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Abstract

Tame equipped posets and equipped posets with involution are described.
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0. Introduction

The paper is devoted to the investigation of some tame matrix problems of mixed
type over the pair (R,C), where R and C are the fields of real and complex numbers.
These problems are naturally determined by posets (i.e. partially ordered sets) with
a simple additional structure, called equipped posets.

Remind that representations of ordinary posets over an arbitrary field were in-
troduced by Nazarova and Roiter in [14], where they constructed the algorithm of
differentiation with respect to a maximal element. Using some modification of that
algorithm and the results from [16], Nazarova obtained in [12] a tameness criterion.

Later in [13] representations of posets with involution were considered and a
tameness criterion was proved under the assumption that all objects of the
corresponding vectroid (i.e. of the category determining the problem) have trivial
endomorphism rings.
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Further, it was worked out in [23] the group of differentiation algorithms I−V for
arbitrary posets with involution. They were successfully applied in [2], where among
other things a tameness criterion for that class was proved.

It can be observed that in the situations listed above, there occurred only vectroids
such that all their schurian 1 objects have trivial endomorphism rings. As for the
vectroids, not satisfying this restriction, until recent time their representation theory
remained relatively low-investigated. One can mention among the most known facts
the characterization of the representation-finiteK-structures and the classification of
representations of some critical vectroids, given by Dlab and Ringel [4–7] in connec-
tion with their work on valued graphs, and also the description of the representation-
finite schurian vectroids, obtained by Klemp and Simson [10].

In the present paper we are concerned with the situation of vectroids containing
schurian objects with nontrivial endomorphism rings. Namely, we deal mainly with
the matrix problems corresponding to those vectroids over the field R, which have
at most two-dimensional schurian objects with the endomorphism rings R or C and
satisfy some additional conditions. Such problems are well interpreted as the prob-
lems on representations of equipped posets or equipped posets with involution (see
precise definitions in Section 1).

Our main goal is to describe equipped posets, equipped posets with primitive
involution and equipped posets with arbitrary involution of tame type (these are The-
orems A–D in Section 1). For this, in Sections 3−14 the new group of differentiation
algorithms VII−XVII for equipped posets (with and without involution) is built.
Along with the mentioned algorithms I−V from [23] they allow to differentiate prac-
tically any tame matrix problems from the considered class, including the problems
of Gel’fandian type (being as a rule of infinite growth).

During the work we were forced to direct the main efforts towards the construc-
tion of the algorithms. Despite of their (partially illusory) complexity in substanti-
ation, their combinatorial action is, in fact, wonderfully simple and convenient for
applications in tame situation. The reader can see that the proof of the tameness
condition of the main Theorem C, presented in Section 17, is very short modulo
algorithms. It is based only on some standard properties of Differentiations (Section
15) and on rather transparent combinatorics (Section 16).

The author is sincerely grateful to the referees for their very useful remarks and
suggestions.

1. Formulation of the main results

A poset P (with a partial order relation �) will be called equipped if the following
conditions are satisfied:

1 An object of a vectroid is called schurian if its endomorphism ring is a division ring. The vectroid
itself is called schurian if all its objects are schurian.
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(i) the points of P are divided into single and double;
(ii) the order relations between points are divided into weak and strong;

(iii) if x < y is a weak relation, then both points x, y are double and, moreover, in
the case x < t < y the relations x < t and t < y are weak too (and automati-
cally the point t is double).

By x ≺ y (x � y)we denote a weak (strong) relation between points and by x < y
an arbitrary relation.

The equipment is regarded to be trivial if there are no double points, that is the
poset P is ordinary.

Each equipped poset P determines some matrix problem of mixed type over the
pair (R,C) in the following way. Consider a finite rectangular matrix M partitioned
into vertical stripes Mx, x ∈ P (which may be empty), where the elements of a
stripe Mx belong to the field R(C) if the point x is single (double). One can apply
the following admissible transformations to the matrixM:

(a) R-elementary transformations of rows of the whole matrixM;
(b) R-elementary (C-elementary) transformations of columns of a stripe Mx if the

point x is single (double);
(c) in the case of a weak relation x ≺ y additions of columns of the stripeMx to the

columns of the stripeMy with coefficients in C;
(d) in the case of a strong relation x � y independent additions both real and imag-

inary parts of columns of the stripe Mx to the real and imaginary parts (in any
combinations) of columns of the stripe My with coefficients in R (certainly, it
is assumed that for y single there are no additions to the zero imaginary part of
My).

The partitioned matrices M of such kind (called also matrix representations of
P) are assumed to be equivalent (or isomorphic) if they can be turned into each other
with help of the admissible transformations. And the matrix problem, determined by
an equipped poset P, is a problem on classification of indecomposable (in the natural
sense) matrices up to equivalence.

The dimension of a partitioned matrix M is a vector d = dimM = (d0; dx | x ∈
P), where d0 is the number of rows in M and dx is the number of columns in the
stripeMx .

Analogously to the case of the pair (R,C), one can consider a matrix represent-
ation of P over the pair of polynomial rings (R[t],C[t]) as well as over the pair
of free algebras of two generators (R〈X, Y 〉,C〈X, Y 〉) (at the moment we do not
introduce any admissible transformations for such representations).

Each (R[t],C[t])-representation L of an equipped poset P naturally generates a
real series (as a rule, infinite) of (R,C)-representations by substituting square matrices
A over R (reduced to some canonical form under the real similarity transformations)
for the variable t , and scalar matrices λE of the same size for the numbers λ ∈ C.
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It appears, in tame situation it is not enough to deal with the real series only. If
the mentioned representation L is such that all its single point stripes are scalar (i.e.
do not contain the variable t), thenL generates also a complex series of (R,C)-repre-
sentation by substituting square matrices A over C (reduced to the Jordan normal
form) for the variable t , and the scalar matrices λE for the scalars λ ∈ C (examples of
complex series are given in (10.10) and, for a more general situation, in (14.4)).

We will say also (in accordance with the just described two situations) that an
(R[t],C[t])-representation L generates a series over R (over C).

Denote by µ(d) the least number of series (of any kind, both real and complex)
containing almost all indecomposables of a given dimension d (considered up to
isomorphism). An equipped poset is called tame if µ(d) <∞ for all d .

Let now W be a representation of P over the pair (R〈X, Y 〉,C〈X, Y 〉) of free al-
gebras of two variables. ThenW naturally generates an (R,C)-representationWA,B
by substituting a pair of square real matricesA,B of equal size for the variablesX, Y
and the scalar matrices λE of the same size for the scalars λ.

An equipped poset P is called wild if for some fixed (R〈X, Y 〉,C〈X, Y 〉)-rep-
resentation W and for a complete set of indecomposable and pairwise nonequiva-
lent (under the common real similarity transformations) pairs A,B all the generated
representations WA,B are also indecomposable and pairwise nonequivalent. Such
representationW we call a wild generator.

Let P0 be the subset of all single points of an equipped poset P.

The evolvent of the set P (with respect to P0) is an ordinary poset
∨
P of the

form
∨
P = P0 +

⋃
x∈P\P0

{x′, x′′},

obtained from P by replacing each point x ∈ P\P0 by a pair of new incomparable
points x′, x′′ with the order relation � defined as follows:

(1) the order relations inside P0 remain without changes;
(2) each of two points x′, x′′ inherits all previous order relations of the point x with

the points of the subset P0;

(3) if x, y ∈ P\P0, then

{
x ≺ y ⇔ x′ < y′ and x′′ < y′′,
x � y ⇔ {x′, x′′} < {y′, y′′},

where {x′, x′′} < {y′, y′′} means x′ < y′, x′ < y′′, x′′ < y′ and x′′ < y′′.

Typical examples. Below the symbol ◦(⊗) denotes a single (double) point and a
single (double) line between double points denotes a weak (strong) relation.

(a)
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(b)

(c)

One of the main goals of the present paper is to prove the following theorem.

Theorem A. An equipped poset P is tame (wild) if its evolvent
∨
P is tame (wild).

As usually, one can reformulate the tameness condition of the theorem in terms
of quadratic forms or minimal wild subsets.

The associated with P Tits quadratic form f = fP is given by the formula

f (d) = d2
0 +

∑
x∈P

fxd
2
x +

∑
x<y

pxyfxfydxdy − d0

∑
x∈P

fxdx,

where fx = 1 (fx = 2) for a single (double) point x ∈ P and pxy = 1/2(pxy = 1)
for x ≺ y (x � y). Naturally, it coincides with the usual unit form for ordinary posets
[8, 5.7] if P contains no double points.

Remind that the form f is called weakly nonnegative if f (d) � 0 for each vector
d � 0.

In this paper a disjoint union of subsets X, Y ⊂ P is called a sum and denoted
by X + Y . The sum X + Y is cardinal (ordinal) [1] if X and Y are incomparable (if
each point of X is less than each point of Y or conversely).

A chain (i.e. a linearly ordered set) of the form x1 ≺ x2 ≺ · · · ≺ xn is called weak.
If, moreover, x1 ≺ xn, it is called completely weak. The length of a chain is the
number of its points.

Denote by (p̃1, . . . , p̃k, q1, . . . , ql) a cardinal sum of k + l chains among which
k chains are completely weak with the lengths p1, . . . , pk and l chains are ordinary
with the lengths q1, . . . , ql (possibly, k = 0 or l = 0).

Set N1 = (1, 1, 1, 1, 1), N2 = (1, 1, 1, 2), N3 = (2, 2, 3), N4 = (1, 3, 4), N5 =
(N, 5), N6 = (1, 2, 6), where (N,m) denotes an ordinary cardinal sum of m-point
chain and four-point subset N = {a < b > c < d}.

Also denote W1 = (̃1, 1, 1, 1), W2 = (̃1, 1̃, 1), W3 = (̃1, 1̃, 1̃), W4 = (̃1, 1, 2),
W5 = (̃2, 1, 1), W6 = (̃1, 2̃), W7 = (̃2, 3), W8 = (̃3, 2), W9 = (̃4, 1).

We recall that according to Nazarova’s theorem [12], an ordinary poset is tame
if and only if it contains none of the subsets N1, . . . , N6 (and this is equivalent to
the weak nonnegativity of its quadratic form). In view of our remarks at the end of
Section 17, it follows that the combinatorial tameness condition of Theorem A may
be presented in several equivalent forms.
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Lemma 1.1. For an equipped poset P the next assertions are equivalent.

(a) The evolvent
∨
P is tame, i.e. contains none of the subsets N1, . . . , N6.

(b) P contains none of the subsets N1, . . . , N6 andW1, . . . ,W9.

(c) The Tits quadratic form fP is weakly nonnegative.

For example, all depicted above equipped posets are tame. 2

Since Theorem A admits a very simple formulation, the first idea, which comes
naturally to the mind, is to try to reduce the result to the case of ordinary posets. 3

Despite of this, we do not have at our disposal any evident construction establishing

direct connection between indecomposables of P and
∨
P. 4 That is why we give the

complete independent proof of the result for the equipped situation (embracing, in
particular, the ordinary case).

The proof is based on elaboration and application the corresponding differentiation
technique which in some cases leads out of the class of equipped posets and forces
to consider more general problems. In particular, we consider the class of equipped
posets with involution and prove for it the analogous results.

An equipped poset with involution is an equipped poset satisfying (except of the
listed above conditions (i)–(iii)) two additional conditions:

(iv) on the set of all points of P an involution ∗ is given which maps single points
into single and double into double (and which is in no connection with the order
relation); so, single points are divided into small (x = x∗) and big (x /= x∗) and
double points are divided into simple double (x = x∗) and bidouble (x /= x∗);

(v) each bidouble point x is assigned the number g(x) = g(x∗) ∈ {±1} called its
genus (or genus of the pair x, x∗).

In the case x /= x∗ we call the points x and x∗ equivalent and write x ∼ x∗.
The involution * will be called primitive if it leaves fixed all double points (i.e.

there are no bidouble points).
Naturally, a matrix representation of an equipped poset with involution is such

a representation M of an equipped poset that the vertical stripes Mx and Mx∗ (re-
lated to the equivalent points x ∼ x∗) have the same numbers of columns. And the
corresponding matrix problem consists of classification of indecomposable matri-
ces up to equivalence determined by the listed above transformations of type (a),

2 One can show that the first one is two-parameter and the rest are of infinite growth.
3 There are some more arguments in favour of this idea. The criteria for an equipped poset to be

representation-finite or one-parameter can be formulated in the form, analogous to Theorem A, as it
follows immediately from [10,26] respectively.

4 An idea to try to use the induced representations of
∨
P over C was expressed recently by C.M.

Ringel (and also by S. Kasjan). It may occur, subsequently it will help to simplify the proof.
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(c), (d) and also by the following ones (b′)–(b′′′) replacing the transformations of
type (b):

(b′) R-elementary (C-elementary) transformations of columns of a stripeMx if the
point x is small (simple double);

(b′′) the same R-elementary transformations of columns of the stripesMx andMx∗
if x ∼ x∗ are big points;

(b′′′) the same (conjugate) C-elementary transformations of columns of the stripes
Mx andMx∗ if x ∼ x∗ are bidouble points of genus 1 (of genus −1).

Remarks
(1) The conjugate C-elementary transformations of columns of the stripes Mx and

Mx∗ are generated by transformations of two types:
(a) multiplications of two corresponding to each other columns of the stripes
Mx andMx∗ by mutually conjugate complex numbers λ, λ /= 0;

(b) addition of the ith column of the stripe Mx to its j th column with a coeffi-
cient λ ∈ C and simultaneous addition of the ith column of the stripeMx∗ to
its j th column with the conjugate coefficient λ.

(2) Obviously, in the case of a primitive involution, the transformations (b′′′) disap-
pear but the others remain.

(3) In a more partial case, under absence of all double points, we obtain the prob-
lem on representations of ordinary posets with involution over R, which was
considered (over an arbitrary field) in [2,13,23].

As for the tame (wild) equipped posets with involution, they are defined entirely
analogously to the purely equipped situation.

Later on a subsetX ⊂ P will be called small (big, double , . . .) if all its points are
small (big, double, . . .). A subset, consisting of two (three, four) mutually incompa-
rable points, is called in this paper a dyad (triad, tetrad).

Assume that an equipped poset with involution P contains such a big point a
that the set of all points, incomparable with a, is a small chain of length n � 0 with
the elements ci . Then, using some simple reduction of the stripe Ma and partially
the stripes Mci one can transit from representations of P to representations of some
new equipped poset with involution P′

a obtained from P by deleting the point a
and replacing the equivalent point a∗ by a small chain of length n+ 2 (see Lemma
15.6 and its proof for details). Making such reduction as many times as possible, in
the case of a finite poset P one can always get rid of big points with the mentioned
property.

Therefore, it is quite natural (and very useful for the formulation of the result)
to consider equipped posets with involution being reduced, i.e. satisfying the
condition:
(R) each big point is incomparable with some big point or some double point or with

some small dyad.
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Now let P0 be the set of all small points 5 of an equipped poset with primitive
involution P. Keeping without any change the presented above definition of the evol-

vent
∨
P of the set P with respect to the subset P0, we receive an opportunity to for-

mulate laconically the tameness and wildness conditions in the considered situation
(generalizing Theorem A).

Theorem B. A reduced equipped poset with primitive involution P is tame (wild)

if its evolvent
∨
P (with respect to the subset of all small points P0) is tame (wild).

In the case of an equipped poset with arbitrary involution P, denote by Pprim
the set with primitive involution obtained from P by deleting all bidouble points.
This subset plays important role in the formulation of the corresponding statement
(generalizing Theorem B).

Theorem C. A reduced equipped poset with involution P is tame if it satisfies two
conditions:

(a) each bidouble point is comparable with all other points;
(b) the evolvent

∨
P prim of the subset Pprim is tame.

Otherwise P is wild.

Taking into account the described above reducing procedure (which leads to valid-
ity of the condition (R)), we receive a natural consequence of Theorem C.

Theorem D. An equipped poset with involution P is tame if each of its bidouble
points is comparable with all other points and the subset Pprim is tame. Otherwise
P is wild.

Certainly, it is expected (but is not proved in the present paper) that none of the
equipped posets with involution can be both tame and wild. In other words, it is ex-
pected that the presented above sufficient tameness conditions are also necessary, i.e.
Theorems A–D are in fact criteria. In this connection we would like to pay attention
to the following two natural questions concerning matrix problems over an arbitrary
infinite base field k.

Denote by µn(d) the least number of at most n-parameter (over k) series contain-
ing almost all indecomposables of dimension d .

5 In the case of a trivial involution small and single points coincide, and the current utilization of the
symbol P0 agrees with the previous one.
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Question 1. If the problem is wild, whether for each n there exists d such that
µn(d) = ∞?

Question 2. If the problem is not wild, whether there exists n such that µn(d) <∞
for all d?

Intuitively the first question looks like a simple one and may be considered as
the easiest part of the corresponding tame–wild dichotomy statement, analogous
to the result proved by Drozd [3] for boxes over algebraically (separably) closed
fields. The positive answer to it (in the case k = R) converts the Theorems A–D into
criteria. Since at the moment we do not have a formal proof, it is actual to obtain
a suitable one using only “elementary algebraic geometry” reasonings. 6 As for the
second question, seems, it is a less transparent and more complicated one.

2. Further preliminaries and notations

We hope that our exposition of the material, concerning the topic, is rather detailed
and self-contained. At the same time, the interested reader may also use the books
[8,17,18], where some introductional and additional material on representations of
posets and vector space categories (vectroids) can be found.

Recall that a vectroid L over a field k (considered in fact already in [15]) is any
k-linear subcategory (usually not full) of the category of finite-dimensional k-spaces
with indecomposable and pairwise nonisomorphic objects.

Let L(X, Y ) be the space of morphisms from the object X into the object Y .
Modules over the ring

⊕
X,Y L(X, Y ) are called L-modules (or modules over the

vectroid L). A natural right L-module L0 = ⊕
X X is the basic module of the

vectroid L.
A representation of the vectroid L over k is any right L-submodule U of the

tensor product

U ⊂ U0

⊗
k

L0,

where U0 is some k-space. In this work all representations are supposed to be
finite-dimensional, i.e. satisfying the conditions dimk U0 <∞ and dimk(U/radU) <
∞, where radU = U · radL is the radical of a representation U and radL =⊕
X,Y radL(X, Y ) is the radical of the vectroid L (the ideal generated by all non-

invertible morphisms).
A morphism from a representation U ⊂ U0

⊗
kL0 into a representation V ⊂

V0
⊗
kL0 is any k-linear map ϕ : U0 −→ V0 for which (ϕ ⊗ 1)(U) ⊂ V . The cat-

egory of representations of L is denoted by L-sp.

6 Some general sketch of the positive solution of Question 1 (based, as in [3], on comparing the linear
and quadratic growths of variety dimensions) was outlined during ICRA-9 by Crawley-Boevey.
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Obviously, U = ⊕
X UX, where UX ⊂ U0

⊗
k X, hence, the representation U

can be identified with the collection

U = (
U0;UX |X ∈ ObL

)
,

where UXL(X, Y ) ⊂ UY for all X, Y . Then a morphism U −→ V of the category
L-sp has to be considered as any k-linear map ϕ : U0 −→ V0 with the condition
(ϕ ⊗ 1X)(UX) ⊂ VX for all X.

