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Alveolar macrophage (AM) responses are commonly induced in inhalation toxicology studies, typically being
observed as an increase in number or a vacuolated ‘foamy’morphology. Discriminating between adaptive AM re-
sponses and adverse events during nonclinical and clinical development is a major scientific challenge. When
measuring and interpreting induced AM responses, an understanding ofmacrophage biology is essential; this in-
cludes ‘sub-types’ of AMs with different roles in health and disease and mechanisms of induction/resolution of
AM responses to inhalation of pharmaceutical aerosols. In this context, emerging assay techniques, the utility
of toxicokinetics and the requirement for newbiomarkers are considered. Risk assessment for nonclinical toxicol-
ogy findings and their translation to effects in humans is discussed froma scientific and regulatory perspective. At
present, when apparently adaptivemacrophage-only responses to inhaled investigational products are observed
in nonclinical studies, this poses a challenge for risk assessment and an improved understanding of induced AM
responses to inhaled pharmaceuticals is required.
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1. Introduction

Delivery of drugs by inhalation has a proven track record for safe and
effective treatment of human respiratory diseases, principally asthma,
chronic obstructive pulmonary disease (COPD), cystic fibrosis and infec-
tion [1,2]. The development of new and improved inhaled medicines,
however, presents a number of challenges that have been reviewed pre-
viously [3]. This article considers induced alveolarmacrophage (AM) re-
sponses, the interpretation of which is a significant challenge for safety
assessment in inhaled product development. The commentary is based
on a workshop held in October 2012, organized by the Academy of
Pharmaceutical Science of Great Britain (APSGB) ‘Drugs in the Lungs
Network’ in collaboration with the Health and Environmental Sciences
Institute (HESI). This meeting comprised a series of structured debates
which were led by the authors and informed by workshop participants
[4]. In accordance with the principles of the APSGB and HESI organiza-
tions, the report reflects multisector perspectives and emphasis is
given to the scientific developments and collaborative approaches re-
quired for a more efficient paradigm for developing inhaled medicines.

1.1. Safety challenges in developing inhaled medicines

Compound failures during development are costly and contribute to
the industry-wide high rate of attrition during drug development [5].
Safety is an important cause of attrition during the development of in-
haled medicines. For example, AstraZeneca reported at the workshop
that over the last seven years safety was the second-most common rea-
son (30% of 33 cases) for halting further development of inhaled com-
pounds (small molecules targeted at local activity in the lung) which
had reached the stage of repeat dosing with a range of doses in one or
more species in nonclinical studies. Others have suggested that safety
failures may be, in part, because the design considerations for improved
lung-targeted medicines (i.e., high molecular weight, lipophilic
compounds) have resulted in poorly soluble compounds which gener-
ate lung pathology findings related to an excess of undissolved drug
[6]. As new classes of molecules are developed as inhaledmedicines, in-
cluding biopharmaceuticals, compounds for new targets in the lung or
for systemic delivery via inhalation, and compounds requiring novel ad-
vanced delivery systems such as nanoparticle or liposomal systems,
safety assessment may provide greater challenges [7].

Regulatory guidelines dictate well-defined nonclinical (formerly re-
ferred to as preclinical) and clinical phases of inhaledmedicine develop-
ment [8]. At present, Good Laboratory Practice inhalation toxicology
studies supporting clinical trials utilize histopathological examination
of hematoxylin and eosin (H&E) stained tissue sections as the primary
endpoint [9,10]. Themost common responses to aerosol administration
in nonclinical studies are nasal and laryngeal irritation in rats, which are
generally accepted to have little relevance for human orally inhaled
drug products as they result from obligate nasal breathing and
species-specific airway geometry, respectively [11]. Lung irritation, ob-
served in acute studies as changes to the epithelium at the bronchial
or alveolar level (i.e. epithelial degeneration, ulceration, necrosis) may
be seen as a high-dose effect in short-term studies. However, these ef-
fects are rarely seen with chronic dosing as doses are likely to be
lower or the drug will already have been discontinued without
progressing to long term toxicology studies if this occurs at lower doses.

Lung histology typical of that observed in nonclinical studies is illus-
trated in Fig. 1. The significance of the common histology finding of an
increase in macrophage numbers in the lung and/or alterations in mac-
rophagemorphology is not clear. The challenge to toxicologists, pathol-
ogists, clinicians and regulatory scientists is to determine at what point
a normal adaptive response to foreign inhaled materials becomes a
pathological process in animals and at what point the response is pre-
dictive of a potentially adverse consequences for treated patients. One
complication is that AM responses are often seen in control groups.
For example, analysis of control animals in nonclinical studies revealed
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Fig. 1. Typical examples ofmacrophage responses to inhaledmedicines observed by histopathological examination of lung sections from nonclinical studies. A:Macrophage accumulation
in a control animal. The accumulation (star) is small and composed exclusively ofmacrophageswith abundant foamycytoplasm, neutrophils and lymphocytes are absent and local alveolar
walls (arrows) are normal, histologically. H&E. ×200. B: Macrophage accumulation at bronchoalveolar junction. The accumulation (stars) is larger than those seen in control animals but
still composed exclusively of large foamy macrophages without neutrophils or lymphocytes. In addition, local alveolar walls are normal, histologically. H&E. ×100. C: Macrophages with
basophilic granules. Intra-alveolar macrophages are large due to abundant basophilic granular cytoplasm (arrow heads) and fill two neighbouring alveolar lumens (star). Individual neu-
trophils are scattered amongst themacrophages (arrows). H&E. ×200. D:Macrophage accumulationwith lymphocytes and plasma cells. A disorganised admixture ofmacrophages (stars)
and lymphocytes and plasma cells (arrows) within alveolar lumens and alveolar walls. H&E. ×200. E: Macrophage accumulation with brown pigment and epithelial hypertrophy/
hyperplasia. Macrophages have abundant brown granular cytoplasmic pigment. Many are degenerated and/or necrotic (star). The local alveolar walls are thickened due to epithelial
hypertrophy/hyperplasia (arrows). H&E. ×200. F: Macrophage accumulation with neutrophils. The accumulated intra-alveolar macrophages are admixed with many neutrophils
(arrows). H&E. ×200.
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macrophage accumulations as spontaneous findings in air-only control
cynomolgusmonkeys in 32 cases, 5.6% of animals; range of 0–40%, in 55
studies [12]. Another concern is that the inhaled medicine is most often
for the treatment of respiratory disease, i.e. patients who de facto have
underlying lung pathologies and may be more sensitive than healthy
animals or human volunteers to inhaled particles.

A continuum of responses involving AMs can be recognized in asso-
ciation with the nature, degree and duration of inhaled stimuli. This
spectrum of histological findings extends from minimal increases in
AMs disseminated within the pulmonary parenchyma, through gradu-
ally escalating numbers and densities of AMs, sometimes associated
with hypertrophy. Such changes are graded by pathologists (e.g. mini-
mal, mild, moderate, etc.) in order to facilitate comparison between
treated and control groups. It has been proposed that simple increases
in qualitatively similar AMs typically constitute adaptive, physiological
responses that are not adverse [6]. In contrast, some stimuli, such as
drug accumulation above a certain level, may drive pathologic, adverse
responses involving AMs in association with combinations of other
changes including infiltrations of inflammatory cells (e.g. neutrophils,
lymphocytes), epithelial and interstitial changes, and fibrosis [11,13].

While it is generally assumed that certain responses to inhaled par-
ticles constitute a normal physiological response that is reversible and
distinct from a pathologic response, at present there is no clear agree-
ment for determiningwhere this threshold occurs and how it can be de-
fined objectively using available methodologies. This uncertainty can
lead to delays or non-approval for a drug to enter clinical studies and
can place a limit on the doses that can be evaluated clinically. A question
raised previously [3] is whether toxicological data are obtained and re-
ported similarly between companies or is inconsistent reporting of his-
topathology findings creating a more complex picture than necessary?
The diagnostic criteria published by the INHAND (International Harmo-
nization of Nomenclature and Diagnostic Criteria for Lesions in Rats and
Mice) initiative of the North American, European and Japanese toxico-
logical pathology societies should assist in partially alleviating this con-
cern [14]. Proposed refinement of the INHAND terminology specifically
to address increases in alveolarmacrophageswhen they are observed in
nonclinical studies of inhaled pharmaceutical compounds [15] may fur-
ther promote consistency in reporting results.

1.2. Regulatory considerations

Nonclinical toxicology studies required to support the development
of inhaled drugs are generally the same as for other routes of adminis-
tration [11]. Development plans usually follow the recommendations
outlined in the relevant International Conference on Harmonization
guidelines [8]. Where possible, repeat dose toxicology studies should
employ the inhaled route of administration to mimic the intended clin-
ical route of administration and to ascertain any potential for adversity.

