [6] on the
subgroup structure of the groups in the list obtained, it is now an easy
exercise to reduce to the cases (i)—(v) of Theorem 5.2. |

Now we set up some notation concerning maximal tori in simple groups
of Lie type.

Let S be such a simple group. Then § occurs as a section of a suitable
finite group of Lie type, i.e., a group S := S, of F-fixed points of a
connected reductive algebraic group S, defined over F, with Frobenius
endomorphism F : S-S

Each S contains a maximally split F-stable maximal torus, i.e., a torus T
contained in an F-stable Borel subgroup. Recall that the S -conjugacy
classes of maximal F-stable tori are classified by the F-conjugacy classes of
W= NS(T) where w,w’ are F-conjugate if and only if w' = W~ *wF(%) for
suitable w € W.

For each g € S, let  Z(g) =g 'F(g). If T is an F-stable maximal
torus of S, then Z.(g)T € W and

(*T)r = ( y,(gw)

By Lang’s theorem, for any element w € W, there is a g€ S _with
Z(g)T = w, hence a “finite torus” T, ==T, F < S If §:= S/Z(S) or
§'/7(§), then T, will always denote 7, /Z(8) or (T, N §)/Z(§). An
element 1 € T, is regular if the connected centralizer Cz(0)° is equal to the

torus T, = 8T, Here ¢T and 7,, are related as above, and 7 will always
denote a preimage of ¢ in S. We will call T, a maximal torus of S.

LEMMA 5.3. Suppose that t € T, is regular; then Ny(T,) = N:(T,)/
Z(S).

Proof. Clearly, Ny(T,) > Nz(T,)/Z(§). Suppose that ¢ € T, is regu-
lar and x € Ny(T,,). Then 7€ T, N (T,, N $)* < T, N T}. Since 7 is regu-
lar, ¥ € Na(T,). 11
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A key ingredient of our further arguments is the following statement:

LeMMA 54. Let S € LIE(r) and X €.7(S). If X is not conjugate to a
Borel group of S, then X contains at least one normalizer Ny(T,,)) of a maximal
torus T, of S. If, moreover, r & w(X), then any p'-element t of X is
contained in such a unique maximal torus T,, < Ny(T,)) < X and is regular in
there.

Proof. If r € w(X), we can assume that » = p by 5.1. Hence, in any
case X contains a {p, r}-element ¢ # 1. Since every semisimple element of
S is contained in a maximal torus of § and since Cy(r) < X, we get the
first assertion.

Now suppose that r ¢ 7(X). According to a classical result on central-
izers of semisimple elements of groups of Lie type (cf. Theorem 3.5.4 of
[5], also see Theorem 4.2.2 of [17] for a more expanded version), the
connected centralizer Cz(7)° is reductive, and hence Ci7) contains a
central product of finite groups of Lie type H € LIE(r) and a torus. Since
ged(r, |Z(§)I) =1= gcd(r [S: 8], we get Ci(1) = T , @ maximal torus in
WhICh 7 is regular. Hence 7 does not lie in any other maX|maI torus of S, so
is the only maximal torus of S containing 7. |

W

In view of the last result, it is important to have more information on
overgroups in S or S of given maximal tori. In particular, the following
result on solvable overgroups of maximal tori will be very useful:

_THEOREM 5.5 (Seitz [30]). Let g =r™, T be a maximal torus of S, and
T<Xx<S.
(i) Ifq>7and if X is solvable, then X = O(X)Ng(T) and O(X) is
a product of T-root subgroups of S.
(i) Ifr >3 and q > 11, then the normal closure of TinXis generated
by T and the T-root subgroups of S contained in X.

Notice that T-root subgroups of S are either r-subgroups or products of
certain finite groups of Lie type.

Now we will explain more precisely which pairs of groups (S, 8) we are
looking at:

_DeriniTION 5.6, Let r be a prime, m € N, and g = r™. In the sequel
(S, S) will be one of the following pairs of groups:

(A) For Dynkin type A, ,, n > 1. § = 8§5(¢q) = SL,(q) if e = 1 and
SU(q) if e=—1 and S = PS(q) = §/Z(8) = PSL,(q) if e=1 and
PSU(q) if e = —1.

(B) For Dynkin type B,, n > 1, q odd: S = SO,, . (q), the special
orthogonal group and § == (S) = PQ,,. (q).
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© For Dﬁynkin type C,, n > L S = Sp,.(q), the symplectic group
and S == S/Z(S) = PSp,,(q).

(D) For Dynkin type “D,, n > 3: S = S0Os5,(q), the special orthogo-
nal group and § == §/Z(§) = PQ;,,(q)

(E) For Dynkin type °B,, °D,, ?G,, ®F, ®E,, E, and Eg §
denotes the finite group of Lie type (possibly twisted), coming from the
simplx congected algebraic group of the same Dynkin type: whereas
S = S/Z(8).

In all cases we exclude the solvable groups PSL,(2), PSL,(3), PSU,(2),

’B,(2), etc.; moreover, in (B) and (C) we exclude the exceptional case
(n,q) = (2,2), in which (5, 5) = (34, %).

Now we give a more precise description of the maximal tori in Sand §
for groups of classical type. Let S be one of the following algebraic groups:
S=SL, (F ) in case (A), S = SOZnH(F ) in case (B), S = SPZn(F ) in case
(©), and S = SOZ,,(F ) in case (D).

In each of these cases a maximally split torus can be described as the set

(F N of functions f:N :={1,2,...,n} > F , where in case (A) we
have to restrict to those functions that satlsfy l_[,eNf(z) 1, eq,

t, 0= 0+ 0

e O e d
O... tn
or
ty, 0= 0. 0
0 1, 0
0--
O tn
f=t= 1 0 0 0
0 t;t
0--- t;l

eTx< szH(l_:q).

All Weyl groups W = NG(T)/T of classical groups are subgroups of the
wreath product Z, \ X, which is the Weyl group in cases (B) and (C). So
W is acting naturaIIy on T (viewed as a set of functions) by “ 7f(i) =
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(f(o~ @)~ where z(i) € {0,1}. In case (A) we have W = 3, whereas
in (D), W is the subgroup of index 2 of Z, \ % consisting of elements
with an even number of 1's in the base group Z4. The action of F on T can
be described as follows: in case (A): F(f)(i) = f(i)<? Vi € N; in cases (B),
(C), and (D) (with e=1); F(f)(@) =f()? VieN; in case (D) with
€= —1, F(f)i) = f(i)¢ Yi € N\{n} and F(f)n) = f(n)~.

Let w € W be a representative of the F-class [w]; then w contains n;
positive and n; negative pairwise disjoint i-cycles with X7_,i-(n/ + n;)
= n. (A negative i-cycle (1,2,...,i)" maps 1 » 2 >3- —>i—> —1+
—2--- and has order 2i).

Now the F-conjugacy classes of W and the corresponding tori are given
as follows:

In the cases (A) to (C) and (D) with e = 1, the F-conjugacy classes
coincide with conjugacy classes of W. In case (D) and € = —1, they can be
identified with the W, -orbits in the coset W), - (n™) € Wy , where (n") is
the negative 1-cycle n — —n in Wy . -

In case (A) all cycles are posmve ie, n; =0 forall i and T, is
isomorphic to a subgroup of index g — € in the corresponding maximal

torus TW.F of the general linear or unitary group with
~ n +
n;
Tw-F = 1_[1211176,'.
im

In cases (B) to (D) and € = 1,

p= 1@ )" X (20"

where in case (D) the number of negative cycles is even. In case (D) and
= —1, T,.r is given in the same way as in the case e = 1, if the cycle
type of w is replaced by that of w:(n™). In particular, the number of
negative cycles has to be odd. _
For Coxeter tori we will use the notation 7., == T, and 7., =T,

Notice that w,,, = w (12--- n) in case (A), w,,, =w (12 - n)” in cases
(B)and (C),and w,,, = (12 n — 1)"(n)~ in case (D) and € = 1. In case
(D) and € = —1, we define w,,, = (12 - n — 1)~. For quasi-split tori we
will use the notation T =T,and T, =T,

In all cases, except (D) and € = —1 we have N{T /T, = Cp(w),
whereas in case (D) and €= —1, N«(T, ) /T, = CW(w(n ). Clearly,
N«T,) = N«(T,).

The following theorem classifies the elements in 7 (S) for p > 2.
Because of Theorem 2.10 we can assume in this case that X €.7(S) has
odd order.
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THEOREM 5.7. Let p > 2, (S, ) as above, and X €7(8S) of odd order.
If X is not a Borel-subgroup in S, then one of the following holds:
In case (A)
() n=p+1S8= PS;H(q), and

X :sNS(T<12~~p)) = ZK(GW,1)/gcd(eq,1,p+1)|:Zp,

with g — € = gcd(qg — €, p + 1) - p* for some x € N; moreover, (q, €, p) +
2, —-1,3).

(i) p=3,S=L,0Q), and X = E3*):Z,5:7Z4; moreover, S con-
tains two conjugacy classes of 3-intersection subgroups of the given type.

(i) n=p, S =PS;(q), and

=sNS(T.0x) = Zieqyr—1y/(eq-vucdeqa—1.p) - Lp-

In case (D)

M n=p, §=PO;(q), S =sNs(Tuz... ) = Ly o) /g0(q"~ e,
Z,, and q — € = gcd(q — e, 4) -p* for some x € N. Here the + corre-
sponds to € = 1 and the — to e = —1.
(i) n=p=5 S=PQj5) and X =0Q: N, with Q = Oi(X)
being elementary abelmn of order 55 or 5 and N = 7,4, - 7.