The dimension of a representation U is a vector d = dimU = (d0; dX |X ∈
ObL), where d0 = dimk U0 and dX = dimL(X,X)UX/(radU)X (it is clear that (rad
U)X = ∑

Y UY radL(Y,X)). The representationU is called sincere if its dimension
dimU has no zero coordinates. Vectroids, having at least one sincere indecompos-
able representation, are called sincere.

We often use below the abridge notation (radU)X = UX. By U̇X we denote any
set of generators of the L(X,X)-module UX taken modulo its radical UX, i.e. sat-
isfying the condition (UX + U̇X)L(X,X) = UX.

Let X∗ = Homk(X, k) be the dual space for a k-space X and f ∗ : Y ∗ −→ X∗ be
the dual homomorphism for a given homomorphism of k-spaces f : X −→ Y .

For each vectroid L over k the dual vectroid L∗ with the objects X∗ and mor-
phisms f ∗ is naturally defined. So, L∗(Y ∗, X∗) = (L(X, Y ))∗ = {f ∗ | f ∈ L(X,
Y )}, in particular, the endomorphism rings EndX and EndX∗ are antiisomorphic.

If U ⊂ U0
⊗
kL0 is a representation of L, then the corresponding dual rep-

resentation U⊥ ⊂ U∗
0

⊗
kL

∗
0 has the form U⊥ = {

ϕ ∈ U∗
0

⊗
kL

∗
0 |ϕ(U) = 0

}
.

Obviously, U⊥⊥ � U .
When writingU in the formU = (U0;Ux |X ∈ ObL), it holdsU⊥=(U∗

0 ;U∗
X∗ |

X∗ ∈ ObL∗), where U∗
X∗ = {ϕ ∈ U∗

0

⊗
k X

∗ |ϕ(UX) = 0}.
Later on a vector space over k with the base e1, . . . , en is denoted by k{e1, . . . , en}

or simply by {e1, . . . , en}, if there is no doubt about the field. A direct sum of m
copies of a space or representation U (of a linear map f ) is denoted by Um(f m).

By |A| we denote the number of elements of a set A. Often a one-point set is
identified with a point: {a} = a.

For a subset A ⊂ P denote by UA0 a direct sum of |A| copies of a space U0
numbered by the points of A.

In this paper we consider vectroids over the field R.
• Each equipped poset (without involution) P determines a vectroid L = LP

over R with the objects X corresponding to the points x ∈ P. Namely, the object
X coincides with a copy Rx(Cx) of the field R(C) and has the endomorphism ring
R(C) if the point x is single (double ). Moreover, if X /= Y , it holds

L(X, Y ) =



C for x ≺ y,
HomR(X, Y ) for x � y,
0 otherwise.

It is easy to comprehend that the classification of representations of such vectroid
L corresponds exactly to the matrix problem (a)–(d) from Section 1. Setting P-sp =
L-sp, we may write representations in the form U = (U0;Ux | x ∈ P).
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• Let P be an equipped poset with primitive involution and � be the set of the
equivalence classes of its points with respect to the involution ∗. Here the objects
of the vectroid L = LP are in one-to-one correspondence with the classes from
�. Certainly, the equipped subposet, obtained from P by deleting all big points,
determines the same full subvectroid in L as in the previous case. In addition, each
pair x ∼ x∗ of big points is conformed to a two-dimensional object Rx ⊕ Rx∗ of L
with the trivial endomorphism ring in the case of incomparable x, x∗ (pencil) and
with the endomorphism ring{(

a b

0 a

) ∣∣∣∣ a, b ∈ R

}
in the case x < x∗.

The morphism sets between different objects in L are generated by the following
R-spaces (but, certainly, do not necessarily coincide with them):

(1) HomR(Rx,Ry), where x � y are any single points;
(2) HomR(Rx,Cy) (HomR(Cy,Rx)), where x is single, y is double and x � y (y � x);
(3) HomR(Cx,Cy) (HomC(Cx,Cy)), where x � y (x ≺ y) are double points.

The classification of representations of L corresponds to the matrix problem (a),
(b′), (b′′), (c) and (d) from Section 1.

• Let P be an equipped poset with arbitrary involution and � be the same set of
classes as before. Again the objects from L are in one-to-one correspondence with
the classes from �. The equipped subposet with primitive involution Pprim, obtained
from P by deleting all bidouble points, determines exactly the same full subvectroid
in L as in the previous case. Moreover, each pair x ∼ x∗ of bidouble points of genus
1 or −1 is conformed to a four-dimensional object Cx ⊕ Cx∗ with the endomorphism
ring of the form:

(α) �1 =
{(
u v

0 u

) ∣∣∣∣ u, v ∈ C

}
or �2 =

{(
u v

0 u

) ∣∣∣∣ u, v ∈ C

}
for x ≺ x∗(note that �1 "� �2),

(β) �1 =
{(
u h

0 u

) ∣∣∣∣ u ∈ C

h ∈ H
}

or �2 =
{(
u h

0 u

)∣∣∣∣ u ∈ C

h ∈ H
}
,

where H = HomR(C,C), for x � x∗,

(γ ) �1 =
{(
u 0
0 u

) ∣∣∣∣ u ∈ C

}
or �2 =

{(
u 0
0 u

) ∣∣∣∣ u ∈ C

}
for incomparable x and x∗(this is possible in wild situation only).

The morphism sets between different objects in L are generated by the same
R-spaces (1)–(3) as in the previous case. The classification of representations of
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the vectroid L corresponds to the problem (a), (b′), (b′′), (b′′′), (c) and (d) from
Section 1.

As usually, an equipped poset with involution is called m-parameter, if the least
number of series, containing (up to isomorphism) almost all indecomposables of
each given dimension, is equal to m.

Lemma 2.1. The set � = {a � a∗}, where a ∼ a∗ are bidouble points, is one-
parameter.

Proof. If you take a matrix representationM of � and reduce completely the stripe
Ma , it appears in the stripe Ma∗ the following matrix problem (A) with a pencil
and two simple double points which leads out of the class of equipped posets with
involution:

(A)

(here all the matrices are over C, the transformations of rows are over R and of col-
umns over R or C dependently of a stripe, moreover, there are additions of columns
over C from the left to the right).

But, from the other hand, if you consider a matrix representation N of the well-
known critical one-parameter equipped poset L1 = {a, r, s}, where a is double and
r, s are small (see Appendix A–C), and you reduce completely the stripes Na and
Nr , assuming additionally that

Na = E

iE

(i.e. considering even a partial case), then it appears in the third stripe Ns exactly the
problem (A). �

For a real vector spaceU0 we will consider often the complex space Ũ0 = U0
⊗

R

C which is usually called the complexification of U0. Since Ũ0 is canonically identi-
fied with the direct sum U0 ⊕ iU0, for each R-subspace W ⊂ Ũ0 its real and imagi-
nary parts ReW, ImW ⊂ U0 are defined (they coincide ifW is a C-subspace).

Remark. Later on, depending on situation, the elements of the C-space Ũ0 are
written both in the form of sums u+ iv and ordered pairs (u, v), where u, v ∈ U0.
In the same manner, for two subspaces X, Y ⊂ U0 the direct sum X ⊕ iY ⊂ Ũ0 is
denoted sometimes by (X, Y ).

For an element z = u+ iv ∈ Ũ0 set ẑ = v + iu. Obviously,̂̂z = z.
By |A| we denote the number of elements of a set A. Often a one-point set is

identified with a point: {a} = a.
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For a subset A ⊂ P and a vector space (over some field) X denote by XA a direct
sum of |A| copies of the space X numbered by the points of A.

If X is a real space and the subset A consists either of single points only or of
double points only, then denote

{XA} =
{
XA if A consist of single points,
X̃A if A consist of double points.

Sometimes the classes K ∈ �, consisting of two equivalent points x ∼ x∗, will
be written in the form of ordered pairs K = (x, x∗).

Later on it will be natural to consider a representation U of an equipped poset
with involution P in the form U = (U0;UK |K ∈ �), where Ux ⊂ U0 (Ux ⊂ Ũ0)

for a small (simple double) point x and U(x,x∗) ⊂ U2
0 (U(x,x∗) ⊂ Ũ2

0 ) for a pair of
big (bidouble) points x ∼ x∗.

Let P be an equipped poset (without involution).
As Ux ⊂ Ũ0 for a double point x ∈ P, one can set U−

x = Ux ∩ U0 and U+
x =

ReUx = ImUx (obviously, U−
x ⊂ U+

x ⊂ U0). For a single point x suppose U−
x =

U+
x = Ux . Note that U+

x ⊂ U−
y for any points x, y with the condition x � y.

The following simple, but useful, relations are used frequently in our consid-

erations. For single points ξ, η: (a) ˜Uξ + Uη = Ũξ + Ũη; (b) Ũξ ∩ Uη = Ũξ ∩ Ũη;
(c) (Ũξ )+ = Uξ .

For double points x, y: (a) (Ux + Uy)+ = U+
x + U+

y ; (b) (Ux ∩ Uy)− = U−
x ∩

U−
y ; (c) U+

x ⊂ U−
y ⇔ Ux ⊂ Ũ−

y ⇔ Ũ+
x ⊂ Uy .

For a single point ξ and double points x, y: (a) U+
x ⊂ Uξ ⇔ Ux ⊂ Ũξ ; (b) Uξ ⊂

U−
y ⇔ Ũξ ⊂ Uy .
It will be convenient to write similar lattice relations in the abridge notations,

omitting the symbols of a space U and of intersection ∩ (the last one is supposed
to be replaced by the point). For instance, the mentioned relations for double points
x, y will appear in the form: (a) (x + y)+ = x+ + y+; (b) (xy)− = x−y−; (c) x+ ⊂
y− ⇔ x ⊂ ỹ− ⇔ x̃+ ⊂ y.

For a subset A ⊂ P denote

U−
A =

⋂
α∈A

U−
a , U

+
A =

∑
a∈A

U+
a (by definition, U−

∅ = U0 and U+
∅ = 0).

For a ∈ P we use notations a∨ = {x ∈ P | a � x}, a∧ = {x ∈ P | x � a}, a% =
{x ∈ P | a�x}, a& = {x ∈ P | x�a}. For A ⊂ P set A% = A+ {x ∈ P |A � x},
A& = A+ {x ∈ P | x � A},

Aup =
⋃
a∈A

a∨, Adown =
⋃
a∈A

a∧.

By minA (maxA) we denote the set of all minimal (maximal) points of a subset
A ⊂ P.

We write A < B if a < b for all a ∈ A, b ∈ B (the notations A ≺ B and A � B
have the analogous sense).
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A convex envelope of a subset A ⊂ P is a subset of the form [A] = {x ∈ P | a′ �
x � a′′ for some a′, a′′ ∈ A}. A (closed) segment [a, b] = {x ∈ P | a � x � b} is its
partial case for A = {a, b} and a � b.

The set [A]\A is the interior of the convex envelope [A].
Denote by N(A) the set of all points incomparable with each point of a subset

A ⊂ P. Set N(a1, . . . , an) = N({a1, . . . , an}).
A vector, corresponding to a set P, is any vector d = (d0; dx | x ∈ P). Let δa ,

where a ∈ P ∪ {0}, be a trivial vector of the form δa = (d0; dx | x ∈ P), where da =
1 and dx = 0 for x /= a (especially, δ0 = (1; 0, . . . , 0)).

Denote by [d] the indecomposable representation of dimension d (in the case
such a representation exists and is unique up to isomorphism). For example, [δ0] =
(R; 0, . . . , 0).

For A ⊂ P set P(A) = P(minA) = (R;Ux | x ∈ P), where Ux = R (Ux = C)
for a single (double) point x ∈ Aup and Ux = 0 otherwise. Obviously, P(∅) = [δ0]
and P(a) = [δa] for a ∈ P. Set P(a1, . . . , an) = P({a1, . . . , an}).

Denote by IndP (IndR) a complete set of pairwise nonisomorphic indecompos-
ables (indecomposable objects) of the set P (of the category R).

Recall briefly the construction of Differentiation I (see [19,20,22]) which is used
essentially below (we give a modified quintessence of the corresponding material,
adapted to the considered situation).

A pair of incomparable points (a, b) of an ordinary poset P is called I-suitable
(i.e. suitable for Differentiation I) if P = a% + b& + C, where C = {c1 < · · · < cn}
is a chain (possibly empty) incomparable with the points a, b.

The derivative poset of the set P with respect to the pair (a, b) is a poset P′
(a,b) =

(P\C)+ C− + C+, where C− = {c−1 < · · · < c−n } and C+ = {c+1 < · · · < c+n } are
two new chains (replacing the chain C) with the relations c−i < c

+
i ; a < c+i and

c−i < b. It is assumed that each of two points c−i , c
+
i inherits all order relations of

the “paternal” point ci with the points of the subset P\C (and, of course, all the
induced relations are added).

If U is a representation of P, then the derivative representation U ′ of the set
P′ = P′

(a,b) is defined as follows:

U ′
0 = U0,

U ′
c−i

= Uci ∩ Ub, U ′
c+i

= Uci + Ua,
U ′
x = Ux for the remaining points x ∈ P′.

(2.1)

Setting also ϕ′ = ϕ for any morphism U
ϕ−→V of the category P-sp (considered as

a linear map ϕ : U0 −→ V0), we obtain the correctly defined differentiation functor ′:
P-sp −→P′-sp.

It turns out that even for an indecomposable U the derivative representation U ′
is as a rule decomposable and contains trivial direct summands of the form P(a).
Taking U ′ = U↓ ⊕ Pm(a), where m � 0 and U↓ does not contain the summands
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P(a), we obtain the reduced derivative representation U↓ being always indecom-
posable for an indecomposable U .

One can directly define the reduced representation U↓ as follows. In the lattice of
all subspaces of the R-space U0 consider a subposet of the form

(2.2)

where E0 is any subspace complementing the meet Ua ∩ Ub in the interval [0, Ua],
and W0 is any subspace complementing the sum Ua + Ub in the interval [Ub,U0]. 7

In other words, E0 andW0 must satisfy the following relations:{
E0 ∩ Ub = 0
E0 + (Ua ∩ Ub) = Ua and

{
Ua +W0 = U0,

(Ua + Ub) ∩W0 = Ub. (2.3)

Then the poset (2.2) is a lattice (with the obvious meets and sums) and U0 =
E0 ⊕W0.

Any pair of subspaces (E0,W0) of the space U0, satisfying the condition (2.3),
will be called a complementing pair of subspaces with respect to the pair (Ua, Ub).

Now set U↓ = W = (W0;Wx | x ∈ P′) with Wx = U ′
x ∩W0 for all x ∈ P′. It is

easy to verify that if π : U0/E0
∼−→W0 is the canonical isomorphism, then it holds

π((U ′
x + E0)/E0) = Wx , i.e. U↓ does not depend on the choice ofW0 and E0.

Note thatWa ⊂ Wb, i.e. U↓ is in fact a representation of the completed derivative
poset P

′
(a,b), obtained from P′

(a,b) by addition the only one relation a < b. The

category P
′
-sp is a full subcategory of the category P′-sp formed by the objects

without direct summands P(a), i.e. these categories differ nonessentially from each
other. Clearly, IndP

′ = IndP′\P(a).

Remark. For an arbitrary posetQ the indecomposables in IndQ are chosen up to iso-
morphism. So, when subtracting IndQ\{U,V, . . .}, it is assumed that {U,V, . . .} ⊂
IndQ.

7 We recall from [1] that two elements x, y of a lattice-interval [p, q] are said to be mutually
complementing in this interval, if x ∩ y = p and x + y = q.
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In this paper the transition from P to P′
(a,b) (from P to P

′
(a,b)) will be called the

differentiation without completion (with completion).
Along with the differentiation, there exists also an evident “inverse” construc-

tion, so called integration which assigns to any representation W of the completed
derivative poset P

′
the primitive representation W↑ of the initial poset P such that

(W↑)↓ � W . The main properties of Differentiation I are presented in the following
two theorems proved in [19,22] respectively (see also [18, Chapter 9]).

Theorem 2.2. The operations ↓ and ↑ induce mutually inverse bijections

IndP\{P(a), P (a, c1), . . . , P (a, cn)}� IndP
′
(a,b) = IndP′

(a,b)\P(a).

Theorem 2.3. The functor ′ : P-sp −→ P′
(a,b)-sp induces an equivalence of the

factor categories

P− sp/〈P(a), P (a, c1), . . . , P (a, cn)〉 ∼−→P′
(a,b) − sp/〈P(a)〉,

where by 〈U,V, . . .〉 is denoted the ideal of a category generated by all morphisms
having a factorization through the objects U,V, . . .

Graphic conventions. In the following sections we depict diagrams of some
equipped posets with involution, in which small, big, simple double, bidouble points
are denoted by the symbols ◦, •, ⊗,* respectively.

All order relations with a participation of at least one single point, as well as
all weak relations between double points, are pictured by a single line. But all strong
relations between double points, which are not consequences of some other relations,
are pictured by a double line (or by an additional line).

If some group of points is encircled by a contour connected by some (single
or double) line with some other points, it means that all points, located inside the
contour, have the same order relations with the mentioned other points (determined
by the type of the line).

3. Differentiation VII

Let P be an equipped poset. A pair of incomparable points (a, b) of the set P,
where a is double and b is single, is called VII-suitable, if P = a& + b& + C, where
C ={c1 ≺ · · · ≺ cn} is a completely weak chain (possibly empty) incomparable with
the point b, and a ≺ c1 (note that automatically a ≺ cn).

The derivative poset of the set P with respect to such a pair (a, b) is an equipped
poset

P′
(a,b) = (P\(a + C))+ {a− < a+} + C− + C+,
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where a− is double , a+ is single,C− ={c−1 ≺ · · · ≺ c−n } andC+ ={c+1 ≺ · · · ≺ c+n }
are completely weak chains, c−i ≺ c+i for all i; a− ≺ c−1 ; a+ < c+1 ; c−n < b, and the
following conditions are satisfied:

(1) each of the points a−, a+ (c−i , c
+
i ) inherits all the previous order relations of the

point a(ci) with the points of the subset P\(a + C);
(2) the order relations in P′

(a,b) are induced by the relations in its subset P\(a + C)
and by the listed above relations (note that, in particular, a− ≺ c−n ).

Remark 3.1. Differentiating the evolvent of the set P first with completion with
respect to the pair (a′, b) and then without completion with respect to the pair ((a′′)+,
b), one obtains exactly the evolvent of the derivative poset P′

(a,b) (differentiating
the second time with completion too, one obtains the evolvent of the completed
derivative poset P

′
(a,b)).