Due to the high frequency of induced AM responses in nonclinical
studies, any developer of inhaled drugs is likely to have observed test
article-related increases in macrophage numbers, considered the impact
of this for their clinical program and engaged in dialogue with the US
FDA or other regulatory agency. Regulatory guidance specific to interpre-
tation of alveolar macrophage responses is not currently available.



Fig. 2. Illustration ofmacrophage polarization states according to the current classification
system. (The figure has been adapted from [24]).

18 B. Forbes et al. / Advanced Drug Delivery Reviews 71 (2014) 15–33
Interpretation of an inhaled drug-inducedmacrophage response is an im-
portant consideration with regard to authorizing progression of products
fromnonclinical to clinical phases, especially in termsof trial dose and du-
ration, and for clinical indications involving lung disease. The nonclinical/
clinical interface is where the interpretation of adversity is critical. If the
principle that any increase inmacrophage numbers should be considered
a potential early indication of inflammation is applied, due to the lack of a
monitoring tool in clinical studies, this impacts on the determination of
the ‘no observed adverse effect level’ (NOAEL). A lower NOAEL value, in
turn, affects safety margin calculations required for transfer to the clinic,
thus limiting both the starting andmaximal allowable dose in human tri-
als, potentially restricting the ability to fully explore the relevant pharma-
cology in humans.

Considerations for interpretation of alveolarmacrophage findings in
a regulatory context include the nature and extent of the potentially in-
flammatory response and the clinical population (e.g. whether the re-
spiratory system is compromised by disease). Macrophage responses
not evolving into more involved inflammatory responses with increas-
ing duration could potentially be considered non-adverse, while re-
sponses that become more involved over time, or in combination with
chronic active inflammation, lymphoproliferative change, and/or fibro-
sis, could impact the NOAEL identification.

Interpretation and understanding of macrophage responses may be
aided by improving consistency in terminology used. Terminology can
differ across labs, drug sponsors, peer reviewers and PathologyWorking
Groups, and inconsistency can contribute to uncertainty in evaluating al-
veolar macrophage findings. Other considerations in interpretation of
macrophage responses include evaluation of responses across doses
and duration of exposure, reversibility of findings, and evaluation of his-
torical control data from the laboratory conducting a given toxicity study.

1.3. Aim and scope of the article

The interpretation of AM responses arising during inhaled drug tox-
icology studies is a major scientific challenge in the development and
registration of new inhaled therapies. Issues include how to identify, re-
port and interpret findings related to induction of AMs during nonclin-
ical and clinical development, and how to discriminate adaptive lung
responses from adverse events. This article elaborates discussion at
the recent APSGB-HESI workshop [4] covering risk assessment and
risk management with regard to observed AM responses in nonclinical
toxicology studies and suggests initiatives to facilitate the future devel-
opment of safe inhaled medicines.

Emerging scientific understanding of AM biology and macrophage
responses to inhaled pharmaceuticals is reviewed. The need to define
and improve current best practices formeasurement and interpretation
is addressed by considering currently available assays and their utility
in distinguishing adverse from adaptive AM responses. Potential im-
provements to existing assays and emerging new methodologies are
matched to gaps in knowledge and lack of tools (e.g. biomarkers, lung
function tests for safety monitoring) that currently hinder progress of
projects into the clinic. Recommendations are made for improvements
in measuring and reporting induced AM changes, research priorities
for basic macrophage bioscience research and the development of dis-
criminatorymeasurement techniques. Finally, the advantages of collab-
orative approaches towards data sharing, harmonization of methods
and reporting and the development of novel biomarkers are identified.

2. Alveolar macrophage biology and response to inhaled
particulate matter

2.1. AM biology and polarization

Two distinct populations of tissue resident macrophages are present
in the lungs: interstitial macrophages (IM) and AM. Both are generally
considered to originate from bone marrow-derived precursor cells
which develop into circulating blood monocytes prior to recruitment
into the lungs and maturation into macrophages [16–20]. However, a re-
cent study by Hashimoto et al. [21] reports evidence frommurine parabi-
osis and genetic fate-mapping studies to support the hypothesis that the
baseline population of tissue-residentmacrophages, including AM, prolif-
erate locally throughout adult life with minimal replenishment from cir-
culating monocytes [21], although there is no evidence to support this
hypothesis in human studies. They suggest that tissue macrophages are
recruited to the lung from the circulatingmonocyte population only in re-
sponse to a pathology or stimulus. In contrast to AMs, IM are half the di-
ameter of AMs (~8 versus 16 μm), are more heterogeneous in
morphology, and exhibit a lower phagocytic activity than AMs, although
in contrast they express higher levels of complement C3, intercellular ad-
hesion molecule-1 (ICAM-1), and are better at antigen presentation than
AMs [18,22]. However, since changes in IMarenot as commonly observed
in nonclinical inhalation toxicology studies during the development of in-
haled pharmaceuticals (especially in the absence of concurrent AM ef-
fects) this article will concentrate on AMs.

AMs have two important functions in the peripheral lung:modulation
of immunological homeostasis and host defense [23]. In their ‘quiescent’
state, AMs play an important immunosuppressive role in the lungs.With-
out immunosuppressive regulation, mediated through secretion of anti-
inflammatory agents such as IL-10, the adaptive immune system would
be activated continually by the wide range of harmless airborne antigens
causing substantial tissue damage to the lungs over time [23]. Due to their
immunosuppressive role in maintaining immunological homeostasis,
‘quiescent’ AMs are considered to be in an alternatively activated (M2)
polarization state and, more specifically, display characteristics of regula-
tory (M2c) macrophages (Fig. 2, Table 1). AM polarization towards the
regulatory M2c phenotype is thought to be maintained by epithelial se-
cretion of TGF-β, which promotesαvβ6 integrin expression on themacro-
phage surface and results in adhesion to the epithelial cell layer and
secretion of anti-inflammatory mediators. Regulatory macrophages are
heterogeneous, but a defining feature is the concurrent upregulation of
IL-10 and downregulation of IL-12. Phagocytic activity and antigen pre-
senting capability is not necessarily impaired in this polarization state [24].

Polarization away from the regulatory phenotype is stimulated by
changes to the microenvironment which occur during pathogen



Table 1
A summary of the characteristics of macrophage polarization [20,23,24,27].

M1 M2a M2c M2b

Classically activated Wound-healing Regulatory Tumor-associated

Drivers of phenotype INF-γ + LPS/TNF-α IL-4 and IL-13 TGF-β and αvβ6 integrin Dependent on tumor microenvironment
Cytokine secretion Pro-inflammatory (IL-12, IL-1β, IL-6, IL-23) Reduced cytokine secretion Anti-inflammatory (IL-10) Pro-angiogenic (TNF-α, VEGF, IL-1), IL-10
Enzyme activity iNOS, MMP9 Arginase, chitinases – MMP9
Phagocytosis Enhanced Reduced Normal Dependent on tumor microenvironment
Physiological role Host defense Tissue repair Immunological homeostasis –

Associated pathologies Chronic inflammation; Fibrosis; asthma; Susceptibility to infection Neoplasia
tissue damage promoting neoplasia susceptibility to infection

19B. Forbes et al. / Advanced Drug Delivery Reviews 71 (2014) 15–33
invasion, which induces the classically activated phenotype M1, or
events that trigger other M2 polarization states (Fig. 2, Table 1). AMs
typically express high levels of pattern recognition receptors (e.g.man-
nose or toll-like receptors for recognition of various microbial compo-
nents) and scavenger receptors (e.g. cell surface receptors that
selectively recognize polyanionic surfaces, such as those found on low
density lipoproteins), which enable them to recognize and phagocytize
a wide range of inhaled foreign matter, including bacteria, viruses and
environmental particles [20]. During infection, elevated levels of inter-
feron gamma (IFN-γ) combined with the triggering of pattern recogni-
tion receptors activates AMs according to the M1-like classically
activated pathway. This macrophage polarization state is characterized
in the AM population by a detachment from the alveolar epithelial sur-
face, an enhanced phagocytic capability, the production of reactive oxy-
gen and nitrogen radicals, as well as secretion of pro-inflammatory
cytokines (e.g. IL-12, IL-1, IL-6, IL-23) and chemotactic agents [23,24].
M1 activation is associated with substantial changes to gene transcrip-
tion, expression and epigenetic regulation [25], which direct the cells
to kill invading pathogens and enhance their antigen-presenting
capabilities.

Tissue damage or pathophysiological conditions resulting in elevated
levels of IL-4 and IL-13 will, in contrast, polarize AMs towards a wound-
healing (M2a) phenotype, which is characterized by increased arginase
activity (an enzyme that promotes collagen formation through conver-
sion of arginine to ornithine) and elevated expression of chitinase-like
molecules, which play a role in cell matrix reorganization. M2a macro-
phages have been shown to produce minimal amounts of pro-
inflammatory cytokines, reactive oxygen and nitrogen species, and have
lowphagocytic capability. For this reason they are less effective at clearing
or killing infective agents compared to other macrophage phenotypes
[24,26]. Furthermore, prolonged or uncontrolled stimulation of macro-
phages towards the M2a phenotype can lead to tissue fibrosis and is
thought to play an important role in the progressionoffibrotic pulmonary
diseases, including airway remodeling in asthma [26].