In case (E)
S =Ey(q), p =3, X =(N((T), with T == T,, (see [11]), N(T)/T =
Lo, and T = Z 45, o1 1)/cd(q - €, 3)
Proof. By Lemma 5.4 we know that X > N,, :== N(7,,) for some maxi-
mal torus 7, of S. Since |Cy,(w)| divides |N,|, W cannot contain the

element w, = —id; therefore § is of type @4, ®D, with n odd or of type
@
E,.

(1) Suppose we are in case (A). If w consists of n; cycles of length i,
then |N, /T,| is divisible by IT;i"n,!. Since this is an odd number, we
conclude that n > 3; furthermore, n, = 0 whenever i is even and n; < 1 if
i is odd. Moreover,

1
(eq — 1)ged(eq — 1, n) iodt},_r!,:l

((eq)' —1)-i|  divides [N,].

If a is odd W|th n,>0 and 1<a<n—1, then there exists ¢,

a—1

8(c,c, ..., c* L DZ(S) € X of order [(eq)? — 1)/(eq — 1)|
which is not regular |n ', hence C,(z,) has even order. By Lemma 3.6 we
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see that |((eq)* — 1)/(eq — 1)| is a power of p and a is a prime dividing
p— 1L
If 1l <a <b <nwith n,,n, > 0and thus a + b < n, then

a p b
€ - € _ c 1
w.lo.g. 1+ p* = (eq) —1)_ ocd (eq) (eq)
Eq - 1 Eq — 1 Eq _ 1
(Eq)gcd(a,b) -1 .
= o n =1,

a contradiction. So either w is conjugate to (1) (234 --- n) and n is even, or
w is conjugate to (123 --- n) and n is odd.

Now define 77 := n if n is odd and 7 := n — 1 otherwise. Suppose that
n=cyc, with 1 < ¢;, ¢, < 7. Since ((eq) — 1) /(eq — 1) divides ((eq)"~*
—1)/gcd(eg — 1,n) if n=n—1 and ((eq)" — 1)/(eq — Dgcd(eq —
1, n) otherwise, the same argument as above shows that the [((eq) —
1)/(eq — 1| are p-powers and ¢, = ¢, is an odd prime dividing p — 1. So
we may assume that 7 = ¢? with prime ¢ # p. Then c is again the order of
a suitable element of a maximal torus 7,, < X. By our previous arguments
we must have

(eq)" —
(eq — 1)ged(eq — 1,n) |

(eq)" ' —1

T/:T =
T =11, gcd(eq — 1,n)

respectively. We conclude: 0 = (eq)*’ — 1= eq — 1 mod ¢, hence cleq — 1.
This implies that X contains a quasi-split torus 7;, # 7,,. Since n!|[N,,| = 0
mod 2, we derive a contradiction.

So % is a prime. If # # p, we conclude, with ¢ replaced by 7, that 7
divides eg — 1, leading to a contradiction. Hence 7 = pand n € {p, p + 1}
in case (A).

(2) Consider the case (A) with n =p + 1. Now we may assume
that X > N = Ny(Tup... ) = Zyeqyr-1y/gedteq-1.p+n) - £, Hence
(g — €)/gcd(g — €, p + 1) divides | X|. If an odd prime s # p divides this
number, then X would contain a conjugate of Ny(7;,) with even order, a

contradiction. So we have ¢ — e = gcd(g — €, p + 1) - p*.

Now let t € NN N8 bea p-elementand g € S\N. Thent € TN T?¢
with T := Ty, ... ,,. Hence ¢ is singular in T'. So the order [7] of a preimage
7€ § must be a divisor of ged((eq)” — 1, (eq)’ — 1) = eq — 1 with some
1<i<p, and 7 is S-conjugate to diag(c, c, ..., c,c 7). Hence 77" € Z(8)
and t?" = 1. So ¢t = 1, and either N efp(S) or N is a p-group.
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Using Fermat’s Theorem together with Lemma 3.1 and Lemma 3.5, we
easily verify that N is a p-group iff (g, €, p) = (2, —1,3). Moreover, an
easy inspection shows that .7(U,(2)) = &J. Henceforth we may assume that
(q,€,p) #(2,-1,3) and N €.7(S) as well as N <X €.7(S). Now we
want to prove that N = X.

For that we assume first that r is a prime divisor of | X|and thus r = p
as well as ¢ — € = gcd(g — €, p + 1), with g = r™ for some m > 1.

Assume that e = 1. Thenweget m =1, g=p =3,and N=Z,;:7Z,5;
moreover, an inspection of the subgroup structure of S = L,(3) reveals
that either X = N or X = O,(X): N with O,(X) = E(3%). In any case X
is not maximal in S.

Assume now that e= —1. Then we get m=1, g=p, and T =
Zpyr+1yyp+1) 8 Well as N/T = 7Z,. Now observe that T is minisotropic
(i.e., is not contained in a proper parabolic subgroup of S). As X is
solvable and O,(X) = 1, we have O,(X) # 1. Since any p'-element of X
is contained in a conjugate of T and since N €.7,(S5), |S: N|is a power of
p; S0 Lemma 2.9 implies X = N.

Next assume that X is a r’-group and consider preimages X>N=
Zy-.:Z,of X and N and their action on the natural module ' = [F”+1
Let s be a Zsigmondy prime of g?” — 1if e= —land a ZS|gmondy prlme
of g? — 1if e =1 (a prime s is called a Zsigmondy prime of ¢ — 1 iff it
divides ¢“ — 1 but not g™ — 1 for 1 < m </). Also observe that such an
s exists, because otherwise a well-known result of Zsigmondy would lead to
(g, €, p) = (2, —1,3), a contradiction. Now s divides g” — € but no ¢' — €
forany i < p. Let t € T with |t| = s; then V|g =V, ® W with dim (Vl)

< 1, ¢t acts trivially on ¥, and irreducibly on W. Let K == Cx(V,) <1X
clearly, K acts faithfully on W. Let Y == O,(K) and consider H, := Y : (¢).
Then H, acts faithfully and irreducibly on W. Now we easily deduce that
all characteristic abelian subgroups of Y are cyclic, so Y is of symplectic
type. Since p > 2, we have Y = & = Z with & extraspecial of type p2“*1,
Z = Z(Y) cyclic, and & char Y.

Suppose that 1 # &. Since p = ord(g) mod (s)ls — 1, we have p <s
and [1, Z(E)] = 1. If 1 # ¢/ € C,, (&), then & < C«(+/) < T, a contradic-
tion. Hence we can apply [1, 36.1, p. 192]; since C,,,({¢)) = 0 we get p = 2,
a contradiction.

This shows that & =1 and_Y is a_cyclic p-group with [Y,¢] = 1.
Suppose O,(X) = 1; then O, (X) < Z(X). Considering the Fitting group
F(K) = Y X 0,(K), we get t € Cp(Y) = Ci(F(K)) < F(K), and thus
te Z(X), a contradlctlon So 0,(X) # 1and X = N by Lemma 2.9.

(3) Now we consider the case (A) with n =p. If te NN N¥ is a
p’-elementand g € S\ N, then, as above, a preimage ToftinT = le P
satisfies € T N T4 and is not regular in T. Hence the order [7] divides
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eq — 1and 7 € Z(S). Again we see that N €.7,(8). The proof that X = N
forany N <X ef(S) is similar to that glven in the previous case. In
particular, any noncentral element 7 € T acts faithfully and irreducibly on
V=Fr

(4) Next suppose we are in case (D) with n odd. Let N,, = Ny(T,) <
X. Then [Cy, (w)|/2 divides | X'| and thus is odd. This requires w to consist
of exactly one positive (if € = 1) or one negative (if e = —1) n-cycle.
In particular, |N,|= ((¢" — €)/gcd(¢" — €,4))-n. Suppose that n =
c,¢, With 1 < ¢; < n. Then, as in case (A), we conclude that (¢°i — €)/
gcd(g — €,4) = p*, and hence ¢, = C,=can odd prime divisor of p — 1.
Again as in case (A) ¢ divides (¢g°° — €)/gcd(g — €,4), hence ¢ divides
q — €, from which we get the contradiction N,;, <X or N_,;, < X for
e = 1 or —1, respectively. So n is an odd prime. If n # p we can apply the
previous argument to n instead of ¢ and get a contradiction again. So
n = p. Notice that »,(¢” — €) = v,(q — €). Since (¢ — €)/gcd(g — €,4)
divides | X, the arguments above show that (¢ — €)/gcd(g — €,4) must be
a power of p. If this is the case, then we see, similar to the cases in (A),
that all p'-elements of N := Ny(T;5;...,:) are regular elements of
Tuos... = and N €.7(S).

Next we want to see that N = X for any N < X €.7,(S). Assume first
that r divides |X| and thus r = p = n > 5. In particular, we then have
qg—e=g9gcd(g —€,4) and hence g=r=p=n=5 as well as e€=1;
moreover, T,, = Z,q, and Cy(¢) = T, for 1 # ¢t € T,,. Since any p’-element
of X has a conjugate in 7,, and since X is solvable, we get X = O(X): N
If O;(X) # 1, then an inspection of the subgroup structure of § = PQ (5)
shows that O4(X) is elementary abelian of order 5° or 5%,

Finally, we assume that X is an r’-group. Now the proof that X = N for
any N < X €.7,(S) is similar to the one in (2).