LetU = (U0;Ux | x ∈ P) be a representation of the set P, whereUx ⊂ U0(Ux ⊂
Ũ0) for a single (double) point x. The derivative representation U ′ of the set P′ =
P′
(a,b) is defined as follows:

U
′
0 = U0,

U
′
a− = Ua ∩ Ũb, U

′
c−i

= Uci ∩ Ũb,
U

′
a+ = U+

a , U
′
c+i

= Uci + Ũ+
a ,

U
′
x = Ux for the remaining points x ∈ P

′
.

(3.1)

If U
ϕ−→V is a morphism of the category P-sp (considered as a linear map ϕ :

U0 −→ V0), we set ϕ′ = ϕ and obtain the derivative morphism of the category
P′-sp . So, the differentiation functor ′ : P-sp −→P′-sp is correctly defined.

We shall use below indecomposables of the form

D(x) =
x

1
i

,
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where x is double, and

H(x, y) =
x y

1 i

i 1
�

x y

1 0
i 1

,

where x ≺ y. Obviously, P ′(a) = P(a+) and D′(a) = H ′(a, ci) = P 2(a+). A
representation of P, containing no direct summands of the form P(a), D(a) and
H(a, ci), will be called reduced.

Let (E0,W0) be the complementing pair of subspaces of the spaceU0 with respect
to the pair (U+

a , Ub) (see in Section 2 the construction of Differentiation I). Then
the reduced derivative representation U↓, for which U ′ = U↓ ⊕ Pm(a+) with m =
dim(U+

a + Ub)/Ub, has the formU↓ = W = (W0;Wx | x ∈ P′), whereWx = U ′
x ∩

W0 (Wx = U ′
x ∩ W̃0) for a single (double) point x. Again U↓ does not depend, 8

up to isomorphism, on the choice of E0 and W0 and (due to the inclusion Wa+ ⊂
Wb) is in fact a representation of the completed (by the relation a+ < b) poset
P

′
.
Clearly, dimU↓

0 � dimU0, where the equality holds iff U+
a ⊂ Ub. Moreover,

(U1 ⊕ U2)
↓ � U↓

1 ⊕ U↓
2 .

Now describe the integration construction. LetW be a representation of the com-
pleted derivative poset P

′
. Write each C-spaceWc+i

in the formWc+i
= Wc+i

⊕ Fi ⊕
Hi , where Fi ⊂ W̃b and Hi ∩ W̃b = 0, and fix any C-base fi1, . . . , fimi of each
subspace Fi (recall that the subspace UX = (radU)X was already defined at the
beginning of Section 2). Set Wa+ = Wa+ ⊕G, where G = {g1, . . . , gs} is some
complement of Wa+ in the whole R-space Wa+ . Choose some new R-space E0

with the base {t1, . . . , ts; ei1, e′i1, . . . , eimi , e
′
imi

| i = 1, . . . , n} and set W↑ = U =
(U0;Ux | x ∈ P′), where

U0 =W0 ⊕ E0,

U̇x =Wx for x "= a, ci,
U̇a =Wa− + {

(g1, t1), . . . , (gs, ts)
}

+
n∑
i=1

{
(ei1, e

′
i1), . . . , (eimi , e

′
imi
)
}
, (3.2)

U̇ci =Uci−1 +Wc−i +Hi

+
n∑
i=1

{
ei1 + fi1, . . . , eimi + fimi

}
(Uc0 = Ua).

8 The argumentation for this independence is analogous to the considered above case of ordinary
posets (see (2.1)–(2.3) and the text after (2.3)).
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It is not difficult to see (using, especially, the placed below matrix interpretation
(3.3) of the algorithm) that the representation W↑ does not depend, up to isomor-
phism, on the choise of the complements Fi,Hi,G and of the corresponding bases.
Certainly, (W1 ⊕W2)

↑ � W↑
1 ⊕W↑

2 .

Remark 3.2. Obviously, it holds dimRG = dimRWa+/W
+
a− and dimCFi =

dimC(Wc+i
∩ W̃b)/(Wc−i +Wc+i−1

∩ W̃b) (whereWc+0
= W̃a+ ).

Theorem 3.3. In the case of Differentiation VII the operations ↓ and ↑ induce
mutually inverse bijections

IndP \{P(a),D(a),H(a, ci) | i ∈ 1, n}� IndP
′ = IndP′\P(a+).

Proof. It is enough to verify the isomorphisms (U↓)↑ � U and (W↑)↓ � W for
each reduced representation U of P and each representation W of P

′
. The second

isomorphism is rather obvious (take in account the defining formulas (3.1) and (3.2)).
But the first one needs a substantiation, which one can give using either the more
formal language (subspaces, bases) or the more visual one (matrices). In this article
we prefer to use matrices as they allow to clarify better the sense and the logic of the
described algorithms.

Consider the matrix M of a reduced representation U of P and, making some
suitable R-elementary transformations of its rows, place at its bottom the horizontal
stripe corresponding to the subspace Ub ⊂ U0 (obviously, everywhere above this
stripe in the matrixMB+b we have zeroes).

Remark. Here and throughout this paper all empty (all marked by ∗) blocks of
matrices are supposed to be zero (to be arbitrary).
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Next, we select in the upper part of the matrix M the rows corresponding to
the subspace E0 and, using strong relations (additions) a � A, turn into zero the
block MA ∩ E0

9 (also, in accordance with the definition of the complementing pair
(E0,W0), we obtain zero at the crossing of the middle horizontal stripe Q and the
vertical stripe Ma). Then select in the matrix Q ∩MC , where C = {c1, . . . , cn}, a
maximal number of linearly independent (all together in columns) blocksX1, . . . , Xn
of the stripeQ.

As a result, each matrix Mci ∩ E0 is divided in two vertical stripes: Zi (situated
above Xi) and Ti (the rest). Set Ta = Ma ∩ E0. Now the collection of matrices
Ta, T1, . . . , Tn, lying in the stripe E0, corresponds to a completely weak chain a ≺
c1 ≺ · · · ≺ cn and can be reduced by some admissible transformations to the form
(3.3) with help of the following simple fact (which can be proved easily immediately
or obtained as a direct consequence of the results from [10]).

Lemma 3.4. The indecomposables of the form [δ0], P (x),D(x) andH(x, y),where
x ≺ y, are all possible indecomposables of an arbitrary weak chain.

Sketch of the proof of the lemma: taking a matrix representation N of a weak
chain x1 ≺ · · · ≺ xn, first reduce the stripe Nx1 to the standard form shown below

then turn into zero (using additions of columns) the block N{x2,...,xn} ∩ L, then re-
duce (using induction step) the block N{x2,...,xn} ∩ S and, at last, reduce the part

N{x2,...,xn} ∩ T (using suitable additions of rows S
R−→ T and columnsMx1

C−→Mxi ,
i � 2) and obtain the desired indecomposables.

Note that the collection of matrices X1, . . . , Xn in (3.3) can be reduced to the
analogous form (this reduction is not shown in (3.3)). One can verify easily (using

additions of columnsMa
C−→Mci andMci

C−→Mcj for i � j , and also additions of

rowsQ
R−→E0) that all the blocks Zi may be turned into zero. Hence, the matrixM

takes the form (3.3).
It will be observed that the matrices Xi are totally nonsingular in columns due

to the construction, and each of the matrices G and Fi is nonsingular in columns

9 Let us denote by the same letter the subspace E0 and the corresponding horizontal stripe ofM .
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because of the reducibility of U . Note also that the subspaces Hi correspond to the
block unions Xi ∪ Yi .

Analyzing the obtained “canonical” form (3.3) of a partially reduced matrix M
and comparing it with the formulas (3.1) and (3.2), we see that really the matrix
realization of the representation U↓ is situated in the stripeW0, and the isomorphism
(U↓)↑ � U takes place. This finishes the proof of the theorem. �

Remark 3.5. Seems (analogously to Differentiation I) the equivalence of the factor-
categories P-sp /〈P(a),D(a),H(a, ci) | i ∈ 1, n〉 �P′-sp /〈P(a+)〉 takes place. It
would be interesting to prove it, like in [22], in the categorical language.

4. Completion

A pair of double weakly comparable points a ≺ b of an equipped poset P will be
called special if P =a% + b&+�, where � is the interior of the interval [a, b].

The completion of P with respect to such special pair (a, b) is a transition from P
to a slightly different equipped poset P = P(a,b) obtained from P by strengthening
the relation a ≺ b, i.e. by converting it into a strong one a � b.

Remark. Obviously, the evolvent of P is obtained from the evolvent of P by two
completions with respect to the ordinary special pairs (a′, b′′) and (a′′, b′).

It is clear that P-sp is a full subcategory of the category P-sp. Moreover, the
following statement takes place.

Lemma 4.1. The category P-sp coincides with the full subcategory of the category
P-sp formed by the objects without direct summands of type D(a), hence, IndP =
IndP\D(a).

Proof. Let U be a representation of P not belonging to P-sp, i.e. satisfying the
condition U+

a "⊂ U−
b . Consider the matrixM of the representation U :
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(4.1)

and select in its lower part the horizontal stripe corresponding to the subspace U−
b ⊂

U0. Then reduce those parts of the matrices Ma and Mb, which are situated above
this stripe (considering them as a representation of a two-point chain a ≺ b). Taking
in account the previous selection of the subspace U−

b , we have in the upper parts of
the matrices Ma,Mb the summands of type D(a) and D(b) only (see Lemma 3.4)
corresponding to the horizontal stripes D and L of the whole matrix M . Note that
MB ∩D = 0 because U+

B ⊂ U−
b .

Since U�⊂Ub and Ua⊂Ub, we may assume the columns of M� to be linear
combinations (over C) of the columns ofMa andMb. Hence, because of the relation
a ≺ �, the block M� ∩D can be turned into zero. Moreover (due to the relation
a � A), the block MA ∩D can be turned into zero as well. As a result, the matrix
M takes the form (4.1), where the stripe D is a direct summand ofM (recall that all
empty blocks are supposed to be zero). So, U = V ⊕Dm(a) for some V and some
m � 1. �

5. Differentiation VIII

A pair of weakly comparable double points a ≺ b of an equipped poset P will be
called VIII-suitable if P =a% + b&+� + c, where � is the interior of the interval
[a, b] (possibly empty) and c is a single point incomparable with [a, b].

The derivative poset of the set P with respect to such a pair (a, b) is the equipped
poset

P′
(a,b) = (P\c)+ {

c− < c0 < c+
}
,

obtained from P by replacing the point c by a three-point chain c− < c0 < c+,
where c−, c+ are single, c0 is double, a ≺ c0 ≺ b, and the following natural condi-
tions are satisfied:

(1) each of three points c−, c0 and c+ inherits all the previous order relations of the
point c with the points of the subset P\c;

(2) the order relations in the whole set P′
(a,b) are induced by the initial relations in

the subset P\c and by the mentioned above relations.
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Remark 5.1. Differentiating the evolvent of P two times (without completions)
with respect to I-suitable pairs (a′, b′′) and (a′′, b′), we obtain exactly the evolvent
of the set P′

(a,b).

For any representation U of P define the derivative representation U ′ of P′
(a,b)

by the formulas:

U ′
0 = U0,

U ′
c− = Uc ∩ U−

b , U
′
c+ = Uc + U+

a ,

U ′
c0 = Ua + Ũc ∩ Ub,
U ′
x = Ux for the remaining points x ∈ P′.

(5.1)

Setting ϕ′ =ϕ for any morphism ϕ of the category P-sp (considered as a linear map
ϕ :U0 −→ V0), we obtain the correctly defined differentiation functor ′ : P-sp −→
P′-sp.

Consider indecomposables of the form

G1(a, c) =
a c

1 0
i 1

and G2(a, c) =
a c

1 1 0
i 0 1

.

It is easy to see that D′(a) = G′
1(a, c) = G′

2(a, c) = D(a). The objects of the cat-
egory P-sp without direct summands of type D(a),G1(a, c), G2(a, c) are called
reduced.

Denote by U↓ such a reduced representation of the set P′, for which U ′ = U↓ ⊕
Dm(a), where 2m=dim(U+

a +U−
b )/U

−
b , and define it evidently by the same scheme

as for Differentiations I and VII. Namely, choosing some complementing pair (E0,

W0) of subspaces inU0 with respect to the pair (U+
a , U

−
b ), setU↓ = W , whereWx =

U
′
x ∩W0 (Wx = U ′

x ∩ W̃0) for a single (double) point x. It is clear that dimE0 = 2m
and that U↓ is a representation of the completed (by the relation a � b) derivative
poset P

′
(a,b). Note that dimU↓

0 = dimU0 if U+
a ⊂ U−

b ).

Conversely, letW be a representation of P
′
. In order to find the primitive repres-

entation W↑, satisfying the condition (W↑)′ � W ⊕Dm(a), present a C-spaceWc0

in the form Wc0 = (Wa + W̃c−)⊕ F ⊕G, where F ⊂ W̃−
b and G ∩ W̃−

b = 0, and

choose some base (f1, f
′
1), . . . , (fk, f

′
k) of the space F (remark that (Wa + W̃c−)⊕

F = Wc0 ∩ W̃−
b ).
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Further, present a C-space W̃c+ in the form W̃c+ = (Wc0 + W̃+
a )⊕ T ⊕H with

T ⊂ Wb and H ∩Wb = 0, and fix some base (t1, t ′1), . . . , (tl, t ′l ) of T (obviously,

(Wc0 + W̃+
a )⊕ T = Wb ∩ W̃+

c ).
Consider now a new R-space E0 of dimension 2k + 2l with the base e1, e

′
1, . . . ,

ek, e
′
k; q1, q

′
1, . . . , ql, q

′
l and setW↑ = U = (U0; UK |K ∈ �), where

U0 = W0 ⊕ E0,

U̇x = Wx for x "= a, c,
U̇a = Wa ⊕

{
(ei, e

′
i )
}
i=1,...,k ⊕

{
(qj , q

′
j )

}
j=1,...,l ,

U̇c = Wc− ⊕G+ ⊕H+ ⊕ {
tj , t

′
j + q ′j

}
j=1,...,l ⊕

{
ei + fi, e′i + f ′

i

}
i=1,...,k.

(5.2)

Remark 5.2
(a) Possibly, some tj = 0.
(b) Obviously, due to the construction k = dimC(Wc0 ∩ W̃−

b )/(Wa + W̃c−), l =
dimC(W̃c+ ∩Wb)/(Wc0 + W̃+

a ) and dimE0 = 2k + 2l.

The discussion above yields:

Theorem 5.3. In the case of Differentiation VIII the operations ↓ and ↑ induce
mutually inverse bijections

IndP\{D(a),G1(a, c),G2(a, c)}� IndP
′ = IndP′\D(a).

Proof. As in the previous situations, we use the matrix approach in the substanti-
ation of the algorithm. Consider the matrixM of a representation U of P and select
in its lower part the horizontal stripe corresponding to the subspace U−

b ⊂ U0. Then
reduce those parts of the matricesMa ,Mb andMc, which are located just above this
stripe, considering them as a realization of some representation V of a representation
finite equipped poset H5 = {a ≺ b; c}.

The representations of H5 are well known (see, for instance, [10,26]). Taking in
account the selection of U−

b , note that in accordance with [26] V is decomposed
into the direct sum V = ⊕

i Vi , where each Vi is either a nonsincere representation
of H5 of type [δ0],D(a),D(b), P (c),G1(a, c),G1(b, c),G2(a, c), G2(b, c), or the
sincere one of the form

Inserting the corresponding blocks (each with its multiplicity), presentM in the form
(let us throw off the trivial direct summands D(a)):
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(5.3)

where the letters F,G, T ,H denote, in general, some nonzero blocks belonging to
the corresponding vertical stripes (as for zeroes in the upper part of the stripeM�, see
the previous considerations concerning the operation of strengthening of a weak re-
lation ). Now, analogously to Differentiations I and VII, using the standard (although
rather bulky) matrix procedure, we select all those admissible transformations which
do not change the “removed part” corresponding to the stripe E0. This way leads
to the justification of the definition of the derivative poset P′

(a,b) and of the rela-
tions (5.1) and (5.2). Moreover, it allows to establish immediately the isomorphisms
(U↓)↑ � U and (W↑)↓ � W . �

Remark 5.4. One can reduce the matrix M to the form (5.3) in a different (more
“general”) way, not considering the representations of the set H5. Namely, first one
can choose in M the stripe U−

b , then the stripe E0, then reduce the parts of the
matrices Mc and Mb, lying in the middle horizontal stripe (as a representation of
the dyad {c, b}), and finally to obtain exactly the form (5.3) using some additions
of rows of the middle stripe to the rows of E0. But such way needs a more detailed
description of the realized steps.

6. Differentiation IX

A pair of weakly comparable double points a ≺ b of an equipped poset P is called
IX-suitable if P =a% + b&+� + p, where � is the interior of the interval [a, b] and
p is a double point, incomparable with a, with the relation p ≺ b.
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The derivative poset of the set P with respect to the pair (a, b) is an equipped
poset P′ = P′

(a,b) obtained from P by replacing the point p by a weak two-point
chain p− ≺ p+ with the additional relations a ≺ p+ ≺ b and p− � b (plus all the
induced relations).

Remark. Naturally, it is supposed that each of two points p−, p+ inherits all the
previous order relations of the point p with the points in P \p.

(note that in tame situation necessarily p ≺ � and p+ ≺ �).
Obviously, in the derivative poset P′

(a,b) the pair (a, b) is special. So, one can

always complete P′
(a,b) obtaining the completed derivative poset P

′
(a,b).

Remark 6.1. Differentiating the evolvent of P two times (without completions)
with respect to I-suitable pairs (a′, b′′) and (a′′, b′), we obtain the evolvent of P′.

The differentiation functor ′ : P-sp −→ P′-sp assigns to a representation U of
P the derivative representation U ′ as follows:

U ′
0 = U0,

U ′
p+ = Ua + Up,
U ′
p− = Up ∩ Ũ−

b ,

U ′
x = Ux for the remaining x ∈ P′.

(6.1)

The action of the functor on a morphism U
ϕ−→V (considered as a linear map

ϕ : U0 −→ V0) is defined in a standard way: ϕ′ = ϕ.
Denote

D(x, y) =
x y

1 1
i i

for a double dyad {x, y}.
One may verify easily thatD′(a)=D′(a, p)=D(a). Representations of P without

direct summands D(a) and D(a, p) will be called reduced.
A reduced representation U↓, for which U ′ = U↓ ⊕Dm(a) is defined evidently,

analogously to the previous cases. Take some complementing pair of subspaces
(E0,W0) in U0 with respect to the pair (U+

a , U
−
b ) and set U↓ = W , where Wx =

U ′
x ∩W0 (Wx = U ′

x ∩ W̃0) for a single (double) point x ∈ P′.



A. Zavadskij / Linear Algebra and its Applications 365 (2003) 389–465 415

The representation U↓ does not depend, up to isomorphism, on the choice of E0

and W0 and, due to the inclusion W+
a ⊂ W−

b , is a representation of the set P
′
(a,b)

completed by the relation a � b.
Clearly, 2m = dimE0 = dim(U+

a + U−
b )/U

−
b , hence, m > 0 if U+

a "⊂ U−
b .