The M2b phenotype is a heterogeneous population of tumor-
associatedmacrophageswhich promote tumor initiation, growth and de-
velopment. Tumor-associatedmacrophages are currently thought to play
a role in creating and maintaining an anti-inflammatory environment
within the tumor and promoting angiogenesis. However, the variety of
M2b sub-populations, with both distinct and overlapping characteristics,
does not lend itself to simple biological categorization and the clinical rel-
evance of different M2b polarization states are not clearly defined [27].

Current understanding of the role of AM polarization in respiratory
health and disease is basic, although reviews summarizing the current
understanding of AM involvement in asthma, COPD, pulmonary fibrosis,
cystic fibrosis and lung cancer have been published [22,27–31]. Ongoing
research in this area has the potential to identify new therapeutic targets
or biomarkers for the assessment of therapeutic intervention. At the same
time it is widely acknowledged that studying AM biology is complicated
by the plasticity of these cells, which means that functional activity, pro-
tein and gene expression patterns, as well as epigenetic regulation can
change very quickly in response to sometimes very subtle changes in
the microenvironment [25]. It is clear that a deeper understanding of
AM biology and a wider range of validated assays to determine AM
polarization state would be useful to guide interpretation when macro-
phage responses arise during inhaled drug toxicology studies.

2.1.1. Lung dendritic cells
In addition to lung alveolar macrophages, a population of dendritic

cells is also present, first identified by Sertl and co-workers [32]. Similar
to any organ facing the outside milieu, the lung's network of dendritic
cells aids in the recognition of exogenous threats. There are at least
three resident populations of dendritic cells in humans, based upon
phenotypic markers and up to four in mice [33]. They form a well-
developed network in the epithelial layers of conducting airways with
long cellular extensions between the mucosal surface and the basal
layer. They are also located in the alveolar septa and patrol the walls
of the pulmonary arterial vasculature [34]. Whilst they play a crucial
role in sensing pathogens and potential hazards, their role, if any, in
the development ofmacrophage responses is uncertain so the following
discussion will focus on the macrophage alone.

2.2. AM responses to particulate matter

The lungs have evolved to protect themselves against a wide range of
inhaled environmental (including man-made) particulate matter (PM).
There is compelling epidemiological evidence that inhaled PM exacer-
bates respiratory diseases such as COPD and asthma [35,36]. Much re-
search has been driven by concerns over the presence of air pollutants,
especially cigarette smoke, engine exhaust fumes and fossil fuel smoke.
These PM in complex mixtures are generally classified as insoluble, al-
though it is recognized that they may have soluble components. Studies
of the deposition of PM in the respiratory tract demonstrate that inhaled
particles with sizes of less than 100 μm deposit in the upper respiratory
tract and larger airways by impaction and gravitational sedimentation
[37,38]. Inhaled particles of 6 μm diameter or less tend to deposit in the
mucus lining the airwayswhere they are cleared by themucociliary esca-
lator. Smaller particles deposit via diffusion in the smaller airways and the
alveolar ducts and sacs. PMbetween 1 and 3 μmin aerodynamic diameter
are the optimal particle size range for deposition in the peripheral lung,
representing an important particle population which will come into con-
tactwithAMs. Submicron-sizedparticles have also been shown todeposit
throughout the entire respiratory tract, despite a significant portion being
exhaled, and therefore may also interact with AMs [39–41].

2.2.1. Acute interactions between AMs and inert, insoluble particles
AMshave a density of 12–13 per alveolus in a healthy person and play

a key role in removing PM [39]. It is well known that the physicochemical
properties of PM are closely linked with macrophage responses, yet the
exact mechanisms by which macrophages can recognize different PM
and tailor their response (i.e. instructive phagocytosis) is still poorly un-
derstood. Underhill and Goodridge [42] provide an evocative description
of instructive phagocytosis as occurring in four phases: ‘tasting’, ‘feeling’,
‘swallowing’, and ‘digestion’. Tasting usually involves interactions be-
tween the particle and cell surface receptors. For example, AMs possess
a broad family of scavenger receptors that will bind to polyanionic motifs
and will be triggered by a wide variety of particles possessing this chem-
istry. In particular, macrophage receptor with collagenous structure
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(MARCO), a Class A scavenger receptor, has been shown to be directly in-
volved in the uptake of titaniumdioxide (TiO2), silica, diesel particles, and
latex beads by AMs [43,44]. Specific receptor involvement for binding to
highly cationic surfaces has not been reported; however, non-specific
electrostatic interactions are often cited as amechanism for the highbind-
ing and cytotoxic effects observed for cationic particles [45]. Finally, in-
haled particles depositing in the alveolar lining fluid are likely to be
opsonized by lung lining fluid components (i.e. albumin, surfactant pro-
teins, glycoproteins and phospholipids), which can also bind to a range
of macrophage surface receptors [46].

‘Feeling’ or ‘mechanosensing’ involves coordination of a number of
triggered surface receptors which instigate membrane re-arrangement
around the particle, with the response depending on properties such
as size, rigidity and shape of the particle [42,47,48]. The number and
type of receptors triggered by this process dictate the response, which
may explain why inert PM with a size and shape similar to common
micro-organisms can be highly effective at activating macrophages,
while other inert PM is not. Interestingly, in some instances ‘feeling’
can occur independently of receptor binding through direct interaction
between crystalline materials and cholesterol-rich regions of the cell
membrane. Uric acid crystals (a well-known immunostimulatory adju-
vant) has been reported to interact stronglywith cholesterol-richmem-
brane regions of dendritic cells, inducing lipid sorting, phagocytosis and
activation via a Syk kinase-dependent signaling pathway [49].

The subsequent phases of ‘swallowing’ and ‘digestion’ (i.e.
phagosomal processing and signaling) are not well described for inert
particles; this is in contrast to a sizeable literature on phagosomal pro-
cessing of microorganisms and dead cells. It is known that AMs respond
to certain inhaled PM in a pro-inflammatory manner (similar to M1 ac-
tivation) via generation of oxygen radicals, increased protease activity
and release of pro-inflammatory mediators (TNFα, IL-1β, IL-6, IL-8,
MIP-1, MMP, GM-CSF) [50]. These mediators can recruit neutrophils
into the alveolar spaces and tissues and stimulate other immune re-
sponses, thereby establishing an inflammatory response and potentially
causing tissue damage. For certain types of PMs this activation may re-
sult from phagosomal processing (i.e. acidification and enhanced enzy-
matic activity in the lysosome) which can alter the physical or chemical
properties of the ingested material, resulting in release of soluble
chemical species, disruption of normal phagosomal functions or even
phagosomal rupture. An example of this phenomenon is Nlrp3
inflammasome activation following macrophage exposure to inert par-
ticles [51]. Even for inert, insoluble, PM that does not induce a pro-
inflammatory response, there is concern that they may impair normal
AM functions, including the ability to recognize and phagocytose path-
ogens [39], especially in compromised populationswith existing airway
diseases [52]. In addition, PM composed of certainmaterials, such as sil-
ica, can be directly cytotoxic to AMs [53,54].

2.2.2. AM responses to chronic insoluble particle exposure
A large body of literature has accumulated reporting the outcomes of

inhalation toxicology studies investigating the effects of chronic exposure
to inert, insoluble PM on respiratory health. The outcomes of inhalation
studies using insoluble particles can be used as guidance in interpreting
non-specific responses to inhaled particulate pharmaceuticals. From a
historical perspective, the materials investigated inmany of these studies
(e.g. titaniumdioxide, carbonyl iron, and carbon black)were chosen to in-
vestigate thephenomenonof lungoverload andoverload-related carcino-
genesis in rats. However, in studies where lower dose groups were
included, increases in AMswere observedwithout pulmonary inflamma-
tion and were considered adaptive and non-adverse.

For example, an inhalation study using rats exposed to titanium di-
oxide or carbonyl iron for four weeks [55] demonstrated that low dose
exposure (5 mg/m3) resulted in an increase in alveolar macrophages
without inflammatory or other lung changes and the increases in mac-
rophages resolved during the recovery period. Similar findings have
been reported for exposure of rats to carbon black at 1 mg/m3 for
13 weeks [56,57]. At higher concentrations, exposures to these insolu-
ble particles induced accumulations of particle-laden macrophages,
hypertrophy and hyperplasia of alveolar epithelium, neutrophilic in-
flammation and, in some carbon black exposure groups, additional
changes such as degeneration and necrosis, alveolar proteinosis, and fi-
brosis. At the higher concentrations these changes either partially re-
solved, showed no resolution, or, in the case of fibrosis, progressed.
The degree of resolution or progression depended on the amount of ex-
posure, resulting particle lung burden and the severity of the response.