(5) In the case of exceptional groups, the only maximal torus 7,
whose normalizer in S has odd order occurs in case § =®E.(q), with
T =T, of order (¢° + €q® + 1)/gcd(q — €, e) and Ny(T)/T = Z,. Also
recall that in the notation of [11], T can be identified with T,,. Henceforth
we can assume that X > N := Ny(T).

Since S involves sections isomorphic to X, since | X| is odd and since
3 € w(X), we have p = 3. Note that 3 # ¢° + eg® + 1 # 0mod9; there-
fore T is a nontrivial 3'-group. Now let g € S\ Nandlett € N N Nf bea
3-element. Then t € T N T4 and so ¢ is singular; hence ¢ = 1. So we have
N €.7(S).

Now we proceed to show that X = N. If ¢ > 7, then this follows from
Theorem 5.5, since in our case T is minisotropic, so there are no nilpotent
T-root subgroups and we get O,(X) = 1, whence X = N. So suppose that
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g €1{2,4,3,5,7). Let T denote the complete preimage of T in S; so
T = Z(85) X 04(T) with T = O04(T). Now observe that Ci(t)/Z(8) =
CS(tZ(f)) forany 1+t e 03,(f), because ged(|¢], |Z(S)) = 1. From [11]
we see that C(t') = T, for all ¢ € T\ Z(5); hence C4(t) =T for any
1+#teT. Since X is solvable, we have 1 # K = O,(X) for some prime
k. A look at orders of Sylow groups of S and at |T'| shows that T cannot act
fixed-point freely on Z(K). Hence there is 1 #z€ Z(K)and 1 #t T
with [r,z] =1. So z€ Z(K)NT and T=Cyz) >K. So T =
C4(K)char X. We conclude that X = N. |

Now we consider 2-intersection subgroups. Because of Theorem 5.1 we
know that any X €.%,(S) is conjugate to a Borel subgroup of § if
2+#re w(X)and S € LIE(r).

We will need the following technical lemmas:

LEMMA 5.8. Let H = YT, where Y = O,(H) € Syl,(H) and T is cyclic
of order g% + 1, withk > 1, g = r™, and r an odd prime such that C,)<T
for all 1#t<0O). If Vis a falthful F, H-module with dimgV
{2k+1 2k+1 4 1 2%+1 4 2} and dim (CV(OZ(T))) < 1, then either Y is cyclzc
or (k,q) = (1,3).

Proof. Put T, == O(T) and T, == O,(T); note that T, = Z,. Suppose by
way of contradiction that Y |s noncyclic and that (k, ¢) # (1, 3)

Observe first of aII that g% + 1is not a power of 2. Now let s be an odd
prime dividing ¢ + 1. Then gcd(¢g® + 1,4’ — 1), =1 for all 1 <j <
2¢*1, and thus ord;:(q) = 2°**|x — 1; in particular, 2*** + 1 <. Let

t € T be of order s. Since ¢ does not act trivially on V, V|, must contain
an irreducible subspace of dimension > 2¢*1,

(1) Putd:= diqu(V) and D = End (V). Note first of all that both
(t) and H act irreducibly on VV whenever d = 2%+,

Suppose now that d = 2¢** + 1 and that V' is an irreducible [, H-mod-
ule; so V' is absolutely irreducible as DH-module, and dim,(}") divides
gcd(|H|, d). Moreover, dim (V) > 2, because H is not cyclic. Since odd
prime divisors of |H| are greater than 2+, dim (V) = d is an odd prime
dividing |H|; in partlcular D=F, B

Now observe that IV:= 1 ® F, is irreducible and that 17|y splits into
linear FqY—moduIes; hence Y' < ker V'=1and so Y is abelian.

If Vly =V, ® --- & V, with one-dimensional homogeneous components
V., (1 <i <d), then each V; has inertia-group I(V;,) = YT?; as gcd(|T|,
g — 1) = 2, we get T?¢ < Ker(V;) and thus 72¢ = 1. In particular, g% + 1
= |T| = 2d; this in turn leads to (k, ¢) = (1, 3), a contradiction. Therefore,
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Vly is homogeneous. As Y is abelian, we easily conclude now that Y is
cyclic, again a contradiction.

We have shown that V=1, @ I/} with irreducible H-modules V, and
V, such that dim; (V) =1 and dimg (V) =d -1

As ged(Tl g —'1) =2, C,(V) ='T, W|th IT:Cr(V)I <IT:Tpl = 2.
Note that [C},(V,), C, (V)] < C,, (V) = 1, and hence C,(V,) < Cy(T,) =
T. As O(H) =1 and C,(V;) < Core,(T), we get C,(V;) < T,. Since
dim(C,(T})) < 1 and dim(V;) > 4, we have C,(V;) = 1. Hence H acts
irreducibly and faithfully on V.

Suppose next that d = 2¢*! + 2 and assume first that H acts irre-
ducibly on V. Then dim,V divides gcd(|H|,2%** + 2) = 2gcd(T, 2% + 1)
= 2, and we conclude that dimpyV=2and D = [F 2k+1. Hence H embeds
into GL (g% “) and |T|, is a divisor of gcd(g2" + 1,¢2*"t =1, =1or
ged(g? + 1,92 + 1), = 1, a contradiction.

Assume now that V' =V, @ V; with irreducible [, H-modules V/;, and V;
of dimension 1 and d — 1, respectively. Then, in the same way as above,
we see that C,(V;) = 1. Now we get a contradiction to the result in the
previous case.

Hence V' =14, & IV} with an irreducible F, H-module V; of dimension
d —2 and an [, H-module V;, of dimension 2. As before, we see that
c,(r) =1

In any case, we have an irreducible and faithful H-module W =V, of
dimension 2%, such that W, is irreducible for any 1 # ¢t € T of odd
prime order.

(2) Let A be a characteristic abelian subgroup of Y. Then W =
W, 1 # for some irreducible F,I-module with 4 <1 < H. Hence [H:I]
divides 2¢*1, so without loss, T, < I and W, = W. We conclude that W, is
homogenous. In particular, all albelian characteristic subgroups of Y are
cyclic. Hence Y is of symplectic type, i.e., Y = & = R with & extraspecial
or 1 and R = Z(Y) cyclic or R = Q,», D,», SD,» with b > 4 (SD stands
for semidihedral). In the latter case, Y contains the normal cyclic subgroup
N = Z(Cy(®(Y))) of order 2°~*, and since N> Cy(T) <YNT=17,,
we get a contradiction. So we can assume that Y = & = Z(Y) with cyclic
center.

Suppose that 1 # &. Consider the group H, .= Y:{t) withl # ¢t T an
element of odd prime order s. Then Z(Y) <Y N T; hence Z(Y) = Z(&)
= C,(t) and Y =[Y,{t)] is extraspecial of order 2?**!. Notice that
C.(Y) =1 (otherwise Y < C(¢+/) = T for some 1 <j <s). So we can
apply (36.1) in [1].

Since C,,({t)) = 0, we conclude that s = 2% + 1 is a Fermat prime;
moreover, g% + 1 = 25, Since Cy,zv)(t') =1for each 1 # ¢ € T, we



24 FLEISCHMANN, LEMPKEN, AND TIEP

get |Y/Z(Y)| — 1 =2% — 1=(s—2)s= ms’ for some m € N. Hence
/=land m=s5—-2.50 ¢ =22°+1) —1=2"1+1and k>0 im-
ply k = 1 and g = 3, a final contradiction. |

LEMMA 5.9. Let T = {t) X {¢) = Zu, < G with |t| = 2% and 1 <|c|
=/ odd, such that C;({t)) = C;(c))=T. Let N:=Ni(T)<X <G
such that X is solvable and N is maximal in X. Then O(X) # 1.

Proof. Suppose that O(X) = 1. Then 1 # O,(X) and Cy(0,(X)) <
0,(X). We have [0,(N),{c)] < O,N)N<{c)=1; hence O,N) =
O,(T) and O,(X) N N < {¢). In particular, O,(X) is not contained in N.
Define Y := O,(X){t); since Y > () and Y N N = (t), there is an ele-
ment y € N, ({(¢t))\ N. Hence N,({t)) > {(N,y)=X. So {t) <X and
T = Cy({t)) < X < N;(T), a contradiction. I

THEOREM 5.10. Let q =r™ and let (8,S) be as in Definition 5.6.
Suppose that X € .%(S) such that r & w(X) whenever r #+ 2. Then one of
the following holds:

In case (A) andn = 2

(i) S =PSLy(q), X =sN5(T:) = Doy 1) g0 g1y With 2 < q &
F U9} or X =gNS(T,,,.) = Dy s 1) /qcd2, g—1) With 2 < q €4,

(i) S =PSL(D, X =42, i=1or 2. S acts 2-transitively on the
seven points and the seven lines of P(2,2). The group Y represents a
conjugacy class of point stabilizers, 22 represents a conjugacy class of line

stabilizers. In particular, |3 N 3| = 4 for g € S\ 2§

In case (A), n>2 and e =1

() n=3 S=PSLy(q), X=gNy(T,) =72 21 0043.4-1) - L2
withq=3-2"+1orq=2"+1andx > 1.

(i) 8§ =PSLy4), 7(S) ={X <SIX =gNy(Tp,) =725:7,, X
=Z%:7:)-7,, X =s75:Q4 < -S).