For a description of the “inverse” construction, integration, consider a repres-
entation W of the completed derivative poset P

′
and present a C-space Wp+ in

the form Wp+ = (Wa +Wp−)⊕ F ⊕H , where F ⊂ W̃−
b and H ∩ W̃−

b = 0. Let
f1, . . . , fm be a base of F . Taking a new R-space E0 of dimension 2m with the
base e1, e

′
1, . . . , em, e

′
m, setW↑ = U , where

U0 = W0 ⊕ E0,

U̇x = Wx for x "= a, p,
U̇a = Wa +

{
(e1, e

′
1), . . . , (em, e

′
m)

}
,

U̇p = Wa +Wp− +H + {
(f1 + e1, e

′
1), . . . , (fm + em, e′m)

}
.

(6.2)

The primitive representation W↑ does not depend (up to isomorphism) on the
choise of the complements H,F and of the base in F . Obviously, (W1 ⊕W2)

↑ �
W

↑
1 ⊕W↑

2 .

Theorem 6.2. In the case of Differentiation IX the operations ↓ and ↑ induce
mutually inverse bijections

IndP\{D(a),D(a, p)}� IndP
′ = IndP′\D(a).

Proof. The isomorphisms (W↑)↓ � W and (U↓)↑ � U are verified with help of the
matrix considerations, which are very close to the given in the proof of Lemma 4.1.
Namely, consider the matrix M of a representation U of P and select, in the same
way as in (4.1), the horizontal stripes U−

b ,D,L. Obviously, U can be assumed not
containing direct summands of type D(a). Selecting now the columns of the matrix
Mp corresponding to the meet Up ∩ Ũ−

b (and attached to the space Wp− ), and also
some maximal collection of C -linearly independent columns of the matrix block
Mp ∩ L, we may reduceM to the form (a) shown as follows:

(6.3)
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where the block
S

T

is nonsingular in columns due to the construction. Since Ua + Up + U� ⊂ Ub, we
may suppose all the columns of M� and Mp to be C-linear combinations of the
columns fromMa andMb. Consequently, the columns of the blocks

X

Y
and

S

T

are linear combinations of the columns of the block
E

iE
(each of its own).

Therefore, using additions of rows of the stripe L to the rows of the stripe D, we
may turn into zero the matrices X, Y and to reduce the block

G

H

to the form
E

iE
.

As a result, the matrix M takes the form (b) which clarifies completely the isomor-
phisms (U↓)↑ � U and (W↑)↓ � W. �

7. Differentiation X

Let P be an equipped poset with a primitive involution ∗ and � be the set of all
equivalence classes of its points (with respect to the involution).

A pair of incomparable points (a, b) in P, where a is big and b is double, is called
X-suitable if P = a% + b&. The derivative poset of the set P with respect to the pair
(a, b) is an equipped poset with primitive involution P′ = P′

(a,b) obtained from P
in the following way:

(a) the point a∗ is replaced by a chain a∗ < q, where q is a double point (inheriting
all the order relations of the point a∗);

(b) the relation a < b is added.
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We may restrict ourselves by considering only those representations U of
P, which satisfy the restriction U+

a ⊂ U+
b (in accordance with [23] for a big point

a set U+
a = {x | (x, y) ∈ U(a,a∗)}). Otherwise one may add a new small point ξ > b

with the space Uξ = U+
b , then apply Differentiation α with respect to the pair (a, ξ)

[23] (decreasing dimU0) and then delete ξ (note that if not to introduce the relation
a+ ⊂ b+, it would appear in P′ one more new small point t > q).

The action of the differentiation functor ′ :P-sp −→P′-sp is defined by the
formulas

U ′
0 = U0,

U ′
(a,a∗) = U(a,a∗) ∩ (U−

b , U0),

U ′
q =

{
(x′, y′) | (x, x′), (y, y′) ∈ U(a,a∗) for some (x, y) ∈ Ub

}
,

U ′
K = UK for the remaining classes K ∈ �′.

(7.1)

for a representation U of P with the restriction U+
a ⊂ U+

b , and also by the equality
ϕ′ = ϕ for a morphism-map ϕ : U0 −→ V0.

Let (E0,W0) be the complementing pair in U0 with respect to the pair (U+
a , U

−
b ).

The reduced derivative representation U↓ is defined (uniquely up to isomorphism)
by the equality U ′ = U↓ ⊕ P 2m(a), where 2m = dimE0 = dim(U+

a + U−
b )/U

−
b .

Its evident form is U↓ = W withW0 taken from the complementing pair andWK =
U ′
K ∩ {WK

0 }.
Denote

G2(b, a) =
b a a∗
1 1 0 0 0
i 0 1 0 0

.

Obviously, P ′(a, b) = P ↓(a, b) = P(a), but G′
2(b, a) = P 2(a) and G↓

2 (b, a) = 0.
If W is a representation of P′, then writing the C-space Wq in the form Wq =

Wq ⊕ F , where F is some complement with a base (f1, f
′
1), . . . , (fm, f

′
m), and

considering a new R-space E0 of dimension 2m with a base e1, e
′
1, . . . , em, e

′
m, set

W↑ = U , where

U0 = W0 ⊕ E0,

U̇K = WK for K "= {a, a∗}, {b},
U̇(a,a∗) = W(a,a∗) +

{
(e1, f1), (e

′
1, f

′
1), . . . , (em, fm), (e

′
m, f

′
m)

}
,

U̇b = Wb +
{
(e1, e

′
1), . . . , (em, e

′
m)

}
.

(7.2)

Here the verification of the isomorphisms (U↓)↑ � U and (W↑)↓ � W is very easy,
when using the placed below matrix form (7.3) of the algorithm. That is why it is left
to the reader as an exercise.
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(7.3)

The considerations above lead to the following:

Theorem 7.1. In the case of Differentiation X the operations ↓ and ↑ induce mutu-
ally inverse bijections{

IndP | a+ ⊂ b+}\G2(b, a)� IndP′
(a,b).

8. Differentiation XI

A pair of double incomparable points (a, b) of an equipped poset with primitive
involution P will be called XI-suitable if P =a% + b&. First of all consider some
preliminary steps simplifying the algorithm. Set A = a%\a, B = b&\b. Let U be a
representation of P.

(a) Applying Differentiation VII with respect to the pair (a, ξ), where ξ > b is a
new added small point withUξ = U+

b (deleted after Differentiation), we obtain
the algorithm XIa of the form

which decreases dimU0 if U+
a "⊂ U+

b .
(b) Applying Differentiation IX∗ (i.e. the dual one to IX) with respect to the pair

(ab, b), where ab ≺ {a, b} is a new added double point with Uab = Ua ∩ Ub
(here p = a), we obtain the algorithm XIb of the form

which decreases dimU0 if (Ua ∩ Ub)+ "⊂ U−
b .
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(b∗) The dual Differentiation XI∗b decreases dimU0 in the case U+
a "⊂ (Ua +

Ub)
−.

(c) Now take the matrixM of U and choose the horizontal stripe corresponding to
the subspace U−

b

where the blockX is supposed to be nonsingular in columns over C. Consider a
pair of matrices N = (X, Y ) as a representation of the critical setM1 = {a, b}
and decompose it into a direct sum of indecomposables N = ⊕

j Nj , where

Nj = (Xj , Yj ). Taking into account (a), (b), (b∗) and the selection of U−
b ,

note that each summand Nj must satisfy the relations a+ ⊂ b+; (ab)+ ⊂
b−; a+ ⊂ (a + b)− and b− = 0. Moreover, it is easily to see that each sum-
mand Nj with the conditions a− = 0 and a+ = 1 (with the sense 1 = U0) is a
direct summand of the whole U .

Therefore, it is enough in the main version XIc of Differentiation XI to restrict the
considerations by those summands Nj which satisfy the following conditions:

(1) a+ ⊂ b+, (2) b− = 0, (3) ab = 0,
(4) a+ ⊂ (a + b)−, (5) a− "= 0 or a+ "= 1.

(8.1)

It follows immediately from the matrix classification of indecomposables of the
critical set M1 = {a, b} (see Appendix A–C), obtained in [26] with use of the res-
ults in [6], that the indecomposables of type M1 − 4 only satisfy all the conditions
(8.1).

Now put at the place of the summands Nj = (Xj , Yj ) the corresponding blocks
of representationsM1 − 4 taken in the form

Xj = iE

J (0)
, Yj = E

iE

(this form is equivalent to the form shown in Appendix A–C). Then group to-

gether all the blocks of equal dimension and, using additions of rows L
R−→U−

b ,
make the maximal possible number of zero vertical stripes in the matrix block
X ∩ U−

b . Deleting all imaginary parts of this block, we receive the following
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form of the matrix M (the blocks Xj , Yj with numbers of rows � 6 only are
shown):

(8.2)

where the blocks, marked by R, are real.
It is allowed to make arbitrary admissible transformations of this matrix not chan-

ging the “deleted parts” situated at crossing of all but the last rows of each horizontal
stripeNj and all but the first (the last) columns of each vertical stripeXj(Yj )marked
in (8.2) by the sign “−”. Analyzing the appeared problem, we obtain the main version
XIc (compare with Differentiation III in [23]).

The derivative poset (of type (c)) of the set P with respect to XI-suitable pair
(a, b) is an equipped poset with primitive involution P′ = P′

(a,b), obtained from P
as follows:

(1) the point a is replaced by the infinite decreasing chain a1 > a2 > · · · >
an > · · · > q, and the point b is replaced by the infinite increasing chain ξ <
b1 < b2 < · · · < bn < · · ·, where an ∼ bn (n�1) are big, ξ is small and q is
double; 10

(2) the relations a1 < A, a1 < ξ and B < ξ (and the induced ones) are added.

10 One may get rid of the point ξ(q) using the relation B+ = b− (the relations a− ⊂ b− and a− =
(a&\a)+).
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Denote by R the full subcategory of the category P-sp formed by all those
representations, the corresponding blocks Nj = (Xj , Yj ) of which (considered as
representations of M1 = {a, b}) satisfy the restrictions (8.1). Let R′ be the full sub-
category of the category P′-sp formed by all representations W , which satisfy the
relations a−n = a+n+1 for all n � 1 (i.e. in the matrix realization T of W with the
condition dimW = dim T all stripes Tbn are nonsingular in columns).

LetU be a representation of P. The coupling of degree n of R -subspacesUa,Ub⊂
Ũ0 (n � 1) is an R- subspace [Ua − Ub][n] in Ũ0 of the form

[Ua − Ub][n] =
{
(t0, t2n) | (t2k, t2k+1) ∈ Ua; (t2k+1, t2k+2) ∈ Ub; k ∈ 0, n− 1

}
(in particular, [Ua − Ub] = {(t0, t2) | (t0, t1) ∈ Ua; (t1, t2) ∈ Ub}, [Ua − Ub][2] =
{(t0, t4) | (t0, t1), (t2, t3) ∈ Ua; (t1, t2), (t3, t4) ∈ Ub}).

The differentiation functor ′ : R −→ R′ is given by the formulas

U ′
0 = U0,

U ′
K = UK for K "= {an, bn}, ξ, q,
U ′
(an,bn)

= [Ua − Ub][n] ∩ (U−
b , U0)+ (0, U+

a ),

U ′
ξ = U−

b , U ′
q = Ua ∩ Ũ−

b .

(8.3)

for a representation U and by the equality ϕ′ = ϕ for a morphism ϕ :
U0 −→ V0. Note that ((M1 − 4)2n)′ = P(bn)⊕ P 2n−1(A, b1), where the lower in-
dex 2n denotes the number of rows of the representationM1 − 4.

For U ∈ ObR denote by U↓ such a direct summand of the object U ′, for which
U ′ = U↓ ⊕ Pm(A, b1), where m = dim(U+

a + U−
b )/U

−
b . Taking, as usually, the
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complementing pair of subspaces (E0,W0) in U0 with respect to the pair (U+
a , U

−
b ),

we have U↓ = W , whereWK = U ′
K ∩ {WK

0 }.
Clearly, dimW0 < dimU0 if U+

a "⊂ U−
b .

The primitive representationW↑, for which (W↑)′ � W ⊕ Pm(A, b1), is restored
for W ∈ ObR′ as follows. Set W(an,bn) = W(an,bn)

⊕ Fn for some complement Fn
of dimension pn with a base (f n01, f

n
n1), . . . , (f

n
0pn
, f nnpn). For each n � 1 consider

a new R-space En of dimension (2n− 1)pn with the base {enij } ∪ {f nkj }, where i ∈
1, n, k ∈ 1, n− 1, j ∈ 1, pn, and for E0 = ⊕

n En setW↑ = U , where

U0 = W0E0,

U̇K = WK for K "= a, b,

U̇a = Wq +
⊕
n

n⊕
i=1

{
(f ni−1,1, e

n
i1), . . . , (f

n
i−1,pn, e

n
ipn
)
}
,

U̇b = W̃ξ +
⊕
n

n⊕
i=1

{
(eni1, f

n
i1), . . . , (e

n
ipn
, f nipn)

}
.

(8.4)

Comparing the constructions ↓ and ↑ (and using the matrix interpretation (8.2)),
we obtain the following fact.

Theorem 8.1. In the case of Differentiation XIc the operations ↓ and ↑ induce
mutually inverse bijections

IndR � IndR′.

In the following sections sometimes instead of “Differentiation I”, “Differ-
entiation II”, . . . we write briefly “D-I”, “D-II”, . . .

9. Differentiation XII

A triad (a, r, s) of an equipped poset with primitive involution P, where a is
double and r, s are small, is called XII-suitable if P = a% + {r, s}&. Set A = a%\a,
B = {r, s}&\{r, s}. As in the case of Differentiation XI, first consider some prelim-
inary reductions simplifying the algorithm. Let U be a representation of P.

(a) One can use the simplest variant of D-VII with respect to the pair (a, ξ), where
ξ is a new added small point, {r, s} < ξ and Uξ = Ur + Us (with the subsequent
deleting of ξ ). It decreases dimU0 if U+

a "⊂ Ur + Us or, shortly, a+ "⊂ r + s (see
the convention on notations in Section 2).

(b) Making the following sequence of transformations in the corresponding lattice
of subspaces:
• adding the sum a + r̃ with the relations a ≺ a + r̃ and r � a + r̃ and the con-

dition Ua+r̃ = Ua + Ũr ,
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• applying D-VIII with respect to the pair (a, a + r̃) with the subsequent delet-
ing of the point-sum a + r̃ ,

• applying D-VIII with respect to the pair (a, (a + r̃)(a + s̃)),
we obtain the algorithm XIIb in the form

which decreases dimU0 in the case U+
a "⊂ (Ua + Ũr )−(Ua + Ũs)− or, shortly,

a+ "⊂ (a + r̃)−(a + s̃)−, i.e. ã+ "⊂ (a + r̃)(a + s̃).
(c) Making another sequence of transformations, namely:

• adding the intersection ar̃ , where ar̃ ≺ a and ar̃ � r , with the condition Uar̃ =
Ua ∩ Ũr ,

• applying D-VII with respect to the pair (ar̃, s) and deleting the appeared point-
intersection ar̃s̃,

• completing with respect to a special pair ((ar̃)+, s) by replacing the point
(ar̃)+ by s(ar̃)+ (surely, s(ar̃)+ < s),

• applying D-VII with respect to the pair (as̃, r), deleting the point-intersection

s(ar̃)+ = s((̃ar̃)+)− and completing with respect to a special pair ((as̃)+, r)
by means of replacing the point (as̃)+ by the point r(as̃)+ < r ,

• applying D-VII with respect to the pair ((̃ar̃)+, s), completing with respect to
a special pair ((ar̃)+, s) by means of replacing the point (ar̃)+ by the point

s(ar̃)+ < s, and deleting two new point-intersections s̃(a + (̃ar̃)+ + (̃as̃)+)
and s̃ (̃ar̃)+,

we obtain as a result the following algorithmXIIc

It decreases dimU0 if (Ua ∩ Ũr )+ "⊂ Us .
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(d) Now take the matrix M of U and select in its lower part the horizontal stripe
corresponding to the subspace Ur ∩ Us

Consider the triple (X, Y, Z) as a representation of the critical set L1 = {a, r, s}
and decompose it into a direct sum of indecomposables. Obviously, each sum-
mand V , satisfying the conditions V −

a = 0 and V +
a = V0, is a direct summand

of the whole U . Hence, taking in account the situations (a)–(c), we may restrict
ourselves by only those summands which satisfy the following conditions:

(1) rs = 0, (2) a+ ⊂ r + s, (3) a "= 0 or a+ "= 1,
(4) ã+ ⊂ (a + r̃)(a + s̃), (5) ar̃ ⊂ s̃ and as̃ ⊂ r̃ .

(9.1)

It is easy to verify (see Appendix A–C, where the matrix classification of the
critical set L1 = {a, r, s}, obtained in [26], is presented) that all this restrictions are
valid for the representations of type L1 − 9 and also for three trivial: [δ0], [δ0 + δr ]
and [δ0 + δs].

Writing at the place of the summands Kj = (Xj , Yj , Zj ) of type L1 − 9 the
corresponding blocks in the form

a r s
iE E 0
J (0) E E

(see Appendix A–C) and also taking into account the blocks corresponding to trivial
summands [δ0 + δr ] and [δ0 + δs], we obtain the following matrix (in which the
blocks of type L1 − 9 with at most four rows are shown):

(9.2)

with the same notations as in the case of D-XI.
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Remark that modulo “deleted rows” the columns, corresponding to the points ξ
and bn of the vertical stripes r and s, must be equal and, consequently, are identified.

Examining the admissible transformations which do not change the “deleted part”
(the rows and columns of which are marked by the dash “−”) we come to the
following constructions.

The derivative poset of the set P with respect to XII-suitable pair of points (a, b)
is an equipped poset with primitive involution P′ = P′

(a,b) obtained from P in the
following way:

(1) the point a is replaced by the infinite decreasing chain a1 > a2 > · · · >
an > · · · > q, and the dyad {r, s} is replaced by the infinite increasing semi-
chain ξ < b1 < b2 < · · · < bn < · · · < {r+, s+}, where the points an ∼ bn are
big (n � 1), q is double , ξ is small and {r+, s+} is a small dyad;

(2) the relation a1 < ξ is added (plus all the induced relations)

Let R be the full subcategory of the category P-sp formed by all those objects, for
which the corresponding representation (X, Y, Z) of the set L1 = {a, r, s} is decom-
posable into a direct sum of representations of type L1 − 9 and [δ0], [δ0 + δr ], [δ0 +
δs] only. Let R′ be the full subcategory in P′-sp formed by all those representations
W , which satisfy the relations a−n = a+n+1 for n � 1 and rs = ∑

n b
+
n .
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For a representation U of P the coupling of degree n (n � 1) of R-subspaces
Ua and (Ur, Us) in Ũ0 is an R -subspace [Ua − (Ur, Us)][n] in Ũ0 of the form [Ua −
(Ur, Us)][n] = {(t0, t2n) | (t2k, t2k+1) ∈ Ua; (t2k+1 + t2k+2, t2k+2) ∈ (Ur, Us)} where
k = 0, 1, . . . , n− 1 (in particular, [Ua − (Ur, Us)] = {(t0, t2) | (t0, t1) ∈ Ua; (t1 +
t2, t2) ∈ (Ur, Us)}, [Ua − (Ur, Us)][2] = {(t0, t4) | (t0, t1), (t2, t3)∈Ua; (t1 + t2, t2),
(t3 + t4, t4) ∈ (Ur, Us)}).