In a longer term (2 year) study, inhalation of titanium dioxide at
10 mg/m3 [58] resulted in a small increase in alveolar macrophages (ob-
served in clusters), slight local hyperplasia of type II epithelial cells, and an
increase inmacrophages in local lymphoid tissue. Therewas no change in
body weight, clinical signs, morbidity, or mortality compared with un-
treated animals. This study demonstrated that a particle exposure
which induced slight type II cell hyperplasia in association with accumu-
lation of alveolarmacrophages over the lifetimeof the rats didnot have an
identifiable adverse effect on the lungs or the health of the animals.

3. AM responses to inhaled medicines

AM responses to inhaled medicines are generally observed in non-
clinical studies as a focal or multifocal increase in numbers in the
lungs and/or a change in the appearance. Changes in AM morphology
are sometimes referenced confusingly in the literature and a note on
terminology is included below.

3.1. Terminology: ‘foamy’ macrophages

‘Foamy macrophage’ is a term used by pathologists to describe lung
macrophages that have taken on a granular or vacuolated cytoplasmic
appearance when viewed by light microscopy (Fig. 3). These AMs are
also typically enlarged compared to non-vacuolated AMs. As it is used
currently, the foamy macrophage descriptor is applied to a number of
different macrophage phenotypes, including AMs that respond adap-
tively, but non-adversely to inhaled medicines (Section 3.2) and AM re-
sponses that are associated with a variety of different etiologies and
pathophysiologic processes (Section 3.3).

3.2. Adaptive responses

Nonclinical inhalation toxicity studies, particularly those conducted
with drugs designed tomaximize effects in the lung through low solubil-
ity, often report an increase in AMs as the primary histopathology obser-
vation. In the absence of any other indication of inflammation, an increase
in AMs is consistent with a non-specific physiological response to the de-
livery of particles to the alveolus and may be considered non-adverse
(Nikula et al. [15]). In such circumstances, development may progess
into the clinic even though it is currently not possible to monitor and
characterize potential macrophage accumulation in man due to the ab-
sence of clinicalmeasurement techniques and discriminatory biomarkers
(Section 5). If the particulate burden exceeds the clearancemechanism of
the alveolus this may result in additional findings in nonclinical studies
indicative of inflammation. In this case the clinical relevance of the re-
sponse to excessive doses utilized in nonclinical studies may be queried,
but if additional findings are observed at the lowest dose investigated a
NOAEL to support progress to the clinic has not been established.

A further complication is that the pharmacological properties of the
drug being testedmay induce changes in the alveolus [59]. It is often dif-
ficult to distinguish primary and secondary pharmacology responses
from non-specific effects associated with the particle burden of poorly
soluble drugs. Direct pharmacological effects upon pneumocytes (sur-
factant production, modulation of cytokine release) or macrophages
(inhibition of phagocytosis, cell migration or apoptosis) and any rele-
vant secondary pharmacology may induce a macrophage response or
modify the ability of alveolar macrophages to clear particles.



Fig. 3. Light microscopy images (×40) of murine alveolar macrophages (AM) recovered from bronchoalveolar lavage illustrating (a) AM from an untreated animal, (b) AMwith coarsely
vacuolated cytoplasm after exposure to particulatematter, (c) AMwith finely vacuolated cytoplasm after exposure to particulatematter. The particulatematterwas 150 nmnanoparticles
formed of polyvinyl acetate with different degrees of hydroxylation: 40% (image b) and 20% (image c).
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3.3. Adverse pulmonary responses to inhaled medicines

Although macrophage accumulation and/or the presence of foamy
macrophages in the absence of other findings are not necessarily indica-
tive of toxicity, when these responses are seen alongside additional
markers of inflammation or distinct histopathological changes, the overall
response is likely to be interpreted as adverse. The determination and
reporting of pathology findings are critical to this categorization and rec-
ommendations to assist in distinguishing and reporting adaptive versus
adverse findings have recently been published (Section 4.1). Typical pa-
thologyfindings indicative of inflammation are thepresence of inflamma-
tory cells with epithelial and interstitial changes, including those
characteristic of chronic inflammation and fibrosis.

Aside from inflammation, a number of distinct pathologies associated
with foamy AMs have a clear clinical relevance. These include pulmonary
alveolar proteinosis (PAP) and phosholipidosis. PAP is described particu-
larly in humans and features AMs that have a foamy appearance, with
the additional conspicuous presence of intra-alveolar eosinophilicmateri-
al that can be demonstrated to be lipid-rich via Oil Red O or adipophilin
staining (sometimes associated with tubular myelin). Evidence suggests
that impairment of the ATP-binding cassette ABCG1 is implicated as its
loss is associatedwith an inability to control cellular sterol levels, especial-
ly in pulmonarymacrophages [60,61]. PAP appears to be related to certain
exposures, such as the inhalation of silica dust [13].

AM phospholipidosis is caused by an excessive accumulation of
phospholipids in lysosomal lamellar bodies resulting in a foamy pheno-
type [62]. The change is not restricted to the lungs and can also be seen
in other cells across multiple tissues, although often the AM is the most
sensitive cell type affected and most readily demonstrates the change
on light microscopic examination. Phospholipidosis is a common fea-
ture in several lung diseases, and can be seen in surfactant protein D
(SP-D)-deficientmice and in response to infections such as tuberculosis
[63,64] and human immunodeficiency virus [65]. AM phospholipidosis
also develops in the lungs in an emphysema model induced by chronic
cigarette smoke exposure [66] in which the foamy macrophages are
thought to play a key role in the development of the emphysema and
are associated with increased production of matrix metalloproteases
(MMP), TNF and GM-CSF and reduced presence of SP-D. AM
phospholipidosis can be induced directly by drugs of certain chemical
classes, e.g. cationic amphiphillic drugs (CADs) such as chloroquine
and amiodarone [62,67,68]. It is thought that CADs form intracellular
complexes with phospholipids, which become resistant to intracellular
digestion and accumulate in the cytoplasm of macrophages. Typically
the exposure to CAD is systemic or oral, rather than by inhalation, and
the response is not restricted to alveolar macrophages.

The functional consequences of AM phospholipidosis include slow
clearance of the engulfed phospholipidosis-inducing material which re-
sults in AM recruitment and increases in macrophage numbers [62,69].
The cellular changes can progress to lysosomal fragility and proteolytic
enzyme leakage, causing cell damage, death and associated inflammation.
Drug-induced phospholipidosis which does not advance to the severity
described abovemaybe reversible, although this reversal canbe a lengthy
process. The observation of AMs with a ‘foamy’ appearance, but without
lysosomal lamellar bodies should not be confused with phospholipidosis.

3.4. Mechanisms of AM response to inhaled medicines

The principal responses of AMs to inhaled aerosol medicines are
phagocytosis and biochemical activation as discussed in Section 2.
AMs act rapidly to phagocytose/neutralize and remove unusualmaterial
from the alveolar space [13]. These mechanisms underpin the typically
observed AM-related findings in nonclinical toxicology studies; accu-
mulation through recruitment of additional macrophages and/or
changes in AM appearance. Accumulations of macrophages are
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sometimes observed as aggregates although the reason for this is un-
clear. When the rate of inhaled particle deposition exceeds the rate of
clearance, material accumulates potentially leading to the overloading
of macrophages with adverse consequences [11].

The foamy AMmorphology may arise though a number of different
mechanisms and therefore herald different consequences. For example,
the macrophages may present neutral lipid in droplets or lipid vacuoles
or exhibit lysosomal lamellar bodies indicative of phospholipidosis [70].
Surfactant, which is rich in phospholipids, is constitutively produced
and cleared by alveolar epithelial cells, but in situations when an excess
is produced (asmay arise after corticosteroid inhalation) surplus surfac-
tant is phagocytosed by AMs which develop a foamy appearance. Inha-
lation of saliva can produce a similar change. Exogenous materials
associated with the development of foamy AMs include high-fat diets,
liposomal delivery vehicles, misdosed oral drug delivery vehicles such
asmethylcellulose, and drug particulatematter in the form of therapeu-
tic aerosols. The vacuolated cytoplasm in AMs exposed to inhaled oligo-
nucleotides contains basophilic granules thought to be oligonucleotide-
relatedmaterial. Foamymacrophages are also symptomatic of somedis-
ease states including Niemann–Pick disease and some infections, in-
cluding tuberculosis and human immunodeficiency virus (HIV).

When foamy cytoplasm is observed by light microscopy, transmis-
sion electron-microscopic examination of macrophage contents may
assist in discriminating distinctive features such as insoluble PM, crys-
talline formations (related to drug crystals) or multilamellar bodies
(suggestive of phospholipidosis). As the development and functional
consequence of a foamy morphology is poorly understood, it is difficult
to interpret. For example, the observation of foamy phenotypes follow-
ing ingestion of PM composed of poorly soluble drug material by AMs
may simply be an adaptive response to an increased particle burden.
However, continued exposure could lead to a situationwhere the adap-
tive response is overcome as deposition exceeds clearance and an
adverse response may ensue. Differentiating between an adaptive re-
sponse and a response that is indicative of toxicity is critical to the safety
assessment of a material [71], and the use of definitive terms such as
phospholipidosis should be used selectively to describe clear cases
where an effect associated with lipid lamellar inclusions is confirmed.