(i) n=4 S=PSL(q), X=4N:=N(T,,)=2Zp,21), L,
withq = 2" — 1 e

(V) n =5 S =PSLy®), X = Ny(Ti1y50) = Zpe5: Z,.

In case (A) and e = —1
() n=3 S=PSU(q), X =gN(T15) =221 0043.4+1) - L2
withq=r=3-2"—1orq=2"—-1andx>1,q> 3.
(i) n=458=PSU(q), X =gNy(T,,,) = Ly (g2, 1) 9000+ 1,4 La
withq =22 + 1 €5 U {9}
(i) n=5 S=PSU(q), q €39, X=3N(Typ34) = Z3s5:2,
and 2 ,s,, . Z,, respectively.
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In case (B)
n=2k8=PQu1,,(q), X=¢Ny(T.,.) with N{T.

cox cox) = Zq2k+1 ’
Z yiss.

In case (C)
n = 2k: S = Pszkﬂ(q), X =SNS(Tcox) = Z(qszrl)/gcd(qfl,Z) :sz+1.

In case (D) and e = 1
n=2F+1:. §= PQ,,(q), X =¢Ny(T,,.), ]Vf(ﬁox) = (Zq2k+1 X
Zq+1) + Ly With q €.
In case (D) and e = —1
n=2+1 8=PQ,;(q, X=3Ny«T,,
Zq—l) k1, With ¢ € F U {9}.
n=2*kg= Pﬂgn(q), X =SNS(T(12"'71)7)' Nf(’f(IZ--'n)) = Zq2k+1 )

~

), N«T.

cox

)E (Zq2k+l X

Z .

In case (E) and S of type *B,(q) with ¢ = 2*"** and n > 1
X =gNy(T) with T=2,_,,7,, Ja+1 OF Ly fogiq and X/T =
2,,7, or Z,, respectively.

In case (E) and S of type *G,(q) with ¢ = 3*"** and n > 1

X=sNy(T)) =2, ,:7,.

In case (E) and S of type *D,(q)
X = Ny(Ty) = Zj4_ 5,1~ Z, (see [23] for notation).

In case (E) and Dynkin type F,
S =F(q), X =sN(Typ0y) = Z o1 Zg. (Tiy34y- s a Coxeter torus
of B/(q) < F(q)).
In case (E) and Dynkin type Ej
S =E(q), X =gNy(Tyy) = Zg2-1y4*+1)/qcdq-1,3) - Lg» 4 € 8.7}
(see [11] for notation).
In case (E) and Dynkin type E;
S =*Eg(q), X =3Ny(Ty) = Zig2-1xg*+ 1y geaq+1.3) - Lor 4 € 3,5}
(see [11] for notation).

Proof. Let .7, , ={Y €.7%(S)|r € w(Y)} and suppose that X €.7%(S).
In view of Theorem 5.2, we may assume that X and hence S has cyclic
Sylow s-subgroups for any odd prime s € w(X). Moreover, by Theorem
5.1, we can assume that r & 7 (X) whenever r # 2.
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1. Classical Groups

(1) First we consider the case (A) with n = 2 and thus S = PSL,(g).
It is easy to see that each nontrivial element of odd order in 7;, and T..,, is
regular. Hence Ny(T.,) and N(T., ) are contained in .%(S). Moreover,
using Dickson’s complete list of subgroups given in [21, p. 213], we easily
verify that Ny(T;,) and Ny(T.,,) are maximal in S, unless possibly ¢ €
{4,5,7,9,11}; but for these remaining cases the claims follow by a trivial

check.
In what follows we may assume that n > 2 in case (A).

(2) Note that each element of X of odd prime order lies in a finite
maximal torus of S. We take i € {1,..., n} to be minimal such that there is
an odd prime s dividing qu_ 1 and an element x € X of order s. Let
X < § be such that X = (X N S')/Z(S) and let X be a preimage of x
in X.

(3) In this section we handle the case where i = 1; so s divides
either g —1or g + 1.

Recall that the Sylow s-subgroups of X and hence of § are cyclic;
therefore S cannot involve sections isomorphic to L,(q) X L,(q) = U,(¢)
X U,(g). Hence S is isomorphic to L,(q) or to U,(q).

Assume now that S = L,(¢g). As S contains subgroups isomorphic to
L, 4 XZ, , s divides g+ 1. Without loss we may assume that X
contains the group Ny, = Ng(T}y,) of order 2,._1) qcqa ,—1); MOreover,
as w(X) does not contain any odd prime divisor of ¢ — 1, we have
g —1=gcd@3,g — 1)2* with x > 0.

If g <9, then all of the claims can be verified by straightforward checks
using the subgroup structure of S (e.g., see [6]). Henceforth we may
assume that g > 13 and thus x > 2 as well as r > 3. Note that Lemma 3.8
now even implies r > 5; hence by Theorem 5.5 we get X = Ny,,. Finally, it
is easy to see that all elements ¢ € (T,,), are regular, moreover,
|Nuazy/ Tzl = 2, and thus X = N,,, is indeed contained in %(S).

Suppose next that S = U,(q). Suppose in addition that s divides ¢ + 1.
Then we may assume that X contains the image T, of order (g + 1%/
ged(3, g + 1) of a “diagonal’” torus of S. Since Sylow s-subgroups of X are
cyclic, we get s = 3 and ¢ + 1 = 3-2* for some x > 0. But now observe
that X > Ny(T,) > T, : {d) with d being the image of

0 1 0
0 0 1
1 0 O
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in S and o(d) = 3, which in turn shows that Sylow 3-subgroups of X
cannot be cyclic. This contradiction shows that s divides g — 1.

Now we can assume that X contains a maximal torus 7, —of order
(g®> — 1)/gcd(g + 1,3). As ¢ > 2 and as «(X) cannot contain any odd
prime divisor of ¢ + 1, we get ¢ + 1 =gcd(3,qg + 1)-2* with x> 1.
Using Lemma 3.8 and Fermat’s Theorem, we find that g = r.

If g €{3,5,7,11}, we easily verify the claims using the subgroup struc-
ture of S as can be found in [6]. Henceforth we may assume that
q=r=13

As before, we can now apply Theorem 5.5 to conclude that X = N :=
Ny(T, ). Finally, notice that N/T, = Z,.Lett € X N X¢ for some g € §
be an element of odd order. Then 7 € T, mg}fo. If g & X, then the

preimage of ¢ in S is singular and conjugate (in S) to

a 0 0
0 a?71 0
0 0 q ¢

If a =a? % then a? =a? hence a*=a? =aand a™ ¥ =a, i€, t = 1.
The same follows if a 7 = a9 If a=9 =a, then a?*! = 1; hence |¢|
divides (¢ + 1) /gcd(3, g + 1), which is a power of 2. This shows that N is
in fact a 2-intersection subgroup.

(4) In the remainder we can suppose that 1 <i. In particular,
ged(3, | X|) = 1, because otherwise we get r = 3 € w(X), a contradiction.

(4a) First we deal with the case (A). Let / be the order of ge
modulo s and observe that 2 </ < n; moreover, either /=i is odd or
/= 2-i. Also note that s divides ((ge) — 1)X(ge — 1)"“/(ge — 1)gcd(ge
— 1, n), which is the order of a maximal torus T containing the element
x € X of order s. Hence

((ge)" = 1)(qge —1)"7
(ge — 1)ged(qe — 1,n)

Now suppose that # is a prime and let m denote the order of ge
modulo /Z; clearly, m </ — 1 =i — 1. On the other hand, / divides | X|
and (ge)®™ — 1 = g*" — 1; so the choice of i implies i < m, a contradic-
tion. Hence 7 is not a prime.

Suppose next that there exists a divisor v of i with 1 < v <i. Then
I(qge)” — 1)/(qge — V)| divides |X], and so the minimal choice of i implies
I(ge)’” — 1)/(ge — 1)| = 2™ with m > 1, moreover, since v||X| and thus
v # 3, application of Lemma 3.6 and Corollary 3.3 now yields v = 2. We
have shown that either i is a prime or i = 4; in particular, /= 2i.

- (n =) IN(THIX.
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If s divides (ge)’ — 1, then without loss X contains a torus of order
((ge) — D*(ge — 1)"“/(ge — 1)gcd(ge — 1, n) with noncyclic Sylow s-
subgroups; but this is impossible. Therefore s divides (ge)’ + 1. In particu-
lar, as ((ge)' — 1)/(qe — V|| X, we now see that ((ge)' — 1)/(ge — 1) =
2™ with m > 1. Using the same arguments as above, we find i = 2 and
| = 4. Furthermore, if e=1, then ¢ =2" - 1€; if e= —1, then
g=2"+1e7U{9.

As(n —/MIXland3 & m(X), /<n</+ 2 1fn=/+2=6,thens
divides the order of a section isomorphic to L,(¢q) or U,(q) according to
e =1 or e = —1, respectively. In any case, we easily see that then X
contains a section isomorphic to L,(q) = U,(g), contrary to 3 & w7 (X).
Therefore n € {4, 5}.

Assume now that n =/ + 1 = 5. Then [(ge — 1) /gcd(ge — 1,5)| divides
|X|, and thus is also a power of 2. From this we readily deduce that
(q,€,5) €{(3,1,5),3, —1,5),(9, —1,41)}. A straightforward check using
the relevant subgroup structure now yields the claims as stated for the
three cases just given.