The differentiation functor ′ : R −→ R′ is determined by the conditions

U ′
0 = U0,

U ′
K = UK for K "= {an, bn}, ξ, q, r+, s+,
U(an, bn)

′ = [Ua − (Ur, Us)][n] ∩ (Ur ∩ Us,U0)+ (0, U+
a ),

U ′
ξ = Ur ∩ Us, U ′

q = Ua ∩ (Ũr ∩ Us),
U ′
r+ = Ur + U+

a , U ′
s+ = Us + U+

a

(9.3)

for a representation U and by the equality ϕ′ = ϕ for a morphism ϕ : U0 −→ V0.
Note that ((L1 − 9)2n)′ = P(bn)⊕ P 2n−1(A, b1), where 2n is the number of

rows of the representation L1 − 9.
For U ∈ ObR denote by U↓ such an object of the category R′, for which U ′ =

U↓ ⊕ Pm(A, b1)withm = dim(U+
a + Ur ∩ Us)/Ur ∩ Us . Taking the complement-

ing pair (E0,W0) in U0 with respect to the pair (U+
a , Ur ∩ Us), we have U↓ = W ,

whereWK = U ′
K ∩ {WK

0 } for all K .
Here dimW0 < dimU0 if U+

a "⊂ Ur ∩ Us .
The definition of the primitive representationW↑, satisfying the condition (W↑)′ �

W ⊕ Pm(A, b1) for W ∈ ObR′, is analogous to the case of D-XI. Namely, setting
W(an,bn) = W(an,bn)

⊕ Fn for a complement Fn with the base (f n01, f
n
n1), . . . , (f

n
0pn
,

f nnpn), and alsoWr+ = Wr+ ⊕ R andWs+ = Ws+ ⊕ S for some complements R, S,
consider for each n � 1 a new R-space En of dimension (2n− 1)pn with the base
{enij } ∪ {f nkj }, where i ∈ 1, n, k ∈ 1, n− 1, j ∈ 1, pn and forE0 = ⊕

n En setW↑=
U , where

U0 = W0 ⊕ E0,

U̇K = WK for K "= a, r, s,

U̇a = Wq +
⊕
n

n⊕
i=1

{
(f ni−1,1, e

n
i1), . . . , (f

n
i−1,pn, e

n
ipn
)
}
,

U̇r = Wξ ⊕ R +
⊕
n

n⊕
i=1

{
eni1 + f ni1, . . . , enipn + f nipn)

}
,

U̇s = Wξ ⊕ S +
⊕
n

n⊕
i=1

{
f ni1, . . . , f

n
ipn

}
.

(9.4)
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The discussion above yields:

Theorem 9.1. In the case of Differentiation XIId the operations ↓ and ↑ induce
mutually inverse bijections

IndR� IndR′.

Remark on Differentiation V2. It appears, the described in [23] Differentiation
V2 can be reduced (analogously to the situations XIIb,c) to a composition of two
Differentiations I.

Namely, let (a1, a2, b1, b2) be a V-suitable small tetrad of points of an ordinary
poset P, i.e. P = {a1, a2}% + {b1, b2}&. SetA = {a1, a2}%\{a1, a2}, B = {b1, b2}&\
{b1, b2}. Then (all considered points are small):

• adding the point-intersections a1b1 and b1b2 with the natural order relations,
• applying D-I with respect to the pair (a1b1, b2) with the subsequent deleting of the

point-intersection a1b1,
• applying D-I with respect to the pair (a2b2, b1) with the subsequent adding natural

order relations a1b1 < a2 + a1b1 and a2b2 < a1 + a2b2,
• completing with respect to arising special pairs (a1b1, b2) and (a2b2, b1) by means

of replacing the points a1b1 and a2b2 by the points a1b1b2 and a2b2b1 respectively
and adding natural relations aib1b2 < b1b2 (i = 1, 2),

we obtain exactly the algorithm V2 built in [23] (where there was an additional
relation b1b2 = B+ permitting to omit the point b1b2):

It decreases dimU0 if a1b1 "⊂ b2 or a2b2 "⊂ b1.

10. Differentiation XIII

First consider three simple preliminary lemmas.

Lemma 10.1. If a representation V of the critical setM1 = {a, b} satisfies the con-
dition (Va + Vb)− = 0, then it is a direct sum of trivial indecomposables of four
types: [δ0],D(a),D(b) and D(a, b).
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Proof. From the one hand the statement is a direct consequence of the classification
of indecomposables of M1 (see Appendix A–C) due to which the only possible
indecomposables of M1 are those of type 1, 3, 3̃, 5 of minimal possible dimension.
From the other hand, it can be proved easily directly. �

Lemma 10.2. If in the matrix problem (a), where ξ is double,

the matrix � is C-nonsingular in columns, then it is possible (using the shown C-
additions of columns from the left to the right and R-additions of rows from the
bottom stripe to the top stripes) to convert the matrices X, Y into arbitrary matrices
X′, Y ′ over C of the same size (in particular, into zero matrices).

Proof. The rows of � may be added to the rows of X, Y with coefficients in C (as,
for instance, adding the row j of � to the row k of X and annihilating then all added
elements by admissible C-additions of columns, we add automatically the row j of
� to the row k of Y with the coefficient −i). �

For any complex matrix N denote by N0 some maximal collection of its linearly
independent columns (which can be chosen not uniquely).

Lemma 10.3. Assume that in the matrix problem (b), where ξ is double,

the placed over N0 columns of the matrices S, T are zero, and, moreover, none of
possible C-linear combinations of columns of the whole matrix is equal to a nonzero
real vector. Then (using the shown admissible C-additions of columns from the left
to the right) it is possible to annihilate also the rest of the columns of the matrices
S, T (converting them, consequently, into completely zero matrices).

Proof. Any column of the stripe � is some C-linear combination of the added (from
the left) columns and of those columns from � which prolong the columns of N0
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(otherwise a suitable C-linear combination of columns of the whole matrix gives a
nonzero real vector, contradiction). �

Let P be an equipped poset. A pair of double weakly comparable dyads {a1, a2} ≺
{b1, b2} in P will be called XIII-suitable if P = {a1, a2}% + {b1, b2}& + �, where �
is the interior of the convex envelope [a1, a2, b1, b2]. DenoteA = {a1, a2}%\{a1, a2},
B = {b1, b2}&\{b1, b2}. We start considering some special variants of the differenti-
ation simplifying the algorithm. Let U be a representation of P.

(a) Using the following sequence of transformations in the lattice of subspaces:

• adding a double point-intersection a1b̃
−
1 with the relations a1b̃

−
1 ≺ a1 and a1b̃

−
1 �

b1,
• applying D-IX with respect to the pair (a1b̃

−
1 , b2) and deleting after that the point-

intersection a1b̃
−
1 ,

• applying D-IX with respect to the pair (a2b̃
−
2 , b1) (after which there appears again

the point (a1b̃
−
1 ),

• adding natural relation-inclusions ai b̃
−
i ≺ aj + ai b̃−i (i "= j) and then strength-

ening the special relations ai b̃
−
i ≺ bj by means of replacing each point ai b̃

−
i by

the point ai b̃
−
i b̃

−
j � bj ,

we obtain the algorithm XIIIa of the form

Due to the construction, it transforms an equipped poset into equipped one and
decreases dimU0 if ai b̃

−
i "⊂ b̃−j at least for one pair i "= j .

Since one can permute the points a1, a2, the algorithm may be applied for de-
creasing dimU0 in the case akb̃

−
i "⊂ b̃−j for some triple i, j, k with the condition

i "= j (the dual algorithm XIII∗a really works if ã+j "⊂ ã+i + bk , where i "= j ).
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(b) Adding to P a double point-sum b1 + b2 with the relations {b1, b2} ≺ b1 + b2
and applying D-IX with respect to the pair (a1, b1 + b2) (together with the sub-
sequent deleting the added point-sum b1 + b2), we obtain the algorithm XIIIb of the
form

It is used in the case a+i "⊂ (b1 + b2)
− at least for one i (the dual one, XIII∗b, is

used in the case (a1a2)
+ "⊂ b−i ); this condition guarantees decreasing dimU0.

(c) Assume now that U satisfies the relations akb̃
−
i ⊂ b̃−j for all i, j, k with i "= j

(otherwise one can apply D-XIIIa decreasing dimU0) and the relation (a1 + a2)
+ ⊂

(b1 + b2)
− (otherwise D-XIIIb is applied). It is also convenient to accept the rela-

tion denoted by γ (b1, b2) which means Ub1 ∩ Ub2 = U� + Ũ+
B (otherwise one can

extend � adding to it a new maximal double point η with � ≺ η ≺ {b1, b2} and
Uη = Ub1 ∩ Ub2 ).

DenoteC = U−
{b1,b2} = U−

b1
∩ U−

b2
and ∇ = [(Ua1 + C̃) ∩ (Ua2 + C̃)]+ (note that

C ⊂ ∇).
Consider the matrix M of U (of minimal dimension dimM = dimU ) and select

in its lower part the horizontal stripe C, corresponding to the subspace C ⊂ U0.
The pair of matrices Ma1\C and Ma2\C can be considered as a realization of some
representation V of the critical subset M1 = {a1, a2}, and, due to Lemma 10.1, V
is a direct sum of indecomposables of the types [δ0],D(a1),D(a2) and D(a1, a2).
Hence, the pair of matricesMa1\C andMa2\C can be reduced to the form

(10.1)
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with the union-matrix L1∪L2 being a direct sum of the indecomposables D(a1),

D(a2) and [δ0] (note that L1 ∪ L2 is C -linearly nonsingular in columns).
Denote by E0 and Q the horizontal stripes of the whole matrixM corresponding

to just in the same way denoted stripes in (10.1) (see the matrix (10.2) below). It is
clear that the stripes E0 andW0 = Q ∪C ofM correspond to some complementing
pair of subspaces (E0,W0) in U0 with respect to the pair (∇,C) (the stripe ∇ is just
E0 ∪C).

Obviously, MB ∩ (E0 ∪Q) = 0 and also one may accept MA ∩ E0 = 0 (due to
the relation {a1, a2} � A) andM{b1,b2} ∩C = 0 (due to the inclusion C̃ ⊂ U� + Ũ+

B

being a consequence of the relation γ (b1, b2)).
Using the admissible transformations, turn into zero the part of the stripeC placed

below the block

E

iE

of the matrixMa1 ∩ E0. Moreover, using the additions of columnsMa1

C−→M{b1,b2},
turn into zero the lower semistripe of the horizontal stripeM{b1,b2} ∩ E0.

Set N = M� ∩Q. Recall that N0 denotes some maximal number of C-linearly
independent columns in N .

Consider the matricesZ1 = Mb1 ∩Q andZ2 = Mb2 ∩Q as a realization of some
representation S of the critical set {b1, b2} and select inside them the equal vertical
stripes G and G corresponding to some C-base of the intersection Sb1 ∩ Sb2 , i.e.
present them in the form

Z1 = 0 G H1 and Z2 = 0 G H2 .

Since the matrix � = L1 ∪ L2 ∪N0 ∪G ∪H1 ∪H2 (withG belonging to Z2) is
C-nonsingular in columns, we can turn into zero, using Lemma 10.2, the part of the
stripe E0 placed above �. Then, applying Lemma 10.3, turn into zero the rest of the
elements of the blockM� ∩ E0. As a result,M takes the form

(10.2)

Here, in fact, one can apply arbitrary C-elementary transformations of rows of the
matrices X1, X2, Y , due to the possible permutation of two horizontal semistripes

in E0 with the subsequent additions of columns Ma1

C−→M{b1,b2} and the obvious
restoring the form of the matrixM{a1,a2} ∩ E0. Moreover, the columns of X1 and, in
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fact, of X2 can be added over C to the columns of Y . For X2 it is made indirectly by
additions of its columns to the columns of the right neighboring vertical stripe with

the subsequent restoring of the damaged zeroes by row additions Q
R−→E0 and of

the other damaged parts by applying Lemmas 10.2 and 10.3.
Therefore, the triple T = (X1, X2, Y ) is nothing else as an ordinary matrix rep-

resentation in the sense of [14] over C of the trivial poset {x1 < y > x2} having
indecomposables in one-dimensional space only. In addition, the matrix Y must
be nonsingular in columns (otherwise the relation γ (b1, b2) isn’t satisfied) and the
union of matrices X1 ∪ Y ∪X2 must be nonsingular in rows (otherwise the relation
(a1 + a2)

+ ⊂ (b1 + b2)
− is not true).

And since T contains none of the direct summands [δ0 + δx1 + δx2] (leading
to extension of C) and none of the summands [δ0 + δxi ] (destroying the relations

akb̃
−
i ⊂ b̃−j with i "= j ), it is decomposed into a direct sum of indecomposables

[δ0 + δy] only. Hence, one can take Y = E and write the placed above G part of
the matrixMb1 ∩ E0 in the form

E

0
.

But for a convenience of the future considerations we convert it into the form

iE

E
,

obtained with help of the column additions Ma1

C−→Mb1 . So, M is reduced to the
form

(10.3)

A complementing pair (E0,W0), corresponding to the form (10.3), will be called
admissible (certainly, this pair is not defined uniquely).

Investigating the arising in the stripeW0 matrix problem and determining all those
admissible transformations, which do not change the stripe E0 (and save the equality
of the blocks G), we come to the next definitions.
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The derivative poset of type (c) of the set P with respect to XIII-suitable tetrad
of points (a1, a2, b1, b2) is an equipped poset with involution P′ = P′

(a1,a2,b1,b2)

obtained from P in the following way:

(1) the points ai, bi receive new notations a−i , b
+
i ;

(2) a simple double dyad {a+1 , a+2 } and a pair of bidouble points a0 ∼ b0 of genus
−1 are added with the relations {a−1 , a−2 } ≺ a0 ≺ {a+1 , a+2 } ≺ � ≺ b0 ≺ {b+1 ,
b+2 };

(3) strong relations a0 � b0; {a+1 , a+2 } � A; B � b0 (plus all induced relations) are
added.

Set

R =
{
P-sp | akb̃−i ⊂ b̃−j (i "= j); (a1 + a2)

+ ⊂ (b1 + b2)
−; γ (b1, b2)

}
.

Let (E0,W0) be some fixed admissible complementing pair of subspaces in U0 with
respect to the pair (∇,C).

In contrast to the previous, relatively more simple algorithms, beginning this case,
we shall define the object U↓ immediately, omitting a description of the differenti-
ation functor. 11

If U is an object of the category R, the reduced derivative object U↓ = W of the
category P′-sp is given by the following relations:

11 For the nearest goals (proof of the tameness criteria, classification of indecomposables) it is enough
to deal with the objects U↓ only, not considering morphisms in details.
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W0 is taken from the admissible complementing pair,

Wa−i
= Uai ∩ C̃ (i = 1, 2),

W(a0,b0) =

(y − x, t − x̂)

∣∣∣∣∣∣
x ∈ Ua1 ∩ ∇̃
y ∈ Ua2 ∩ ∇̃
t ∈ Ub1 ∩ (Ub2 + ∇̃)


 ∩ W̃ 2

0 ,

Wa+i
= (Uai + Uaj ∩ ∇̃) ∩ W̃0 (i "= j),

Wb+i
= (Ubi + ∇̃) ∩ W̃0 (i = 1, 2),

WK = UK ∩ {WK
0 } for the remaining K ∈ �′.

(10.4)

The object U↓ does not depend, up to isomorphism, on the choice of the admiss-
ible complementing pair (E0,W0), as it can be easily verified with help of the form
(10.3). Remark that U↓ = 0 for an indecomposable U iff U � H(a1, a2, b1), where
H(x, y, z) denotes a sincere on the subset {x ≺ z - y} representation of the form

x y z

1 1 i

i i 1
.

Denote by R′ the full subcategory in P′-sp formed by all objects U↓ for U ∈
ObR.

In order to restore for any objectW in R′ the primitive objectW↑ = U in R with
the condition U↓ � W , take the following way.

Present the �2-space W(a0,b0) in the form W(a0,b0) = W(a0,b0) ⊕ V , where V is

some complement with the �2-base (f1, g1), . . . , (fm, gm), and the C-spaceWb+i
in

the formWb+i
= Wb+i

⊕Hi with some complements Hi (i = 1, 2). Consider a new

R-space E0 of dimension 2m with the base e1, e
′
1, . . . , em, e

′
m and a new C-space C0

of dimension m with the base r1 = e1 + ie′1, . . . , rm = em + ie′m and set W↑ = U ,
where

U0 = W0 ⊕ E0,

U̇K = WK for K "= a1, a2, b1, b2,

U̇a1 = Wa+1 + C0,

U̇a2 = Wa+2 + {r1 + f1, . . . , rm + fm},
U̇b1 = H1 + {̂r1 + f1, . . . , r̂m + fm},
U̇b2 = H2 + {g1, . . . , gm}.

(10.5)

Comparing the operations of differentiation (10.4) and integration (10.5), we
establish, with help of the matrix presentation (10.3), the main property of Differ-
entiation XIIIc.

Theorem 10.4. In the case of Differentiation XIIIc the operations ↓ and ↑ induce
mutually inverse bijections

IndR\H(a1, a2, b1)� IndR′,
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where

R = {
P− sp | akb̃−i ⊂ b̃−j (i "= j); (a1 + a2)

+ ⊂ (b1 + b2)
−; γ (b1, b2)

}
and R′ is the image of the category R with respect to the action of the functor ′.

It is clear that D-XIIIc decreases dimU0 if C "= ∇, i.e. if (Ua1 + C̃) ∩ (Ua2 ∩
C̃) "= C̃.

Remark 10.5. It is possible to omit the relations of the category Rdifferentiating
any representation of P. Then the derivative poset P′ will be obtained from P by
replacing the subset {a1, a2} ≺ � ≺ {b1, b2} by the subset {a−1 , a−2 } ≺ {π1, π2} ≺
a0 ≺ ξ ≺ {a+1 , a+2 } ≺ � ≺ η ≺ b0 ≺ {b+1 , b+2 }, where a0 ∼ b0 are bidouble points
of genus −1, all other points are simple double and {a+1 , a+2 } � A; B � η; ξ � η. Of
course, here the matrix form will be more bulky with respect to (10.3).

(d) At last, consider a representation U of P satisfying both the relations of the
category R and the dual ones

akb̃
−
i ⊂ b̃−j (i "= j), (a1 + a2)

+ ⊂ (b1 + b2)
−, γ (b1, b2),

ã+i ⊂ bk + ã+j (i /= j), (a1a2)
+ ⊂ (b1b2)

−, γ ∗(a1, a2),
(10.6)

and also the relation C = ∇ and the dual one in the form
(a1 + C̃)(a2 + C̃) = C̃,
b1∇̃1 + b2∇̃1 = ∇̃1,

(10.7)

where ∇1 = U+
{a1,a2} = U+

a1
+ U+

a2
(as it was explained before, if one of them is not

satisfied, then one of the described earlier algorithms can be applied, including D-
XIIIc or D-XIII∗c ).