If AM accumulation and/or foamy appearance in response to acute
inhalation are reversible, this may be indicative of an adaptive rather
than an adverse response. However, under the condition of chronic dos-
ing, even in the absence of accumulation of PM, the AM response may
lead to other non-resolvable changes in the lungs over time.

3.5. AM responses in nonclinical studies

The frequency of AM findings in nonclinical inhalation toxicology
studies and uncertainty in the interpretation of these makes the design
of inhaled product development programs complex. Two case studies
are presented to illustrate study design, findings related to AMs and
their interpretation.

3.5.1. Case study 1: poorly soluble compounds
Prototypical ‘inhalation by design’ drugs havehighmolecularweight

and are highly lipophilic with limited solubility in aqueous solutions.
These properties result in long residence times that maximize activity
in the lungs and minimize systemic toxicity potential through low sys-
temic bioavailability and high unbound clearance. This case study de-
scribes the pulmonary findings observed in repeat dose inhalation
toxicology studies of an adenosine A2a receptor agonist.

Adenosine A2a receptor agonists can inhibit neutrophil activation
degranulation [72] which provides an attractive therapeutic strategy for
COPD. To avoid cardiovascular effects associated with activation of aden-
osine A2a receptors [73] an A2a agonist, Compound X, was developed for
inhaled delivery with properties designed to maximize anti-
inflammatory activity in the lungs, while minimizing systemic exposure.
Pivotal, repeat-dose inhalation toxicology studies of 2 weeks duration
were conducted in Sprague–Dawley rats andBeagle dogswith a dry pow-
der formulation of 10% CompoundX in lactosemonohydrate. Due to poor
tolerance observed in dogs at high dose, the NOAEL was considered to
be 138 μg/kg and doses were reduced for a 3-month study (Fig. 4).

In subsequent 3-month inhalation toxicity studies, the highest daily
dose in beagles of 931 μg/kg was well tolerated with no evidence of
local or systemic toxicity making this the NOAEL. In rats, the highest
daily dose of 4754 μg/kgwas associatedwithminimal to slight accumu-
lations of alveolar macrophages in the lungs at the broncholaveolar
junction, indicative of incomplete clearance of inhaled particles. These
macrophage accumulations were sometimes accompanied by neutro-
phils/cell debris and/or secondary epithelial hyperplasia of alveolar
ducts, and in some animals, epithelial hyperplasia of terminal bronchi-
oles. The inflammatory response in the lungs was associated with
minimal to slight hypercellularity and foci of macrophages in the tra-
cheobronchial lymph node. The presence of an inflammatory response
and epithelial hyperplasia in animals exposed to 4754 μg/kg was con-
sidered adverse and the NOAEL was concluded to be 539 μg/kg.

The pulmonary changes observed in the rat were consistent with
“lung overload”, i.e. expected changeswhen the amount of particle depos-
ited exceeds pulmonary clearancemechanisms [40,74]. At the bronchoal-
veolar interface, where few cilia are present, the primary route of
clearance for poorly soluble particles is via macrophages. An overload of
macrophage clearance capacity can lead to activation, with inflammatory
consequences. The lung deposition of Compound X at 4754 μg/kg/day
was calculated to be approximately 0.1 mg/g lung weight, which was at
the lower end of the estimated lung burden threshold of 0.1–1 mg/g re-
ported to be the point of transition between adaptive and adverse chang-
es in the lung [6].

An additional 6-week study in rats was necessary to characterize bet-
ter the NOAEL using intermediate doses and establish a NOAEL of
2910 μg/kg which provided adequate safety margins needed to support
the proposed maximum clinical dose. The pulmonary findings observed
in the rats exposed to Compound X could not have been predicted prior
to initiation of the 3-month inhalation studies as the deposition levels
were below the threshold at which an adverse change would be predict-
ed and the known primary and secondary pharmacology of Compound X
did not provide an obvious explanation for this apparent increase in sen-
sitivity of the rat to particulate burden. However, further development of
Compound Xwas halted for reasons unrelated to the rat pulmonary find-
ings, limiting the ability to further investigate the mechanism of toxicity.
3.5.2. Case Study 2: Inhaled oligonucleotides1

Inhaled oligonucleotide-based drugs for respiratory diseases are
being developed by several companies [75]. For example, Pharmaxis
with combination RNAse H-mediated antisense for the treatment of
asthma [76] and Alnylam with small interfering RNA for the treatment
of respiratory syncytial virus infection [77] have already completed
Phase II clinical trials for inhaled oligonucleotide formulated in simple
physiological buffers. A number of oligonucleotide class-related toxic-
ities (i.e. actions independent of pharmacology) have been identified
in nonclinical studies [78–84], a number of which are relevant for the
inhaled route [85]. These include increased presence of basophilic gran-
ules assumed to be oligonucleotide-related material in tissue macro-
phages (e.g. Kupffer cells in the liver).

Lung responses to oligonucleotides in nonclinical toxicology studies,
and potential markers that can be assessed in the clinic to monitor
changes in the lungs have been identified for inhaled oligonucleotide
treatment [85]. Lungfindings are generally reminiscent of the effects re-
ported with systemic oligonucleotide administration [86,87]. Key find-
ings in short-term inhalation toxicology studies include AMs with
vacuolated cytoplasm containing basophilic granules and mononuclear
cell infiltration,mainly in the interstitium but also in the local lymphoid



Fig. 4. Schematic illustrating the challenge posed by the nonclinical requirement to establish NOAEL in two species with sufficient safety margin to support themaximumdose in humans
(safety margins are 10× in rats, 6× in dogs). This case study is based on a poorly soluble A2 receptor agonist developed by Pfizer (Section 3.5.1).
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tissues and upper airways. The ‘foamy’ appearance of the vacuolated cy-
toplasm should not be confused with phospholipidosis. In vitro data in
the murine monocyte RAW264.7 cell line suggest that single stranded
phosphorothioate (PS) oligonucleotide exposure does not result in ob-
vious activation, cytotoxicity or impaired phagocytosis [88].

It is possible that PS-backbone-mediated chemotaxis partly under-
lies the macrophage accumulation observed in many tissues following
oligonucleotide administration, including AMs in the lungs. Baek et al.
[89] reported that single stranded immunostimulatory CpG oligonucle-
otides caused concentration-dependent activation of murine peritoneal
macrophages in vitro independent of backbone chemistry (PS or PO).
However, in a chemotaxis assay, only CpG oligonucleotides with a PS
backbone increased migration of peritoneal macrophages across an
8 μm membrane in a chemotaxis chamber [89]. Overall, inhaled oligo-
nucleotides for the treatment of respiratory diseases are well tolerated
clinically [85], although the nonclinical safety knowledge base is limit-
ed. At present, it is unclear whether the AM response is part of an in-
haled oligonucleotide-related toxicity and the activation status of AMs
after acute exposure and the chronic effects of oligonucleotides are un-
known. However, it is encouraging that with systemic oligonucleotide
administration, similar morphological changes in tissue macrophages
appear to be benign.

4. Advances in nonclinical safety assessment

Nonclinical inhalation toxicology is a challenge, especially for new
chemical entities or novel compound classes. A number of recent or
on-going initiatives include efforts to harmonizemethods and reporting
and to develop new techniques to inform our understanding of
macrophage-related responses to inhaled medicines.

4.1. Harmonizing terminology in nonclinical inhalation toxicology

Unless care is taken when selecting terminologies, the manner in
which incidental and potentially drug-related lung changes are recorded
in inhalation studies may make toxicology data tables difficult to
interpret. Scientific evaluation relies on consistent and objective record-
ing of data, and this is particularly important in regulatory science. Incon-
sistency in terminology (between different pathologists describing the
same lesion or the samepathologist looking at the same lesion at different
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times) leads to unnecessary confusion. It is also important to appreciate
that generic terms, e.g. ‘foamy macrophages’, may be used for findings
which, although morphologically similar by light microscopy, neverthe-
less are quite different from a biochemical/pathogenic point of view. In
nonclinical safety assessment, it is important to identify adaptive re-
sponses and to distinguish them from those likely to be adverse. Termi-
nology used by pathologists in summary data tables reporting
inhalation studies should distinguish non-adverse, adaptive increases in
numbers of AMs frompotentially adverse changes complicatedby inflam-
mation, cytotoxicity, or other changes in the pulmonary parenchyma [15].