Henceforth we have n =/= 4. Moreover, N := N(T(1,3,) <X with
N =Zymy2i1y2 Ly €E5(S) if e=1and with N = Z,n 21 1) 0cdqr1.4)
7, €.7,S) if e= —1. Whenever g > 11, we can use Theorem 55 to
prove X = N. If g < 11, again an easy check using the subgroup structure
of the groups L,(3), L,(7), U,(2), U,(3), U,(5), and U,(9) shows that X = N.

(4b) We are left to deal with the cases (B) to (D). Recall that s
divides g + 6 for some 8 € {—1,1}. Now suppose that i =a-b with
1<b<iand b odd. Then g + & divides g° + 8, and so minimality of i
implies that ¢“ + 6 is a power of 2. As a > 2, we now deduce that
(g,a,8) = (3,2, —1); but then s divides g?> — 1, contrary to the choice of
i. We have shown that either i = 2% > 2 and s|g’ + 1 or i is an odd prime.

(4c) Now we first consider the cases (B) and (C). We can assume
that x € Tjy,...;= Since x is regular, we must have 1 =1 Suppose that i
is odd; then it is a prime and we have x =3(¢, t9,. Nz e Tao.  nye
Since Ny(T(; , . ,+) <X, there is an element w of order n in X. Suppose
x €Ty, .,y then g — 1 is a power of 2. By minimality of n =i, the
element w is contained in a maximal torus of order ¢” — 1 or of order
q" + 1. The first case implies 0 =¢g" — 1 =g — 1 mod n; hence n = 2.
The second case implies that a torus 7, , - is contained in X and
hence g + 1is a power of 2. We get 0 = ¢" + 1 = g + 1 mod », and again
n = 2. Similarly, the assumption # = (r,1%,...,17 ") Ty, . .. Yields
n = 2. But this is a contradiction to i > 2.

Hence 1 <i=2=n, xeT

cox

odd order is regular in T,,.. Moreover, all odd prime divisors of |.X| are

cox*

= T(l 2,...,2k and each y €T, of

COX
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“Zsigmondy primes” of g2 + 1, i.e., they do not divide any g2 — 1 with
i <2 In particular we see that [X : T, _]is a power of 2; hence there is

COX

Q € Syl, (X) such that X = T., .0 = OT,, .. Notice that N := N{(T,,,) <

X, N/T.,, =7y, and N = Ny(T,,,) €.7%(S). Since X is the product of
the nilpotent groups 7,,, and Q, it is solvable by the theorem of Kegel and
Wielandt [21, 4.3, p. 674]. We claim that 7.,, < X. By Lemma 2.9 it
suffices to show that |O(X)| > 1. _

We consider the natural module V' of S of dimensiorl‘Z"+1 + 1 in case
B, or 2¥*1in case C,. Suppose that r = 2. Then § = § = Sp,«+1(q), and
we see, as in Lemma 5.8, that V, is irreducible and faithful. Hence
0,(X) = 1and O(X) # 1. So we can assume that r > 2.

Suppose that Y= 0,(X) # 1. Now we can apply Lemma 5.8 with
H:=Y.T,,. If Y is not cyclic, then we conclude S = PSp,(3) = PQ(3).
This simple group is also isomorphic to SU,(2), and we are reduced to the
groups of case (A). Now our previous results give a contradiction. So
Y=2(Y)=17, <Z(X) Now we_consider_the Fitting group F(X)
0,(X) x O(F(X)) Since Cg(F(X)) < F(X), we get 1 # O(F(X)) and
thus 1+ O(X).

(4d) Next we deal with the case (D). As in (4a), we see that
n <i+ 1. Suppose that n =i + 1 and i is an odd prime. Then s divides
q' + 1. In case € = 1, we get

s|((qi +1)(q 1)i)2, = (|Ns( @2- t)i(n)1)|)2’| X1,

whereas in case e = —1 we get

sl((qi +1)(gq7F 1)i)2, =INg( 5. el 1X11

c

Let j < n be such that i divides g%/ — 1. Then i < j (by the choice of s);
hence j=iori+ 1 If j=i+1 weget0=g"*Y—-1=¢4%—1mod
(#). Since i is an odd divisor of | X, we get the contradiction i < 2. If j = i,
then we conclude in a similar way that i divides g% — 1, yielding the
contradiction i = 2.

Now suppose that » = i is an odd prime. Then s divides g" + 1. In case
e=1, we get sl((¢g" — Dn)y = (INg(Ty5...,,)DxI | X, whereas in case
e = —1we get si(g" + D)y = (Ns(Tys....) Mol I X1,

Let j < n be such that i divides g>/ — 1. Then j =i =n, and we get
0=¢g?"—1=¢g? -1 mod (i), yielding the contraction i = 2. Therefore
i=2andn=iorn=i+1

Suppose that n = i. Then, by the order formulae for Chevalley groups, s
divides ¢" + 1; since gcd(g¥ — 1,¢2% + D2 for all j < n, we conclude
that without loss of generality, s € T := T, ... in particular, we have

n)’
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e = —1. It is easy to see that all elements of odd order in T are regular,
and hence N = Ny(T) €.%(S). The proof that N =X forany N < X €
S(8) is similar to that given in (4c): We consider_the natural module
V= [FZ'”1 for S. As above, we can assume that [ X : 7] is a power of 2 and
X is solvable If »r=2, we see, as above, that OZ(X) =1, so we can
assume r > 2, and apply Lemma 5.8 with H :== Y.T and Y := O,(X). If Y
is noncyclic, we get the contradiction n = 2, so Y is cyclic and we can
finish as in (4c).

Finally, we suppose that n =i + 1. Then s divides ¢" ! + 1, and the
only maximal tori of order divisible by s are the Coxeter tori T,

cox

Tip...00-y- Incase e=1and T, = Typ... 06+ INCase €= —1.1In
particular, g + 1 =2", so q €.# is a Mersenne prime if e=1 and
g—1=2"s0q <7V ({9} isaFermat number if e = —1. So r > 2, and

it is easy to see that N (7., ) is a 2-intersection subgroup. To prove
“X = N,” we can use Lemma 5.8 once more and proceed in a way similar
to (4c).

1. Exceptional Groups
Let s be an odd prime divisor of | X|and recall that s # r.

(5) Suppose first that § =2B,(g) with g = 2%*! > 8. Then all of
the claims can be verified easily by using the information given in [3,
Chapt. X1.3].

(6) Suppose that § =°G,(g) with ¢ = 3%“*! and a > 1. (Recall that
2G,(3) = L,(8):Z,) As r = 3 & 7(X), we readily deduce from Theorem
C in [24] that Xz N = Ny(T) only for tori T'=27,_, with [N:T|=2;
moreover, | X : N|is a power of 2 dividing |S: N|, = 2, and thus X = N.

From [3, 13.2, p. 292] we see that S is doubly transitive of degree ¢° + 1
with two-point stabilizer S, , = T such that any three-point stabilizer has
order 2. This shows that N €.7,(S).

(7) Now let S be the simple group G,(g) of order ¢®(g® — 1)
(g — 1). Since (G,(2)) = Uy(3), we can assume that g > 2.

Observe next that S involves a section isomorphic to L,(g) X L,(g)
(e.g., see [7] and [24]). Since Sylow s-subgroups of S are cyclic, we conclude
that s does not divide g2 — 1; in particular, s # 3. Consequently, s divides
g® + q + 1. Using the information given in [20], we now get N == Ny(T) <
X with a maximal torus T of order g®> + g + 1; as [N/T| = 6, we reach a
contradiction proving that .7,(S) =

(8) Next let S be isomorphic to the simple group °D,(gq). The
maximal subgroups of S have been determined by Kleidman [23]; informa-
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tion on maximal tori can be found in [10], from which we take the notation
here.

Since the Sylow s-subgroups of X are cyclic, we easily verify that
X = N = Ny(T) only for maximal tori 7" of type Tg=Z,_,., With
N/T = Z,. Moreover, we see from [10] that all nontrivial elements of T
are regular; hence N €.7,(S). Since N is a maximal subgroup of S (see
[23]), we conclude X = N.

(9) Next let S be isomorphic to the simple group °F,(¢) with
g = 2*"*!, The maximal subgroups of S have been determined by Malle
[29]; using Propositions 1.2 and 1.3 of [29] together with the fact that S has
cyclic Sylow s-subgroups, we ready deduce that .%(S) =

(10) Here let S be the simple group F,(¢) of order g*(g* — 1)
(% — D(¢® — 1(g? — 1) and let H be the subgroup of type B,(q). Then
H = Sping(q) and is a central 2-extension of SO4(q). Let II :=
{ay, @, a3, a,} be a base of the root system &, with «; and «, long
roots. If X €.7,(S), then either H <X, or XN H is a 2-group, or
X N Hes(H).

Suppose that H < X. Then r =2 and X, , € X for i = 1,2,3. Hence
X, <CG(X,.,D<Xand S=X,a contradiction.

Suppose that X N H is a 2-group. Since H has order q16(q — 1(q* -
1(g® — D(¢g® — 1), we see that s must be a divisor of ¢* — ¢g®> + 1 and
coprime to |S|/(g* — g + 1). By [32] there is only one class of maximal
tori T such that gcd(|H|,IT]),, = 1. A representative 7, of this class has
order ¢* —q*+ 1 and |INy(T,)/T,|=12. So 3||X]| as well as |H|, a
contradiction. We conclude that X N H € 7%,(H); hence X N H is conju-
gate in H t0 N (T 1,3, -). From [31] and [32] we see that T y,3,- is also a
maximal torus of S such that all elements whose order is not a power of 2
are regular. In particular, Ny(7 ;,5,,-) €-7(S).