In this case let (E0,W0) be some complementing pair of subspaces in U0 with
respect to the pair (∇1,C). Due to (10.7), the horizontal stripe of M , denoted in
(10.1) by E0, is absent. Now the corresponding role plays a part of the stripe denoted
in (10.1) by Q. This part corresponds to some maximal collection of linearly inde-
pendent rows of the matrix L1 ∪ L2. Reducing the matrices L1 and L2, converting
into zero the blocks ∗ of the stripe C under them and arguing then analogously to
the case c), presentM in the form (with new E0,W0,Q,N,G,Hi,Xi, Y ):

(10.8)
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Obviously, G ∩ ∇̃1 = 0, where G is the C-space generated by the columns of
the matrix Mb1 prolonging the columns of G. Hence, due to the second equality
of (10.7), V1 + V2 = ∇̃1, where Vi is the C-space in Ũ0 generated by the columns
of Mbi , prolonging the columns of Xi , and by the columns of the matrices Ma1 and
Ma2 .

So, the columns of the matrix

Y

Y ′

are C-linear combinations of columns of the matrix

X1 X2

X′
1 X′

2
(10.9)

and can be turned into zero. Taking Y = Y ′ = 0, we automatically extract, as a direct
summand of U , the matrix representation located in the stripe E0.

Clearly, the matrix problem for the block (10.9) consists of independent C-
elementary transformations of each horizontal or vertical stripe. This problem was
solved completely in [11] (over an arbitrary field k). It is one-parameter and (up to
permutations of the stripes) has the indecomposables of 7 types shown in Appendix
A–C.

For the proof of the main results it is enough for us to know that the problem
(10.9) is one-parameter. Nevertheless, we are able to give more detailed information
concerning the splittable summand. Taking into account the mentioned classifica-
tion (see Appendix A–C), the choice of C = U−

{b1,b2} and the relations (10.6) and
(10.7), we conclude that the block (10.9) of the matrix (10.8) has the form VII from
Appendix A–C. Consequently we get:

Proposition 10.6. An indecomposable representation U of an equipped poset P
with XIII-suitable tetrad of points (a1, a2, b1, b2) satisfies the conditions (10.6) and
(10.7) and the condition U+

{a1,a2} "⊂ U−
{b1,b2} if and only if it belongs to a complex

series of the form

(10.10)

where X is any Jordan block over C with the eigenvalue λ ∈ C\{0, 1}.



A. Zavadskij / Linear Algebra and its Applications 365 (2003) 389–465 437

11. Differentiation XIV

Let P be an equipped poset with involution with the set � of the equivalence
classes of its points. Let U0 be some R-space. Take some additional notations.

For a representation U of P and some bidouble point a ∈ P denote Ua = {x ∈
Ũ0 | (x, 0) ∈ U(a,a∗)},

D

Ua = {x ∈ Ũ0 | (x, y) ∈ U(a,a∗) for some y ∈ Ũ0}. It holds

Ua ⊂
D

Ua ⊂ Ũ0. For a simple double point a set
D

Ua = Ua .

Also set U−
a = Ua ∩ U0 and U+

a = Re
D

Ua . Obviously, U−
a ⊂ U+

a ⊂ U0 (com-
pare with the definition of the subspaces U−

x ⊂ U+
x ⊂ U0 given in Section 2 for

equipped posets).

It will be used subsequently also a subspace U#
a = D

Ua ∩ U0 satisfying the inclu-
sion U−

a ⊂ U#
a ⊂ U+

a .
Now pass over the algorithm. A pair of points (a, b) of the set P, where a is

bidouble, b is simple double and a ≺ b, is called XIV-suitable if P = a% + b& +�,
where � is the interior of the interval [a, b]. Set A = a%\a, B = b&\b.

For arbitrary representation U of P denote C = U−
b ,∇ = U+

a and choose some
complementing pair (E0,W0) in U0 with respect to the pair (∇,C). Considering the
matrix M of U , select in it, as usually, the lower horizontal stripe C, the upper one
E0 and the middle one Q. Then reduce M with help of the standard, already well
developed technics (using Lemmas 10.2 and 10.3) to the following form (possibly,
with superfluous columns in the stripe Mb and changed because of the reduction
subspaces E0 andW0)

(11.1)

where the columns of H are C-linearly independent modulo columns of N . The
corresponding to this form complementing pair (E0,W0) is called admissible. Ana-
lyzing the corresponding admissible transformations of the stripe W0 (which do not
change E0), come to the following construction.

The derivative set of the set P with respect to XIV-suitable pair (a, b) is an
equipped poset with involution P′ = P′

(a,b) obtained from P as follows:

(1) the point a∗ is replaced by the chain a∗ ≺ ξ , where ξ is a new simple double
point (and, as before, a ∼ a∗);

(2) the relation a � b is added.
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The reduced derivative representationU↓ = W ofP′ is determined by the relations

W0 is taken from the admissible complementing pair,
W(a,a∗) = U(a,a∗) ∩ W̃ 2

0 ,

Wξ =
D

Ua∗ ∩ W̃0,

WK = UK ∩ {WK
0 } for the remaining classes K ∈ �′.

(11.2)

Here dimU↓
0 < dimU0 f or ∇ "⊂ C, and U↓ = 0 for indecomposable U iff

U � D(a) =
a a∗
1 0
i 0

.

If W is any representation of P′, then the primitive representation W↑ of P with
the property (W↑)↓ � W is restored in the following way. Present C-space Wξ in
the form Wξ = Wξ ⊕ F , where F is a complement with the base f1, . . . , fm, take
new R-space E0 of dimension 2m with the base e1, e

′
1, . . . , em, e

′
m and C-space C0

of dimension m with the base r1 = e1 + ie′1, . . . , rm = em + ie′m and set

U0 = W0 ⊕ E0,

U̇K = WK for K "= {a, a∗},
U̇(a,a∗) = W(a,a∗) +

{
(r1, f1), . . . , (rm, fm)

}
.

(11.3)

The discussion above yields

Theorem 11.1. In the case of Differentiation XIV the operations ↓ and ↑ induce
mutually inverse bijections

IndP\D(a)� IndP′.

12. Differentiation XV

Let P be an equipped poset with involution. A triple of points (a, b1, b2) in
P, where a is bidouble, {b1, b2} is a simple double dyad and a ≺ {b1, b2}, will be
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called XV-suitable if P = a% + {b1, b2}& + �, where � is the interior of the convex
envelope [a, b1, b2]. Set A = a%\a, B = {b1, b2}&\{b1, b2}.

We may restrict our considerations by dealing with only those representations
U of P, which satisfy the relation a+ ⊂ (b1 + b2)

− (otherwise it works D-XIV
with respect to the pair (a, η), where η is a new added simple double point with
the conditions {b1, b2} ≺ η and Uη = Ub1 + Ub2 ) and the relation γ (b1, b2) (see
D-XIIIc).

Denote C = U−
{b1,b2},∇ = U+

a , choose some complementing pair (E0,W0) with
respect to the pair (∇,C) and consider the matrix M of U with dimM = dimU .
Arguing completely analogously to the case D-XIIIc (with a new ∇ and with several
simplifications: under omitted point a2, under L1 = ∅ and under the existing equi-
valence a∗ ∼ a with a = a1) until to the moment (10.2) inclusively, we can reduce
M to the following form being analogous to the form (10.2) (for a∗ ∈ A):

(12.1)

where the matrix N0 ∪G ∪H1 ∪H2 is C-nonsingular in columns.
As in the case D-XIIIc, for the matrices X1, Y,X2 we obtain a trivial problem

on ordinary representations in the sense of [14] over C of the poset {x1 < y > x2}.
The corresponding admissible indecomposable summands are now representations
not only of type [δ0 + δy], but also [δ0 + δx1] and [δ0 + δx2], since in the considered

situation there are no analogs of the relations akb̃
−
i ⊂ b̃−j from D-XIIIc. Therefore,

the matrix M can be reduced to the form (being a generalized analog of the form
(10.3))

(12.2)

The complementing pair (E0,W0) in U0 with respect to the pair (∇,C) is called
admissible.
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Carrying out the standard investigations of possible admissible transformations of
the stripeW0 (not changing E0), we come to the main definitions of the algorithm.

The derivative set of the set P with respect to XV-suitable triple (a, b1, b2) is an
equipped poset with involutionP′ = P′

(a,b1,b2)
obtained fromP in the following way:

(1) the point a∗ is replaced by the subset a∗ ≺ {t1, t2} ≺ p∗, where {t1, t2} is a
simple double dyad and p∗ is bidouble;

(2) it is added to the subset a ≺ � ≺ {b1, b2} a bidouble point p with the relations
a ≺ � ≺ p ≺ {b1, b2}, where g(p) = −g(a),

(3) the relations a � p and B � p are added.

Set R = {P-sp | a+ ⊂ (b1 + b2)
−; γ (b1, b2)}. For some fixed admissible com-

plementing pair (E0,W0) define the reduced derivative representation U↓ = W of
P′ by the relations:

W0 is taken from the admissible complementing pair,

W(a,a∗) = U(a,a∗) ∩ W̃ 2
0 ,

Wbi = (Ubi + ∇̃) ∩ W̃0 (i = 1, 2),

W(p∗,p) =
{
(y, t − x̂ )

∣∣∣∣(x, y) ∈ U(a,a∗)t ∈ Ub1 ∩ (Ub2 + ∇̃)
}
∩ W̃ 2

0 ,

Wti =
{
y

∣∣∣∣(x, y) ∈ U(a,a∗)x ∈ Ubi
}
∩ W̃0 (i = 1, 2),

WK = UK ∩ {WK
0 } for the remaining K ∈ �′.

(12.3)

Here dimU↓
0 < dimU0 for ∇ /= C, and U↓ = 0 for an indecomposable U iff

U � H(a, bi), where i ∈ {1, 2} and

H(a, bi) =
a a∗ bi
1 0 i

i 0 1
.
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If R′ is the full subcategory in P′-sp formed by the objects U↓ for U ∈ ObR,
then for a restoring of the primitive object W↑ with the standard property (W↑)↓ �
W consider the corresponding direct sums:

(a) W(p∗,p) = W(p∗,p) ⊕ V , where V is a complement with the base
(f1, g1), . . . , (fm0 , gm0);

(b) Wtj = Wtj
⊕ �j , where �j is a complement with the base wj1, . . . , wjmj ,

j = 1, 2;
(c) Wbj = Wbj

⊕Hj (j = 1, 2).

Now take new R-space E0 of dimension 2m = 2(m0 +m1 +m2) with the base
e1, e

′
1, . . . , em0 , e

′
m0
, tj1, t

′
j1, . . . , tjmj , t

′
jmj
(j = 1, 2) and C-spaceC0 of dimension

m with the base r1 = e1 + ie′1, . . . , rm0 = em0 + ie′m0
, sj1 = tj1 + it ′j1, . . . , sjmj =

tjmj + it ′jmj (j = 1, 2) and setW↑ = U , where

U0 = W0 ⊕ E0,

U̇K = WK for K /= {a, a∗}, b1, b2,

U̇(a,a∗) = W(a,a∗) +
{
(e1, f1), . . . , (em0 , fm0)

}
+ {
(sj1, wj1), . . . , (sjmj , wjmj ) | j = 1, 2

}
,

U̇b1 = H1 +
{̂
s11, . . . , ŝ1m1

}+ {̂
r1 + g1, . . . , r̂m0 + gm0

}
,

U̇b2 = H2 +
{̂
s21, . . . , ŝ2m2

}+ {
g1, . . . , gm0

}
.

(12.4)

Comparing and analyzing (12.2)−(12.4), we obtain:

Theorem 12.1. In the case of Differentiation XV the operations ↓ and ↑ induce
mutually inverse bijections

IndR\{H(a, bi) | i = 1, 2
}
� IndR′,

where R = {P-sp | a+ ⊂ (b1 + b2)
−; γ (b1, b2)} and R′ is the full subcategory of

the category P′-sp formed by the objects of the form U↓ with U ∈ ObR.

13. Differentiation XVI

A pair of bidouble weakly comparable but not equivalent points a ≺ b of an
equipped poset with involution P is called XVI-suitable if P =a% + b&+�, where
� is the interior of the interval [a, b]. Set A = a%\a, B = b&\b.

One can impose on representations U of P the relation γ (b) denoting U� +
Ũ+
B = Ub (otherwise the subset � is extended by adding a simple double point ξ with

the relations � ≺ ξ ≺ b and B � ξ and the condition Uξ = Ub). As a consequence,

we have the inclusions U−
b ⊂ U� + Ũ+

B .
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Denote C = U−
b ,∇ = U+

a . Consider the matrix M of U and, using standard ar-
guing (analogous, for instance, to the case D-XIIIc but being much more simple) and
also Lemmas 10.2 and 10.3, reduce it to the form (for a∗ ∈ A, b∗ ∈ B):

(13.1)

where the columns of H are C-linearly independent modulo columns of N , and the
horizontal stripes E0 and W0 correspond to the admissible complementing pair of
subspaces (E0,W0) in U0 with respect to (∇,C). The obtained form (13.1) is a base
for the construction of Differentiation XVI.

The derivative equipped poset with involution P′ = P′
(a,b) with respect to the

pair (a, b) is obtained from P by means of replacing the point a∗(b∗) by the weak
three-point chain a∗ ≺ p ≺ ξ (η ≺ p∗ ≺ b∗), where p ∼ p∗ are bidouble points,
and ξ, η are simple double ones, and also by adding the relation a � b. Moreover,
g(p) = −g(a)g(b).

Remark. If we put on representations of P the additional relations α(a) and β(b)
(defined in the following section), then the derivative poset P′ will not contain the
points ξ and η.

Let U be a representation of P. In order to define the reduced derivative repres-
entation U↓ of the set P′, we have to introduce the notion of a crossed coupling of a
family of subspaces in Ũ2

0 .
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Assume (a1, a
∗
1), . . . , (an, a

∗
n) is any sequence of ordered pairs of equivalent

bidouble points of the set P (repetitions are allowed). The crossed coupling of degree
n (n � 1) of the ordered family of subspaces U(a1,a

∗
1 )
, . . . , U(an,a∗n) is a subspace in

Ũ2
0 of the form

�n

i=1
U(ai ,a∗i ) = U(a1,a

∗
1 )

.� U(a2,a
∗
2 )

.� · · · .� U(an,a∗n)
= {
(x1, yn) | (xi, yi) ∈ U(ai ,a∗i ) and yi = x̂i+1 for all possible i

}
.

The crossed coupling of n copies of one and the same space U(a,a∗) will be
denoted by U [n,.�]

(a,a∗).

Remark. If to assume that .�ni=1 U(ai ,a∗i ) = U(t,t∗) for some new pair of bidouble
points t ∼ t∗, then (as it can be verified easily) the genus of the point t is bound up
with the genera of the points ai in the following way:

g(t) = (−1)n+1g(a1) · · · g(an).

In particular, for U(t,t∗) = U [n,.�]
(a,a∗), we have

g(t) = (−1)n+1(g(a))n =
{
g(a) for n = 2k + 1,
−1 for n = 2k.

The reduced derivative representation U↓ = W of P′ is determined by the rela-
tions

W0 is taken from the admissible complementing pair,

W(a,a∗) = U(a,a∗) ∩ W̃ 2
0 , W(b,b∗) = [U(b,b∗) + (∇̃, 0)] ∩ W̃ 2

0 ,

W(p,p∗) = [U(a∗,a) .� U(b,b∗)] ∩ W̃ 2
0 ,

Wξ =
D

Ua ∩ W̃0, Wη = Ub∗ ∩ W̃0,

WK = UK ∩ {WK
0 } for the remaining K ∈ �′.

(13.2)

It holds dimU↓
0 < dimU0 for ∇ /= C, and U↓ = 0 for an indecomposable U

exactly in the case U � D(a) or U � H(a, b).
Denote R = {P-sp | γ (b)}. Let R′ be the full subcategory in P′-sp formed by

the objects U↓ for all U ∈ ObR.
Take W ∈ ObR′. In order to restore the primitive object W↑ with the condition

(W↑)↓ � W , fix a direct sum Wξ = Wξ ⊕ F , where F is a complement with the
base f1, . . . , fm0 , and also a direct sumW(p,p∗) = W(p,p∗) ⊕G, where G is a com-
plement with the base (g1, h1), . . . , (gm1 , hm1). Considering a new R-space E0 of
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dimension 2m = 2(m0 +m1) with the base e1, e
′
1, . . . , em0 , e

′
m0

, t1, t ′1, . . . , tm1 , t
′
m1

and a new C-spaceC0 of dimensionmwith the base r1 = e1 + ie′1, . . . , rm0 = em0 +
ie′m0

, s1 = t1 + it ′1, . . . , sm1 = tm1 + it ′m1
, setW↑ = U , where

U0 = W0 ⊕ E0,

U̇K = WK for K /= {a, a∗}, {b, b∗},
U̇(a,a∗) = W(a,a∗) +

{
(r1, f1), . . . , (rm0 , fm0)

}
+ {
(s1, g1), . . . , (sm1 , gm1)

}
,

U̇(b,b∗) = W(b,b∗) +
{
( ŝ1, h1), . . . , ( ŝm1 , hm1)

}
.

(13.3)

Comparing (13.1)–(13.3) and analyzing the whole described construction, we get:

Theorem 13.1. In the case of Differentiation XVI the operations ↓ and ↑ induce
mutually inverse bijections

IndR\{D(a),H(a, b)}� IndR′,

where R = {P-sp | γ (b)} and R′ is the full subcategory in P′-sp formed by the
objects U↓ for U ∈ ObR.

14. Differentiation XVII

A pair a ≺ a∗ of bidouble weakly comparable points of an equipped poset with in-
volution P will be called XVII-suitable if P = a% + a∗& + �, where � is the interior
of the interval [a, a∗]. Set A = a%\a, B = a∗&\a∗.

Let U be a representation of P and M be the matrix realization of U satisfying
the natural condition dimM = dimU . We say that the representation U satisfies the
relation β(x), where x is some bidouble point, if the stripe Mx is nonsingular in
columns over C.

From now on we may assume thatU satisfies the relation β(a∗). Really, otherwise
consider a new equipped poset with involution P′ obtained from P by replacing
the point a by a weak chain η ≺ a, where η is a new simple double point . Then
pass from U to the representation U ′ of the set P′ with U ′

0 = U0, U
′
η = Ua and

U ′
K = UK for the remaining classes K . After such a transition U ′ will satisfy the

relation β(a∗) and, moreover, the coordinate d(a,a∗) of the vector d = dimU will be
decreased (when transforming into the vector d ′ = dimU ′) on the value d ′η.