To this end, a position paper [15] endorsed by the Society of Toxico-
logic Pathologists (STP) has recommended use of the term “increased
alveolar macrophages” to describe an uncomplicated increase in the
number or number and size of AMs, regardless of whether the increase
occurs in naïve or vehicle control animals or those that inhale test article.
This “no threshold” approach to recording all instances of increased
macrophages above the expected number of randomly scattered, indi-
vidual AMs has been proposed for several reasons that include facilitating
the use of historical control data and the fact that it shows that an
increase in AMs is part of a normal adaptive response and, in the absence
of secondary changes, should not be considered adverse. The STP
group recommended use of “increased alveolar macrophages” as a
stand-alone diagnosis not meant to include other findings such as in-
flammation, degeneration, hyperplasia, or fibrosis. Additional findings,
when they occurred, would be entered separately. The STP group ac-
knowledged that in some situationswhere additional findings, such as in-
flammation and Type II pneuomocyte hyperplasia, are consistently co-
localized with accumulations of macrophages, it may be more
appropriate to use a single term, such as chronic inflammation, but the
group recommended against using increased alveolar macrophages as
an umbrella term to include additional findings. The pathologist must
also be alert to non-test article-related findings and use alternative termi-
nology to distinguish these, e.g. findingswhichmay presentwhen food or
bedding material is inhaled.

4.2.Modeling accumulation of poorly soluble compounds using toxicokinetics

There is a significant body of evidence within the literature linking
inhaled particulate burden to adaptive changes and adverse pathology
in the lungs with particular reference to increases in AMs. This includes
guidance on estimated thresholds of inhaled PM thatwill result in adap-
tive or adverse changes within the lungs [55,58].

Deposition, dissolution, absorption and distribution within the lungs
following inhaled delivery is complex (Fig. 5). Furthermore, absorption
Fig. 5. Schematic of inhaled absorption from the lungs [figure reprinted with permission
from [6]].
from the lungs may involve transport via and localization in the pulmo-
nary lymphatics, especially for particles andmacromolecules [90–92]. Al-
though direct quantitativemeasurement of non-dissolved particles in the
alveolar compartments is unfeasible, an estimate of lung particulate bur-
dens can be made by evaluating plasma toxicokinetic data from nonclin-
ical studies. When the intrinsic pharmacokinetics of a compound in a
nonclinical species of interest are understood (i.e. intravenous clearance,
volume of distribution, systemic elimination half-life, oral absorption
and lung absorption rate following solution administration to the
lungs) the toxicokinetic data can provide an insight into the likely
events occurringwithin the lungs and enable an estimate of lung partic-
ulate burden over time.

Typically in rats and dogs the intravenous systemic half-life of an in-
haled molecule is less than the inhaled dosing interval (typically once
daily) and therefore enhanced systemic drug concentration in the ab-
sence of lung accumulation is unlikely to occur. It is therefore likely
that any systemic accumulation (i.e. increase in systemic drug concen-
tration) observed during an inhaled toxicology study will be driven by
slow absorption from the lungs into the systemic compartment of
drug from an accumulation of slowly dissolving particles. This rationale
is supported by the general accord that adverse lung findings are
strongly linked with molecules of lower solubility and slower absorp-
tion rates throughout the lungs.

Using basic pharmacokinetic principles, an estimate of the dissolution
half-life in the lungs can be made by taking into account the dosing fre-
quency and observed systemic accumulation during the dosing period.
Using an estimated lung dissolution rate, daily dose administered and es-
timated deposition fraction a lung particulate burden can be estimated
over the time course of the inhalation study (Fig. 6) using Eq. (1) below.

Eq. (1): Estimating alveolar particulate burden

LBn ¼ D � 1− exp− KaþKamð Þ:t: nþ1ð Þ
=1− exp− KaþKamð Þ:t� �

–D
Adapted from [93]
LBn lung particulate burden on the `nth’ day (μg/g lung tissue)
D lung dose (μg/g lung tissue) (assuming FPD of 10% in rat)
Ka lung absorption rate constant (day−1)
Kam AM lung particulate clearance rate constant (day−1). Value of

0.007 day−1 based on rat clearance half life of 100 days in rat
[94]

t dosing interval (days)
n number of doses given

Although this remains a simplistic approach and incorporates a
number of assumptions, the modeling can aid interpretation of lung
findings where it is unclear whether they are adaptive versus adverse
and can guide the selection of doses for an inhaled toxicology study.
Proposed thresholds above which responses would be expected to be
observed are: (i) N0.1 mg/g lung to induce an adaptive response, and
(ii) N1 mg/g lung to induce adverse changes. The ability to estimate
lung particulate burdens can provide data to help deconvolute whether
an observed pathology is more likely to be driven by particulate burden
or the physicochemistry/pharmacology of the molecule.

Based on discussion at the APSGB-HESI workshop, the majority of the
pharmaceutical industry evaluates total lung concentrations over
time routinely. Generally, this is not captured as part of inhalation toxicol-
ogy studies but primarily as a separate pharmacokinetic evaluation to aid
the understanding of pharmacology studies. However, the information
provided by measuring drug concentration in homogenized lungs is lim-
ited by the inability to discriminate between non-dissolved and dissolved
drug. Comparison of total lung concentrations between compounds will
also be influenced by the specific molecular properties and lung tissue
affinity/distribution coefficient. Although toxicokinetic data may not pro-
vide precise concentrations in different lung compartments, it does
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Fig. 6. Simulation of systemic plasma exposure (A) and lung particulate burdens (B) for a molecule with differing dissolution rates in the lung following a 1 mg/g deposited lung dose
administered daily for 14 days. Grey line—0.5 h dissolution half-life. Black dotted line—12 h dissolution half-life. Solid black line—48 h dissolution half-life.
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provide ameans of evaluating an overall elimination half-life of drug from
the lungs. Examples of plasma and lung exposure data have been pub-
lished recently demonstrating the ability to compare plasma and lung
half-lives to provide further information on the molecule of interest [95].

In summary, plasma toxicokinetics are routinely measured in non-
clinical studies following inhaled administration to provide a measure
of systemic exposure during the dosing period to enable systemic expo-
sure margins to be estimated for inhalation delivery to humans. Plasma
Cmax and AUCmeasurements are made, and the difference in exposure
from thefirst to the last dose can be evaluated to provide information on
accumulation. However, although these measurements are useful from
a systemic perspective, they do not provide a direct link to the concen-
trations within the lungs. Generally, lung concentration data is not
routinely part of an inhalation toxicology study due to the limited inter-
pretation that can be made and the additional cost and complexity in
study design. In this absence, the plasma toxicokinetic data can provide
additional utility for molecules that are of low solubility and exhibit a
plasma AUC that indicates accumulation from the first to the last dose.
Under these criteria, pharmacokinetic principles can be applied to esti-
mate lung particulate burden providing the overall disposition of the
molecule after inhaled delivery is well understood.

4.3. Advanced analysis of formalin-fixed paraffin embedded samples

Formalin-fixedparaffinembedded (FFPE) samples of lungs innonclin-
ical inhalation toxicology studies enablemacrophage accumulations to be
studied in detail usingmultiple analytical techniques. Longitudinal analy-
sis of samples collected using this technique allows the onset of responses
and effects after cessation of dosing to be evaluated. The morphological
features that can be discerned in FFPE include the number and size of
AM accumulations in a histological section, the presence or absence of
any other changes, such as inflammation, necrosis and epithelial hyper-
trophy/hyperplasia. The evaluation of the number and average size of
macrophage profiles in histological sections can be semi-automated by
immunohistochemical staining with a macrophage marker such as ED1
[96] and analysing the stained sections with an image analysis platform.

Amajor advantage of FFPE samples is the additional insights into AM
accumulations that may be elicited. The expression levels of genes in
samples may be analysed by polymerase chain reaction (PCR) [97]
and, if required, specific cell types can even be sampled from the lung
sections using laser capture microdissection [98]. Several commercial
kits allow extraction of total RNA from FFPE samples and convert it to
cDNA for the measurement of biologically relevant gene expression
data [99]. Gene arrays are available that can identify changes in aspects
of lung biology, e.g. immune balance [100] or the activation status of
macrophages [24]. In situ hybridization is a useful adjunct to PCR
analysis because it localizes significant changes in gene expression in
situ [101]. FFPE samples of lung are also amenable to quantification of
protein levels by mass spectrometry [102], which can be combined with
immunohistochemistry to localize the measurements. The additional in-
formation about macrophage accumulations available through such
analyses has thepotential to providepowerful evidence todiscernwheth-
er an induced AM response to inhaled material is adaptive or adverse.