(11) Let S be the simple group “E¢(g) where e = —1 in the twisted
cases and e = 1 otherwise. Note that |S| = g*(g™ — 1)(¢° — e)(g® — 1)
(q° — 1(q° — eXq? — 11 /gcd(q — €,3), and let 11 := {ay, a,, as, ay,
ag, ag) be a base of the root system, such that {«ay, a,, aj, as, o} form a
Dynkin diagram of type A.. (See [11] for further notation.) Let X €.%(S)
and H =<A.(q). Since JZ(H) &, X N H is a 2-group or H < X. Sup-
pose that H <X. Then X, ., <X for i#4 But X, =X, <
CS(<X+[a ?) < X, so we get the contradiction S = X. (Notlce that in the
case of “E,(¢), [a,] = {a,, agh [a,] = {ay, a5}, and [a,] = «, for i = 3,4)
So ged(IX |z, I“45(q)l) = 1 with [Ag(g)l = ¢™°(g° — 1)(¢g° — €)
(g* — D(g® — eXg? — 1)/gcd(g — €,6). Hence s divides ¢* + 1,
@ —e/(q® —e)=q°—€eq®+ 1L 0or(g*+1/(g°+1D =¢q* —qg*> + 1
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If s divides ¢° — eq® + 1, then we can assume that N == Ny(T,,) < X
with |T,,] = (¢° — eq® + 1)/gcd(q — €,3). But |[N/T,,| = 3%, and we get
the contradiction 3 |gcd(| X |, |‘A:(q)I2).

Suppose that s divides ¢* — ¢? + 1, then w.l.o.g. N := Ng(T,3) < X with
1T, = (g% + q + (q* — q* + D/ged(g — 1,3) and [N /Tyl = 223, giv-
ing the same contradiction.

Hence we conclude that s divides g* + 1. In this case we can assume
that N = Ng(Tyy) < X with Tig = Z 2 1y,011)/g0d0g—c,3) @D [N/Tio =
23. Moreover, we see that (¢g> — 1) /gcd(g — €, 3) is power of 2. If 3 divides
qg—€ewegetg=7if e=1and g =5if e= —1. Itis easy to see that
Tig = Z(4-1y79084-1.9 * Ty aesy < H = L1 /geaiq-1.9 * Ds(@) if e =1
and Tig = Z 441 gcdg+1,3) * T(l)(2345) , <H= Z g+ 1y 90dq+1,3) ¥ Ds(q) if
e = —1.Since all (¢* + 1)/2 elements of odd order in T,, are regular, we
see that N €. %(S).

Now we have to prove that X = N = Ny(T,) if ¢ €{3,7} or {3,5},
respectively. Our arguments show that [X: N] = 2” and |N| = 2% -1201
for (q,e) = (7,1, with N > Q € Syl;,,,(S), IN|=2"-41 for (q,€) =
(3, + 1), with N > Q € 8yl,,(S), IN| =27 - 313 for (g, €)= (5, —1), with
N = Q € Syly,(S). In particular, N = Ng(Q) and [ : H], = 2for(q, ) =
@B, —Dand[S: H]2 =1for (g,¢) € {3, 1),(7,1),5, -1}

So we can assume that X = OR with R € Syl, (X)and Q € SylZ(H) c
Syl(S). Let R <R e Syl,(S) and R, <R with R, € Syl, (H). Then
IRI/IR N R,| =|RR|/IR,| < 2; hence [X XnH]< 2 From our result
in case (D) we know that Q = O(X N H)char X N H < X; hence X <
Ny(Q) =

(12) Now let S be the simple group of type E, with

|S| — q63(q18 _ 1)(q14 _ 1)(q12 _ 1)(q10 _ l)

X(q° —1)(¢° — 1)(q* - 1)m-

Let IT = {ay, a,, a3, ay, as, ag, a;} be a base of the root system and §,
be the highest positive root, such that {«,, «,, a3, a4, a5, a7, —8,} form a
Dynkin diagram of type A4,. Let X €.7%,(S) and H :=“4,(q) < S. Since
SH(H) =, X € H is a2-group or H < X. Suppose that H = A,(¢) < X.
Then X, , <X fori#5 But X, , <Cy((X,,)) <X, sowe get the
contradiction § = X. Suppose that H =24,(q) < X. Then X, <X for
i=123and 4 with [o;] = {ay, =8}, [a,] = {a,, a3}, [ag] = {az, ag),
and [ay] = {a,}. Hence X, , < C, (<X+[a]>) <X and X,, <

Cs((X, ) <X for i ey, 2 3 6 7} Again we get the contradiction
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S = X. So we have gcd(| X |, |H|») = 1 with
|HI=q*(q° — 1)(a" — €)(¢° — 1)(q° — ¢)

1
X(q* = 1)(q° - €)(q* - 1)m-

Hence s divides (¢° — €)/(¢®> —€) =q°® —eq®* + 1or (¢° + D /(¢g* - 1)
— 44 2
=q" —q° + 1.

But then we can assume that Z\]EEs(q)(T) <X with T=T,, or T = T,,,
maximal tori of ‘E4(q) < E;(q) as above. This gives the contradiction
3lged(| X 12, [H 7).

(13) Finally, let S be the simple group of type E; with

S| = q120(q30 _ 1)((]24 _ 1)((]20 _ 1)(q18 _ 1)
X(q* = 1)(¢” = 1)(¢° — 1)(q* — 1).

Let IT = {a}, a,, a, a4, as, a5, a;, ag} be a base of the root system, such
that TI\{a,} forms a Dynkin diagram of type E,. Let X €.%(S) and
H:=E/(q)*Z,_,. Since %H(H)=, XNH is a 2-group or H <X.
Suppose that H < X. Then X,, <X for i>1 But X , <

Cs((X,,,») <X, so we get the contradiction § = X. Thus we have
ged(| X |y, |H ) = Lwith |[H| = (¢ — DIE,(¢g)l. Hence s divides (¢*° + 1)/
(@+D=¢"-q°+q¢*—q¢°+1or (@®+D/(¢*"+D=¢*—¢qg"+1
or (¥ —D/(g® - g* +q+Dg*—qg+D =" +q" —q°—q" -
@G+qg+1qg®—q" +q°—q*+q%—q+ 1.

Now consider the following maximal tori 7. and normalizers N (here the
information and notation is taken from [12] (see also [9]):

IThosl = q° — q° + q* — q* + Land [N /Tyl = 225 | A5(qI | E7(g)l;

IT,05 = g% — q* + 1 and |IN /Tyl = 233/ |E;(q)I;

Twal =q®+q" —q°—q* —¢*+q+1 and IN/Typul=2-3-
5|1 A5(qI | E;(q)l;

Tiol = q°* —q" +¢° —q* +¢*>—q+1 and [N/Tyl =2-3-
5|1 A5(qI | E;(g)I.
Repeating the arguments above, we see that .%,(S) = &J. Theorem 5.10 has
been proved. |

Now we proceed to consider the automorphic extensions of simple
groups of Lie type, i.e., groups G satisfying S < G < Aut(S). Because of
Corollary 2.12, .7(G) # (J implies that .7 (S) # (J. Notice that Aut(S) =
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(D:F).A, where D consists of inner and diagonal automorphisms and
ID|/|S| divides |S|; F = Z,, is the cyclic group of field automorphisms
(g =r™), and A is the group of diagram automorphisms.

We need the following lemma:

LEMMA 5.11. Let A :== D : F be a semidirect product, X< G <A and
S < G N D be subgroups such that S < A. Moreover, let /' € m(X) be such
that gcd(Z,|D/S|) = 1 = ged(Z, IGI/IXI) Then for any Q € Syl/(X) there
is O € Syl (A) and a € A such that

0= (0nS):(QNFnX).

In particular, if / divides If/f N S|, then Q* N F # 1.

Proof. Choose Q € Syl (A) such that O N F € Syl (F). Since S < 4,
we have on S e Syl (S); moreover, on S = ONDe Syl (D). Since
|A1/(10 N S|- IQ N FD)=|D|- |F|/(|Q N S|-10 N F] is coprime to Z, we
conclude that O = (O N $): (O N F). Let O € Syl/(X). Then Q is also in
Syl (G), and there is a € A with Q0 < Q.Since S <G, Q“NS=0NS
e SyL(S) and Q“ = (O N S):(QNFNX. If / divides | X/X N S|
then O > Q% N S; hence, 1¢Q~0Fr\)’(\“ <Q'nF. 1

LEMMA 5.12.  Let S be a nonabelian simple group of Lie type, S 1 G <
Aut(S) = (D: F).A, and X €.7(G) such that Cs(f) « X ==X N S for any
f € F. Suppose that gcd(| X, ID/SI) = 1 and all p'-elements of G /S lie in
D/S:F.Then m(X/X) = 7T(G/S) c{ph

Proof. Notice that G = SX by 2.12. Let H == D:F <Aut(S). Then
G/GNH=(G/S)/(GNH/S)is a p-group by hypothesis. Moreover,
X/X N H is isomorphic to a subgroup of G/G N H and hence it is a
p-group, too. Since IX/XI IX/X NH|- XN H/X|, we can assume that
G <H. Let1l+#Xxe€X/X with |x| =/, a prime different from p; then
there is a preimage x € X of ¥ with |x| =/". Suppose that # divides
|D /S|. Since | D|/|S| divides |S|, # divides |S| also, and there is Q € Syl (S)
with 1 # Q < X; hence / divides gcd(|.X|,|D/S]), a contradiction. We
conclude that gcd(/,|D/S)) = 1 = gcd(Z,|Gl/I1X]). By Lemma 5.11, we
can assume that there is 1 # f€ O N F for some O € Syl/()'(\). Hence
Ci(f) < X, a contradiction. |

THEOREM 5.13.  Let S be a simple group of Lie type and S < G < Aut(S).
Then 7(G) + @lfand only if 7(S) # Jand w(G/S) ={p} orif p =2,
S = PSL ,2) or S =°B,(2°) and G = S: F with F cyclic of odd prime
order /.
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If #(G) # O, then G = SX for any X €7(G) and one of the following
holds:

() j;(G) = {N; (X)X EJ;(S) minimal}.
(i) p=2 G=S8:F with S=PSL,2°) and F cyclic of odd
prime order / as well as %(G) = {N (T, JIT.,,. < S}.