Also impose the relation U+
a ⊂ U#

a∗ =
D

Ua∗ ∩ U0, which will be denoted by α(a).
If it is not satisfied, one can verify easily (using Lemmas 10.2 and 10.3) that the
matrixM is reduced to the form
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(14.1)

where the horizontal stripes S and T correspond to some complementing pair of
subspaces (S, T ) with respect to the pair (U+

a , U
#
a∗). Hence, in the stripe T there

appears naturally the problem on representations of an equipped poset with involu-
tion P1 obtained from P by replacing the point a∗ by a weak chain a∗ ≺ ξ , where
ξ is a new simple double point (here the coordinate d0 of the vector d = dimU is
decreased on the value dimRS).

Remark. In fact (14.1) in nothing else as a matrix scheme of some simple additional
differentiation with respect to the bidouble point a (which can be applied in other
similar situations).

Moreover, impose the third relation γ (a∗) which was introduced earlier (see D-
XVI) is tantamount to the equality U� + Ũ+

B = Ua∗ and implies the inclusion U−
a∗ ⊂

U� + Ũ+
B .

SetC = U−
a∗ , ∇ = U+

a , consider some complementing pair of subspaces (E0,W0)

in U0 with respect to the pair (∇,C) and reduce the matrix M in accordance with
the following scheme:

(1) Select in the lower part of the matrixM the horizontal stripe corresponding to the
subspaceC, and in the upper part the stripe corresponding to E0. The remaining
middle part denote byQ.

(2) One may assume Ma ∩Q = 0, MA ∩ E0 = 0 and (due to the relation γ (a∗))
Ma∗ ∩C = 0. Obviously, alsoMB ∩ (E0 +Q) = 0.

(3) Reduce the block Ma∗ ∩Q to the form 0 H , where the matrix H is C-
nonsingular in columns. DenoteM� ∩Q = N .

(4) Reduce the block Ma ∩ E0 (partitioned respectively into two vertical stripes) as
a matrix representation of a two-point weak chain. Taking in account the choice

of the subspace C = U−
a∗ , we obtain the indecomposables of type

E

iE
only

plus some zero vertical columns. As a result, the block Ma∗ ∩ E0 will be par-
titioned into four vertical stripes, in particular, the matrix H will take the form
H = H0 H∞ .

(5) Allowing for Lemmas 10.2 and 10.3, we can admitM� ∩ E0 = 0 and X ∩ E0 =
0, where X is the located under H part of the blockMa∗ ∩ E0.

(6) Using natural additions of columns or rows, turn into zero those horizontal
stripes of the matrix Ma∗ ∩ E0, which correspond to the cells iE of the block
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Ma ∩ E0. Also turn into zero those parts of the blockMa ∩C, which are located
just under the same cells iE. As a result, the matrixM takes the form

(14.2)

where the blocks X, Y,Z,� form a matrix problem of the following type (this
problem arises by using only those admissible transformations of the matrix M ,
which do not change the blocks E, iE and zero blocks).

It is given a rectangular matrix over C partitioned into four blocks X, Y,Z,�

(14.3)

in such a way that the block � is square. One can apply to it the next transformations:

(1) independent C-elementary transformations of the first stripe rows and of the first
stripe columns; 12

(2) independent additions of the first stripe rows to the second stripe rows and of the
first stripe columns to the second stripe columns;

(3) applying to the second stripe rows any C-elementary transformation S, we must
apply to the second stripe columns:
(a) the conjugate-inverse transformation S

−1
in the case g(a) = 1,

(b) the inverse transformation S−1 in the case g(a) = −1
(this correlation between the transformations of the second stripe rows and sec-
ond stripe columns is marked in (14.3) by the symbol ∼).

Therefore, the square matrix � in (14.3) is transformed (besides possible additions

of rows or columns of the blocks Y,Z) by the consimilarity transformation S�S
−1

12 Naturally, by the first stripe rows (first stripe columns) we mean the rows (columns) of the first
horizontal (vertical) stripe.
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(see [9]) in the case (a) or by the ordinary similarity transformation S�S−1 in the
case (b). Respectively, we will call the problem (14.3) having the type (a) or (b).

Now solve the problem (14.3). IfX /= 0 or Y /= 0, reduce the first horizontal stripe
by admissible transformations to the form

(this is a trivial problem on representations over C in the sense of [14] of an ordinary
poset of two comparable points). Then turn into zero the columns of the second
horizontal stripe located under the blocks E. It turns out that in the second stripe
there arises again the problem of type (14.3), but of smaller size. The analogous
reduction can be made by dealing with the first vertical stripe (in the case X /= 0 or
Z /= 0). Continuing this procedure, in the long run we obtain the problem

X1 Y1

Z1 �1

of type (14.3) with zero or empty blocks X1, Y1 and Z1, i.e. in fact we isolate the
square cell �1 as a direct summand of the problem.

The summand �1 may be presented in the canonical form under consimilarity
transformations in the situation (a) (see [9, Theorem 3.1]) or under similarity trans-
formations in the situation (b) (the usual Jordan normal form). Analyzing the de-
scribed reduction procedure, we can find easily the canonical form of the remaining
“discrete” indecomposable matrices of type (14.3). Namely, it takes place

Proposition 14.1. The canonical indecomposable forms for the matrix problem
(14.3) are exhausted by the following five forms:
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where the canonical form F (of size n× n) under consimilarity transformations

S�S
−1

is presented in [9, Theorem 3.1], the conventions on the notations Jn(λ),
J−n (0) are given in Notations for Appendix A–C to the present article, and the num-
bers near the blocks denote the index numbers of the horizontal or vertical stripes
(where it is necessary).

Obviously, if the subproblem (14.3) has direct summands of type (5a) or (5b),
then the whole problem (14.2) has direct summands of the form

T (�′) =
a a∗
E �′
iE 0

, where �′ =
{
F for g(a) = 1,
Jn(λ) for g(a) = −1,

(14.4)

and det �′ /= 0 due to the relation β(a∗). Therefore, when constructing Differenti-
ation, one can exclude from considerations the direct summands of type (5a) and
(5b) of the subproblem (14.3). Moreover, this subproblem has no direct summands
of type (2) and (3), as they contradict the relations α(a) and β(a∗) respectively.

So, we may assume that the subproblem (14.3) admits direct summands of types
(1) and (4) only. Now put these summands into the form (14.2), permute in a suitable
way the columns of the stripesMa andMa∗ and the rows of the horizontal stripe E0,
and also substitute the fragment

a a∗
E iE

iE E

for each fragment
a a∗
E E

iE 0
(this can be done using suitable admissible transformations). As a result, the matrix
(14.2) takes the form (below the summands of type (4) with n � 2 only are shown):

(14.5)

Here
⋃∞
i=1Hi = H∞ (certainly, the number of the nonempty blocks Hi is finite).
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The corresponding to the form (14.5) complementing pair (E0,W0) in U0 with
respect to the pair (∇,C) is called admissible.

Analyzing the matrix problem arising in the stripe W0 (under the invariable part
E0) we come to the construction of the XVIIth algorithm.

The derivative set of the set P with respect to the XVII-suitable pair of bidouble
points a ≺ a∗ is an equipped poset with involution P′ = P′

(a,a∗) obtained from P as
follows:

(1) the point a is replaced by the infinite decreasing completely weak chain of
bidouble points a0 - a1 - a2 - · · ·, and the point a∗ is replaced by the infinite
increasing completely weak chain a∗0 ≺ a∗1 ≺ a∗2 ≺ · · ·, where g(a2k) = g(a)
and g(a2k+1) = −1 (k � 0);

(2) the relations a0 � A; B � a∗0 and a0 � a∗0 are added (plus all the induced ones).

g(an) =
{
g(a) for n = 2k,
−1 for n = 2k + 1.

The reduced derivative representation U↓ = W of the set P′ is determined by the
formulas

W0 is taken from the complementing admissible pair (E0,W0),

W(an,a∗n) =
[
U

[n+1,.�]
(a,a∗) + (0, ∇̃)] ∩ W̃ 2

0 ,

WK = UK ∩ {
WK

0

}
for the remaining K ∈ �′.

(14.6)
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Obviously, dimW0 < dimU0 if ∇ "⊂ C. And U↓ = 0 (in the case of indecom-
posable U) iff U � H(a, a∗) or U � T (�′). Hence, under Differentiation XVII the
operation ↓ annihilates infinitely many nonisomorphic indecomposables of the set
P.

Set R = {P-sp |α(a), β(a∗), γ (a∗)}. Denote by R′ the full subcategory in P-sp
formed by the objects U↓ with U ∈ ObR.

The primitive representation W↑ of P, where W ∈ ObR′, with the property
(W↑)↓ � W is built in the following way. Set W(an,a∗n) = W(an,a∗n) ⊕Gn, where

Gn is some complement with the base (rn01, r̂
n
n+1,1), . . . , (r

n
0pn
, r̂nn+1,pn

), n � 0.

Choose a new R-space E0 of dimension 2m = 2
∑∞
n=1 npn with the base enjk, f

n
jk

for n � 1, j ∈ 1, n, k ∈ 1, pn and also choose a C-space C0 of dimension m with
the base rnjk = enjk + if njk for the same n, j, k and setW↑ = U , where

U0 = W0 ⊕ E0,

U̇K = WK for K /= {a, a∗},

U̇(a,a∗) = G0 +
∞⊕
n=1

n⊕
j=0

{(
rnj1, r̂

n
j +1,1

)
, . . . ,

(
rnjpn, r̂

n
j +1,pn

)}
.

(14.7)

Comparing and analyzing (14.5)–(14.7), we establish the main property of the
considered algorithm.

Theorem 14.2. In the case of Differentiation XVII the operations ↓ and ↑ induce
mutually inverse bijections

IndR\{H(a, a∗), T (�′)}� IndR′.

15. Some properties of the algorithms

Immediately from the described in Sections 3−14 constructions we receive some
natural consequences.

Corollary 15.1. Let P be an equipped poset with involution containing a group
of points suitable for one of Differentiations VII–XVII or dual to them. Then each
indecomposable representation U of P satisfies the following conditions:

(1) dimU↓
0 � dimU0;

(2) if dimU↓
0 = dimU0, then U is also a representation of the set P obtained from

P by adding some strong order relations between its points.
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Remark. Certainly, the corollary is also valid for the operation of completion (de-
scribed in Section 4) if we assume in the corresponding situation U↓ = U for U "�
D(a) and D↓(a) = 0.

Defining in a standard way the operations of differentiation and integration of
(R[t],C[t])-representations for equipped posets with involution by means of transi-
tion to rational envelopes over the quotient fields R(t) and C(t), analogously to the
cases of ordinary posets [25] and ordinary posets with involution [23, p. 318] (see
also [18, Section 15.5]), we get the following important result for the real series.

Corollary 15.2. For any of the algorithms VII–XVII (as well as for the operation
of completion), a real series of indecomposables is transformed by differentiation or
integration into a real series. 13

As for the complex series, in general it is not quite clear, how they are differ-
entiated, because the variable t runs through matrices over C while the admissible
transformations of rows are over R. At the same time, the integration procedure is
transparent enough (due to its construction) in the case when all new double points,
arising by Differentiation, have double “parents” (this is a fact for all the considered
algorithms, except of VIII, X and XII).

Corollary 15.3. For any of the algorithms VII–XVII, except of VIII, X and XII,
(as well as for the operation of completion) each complex series of indecomposables
of the derivative set P′ is transformed by integration into a complex series of the
initial set P.

It appears, in tame case the analogous statement takes place in fact for all the con-
structed algorithms, including VIII, X and XII. This is due to the proved in Section
17 (see Theorem 17.1) fact that each of the corresponding complex series has some
special support called a special tower. Now we present a preliminary Corollary 15.4
used in the proof of Theorem 17.1.

Recall that the support of a representation U of a set P is a subset in P of the
form SuppU = Supp d = {x ∈ P | dx > 0}, where d = dimU .

We call an equipped poset with involution T a special tower if it is an ordinal
sum T = {L1 <L2 < · · · <Ln} satisfying three conditions:

(1) n � 2;

(2) each link Li is either a bidouble point or a simple double dyad;

(3) if a link Li is a simple double dyad, then at least one of the relations Li−1 <Li

and Li <Li+1 is week.

13 In the sense that almost all indecomposables of given dimension, generated over R by one
(R[t],C[t])-representation, pass again into indecomposables generated over R by one (R[t],C[t])-
representation.
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Let U be a representation of a special tower T = {L1 < · · · <Ln}. We call U
strict if two next conditions are satisfied:

(1)
⋂
x∈L1

Ux = 0,
∑
x∈Ln

D

Ux = Ũ0 and also
∑
x∈Li

D

Ux = ⋂
x∈Li+1

Ux for all

i ∈ 2, n− 1;

(2) U−
x = 0 for x ∈ L1, U+

x = U0 for x ∈ Ln and also U+
x = U−

y in the case x ∈
Li , y ∈ Li+1 and x � y for some i ∈ 2, n− 1.

Corollary 15.4. Let P be an equipped poset with involution satisfying the condi-
tions (a) and (b) of Theorem C, and P′ be the derivative set obtained from P by
applying one of Differentiations I–V, α, VII–XVII (or by the operation of comple-
tion). Assume U = W↑ is a sincere indecomposable representation of P, where W
is an indecomposable representation of P′ such that T = SuppW is a special tower
and the restriction W |T is strict. Then P is a special tower too and U is its strict
representation.

Note that the verification of the last statement is a rather routine procedure which
is being done for each algorithm separately (including several auxiliary operations
preceding some of the main differentiation algorithms). These calculations show that
only the algorithms XIII−XVII play an essential role in the description of complex
series. As for the rest, they are in fact superfluous (since their action is in fact trivial
in the corresponding “complex” situation).

The next statement follows immediately from the constructions presented in Sec-
tions 3−14.

Corollary 15.5. If an infinite series of indecomposables of equal dimension is anni-
hilated by some of Differentiations VII–XVII, then it is included (up to isomorphism
and up to finite number of indecomposables) into one of the following four series:

(a) the standard real series M1 − 6 of the critical set M1 = {a, b} in the case of
Differentiation XI;

(b) the standard real series L1 − 11 of the critical set L1 = {a, r, s} in the case of
Differentiation XII;

(c) the complex series (10.10) of the set � = {{a1, a2} ≺ {b1, b2}}, where ai, bi are
simple double, in the case of Differentiation XIII;

(d) the complex series (14.5) (for the type (b)) of the set � = {a ≺ a∗} with g(a) =
−1, in the case of Differentiation XVII.

Clearly, all algorithms built for a smaller class may be also used in a larger class
if there exists the corresponding suitable group of points. More precisely, for each
given Differentiation the definition of a suitable group of points in a larger class is
quite natural and actually does not differ from the smaller situation (sufficiently to
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have all wider structures “hidden” inside the “passive” cones A and B occurred in
each Differentiation). Taking this in account, we use below in the proof of the main
Theorem C the full spectrum of the algorithms I−V, α from [23], the completion and
the algorithms VII−XVII presented in Sections 3–14 above.

Moreover, it is used one more simple operation of restoring the reducibility con-
dition (R), which (just as for ordinary posets with involution [2]) can be broken
by Differentiation. The condition (R) is restored easily by applying (the maximal
possible number of times) the trivial operation P −→ P′

a described briefly in [2]
and mentioned already briefly in Section 1. Recall that if a ∈ P is a big point and
N(a) = {c1 < · · · < cn} is a small chain, n � 0, then P = {X < a < Y } +N(a),
where X = aC\a, Y = a∇\a, and the set P′

a is obtained from P by deleting the
point a and replacing the equivalent point a∗ by a small chain of n+ 2 points d− <
d1 < · · · < dn < d+. The matrix interpretation of this simple reducing procedure
may be given in the form

obtained from the initial matrix representationM of P by the following sequence of
steps (assume a∗ ∈ X):

(1) place at the bottom ofM the horizontal stripe corresponding to the subspace U+
X ;

(2) consider above the stripe U+
X a subproblem on representations over R of a trivial

ordinary poset {a; c1 < · · · < cn} and write in the upper horizontal stripe S its
direct summands of type P(a), P (a, c1), . . . , P (a, cn);

(3) make obvious zeroes under the summands P(a), P (a, ci) in the stripe U+
X and

obtain in the stripe T the problem on representations of the set P′
a .

Therefore, it holds:

Lemma 15.6. Let P be an equipped poset with involution containing such a big
point a that the set N(a) of all points, incomparable with a, is a small chain. Then:

(a) there exists a natural one-to-one correspondence between indecomposables of
the sets P and P′

x which induces a one-to-one correspondence between the cor-
responding series of representations;

(b) the equipped poset P is tame (wild) if and only if the equipped poset P′
a is tame

(wild).
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16. Combinatorics

In this purely combinatorial Section under a tame (ordinary) poset we mean a
poset not containing the subsets N1, . . . , N6.

We say that a subset � of an equipped poset with involution is a garland if: (1) �
is a semichain; (2) � contains no bidouble points; (3) all dyads in � are small; (4) all
order relations in � are strong. 14

Lemma 16.1 [2,Lemma 1]. Let S be a tame ordinary poset with at least two minimal
elements. Then S contains I-suitable pair of points (a1, b) or V-suitable quadruple
of points (a1, a2, b1, b2), where a1, a2 ∈ min S.

The following lemma generalizes to the equipped situation the corresponding
statement for ordinary posets with involution (see [2, Lemma 2]).

Lemma 16.2. LetQ be an equipped poset with primitive involution which contains

at least two minimal or two maximal elements, has tame evolvent
∨
Q and does not

contain weak order relations between points. Then there exists a collection of points
in P suitable to one of Differentiations I–V, α, VII and X–XII considered up to
duality.

Proof. Assume |minQ| � 2. The points x′, x′′ ∈ ∨
Q, corresponding to a big or double

paternal point x ∈ Q, will be called new. All other points in
∨
Q (which coincide with

small points inQ) are called old.

(a) If there exists some big or double point a ∈ minQ, then � = Q\a% is a garland,
hence, for max � = {b} the pair (a, b) is α, II, III, X, VII (with C = ∅), X*—
or XI-suitable, and for max � = {b1, b2} the triple (a, b1, b2) is IV-suitable or
XII-suitable.

(b) Let minQ be a small set. Due to Lemma 16.1 the evolvent
∨
Q contains I-suitable

pair (a1, b) or V-suitable quadruple (a1, a2, b1, b2), where ai ∈ min
∨
Q and also

ai ∈ minQ.

Assume that (a1, b) is I-suitable pair of points in
∨
Q. If the point b is old, then the

pair (a1, b) is I-suitable in Q, and if b is new, with the paternal point b, then (a1, b)

is α∗-suitable or VII∗-suitable pair inQ.