Advantages of the FFPE technique include the ability to generate sev-
eral different data sets from the same FFPE sample. This reduces animal
usage as additional analyses can be performed on the FFPE samples of
lung that are processed routinely for analysis by light microscopy in tox-
icology studies. Further, the novel data from additional analyses can be
compared directly to themorphology of the lung obtained by routinemi-
croscopy. Other advantages are that the residualwax blocks can be stored
and repeatedly sampled and analysed as studies evolve, allowing samples
fromcontrol, non-adverse and adversely affected lungs to be revisited. Ar-
chiving of FFPE samples will enable retrospective analyses to be carried
out on large sample sets from previous toxicity studies, with the potential
to accelerate the acquisition of data and knowledge [103]. The notewor-
thy disadvantage of the FFPE approach is that all data are generated
from thin histological sections of lung, raising concerns regarding how
representative the data are of the lungs as a whole. Analytical consider-
ations include the limitations of 2 dimensional compared to 3 dimension-
al counting methods [104] and the impact of degradation of RNA during
storage on the quality of gene expression data [105].

4.4. Recognizing species differences in sensitivity and recovery

Risk assessment during the development of inhaled medicines re-
quires anunderstanding of the sensitivity of the species used in nonclin-
ical toxicology studies to inhaled particles. This enables the relevance of
findings in different species to be evaluated and compared. The species
for which most data is available are rodents and nonhuman primates.
4.4.1. Species sensitivity
Rats are more sensitive than mice and hamsters to pulmonary over-

load with poorly soluble particles, such as pigmentary titanium dioxide
(Ti02) [106] and other inhaled toxic substances like diesel exhaust par-
ticles [107]. This sensitivity is associated with differences in physiologic
responses. After exposure to Ti02 for 13 weeks, cell turnover at alveolar
sites was consistently high in hamsters, consistently low in mice, and
there was an increase in turnover at the mid and high doses at one or
more time points in the rat [106]. There was a similar clearance of Ti02
in mouse and rat lung, compared to the more substantial clearance
seen over 52 weeks of recovery in hamster. However, rats had substan-
tially higher amounts of Ti02 accumulated in lung-associated lymph
nodes than mice or hamsters. Rats also had the highest percentage of
neutrophils in the lung, an endpoint that did not recover over the
52 week recovery period. The percentage of neutrophils in hamsters
was high (~55% of total cellularity) at the beginning of the recovery pe-
riod but it dropped to less than 10% after 52 weeks of recovery. These
findings suggest that there are differences in the ability of various ro-
dent species to clear insoluble particles, and the authors concluded
that these differences predispose rats to chronic inflammation and an
increased susceptibility to tumor formation.
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Species differences have also been identified between rats, Syrian
hamsters, and mice after chronic exposure to diesel exhaust [106,107]
and silica [108]. Rats developmore prominent alveolar epithelial hyper-
plasia, chronic-active inflammation, focal areas of fibrosis, and epithelial
metaplasia and aremore prone to develop lung tumors [109]. Hamsters
developed mild bronchiolar–alveolar hyperplasia but no lung tumors.
While some strains of mice may be susceptible to tumor formation
after exposure to diesel exhaust, CD-1 mice exposed to conditions that
were carcinogenic to F344 rats did not develop lung tumors [110].

Non-human primates have more physiological similarities to
humans than to rats and other rodents. Despite having a higher fraction-
al deposition and slower rate of clearance of particles than rodents [41],
pulmonary overload is not common in humans.Mice and rats have sim-
ple acini (alveoli without respiratory bronchioles) while monkeys and
humans have larger more complex acini (similar respiratory bronchiole
anatomy and alveolar ducts) [111,112]. Humans have thicker pleura,
more abundant pleural lymphatics and more interlobular connective
tissue than rats. Non-human primates have little interlobular connec-
tive tissue but tend to accumulate macrophages in the interstitium in
response to inhaled coal dust and diesel exhaust, similar to humans
[109,113,114]. In the study of Nikula and colleagues, AMs were less
prominent in monkeys than in rats with less prominent epithelial hy-
perplasia, fibrosis, and alveolar proteinosis [109]. This can be explained
in part by the presence of lymphatics adjacent to the respiratory bron-
chioles and alveoli in primates, decreasing the amount of luminal parti-
cles which initiate the inflammatory response [115].

Sensitivity to a single output, such as epithelial hyperplasia in re-
sponse to inhaled silica in rats, cannot be extrapolated to other lesions.
In humans, silica results in high grade fibrosis, but that is not the case in
rats [116]. Thus, rats are more sensitive than humans to developing ep-
ithelial hyperplasia and tumor formation in response to inhaled silica,
whereas humans are more sensitive than rats to developing fibrosis.
This example illustrates that a finding in one species cannot be assumed
to be predictive of another finding in another species as the underlying
physiological responses may be different. Greater understanding of
species-specificmacrophage responses (e.g. polarization) could help ex-
plain differences in responses to inhaled pharmaceuticals.

4.4.2. Species differences in reversibility of response
Species differences in physiology and responsewill also impact the re-

covery of responses to inhaled particles. Normally, PM is removed from
the lung slowly, with the main route of removal being mucociliary clear-
ance [39]. The recovery from adverse responses to inhaled PM in the lung
will depend on the resolution of inflammation as well as removal of the
PM.

In species that respond to PMwith a low tomodest influx of neutro-
phils into the lungs, recovery occurs over a long period of time. Since
rats respond to inhaled toxicants by influx of high numbers of neutro-
phils and accumulate the majority of particles within AMs rather than
in the interstitium, they may incur significant tissue disruption and de-
velop chronic-active inflammation more readily than other species.
Under these conditions, irreversible lesions such as ongoing inflamma-
tion and fibrosis develop. When the rat is subject to particulate over-
load, e.g. with carbon black dust, the chronic-active inflammatory
process has been followed for up to 15 months without evidence of re-
covery [117]. The hamster develops the same character of lesions but
clears the inflammation over time, with fewer ongoing and irreversible
changes [106]. Thus, the same response to PM in different species can
have dramatic differences in reversibility. This is probably because alve-
olar macrophages in the hamster are more efficient at phagocytosis of
particles and produce less reactive oxygen species compared to rat
[118,119], which leads to less ongoing damage and inflammation.

Species differences in other physiological aspects may influence re-
covery from lung injury associated with inhaled PM. In iNOS−/−
mice, resolution of LPS-induced acute lung injury was delayed. This ef-
fect could be alleviated by introducing wildtype (iNOS+/+) bone
marrow-derived monocytes, indicating the importance of iNOS in the
resolution of lung injury [120]. In contrast, hamsters fail to produce
iNOS protein or form nitric oxide in response to in vitro exposure to
LPS, IFN-gamma or TNF-alpha [121], indicating that the mechanisms
governing recovery are multifactorial or different in different species.

There is a paucity of information on recovery from inhaled particles
in monkeys. Interstitial accumulations of macrophages in monkeys
would be expected to recover very slowly based upon the long half-
life of retention of insoluble particles (~700 days for dogs, and presum-
ably similar for monkeys and humans) during the slow phase of clear-
ance [41]. A percentage of these macrophages will be transported to
local lymph nodes [41]. However, the lack of inflammation associated
with the accumulations of interstitial macrophages makes the recovery
time less of a concern.

In summary, the differences between rodent and human lung anat-
omy and physiology are significant. The changes in lungs associated
with inhaled PM and toxicants are not consistent across different spe-
cies, even among rodent species, and are not necessarily directly predic-
tive of human response to the same particles or toxicants. Models,
including in vitro assays, that are more predictive of human responses
are desirable for improved risk assessment.

4.5. In vitro models for nonclinical inhalation toxicology

In vitro AM models which are predictive of the human response to
inhaled medicines would be a potentially valuable tool to provide sup-
plementary data to inform the design or interpretation of nonclinical in-
halation toxicology studies and support progress to the clinic. Several
cell culture models of AMs are currently in use or are being developed
to investigate the biology and role of macrophages in human health
and disease. In vitro models are also used extensively in inhaled medi-
cine discovery research, although their role in product development
programs is currently limited. A number of different in vitro models
are available and their selection depends on the suitability of the system
for the application.

The cell type should be relevant to those exposed to inhaled PM and
many cell culture models based on lung cells are available [122,123], in-
cluding cell lines and primary cells, co-culture and 3D culture systems
[124]. It is important that such cell systems respond in a similar manner
to the cells in situ. In the case of AMs, primary cells from the lungs and
cell lines are available [125,126]. However, the less ready availability and
efforts to decrease animal usage makes investigation using primary cells
and tissues unrealistic for routine high throughput screening, although
with sufficient cell yield and suitable assay end-points, primary cell sys-
tems may still represent an animal-sparing approach. It must be remem-
bered that cultured AMs, like their in vivo counterparts, show
considerable phenotypic plasticity [18,20,127,128]. This means that cul-
ture systems are dependent on how the macrophage responds in the
in vitro microenviroment and may not accurately replicate responses to
drug inhalation in a complex lung environment.