(i) p=2 G=S8:F with S =2B,(q), q =27 and F cyclic of odd
prime order /; moreover, .%(G) = N;(T)¢ where T is cyclic of order q +
&ey2q + Lwith e € {—1,1} such that 5 € = (T).

(V) p=2 S=PSL,4), G=S:F=5:2 and #(G) = {Ny(X)|
X € 7(8)}.

Proof.  Assume without loss that S € LIE(r) for some prime r. Clearly,
if #(S)=J and 7(G/S) ={p}, then J(F) # J by Lemma 2.5. So
assume that p=2and S = PSL,2")or § =’B,(2 ) aswellas G = S : F
with F cyclic of odd prime order / moreover, Iet X €.%,(S). By Theorem
5.10 we know that X = Ng(Q), where Q = O(X) is a cyclic Hall-subgroup
of § of known order, with X/Q being cyclic of order 2 or 4. Put
X = Ng(Q) and observe that X = X:(f) with f of order / inducing a
field automorphism on S. Now we easily verify that XGJZ(G) iff X
contains the “prime subgroup” X, := Cs(f).

Suppose that § = PSL,(27) and thus X, = SL,(2). Then X €.7,(G) iff
|0l =27+ 1, ie., iff Q is a Coxeter torus in S. In particular, .%(G) =
{NG(Tcox)|Tcox =< S}

Assume now that S =’B,(q) with ¢ = 27; in particular, X, = 2(2) =
F,,. Since 5 does not divide g — 1, we find that X €.%(G) iff |Q] =

€/2q + 1, where € = {—1,1} such that 5/|Ql. So in this case JZ(G)
NG(Q)G

Throughout the remainder we assume that X ef(G) By Corollary
2.12, we know that X =X N S €s(S) and G = SX as well as X =
Ng(X).

First we consider the case that p is odd. As G # S, Theorem 2.10 shows
that |X| is odd. If X is a Borel subgroup of S, then Theorem 5.1 together
with the structure of Out(PSL,(r™)) implies S = PSL,(3") and X =
X:{f>, where f induces a field automorphism on S of odd prime order m
dividing p — 1; now we obtain X > C4(f), a contradiction because |C¢(f)|
is even. Henceforth we may assume that X is not a Borel subgroup of S,
and so (S, X) is one of the pairs in Theorem 5.7; in particular, .7 (S) =
and conclusion (i) holds. ~

Notice that X/ X =G/S <D/S:F, since |X| is odd and A is a
2-group. In case (A)(i) we have |D/S|=|gcd(ge — 1, p + 1|, suppose
/+ p is a prime dividing |D/S|. Then v, (| X)) = v,(qe — 1) — v (gcd(ge
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—1,p + 1) =0. Hence ged(ID/S|,1X0D, = 1. In case (AXii), |D/S|=
lgcd(ge — 1, p)l; in case (D) |D /S| divides 4; and in case (E), p = 3 and
|ID/S| = gcd(3, g — €). Moreover, in all of these cases, the odd order
group X does not contain any “prime subgroup” S(r) of S, so C4(f) « X
for all f € F. Now Lemma 5.12 shows that w(G/S) = {p}.

Now we investigate the case where p = 2. If 2 #r € 7w(X), we use
Theorem 5.1 again and see that Out(S) is a 2-group, except when S =
PSL,(8) with Out(S) = Z, or S = PSU,(5) with Out(S) = 3,. In the
former case conclusion (i) holds, since G = PSL,(8) - 3 acts 2-transitively
on G/X, where X = D,. If § = PSU,(5) we use the information in [6] to
verify that |G : S| = 2. So in any of the cases emerging from Theorem 5.1
we have %(S) = X5 and %(G) = {N,(Y)ly €.7,(S) minimal}. Hence-
forth we may assume that X is not a Borel subgroup in S, and so the pair
(S, X) occurs in Theorem 5.10.

First notice that the only case where an odd diagram automorphism
occurs is S =°D,(q) with ¢ = r™ and Out(S) = Z,, . Since in this_case
X = Ny(T;) does not contain a Sylow 3-subgroup of §,3 & 7w (X/X).
Therefore, in all of the possible cases, the 2-elements of G/S lie in
D/S:F.

Now suppose that that S is isomorphic neither to PSL,(2™) for some
m > 2, nor to °B,(2"™) for some m > 3, nor to PSL,(4) (these cases will be
dealt with later). Then the “prime subgroup” S(r) of S is not solvable and
thus cannot be involved in X; in particular C4(f) « X for any f € F. Now
we are going to verify that gcd(|.X|, |D /S, = 1.

In case (A) with e = +1 and n € {2,4}, |ID/S| is a power of 2. This is
alsotrueifn =3and g =2* + ewithx > 1. If n =3and g = 3-2* + ¢,
then |D /S| = gcd(g — €,3) = 3, which does not divide | X, unless g = 4,
e=1land X =¢Z5: Q. If n=5,then |[D/S|=1if g=3and e = +1.If
g =9and e = —1, then |D/S| = 5, which does not divide | X| = 27 - 41 in
this case. In the cases (B), (C), and (D), ID /S| € {1,2,4}.

In case (E) |[D /S| = 1, except for S =<E¢(g), where |D /S| = gcd(3, g —
e). If [D/S| = 3, then (¢, q) € {(1,7),(—1,5)}, and 3 does not divide | X]|
in these cases.

Thus the hypotheses of Lemma 5.12 have been verified and we get
m(G/S) = {2}, as well as .%(S) = X°* and 7(G) = {(N;(Y)|Y €.%(S)
minimal}.

Suppose next that S = PSL,(4). Then Out(S) = Z, X 3;,and X €.7,(S)
is S-conjugate to a group isomorphic to D,,,Z5: D,, or 3°:Q,. Since
ICs(a)l € {21,60) for @ € Aut(S)\ S with o(a) = 3, we easily verify now
that %(G) # & if and only if 7%(S) # & and 7(G/S) = {2}, in which
case either conclusion (i) or conclusion (iv) holds.
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We are left to consider the case where S = PSL,(2™) for some m > 2
or S =’B,(2"™) for some m > 3. Recall that Aut(S) = §: F with F = Z,,,
and hence G = §: F, with 1 # F, < F.

Clearly, if 7(G/S) = {2}, then conclusion (i) holds. Thus we may
assume that 2 #/ < #(G/S). Now X contains a Sylow /#subgroup of G,
and so we may assume without loss that there exists an element f € F, N X
of order /. Note that X is solvable (see Theorem 5.10) and that X >
Cy(f) = SL,(2"/%) or *B,(2"/7), respectively. So we get m = =/ with
3en(X)incase S = PSL ,2™) and 5 € 7(X) in case S =°B,(2™). In
view of the first part of thls proof, we reach conclusion (||) or (iii),
respectively. |

Now we classify those maximal subgroups of automorphic extensions G
of § that lie in .7,(G). We need some lemmas:

LEMMA 5.14. Let S = PSL,(q) with ¢ > 3 and S < G < Aut(S); then
the following holds:

(i) Ng(T)) is not a maximal subgroup if and only if either G = S and
g €1{5,7,3%2,11}, or G = PGL,(5), or G = PSL,(3%)-2, = 3.

(i) Ng(T,,,) is not a maximal subgroup if and only if either G = S with
q €1{7,3%), or G = PSL,(3%) -2, = 3.

Proof. This is well known and can easily be checked by using Dickson’s
list of subgroups of PSL,(q).

LemmA 5.15. (i) Let G, < G, = G,M with M < G,. Then M is maximal
in G, if and only if there is no M-stable subgroup H with G, N H < H < G;.

(i) Let G, 4G, and X €7(G,). Let X <H < G, be such that
(H)C: = {H)C:. Then X = N (X) is not maximal in G,.

Proof. (i) For A, B,C < G, let [A4, B]. denote the inclusion ordered
interval of C-stable subgroups between 4 and B. Then the maps « :[G,
NnM,Gl,, »[MG,,H-» MHand 8:[M,G,] -G, " M,G,],,,U~
U N G, are inverse isotone poset isomorphisms.