Assume that (a1, a2, b1, b2) is V-suitable quadruple in
∨
Q. If the points b1, b2 are

old, then this quadruple is V-suitable inQ. But if the point b1 is new, with the paternal

14 In other words, a garland is any “strong” ordinal sum of small points, of big points, of simple double
points and of small dyads.
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point b1, then automatically b1 is the paternal point for b2 and the triple (a1, a2, b1)

is IV*-suitable or XII*-suitable inQ. This finishes the proof. �

For any subset A of an equipped poset with involution P the sets Aprim and
∨
Aprim

are defined naturally (completely analogously to the case A = P). And the subset A
will be called admissible if it satisfies two conditions:

(a) each bidouble point of A is comparable with all other points in A;

(b) the evolvent
∨
Aprim of the set Aprim is tame.

Remark. If A itself is closed with respect to action of the involution (in particular,
if A = P), we obtain the notion of an admissible equipped poset with involution.

Lemma 16.3. Let P be an admissible equipped poset with involution containing at
least one pair of weakly comparable points. Then P contains a special pair of points
or a collection of points suitable for one of Differentiations I,VII–IX and XIII–XVII
considered up to duality.

Proof. Consider a weak relation a ≺ b in P of the greatest possible length (i.e. with
the maximal n for which there exists a chain a = x0 ≺ x1 ≺ · · · ≺ xn = b). Denote
X = {x | x ≺ b and x "∈ [a, b]}, Y = {y | a ≺ y and y "∈ [a, b]}, C = N(a, b). As
the relation a ≺ b is of maximal length and P is admissible, it holdsX ⊂ N(a), Y ⊂
N(b), |X| � 1, |Y | � 1, C is a small chain, |C| � 2 and alsoX � C � Y for C /= ∅

and X � Y or X ≺ Y for C = ∅. Moreover, it is easy to see that P =a% + b&+� +
C +X + Y , where � is the interior of the interval [a, b], and X ≺ � ≺ Y . Set A =
a%\a, B = b&\b. Consider possible cases (up to duality).

(1) Both points a, b are simple double.
(a) Assume C = ∅. Then X = x and Y = y are one-point sets, otherwise the

pair (a, b) is special, IX-suitable or IX*-suitable. Hence, P = [a, x, y, b] +
A+ B and also A ⊂ {y, b}up; B ⊂ {a, x}down and {a, x} � A; B � {y, b}.
Thus for x � y we have IX-suitable pair (x, b) and for x ≺ y we have XIII-
suitable quadruple (a, x, y, b).

(b) AssumeC = {c}. IfX = Y = ∅, it appears VII-suitable pair of points (a, b).
If X = x and Y = ∅, then B ⊂ {a, x}down and � is a simple double chain.
And since a∧\c& is a garland (incomparable with the point x), then for ξ ∈
min(P\c&) the pair (ξ, c) is I-suitable (VII-suitable) for ordinary (simple
double) point ξ . If, at last, X = x, Y = y, then, as in a), the pair (x, b) is
IX-suitable.

(c) Assume C = {d < c}. Here � = ∅ and for |X| = |Y | = 1 the pair (x, b) is,
as before, IX-suitable. Suppose Y = ∅ and X is arbitrary and ξ ∈ min(P\
c&). Since a, ξ ∈ N(c, d), then ξ � a and, as it is easy to verify, again the
pair (ξ, c) is I-suitable (VII-suitable) for ordinary (double) point ξ .
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(2) The point a is bidouble and the point b is simple double. HereN(a) = X = C =
∅ and B < a, hence, for Y = ∅ (for Y = y) we have XIV-suitable pair of points
(a, b) (XV-suitable triple (a, y, b)).

(3) Both points a, b are bidouble. Then N(a) = N(b) = X = Y = C = ∅ and the
pair of points (a, b) is XVI-suitable or XVII-suitable. This finishes the proof of
the lemma. �

A subset of an equipped poset with involution will be called a tower if it is an
arbitrary ordinal sum of any double points and of simple double diads (with arbitrary
order relations, both weak and strong). Obviously, each tower is an admissible subset.

We call a tower T closed if every of the subsets minT, maxT (independently
of each other) coincides with either a bidouble point or a simple double dyad. We say
that a tower T′ condenses a tower T if T ⊂ T′ and minT = minT′, maxT =
maxT′.

The following lemma is rather obvious.

Lemma 16.4. Let P is an admissible equipped poset with involution, and P1 be
an equipped poset with involution obtained from P by applying any of the following
operations:

(a) some big point is replaced by a garland;
(b) between some small dyad {p, q} with the condition p%\p = q%\q = A

(p&\p = q&\q = A) and the subset A a garland is inserted; 15

(c) between some double point a with the condition a∨\a = a%\a = A
(a∧\a = a&\a = A) and the subset A a garland is inserted;

(d) some closed tower is condensed;
(e) some bidouble point is replaced by a tower.

Then the set P1 is admissible too.

From the previous lemmas we derive the following important fact.

Lemma 16.5. If P is an admissible equipped poset with involution, then under
each of Differentiations I–V, α and VII–XVII considered up to duality (and also
under the reducing procedure) the derivative equipped poset with involution P′ is
admissible too.

Proof. Actually, for all Differentiations, except I, VII, VIII and IX, (and for the
reducing procedure) the statement follows immediately from the geometric con-
struction of the algorithms (see the corresponding diagrams in the text) and from

15 That is, it is assumed that {p, q} � � � A (A � � � {p, q}), where � is the inserted garland.
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Lemma 16.4. In any of this cases the derivative set P′ is obtained from P by applying
one or several listed in Lemma 16.4 operations plus, possibly, additions of some
order relations.

As for the algorithms I and VII−IX, the evolvent
∨
P′

prim is obtained from the

evolvent
∨
Pprim by a single or double application of Differentiation I for ordinary

poset (see Remarks 3.1, 5.1 and 6.1). But it is well known that if an ordinary poset
contains none of the subsetsN1, . . . , N6, then the derivative one neither does (remind
that this fact was proved by purely combinatorial means in [24], Proposition 2.1,
and by using of the Tits quadratic form in [21], Section 2, item 4). Therefore, the
condition (b) of the definition of an admissible set is preserved for Differentiations I
and VII–IX as well. Since the preservation of the condition (a) is rather obvious, this
completes the proof of the lemma. �

17. Proof of Theorem C

We have to prove both the tameness and wildness statements of Theorem C.
Tameness. Here we establish the following more general result.

Theorem 17.1. If a reduced equipped poset with involution P satisfies the condi-
tions (a) and (b) of Theorem C, then P is tame. Moreover, if such P has a sincere
complex series of indecomposables, then P is a special tower and the mentioned
series is strict. 16

Proof. We have to show, in particular, that µ(d) <∞ for the dimension vector d =
dimU of any sincere indecomposable representation U of P. This will be proved (as
well as the second part of the theorem) by induction on the number d0 = dimR U0.

The base of induction is the case of the nondifferentiable sets or nondifferentiable
sincere complex series. As it follows from the previous considerations, except of the
trivial one-point sets, the only nondifferentiable sincere one is the set � = {a � a∗}
with a ∼ a∗ being bidouble (of any genus), which is one-parameter according to
Lemma 2.1. And the only nondifferentiable sincere complex series are strict series
of special towers of the form (10.10) and (14.5).

So, one may assume |P| � 2 and P /= � and U is not a strict representation of
the form (10.10) or (14.5). Then, moreover, if P contains no weak relations, it
contains no bidouble points, i.e. P = Pprim (otherwise, since U is sincere and in-
decomposable, due to the condition (a) of Theorem C it must be P =
�).

16 That is, each representation, belonging to this series, is strict.
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It is also clear, due to the conditions (a) and (b) of the theorem, that for each big
or simple double point x ∈ P the subset N(x) of all points incomparable with x is
a garland. In addition, one can assume that for any two points x /= y the following
natural condition takes place

U+
x ⊂ U−

y ⇒ x � y. (17.1)

Otherwise we may complete P by the relation x � y and consider U as a repres-
entation of the completed poset. For the same reason (under a nontrivial U ) the set
P may be considered as not containing special pairs of simple double points (see
Lemma 4.1).

Now, if P contains no weak relations, then (as it was mentioned) P = Pprim
and due to the indecomposability of U and reducibility of P it holds |minP| � 2.
Hence, according to Lemma 16.2 there exists a collection of points in P suitable for
one of Differentiations I–V, α, VII (with C = ∅) and X–XII or for one of the dual
algorithms.

If P contains weak relations, then by Lemma 16.3 it contains a collection of
points suitable for one of the algorithms I, VII–IX and XIII–XVII or for one of the
dual algorithms.

Therefore, in each case the set P contains a collection of points suitable for
one of Differentiations I–V, α and VII–XVII (considered up to duality). Apply-
ing the chosen algorithm (together with the subsequent reducing procedure) to all
indecomposables of a given dimension d , we obtain, in general, several (but a
finite number) derivative vectors d↓ (being the dimensions of the reduced derivat-
ive representations U↓) satisfying, due to the condition (17.1) and Corollary 15.1,
the inequality d↓0 < d0. In accordance with Lemma 16.5 these vectors d↓ corre-
spond to equipped posets with involution with the restrictions (a) and (b) of The-
orem C. Now from the inductive hypothesis we have µ(d↓) <∞ for all these d↓.
Hence, in accordance with Corollaries 15.1, 15.2 and 15.4 of the present paper
and also Corollaries 1 and 2 from [23], it holds µ(d) <∞. Moreover, due to the
induction and Corollary 15.4, the second part of Theorem 17.1 takes place too.
This finishes the proof both of Theorem 17.1 and of the tameness statement of
Theorem C.

Wildness. Let P be a reduced equipped poset with involution not satisfying one of
the conditions (a) and (b) of Theorem C. We have to verify that P possesses some
wild generator (which will be written below in a matrix form).

Assume the condition (a) is not satisfied. Then P contains a dyad {a, b}, where a
is bidouble and b is arbitrary.

If b = a∗, take a matrix representation M of P with Ma∗ = E, Mx = ∅ for x /=
a, a∗ and Ma = Z for arbitrary matrix Z over C of the corresponding size. It leads
immediately to the classic wild matrix problem on the pair of matrices (X, Y ) over
R, where X + iY = Z.
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If b /= a∗, then in the worst (for the catching of wildness) case one can consider b
as a small point and also suppose, for example, that a∗ � {a, b}. Then, setting again
Ma∗ = E, Mx = ∅ for x /= a, a∗, b and using strong column additions Ma∗ −→
Ma,Mb, we receive in the stripesMa andMb (considered over C and R respectively)
the well-known wild problem on representations of a triad Υ = {x, x∗, b}, where
x ∼ x∗ is a pencil. It has, for instance, in the dimension d = (d0; d(x,x∗), db) =
(2; 2, 1) a wild generator of the form

x x∗ b

X Y 1 0 1
1 0 0 1 0

where X, Y are the variables of the corresponding free algebras R〈X, Y 〉 and
C〈X, Y 〉.

Assume the condition (b) is not satisfied, i.e. the evolvent
∨
Q of the setQ = Pprim

contains one of the subsets N1, . . . , N6. One can show easily in this case Q it-
self contains one of the ordinary posets N1, . . . , N6 or one of the equipped posets
W1, . . . ,W9 listed in Section 1, or one of the following subsets:

W10 = {⊗ • ◦}, W11 = {⊗ • •}, W12 = {⊗ ⊗ •}, W13 = { •},

W14 = {• ◦ ◦ ◦}, W15 = {• • ◦}, W16 = {• • •}, W17 = {• ◦ }.

Let us investigate the possible situations.
(a) The case of the subsets N1, . . . , N6 needs no considerations as it was solved

in [12] (note that here everything is reduced to the set Υ , since in the sequence
Υ,N1, . . . , N6 each previous set is contained in the derivative of the next one under
a suitable differentiation).

We also will take in account that, due to [2], each ordinary reduced poset with
involution S, containing one of the subsets W14, . . . ,W17 is wild. Such S is called
below a counterset.

(b) In the case of the equipped posets W1, . . . ,W9, one may pay not attention
to the last three sets since in the sequence W4,W7,W8,W9 each previous set is
contained in the derivative of the next one under a suitable variant of Differen-
tiation VII. For the rest sets W1, . . . ,W6 the minimal wild generators are as
follows:
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with Z = X + iY where X, Y are the corresponding variables.
(c) Obviously, the setW12 is not simpler than the setW2, and the setsW10 andW14

are transformed intoW4 and N2 respectively when reducing the stripeMx∗ , where x
is the unique shown big point (one can assume N(x∗) = ∅ in the worst for wildness
case).

(d) Assume Q ⊃ W11 = {a, x, y}, where a is double. If x∗ = y, then W11 is not
simpler than Υ . If x∗ /= y, we can reduce the stripes of the points x∗, y∗ (being
comparable in the worst case with all points of W11) and to obtain an equipped
subset of type (̃1, 2, 2) ⊃ W4.

(e) AssumeQ ⊃ W16 = {x, y, z}. If x∗ = y, the set {x, x∗, z} is not simpler than
Υ . That is why consider the points x, y, z as mutually nonequivalent.

If x∗ ∈ N(y∗), we have a simpler counterset {x, y, x∗, y∗, ξ}, where ξ is a small
point replacing z.

If x∗ ∈ N(x), then, reducing the stripes of the points y∗, z∗, we obtain as a subset
a counterset {x; x∗;p; q1 < q2}, where p, q are small.

So, the points x∗, y∗, z∗ are mutually comparable and, moreover, each of them is
comparable with each of the points x, y, z. But then one of them is not comparable
with some other point , say ξ , which (in the worst case) is small. Therefore, reducing
the stripes of the points x∗, y∗, z∗, ξ , we obtain a subset N3.

(f) Assume Q ⊃ W13 = {a ≺ b; x}, where x is big. If x∗ ∈ N(x), then (in
the worst case) Q contains the subset {x∗ < a ≺ b; x} which is wild. Really, ap-
plying D-III in [23] with respect to the pair (x∗, x) together with the subsequent
reduction of all stripes Mx∗i , we obtain the set of type (̃2,∞) ⊃ (̃2, 3) =
W7.

If x∗ ∈ N(a), then in the worst case (and up to duality) Q contains the subset
{x > x∗ < b - a} and the application of D-X with respect to the pair (x∗, a) leads
to an equipped poset {q; a ≺ b} = W6.

If x∗ is comparable with x, a, b, then it is not comparable with some other point
ξ (which is small in the worst case) and after reduction of the stripes, correspond-
ing to the points x∗, ξ , we obtain an equipped subset of the form (̃2, 3) =
W7.

(g) Assume Q ⊃ W = W17 = {x0;p; q1 < q2}, where x0 is big. Then in each
sequence X = {x0, x

∗
0 , x1, x

∗
1 , . . . , xn, x

∗
n}, n � 0, with the condition xi ∈ N(x∗i−1)

all points are different (otherwise W ∪X is a counterset) and the subset N(x∗n)
contains no small dyads (otherwise W ∪X ∪D is a counterset, where D is the
mentioned dyad). Hence, there exists such a sequenceX, for which the subsetN(x∗n)
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contains a double point a. Now it is enough to use the placed below fact (#)
describing the operation of “substitution of a double point ”. This operation
is nothing else as some modified equipped analog of the explained in Section 15
operation P −→ P′

x (see Lemma 15.6). It also admits a simple matrix explanation
(in the spirit of D-X) which is left for the reader as an exercise.

(#) Let S be an equipped poset with primitive involution and without weak re-
lations containing some big point x incomparable with at least one double point.
Denote by S#

x the set obtained from S by deleting the point x and replacing the
equivalent point x∗ by a new double point. Then there exists a natural one-to-one
correspondence between all indecomposables of the set S#

x (considered up to finite
number of trivial ones) and some part of indecomposables of the initial set S, which
induces the one-to-one correspondence between their series.

Setting now S = W ∪X ∪ {a} and applying step by step the operation S#
x for

x = x∗n, x∗n−1, . . . , x
∗
0 , we obtain an equipped poset containing the subsetW4 (at the

place ofW ).
(h) At last, assumeQ ⊃ W = W15 = {x0, y0, p}, where x0, y0 are big. Then x∗0 /=

y0, otherwise W = Υ . Arguing completely analogously to the previous case, we
build two sequences X = {x0, x

∗
0 , . . . , xn, x

∗
n} and Y = {y0, y

∗
0 , . . . , ym, y

∗
m}, where

n,m � 0, with the conditions xi ∈ N(x∗i−1) and yj ∈ N(y∗j−1) such that the sub-
sets N(x∗n) and N(y∗m) contain double points a and b respectively (possibly, a =
b). Moreover, all points in X and Y together are different. Setting now S = W ∪
X ∪ Y ∪ {a, b} and applying the operation S#

t step by step for t = x∗n, x∗n−1, . . . ,

x∗0 and t = y∗m, y∗m−1, . . . , y
∗
0 , we obtain, as a result, an equipped poset

containing the subset W2 (at the place of W ). This finishes the proof of Theo-
rem C. �

Theorems A and B are special cases of Theorem C, and Theorem D is its
simple consequence (deduced with help of the reducing procedure based on Lemma
15.6).

The equivalence of the conditions (a)–(c) in Lemma 1.1 is left as an easy exer-
cise for the reader. One has to take in account, in particular, that if d is a vector,

corresponding to an equipped poset P, and
∨
d is its naturally defined vector-evolvent,

corresponding to the set
∨
P (namely,

∨
d0 = d0,

∨
dx = dx for x ∈ P0 and

∨
dx′ =

∨
dx′′ =

dx for x ∈ P\P0), then fP(d) = f∨
P
(
∨
d).

Notations for Appendix A–C

Below in Appendix A–C by En we denote the n× n identity matrix. If some
matrix is equipped with an arrow of the form ←,→,↑,↓, it means that a zero
column or row must be added to that matrix respectively from the left, right, above,
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below (in the case of several arrows one has to add several zero columns or
rows).

For a square matrix X set PX(λ) = det(λE −X).
Denote by Jn(0), Jn(1) the n× n Jordan blocks with the eigenvalues 0 and

1 (in which the adjacent to the main diagonal identities can be written in ar-
bitrary way: both under and above the diagonal). By J+n (0) (J−n (0)) we denote
the Jordan block with the identities written just above (below) the diag-
onal.

set P2n = T2n + iE2n,

The number h denotes the “step” of the corresponding dimension d = dimU ; f =
f (d) is the value of the quadratic form f and ∂ = ∂(U) = ∂(d) = (µ, d) is the de-
fect of a representation , where ( , ) is the corresponding to an equipped poset P
nonsymmetric bilinear form given by the formula

(d, h) = d0h0 +
∑
x∈P

fxdxhx +
∑
x>y

pxyfxfydxhy − h0

∑
x∈P

fxdx.

In the part B (C) of Appendix A–C the type m̃ of a representation U is obtained
from the type m by the permutation a ↔ b (r ↔ s).
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The matrix classification of the part A was obtained in [11], and of the parts B
and C in [26] (with the use of the results from [6] for the part B).

Appendix A. Representations of “2×2-quadruple”
∗ ∗
∗ ∗ over any field k

With independent k-elementary transformations of each horizontal or vertical
stripe

Appendix B. Representations of the critical set M1 = { a⊗ b⊗} over (R,C)
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C. Representations of the critical set L1 = { a⊗ r◦ s◦} over (R, C)
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