(ii) Suppose that X _is maximal in G,. Since X is not normal in
G,G, «£Xand G,=G X Let 1+Q e SyI (X) N Syl (H) with prlme
a # p; then for any g eX there is x, € G, with H® = H* and Q, Q"
€ Syl (H). Hence there is h € H W|th X 1h ' € N;(Q) < X, and we get
H¢ = H% = H": = H. So H ix X-mvarlant a contradiction by (). 1

THEOREM 5.16.  Let S be a simple group of Lie type and S < G < Aut(S)
= (D: F): A, where D is generated by the inner and diagonal, F by the field,
and A by the graph automorphisms. Then Table Il displays all cases where G
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TABLE 11
p-Intersection Maximal Subgroups in Finite Groups of Lie Type

S G p X
Ly(#) = L,(5) G=3S§ 2 23, Dyg
PGL,(5) 2 MX)
G=S 3 A
L,(7) = Ly G=3S 2 39,i=1,2
G = PGL,(7) 2 MX), N(Ty) = Dy,
G=S§ 3 B=7:3
L,(9) G=S 2 B=32:4
G=§-2'=3; 2 3%2: D,
G =S-2, = PGL,(9) 2 32:8, Dy,
G=2582,=M, 2 3%2:04,5:4
G =S5:2%2=PIL,9) 2 32:[24],10: 4
L,(11) G=S§ 2 NT,,.) =D,
PGL,(11) 2 D4, Dy
G=S§ 5 B=11:5
L,(29),2° > 4 G = p=2°—-1ex B
L(q),q&FU{4,7911} w(G/S)c{2} 2 N(T,)
Ly(q),q &2V {4,5,9,11} =(G/S) c {2} 2 NT.,.)
L,(29), Z an odd prime IG/S| =/ 2 N(T.,.)
Ly(r),r=2p*+ laprime G=S p>2 B
3m=2p*+1
L,(3™), { ml(p — 1) G=S§ p>2 B
m an odd prime
Lyr)res G/S<7, 2 N(B)
PSUy(q), q € {3,5,9} G/S<17, 2 N(B)
2G,(3) = L,(8) G/S <17, 2 N(B)
2By(q),q=27">2F0odd G=§ p=2"—1ex B
G=S§ 2 Dyy-1)
Xy=2ys pg+1124
|G /S| =7 prime 2 X, :7Z,with5]|X |
Ly4) G/S<F=17, 2 N@3%:Qp)
A<G/S<Z,XZ, 2 N(3%:Qp)
Dy m(G/S) c {2} 2 N(T5)
PS5(q), e = +1 w(G/S) c {p} p N(T,,,)

B denotes a Borel subgroup: L,(q) = PSL,(q), N(H) = N;(H); if G > S, MX) =
{Ng(X)IX €.7,(8), maximal in S}.

has a maximal subgroup X that lies in 7(G). The groups X are listed up to

conjugacy in G.

Proof. We know from 5.15(i) that X < -S implies X < -G. In this
proof “Y is G-stable” means that {Y}° = {Y}".
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(1) First we consider the rank 1 groups occuring in Theorem 5.1.
Since the Borel group B is a maximal parabolic, it is always maximal by a
theorem of Borel and Tits, hence X is maximal in G. Also, X efp(G) by
Theorem 5.13.

(2) Next we consider the cases in Theorem 5.7. Here G < D : F. In
(A, X = Ny(Ty,...,) is contained (up to conjugacy) in the proper
G-stable subgroup H of S consisting of matrices

5 3)
0 b
with 4 € S5(q). Hence X is not maximal in G by 5.15(ii).

In (D), X = Ny(Ty5...,:) is contained in the normalizer H of a maxi-
mal rank subgroup of type A .- The s- -conjugacy class of His unique, so
there are at most two S—cIaAsses of H. Since G/S has odd order, these
classes are G-stable and X is not maximal in G because of Lemma
5.15(ii). ~

In case (E), X is not maximal, as can be seen in [28]. R

In case (A)ii), X is maximal in S (e.g., [25] and [26]); hence X is
maximal in G.

(3) Finally, we consider the cases in Theorem 5.10.

(3a) Case (A) with n =2: by Lemma 5.14 we can assume that
g < 11. Here the information on maximal subgroups of G can be found
in [6].
Case (A), () and (iii) with n = 3or5and € = +1: Here § = PS:(q),
and X =¢Ny(Ty,...,_,) can be chosen to be contained in a proper
subgroup

(i

with 4 € S5_,(q). We can assume that G /S < (d, f) with d := (-)”"" and
f= ()" hence H is G-stable and X is not maximal in G by Lemma
5.15(ii).

Case (i) with S =PSL,(4), G/S <Z,X Z, and X # Ny(T, 12))
Here .%(S) contains the maximal subgroup X Z : Qg, 50 N;(X,,) is
maximal and in 7(G) for all G. If G/S < F there is Ng(X) € 7(G)
with X = (Z3:7Z5). 7, €.%(S), which can be chosen in the maximal
parabolic & = 2*:SL,(4). Since the conjugacy class {#}® is G-stable,
Ng(X) is not maximal in G by Lemma 5.15(ii).
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Case (iDn =4,e= +£1: S = PS;(q), X =gN = Ny(T,,,) and G =

S - N5(T,,,). There exists an element r € X (of order a power of 2) such

that X < C == C,({t)) is a maximal rank subgroup of type A4,(¢%) and
H = N4(C) < S. For each n € N,i(T.,,) we have (¢)" = {¢); hence

Ni(T.,.) < N;(H). We conclude that {H}° = {H}® and N,(T,,,) is not
maximal in G.

(3b) Cases (B), (C), (D): We first consider the cases n = 2%, § =
Psz+1+1(q), and PSp,iii(g)orn =25+ 1and S = PO (q). Here X =
Ny(T,,,). Let & be the root system of type B, or C,. Up to W-conjugacy
there is a unique subsystem ® = ®, ¥ ¢, with ¢, and @, of type B, ),
and C, ,,, respectively. This gives rise to unique S -conjugacy classes of
maximal rank subgroups of type Bn/z(q ), respectlvely, n/z(q ) in S,
which contain conjugates of T, .. Similarly, if §= SOZ,,(q) there is a
unique S- -conjugacy class of maximal rank subgroups of type °D ., 1(q) that
contain conjugates of T, ..
In each case we choose such a maximal rank subgroup M and define
H:= N~(M) then [ X : Ng(T., )] < 2 and H = MNx(T.,.) > M. We con-

clude X = NH(TW) <H<S.

Let X :=X/Z(§) and § := §/X(§) Since any element of Aut(S) can
be extended to an element of Aut(S) we have S < § <Aut(S), X efz(S)
and X < H < § (notice § = § in case B, S=Sincase C,,and X =X
N S in any case). Now Lemma 5.15 implies that for any G W|th S<Gc<
AUt(S), the group X = Ny (X) = N(X) is not maximal in G. Now sup-
pose that § < G, < Aut(S) is such that X, =N (X) €5(G,) is a
maximal subgroup We consider the group G =G, S < Aut(S). Now
Lemma 5.15(ii) implies that Nj; (X) = N (X) is not maximal in G, but
by Lemma 5.15(1) N;(X) = N; (XZ) is maximal—a contradiction.

Next let n = 2%, S = PQ;,(q), and X =gNg(Ty,...,,-). Then § has a
unique conjugacy class of maximal rank subgroups of type D,,/z(qz) that

contains conjugates of 7;,...,,-. Again we choose a maximal rank sub-
group M with H = N(M) and get [X: Ng(T,, )] < 2, as well as X =
Ni(T., ) <H<S. Now the same argument as above shows that for any G
with 7(G/S) c {2}, X is not maximal in G.

(3c) _In case (E) with S of type ’B,(q), the claims are immediate,
because X N S is maximal in S. If S is of type 2G,(q) or F,(¢q), there are
only inner and field automorphisms and X is contained in the normalizers
of proper G-stable subgroups of maximal rank (2 X PSL,(g) and B,(q),
respectively). In case *D,(¢), Kleidman’s paper [23] contains the_informa-
tion that X is maximal in G. In the Eg-cases the groups X are not
maximal, as can be seen in [28]. |
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TABLE 111
p-Intersection Subgroups in Sporadic Groups

G p X X <G G P X X <G
M, 2 32:8D, + He:2 2 17:16 -
" 2 5:4 - Col 11 23:11 -
" 5 11:5 - Co2 11 23:11 -
I 2 33X Dy + Co3 11 23:11 -
M,, 2 5:4 - HN 3 19:9 -
" 3 7:3 - Fiy 2 17:16 -
" 5 11:5 - ” 11 23:11 -
M,, 2 2 (56x2:4 - Fiy, 2 (17 x 2):16 -
My, 5 11:5 - Fily, 2 17:16 -
" 1 23:11 + " 1 23:11 -
M,, 11 23:11 - BM 2 (17:8%x2%)2 -
HiS 5 11:5 - i 23 47:23 +
MecL 5 11:5 - M 29 59:29 ??
He 2 17:8 - — — — —

Here ?? means either 59:29 < PSL,(59) < -M or 59:29 < -M. The existence of PSL,(59)
in M is not settled yet.

6. THE SPORADIC SIMPLE GROUPS

In this section we classify J@(S) for all sporadic simple groups S and
their automorphism groups. The result can be derived from the data in [6],
together with elementary results from Section 2; so we omit a formal
proof.

THEOREM 6.1. Let S < G < Aul(S), where S is a sporadic simple group
and suppose that X € 7,(S). Then the triple (G, p, X) is exactly one of those
listed in Table 11I. A + indicates that X is maximal in G.
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