A number of assays are available to investigate responses to drugs or
PM in vitro (Table 2). Viability assays can determine the potential of the
drug in its intended inhaled form to cause cellular damage/death. AM
activation may be evaluated by the production of inflammatory
markers, but these are dependent on the selection of analytes and the
interpretation of responses is complicated by questions regarding how
responses seen in vitro may relate in vivo, and whether changes seen
in vitro can be predicted to drive pathology in vivo. The function of
AMs can be used as a marker for the potential of a drug to disrupt ho-
meostasis in the lungs. AMs serve as important sentinels, phagocytosing
particles and clearing pathogens, but if their functional capacity is com-
promised, there is the potential for reduced clearance capacity and in-
ability to respond appropriately to pathogen challenges. Changes in
AM morphology in vitro in response to drugs or PM may reflect re-
sponses in vivo. Consolidating these readouts can reveal the potential
for drugs or PM to cause detrimental changes to the cells of the lungs



Table 2
Assays commonly used with in vitromodels to investigate macrophage responses to drugs or particulate matter.

Cell
response

Assay Limitations

Viability AMviability can be assessed easily [179,182] at low to high throughput by a variety
of readily available cost effective kits [183]. Drugs can be compared and ranked
relative to their potential to cause cytotoxicity. This is used to screen out
compounds that have clear unequivocal toxicity issues.

Viability endpoints do not provide any mechanistic understanding of cellular
response. In addition, cells in culture do not include the dynamics of lung
residency, so whilst compounds may be identified with potential risk, cellular
responses may differ when other lung physiology is included.

Activation AM activation state may complement in vitro cytotoxicity readouts and forewarn
of the potential for any marked in vivo inflammatory response triggered by drug
stimulation of AMs. Activation can bemeasured by cytokine/chemokine induction
and immuno-phenotypic changes [71].

The choice of which cytokines/chemokines to measure remains speculative.
Responses may vary between different chemical classes or be modulated by the
pharmacological activity of the drug, making direct interpretation to lung
responses challenging.

Function Phagocytic function can be quantified using flow cytometric assays [184] and
immune functions such as oxidative stress can be assessed by measuring reactive
oxygen species (ROS) production, glutathione (GSH:GSSG), lipid peroxidation and
heme oxygenase-1 (HO-1) expression. Early identification of responses to drugs or
PM in vitro may help to guide the appropriate studies to undertake in vivo.

Early functional measures in response to drug/particle challenge may be
influenced directly by pharmacological effects. Often culture systems do not
accommodate the chronic dosing aspects of in vivo toxicology studies.

Morphology Low resolution and confocal microscopy can reveal detailed changes, particle
accumulation and foamy phenotypes. Flow cytometry can quantify changes in
cellular granularity associated with drug accumulation.

Changes in surface or internal characteristics only describe the phenotype crudely
with little detailed understanding of the intracellular changes taking place.
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at reduced cost, and can help inform discussions on candidate selection,
reducing the risk of taking forward a potentially toxic or unintentionally
immune disrupting compound to further development.

4.5.1. Macrophage cell lines
Macrophage cell lines are used widely as models for AMs to study

mechanisms of macrophage responses to a wide variety of stimuli, in-
cluding PM [129–131], inhaled pathogens [132], and to a lesser extent
pharmaceuticals [133]. Certain cell lines appear more popular than
others. RAW264.7 (mouse leukemicmonocyte-derived continuousmac-
rophage cell line; [134]), J774.A1 (mouse reticulum cell sarcoma-derived
continuous macrophage cell line; [135]), and differentiated THP-1
(human leukemic monocyte cell line differentiated to macrophage-like
cells through phorbol ester treatment; [136]) are used extensively.

The preferential use of these particular cell lines may be explained
by such diverse reasons as ease of handling, to facilitate comparison to
in vivo models by using the same species [132] or simply precedence
and the amount of benchmarking data already available for these cell
lines. There is currently a paucity of literature which critically reviews
the characteristics, advantages and disadvantages of macrophage cell
lines as a tool to understandmacrophage responses to inhaled pharma-
ceuticals. Difficulties are often encountered in using in vitro assessment
to predict in vivo response to particles. The extent to which particular
cell lines are able to exhibit responses that are predictive of in vivo tox-
icity is an aspect that requires clarification if in vitro studies are to pro-
duce valuable data for use in human safety assessment.

4.5.2. Primary human macrophages
Despite the challenge in gaining access to sufficient numbers of

primary humanmacrophages from broncho-alveolar lavage (BAL) or tis-
sue samples, the use of primary human AM culture systems to investi-
gate the role of AMs in health and disease is becoming more prevalent.
The increased use of primary cells isolated from human donors is driven
by concerns related to the species differences described above when in-
vestigatingmechanisms of health, disease and therapeutic interventions.

Most investigations using primary human AMs are studies into dis-
easemechanisms and biomarker identification. For example, it has been
shown that AMs isolated from COPD patients have an impaired ability
to phagocytose both microorganisms and apoptotic cells, and release
higher levels of cytokines, chemokines and matrix metalloproteinase-
9 (MM9) compared to AMs isolated from non-COPD smokers and
healthy volunteers [22,137]). Similar studies have been conducted for
other major respiratory disease areas including asthma, respiratory in-
fection, cystic fibrosis, and pulmonary fibrosis [22, 28–31,138].

An alternative human model of AMs uses circulating monocyte-
derived macrophages (MDMs). Monocytes are isolated from the blood
of human donors and differentiated in suspension with granulocyte–
macrophage colony-stimulating factor (GM-CSF) to produce a cell pop-
ulation with a consistent and stable phenotype which exhibits lineage
markers, Fc gamma receptors, adhesion molecules, antigen presenta-
tion co-receptors, and scavenger receptors that are claimed to be repre-
sentative of AMs [139,140]. Studies using MDMs are advantageous in
that they provide a plentiful and consistent supply of cells for experi-
mentation. MDMs from healthy donors have been demonstrated to re-
spond to stimuli such as cigarette smoke in ways that recapitulate
responses described for AMs in vivo or ex vivo. These include activation
of extracellular signal-related kinase (ERK) and p38 mitogen-activated
protein (MAP) kinase, production of interleukin 8 (IL-8, CXCL8) and in-
hibition of phagocytosis. Similar transcriptional profiles of regulated
genes between derived cultures and ex vivo cells have also been noted
[141,142]. MDMs derived from different patient groups have also been
used to examinemacrophage pathophysiology in diseases, such as asth-
ma and COPD.

The extent to which MDMs truly represent AM responses has been
investigated recently. With regard to phagocytic behavior, Taylor et al.
[137] demonstrated that AMs and MDMs derived from the same
donor and cultured under similar conditions were equally efficient at
uptake of different particles (polystyrene beads, bacteria and dead
cells). Notably, AMs and MDMs from COPD patients exhibited signifi-
cantly impaired phagocytosis compared to healthy controls and non-
COPD smokers [137].

The comparison of cell surface marker expression between AMs and
MDMs in response to disease state or therapeutic intervention has been
widely studied with mixed outcomes. For example, expression patterns
of markers such as toll-like receptors in healthy donors [143] or human
leukocyte antigen (HLA-DR) and CD80 in COPD patients [144] showdis-
tinct differences betweenAMandMDMpopulations. In contrast, Poliska
et al. [145] identified overlapping, COPD-specific gene expression signa-
tures (including surface markers) in AM and MDM populations, which
correlated with lung function [145]. These studies show that careful se-
lection and validation of biomarkers is required in studies whereMDMs
are used as surrogates for AMs. Although the use of MDM from patients
with respiratory disease is an attractive option, the processes used to in-
duce differentiation in vitro into AM-like cells may alter the characteris-
tics of these cells compared to AMs of patients.

Notably, Tomlinson et al. [140] reported that human AMs collected
from BAL and subsequently cultured demonstrated a transient pro-
inflammatory transcriptional signature with elevated secretion of the
pro-inflammatory mediators, IL-6 and TNF-α, which peaked at 4 h
post collection and diminished over 24 h before returning to a non-
inflammatory ‘resting’ state (both in terms of transcriptional regulation
and cytokine secretion). MDMs from healthy volunteers did not show a
pro-inflammatory phenotype over 48 h in culture [140]. This study
highlights an important limitation associated with most in vitro AM
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models, in that the isolation procedures associated with BAL collection
and subsequent culture conditions influence themacrophage activation
state, thus making it difficult to determine how well the in vitro study
results correlate with in vivo responses [140,146].

4.5.3. Reconstituted tissue
Several advances in in vitromodels using cultured cells have recently

been reported, which aim to improve in vitro and in vivo correlations. No-
tably, triple [147,148] and tetra [149] co-cultures mimicking the alveolar
region and containing lung epithelial, endothelial and macrophage cells
have been reported. Three dimensional (3D) cell culture models provide
realistic growth conditions for a variety of tissues including the lung,
thus directing gene expression patterns and cell function towards a
more physiological state [150]. To date there are few examples of 3D cul-
tures for the lung, although preliminary studies show evidence of provid-
ing amore physiological cell phenotype compared tomonolayer cultures.
For example, Carterson et al. [151] report that a 3D culture of the lung al-
veolar epithelial-like A549 (adenocarcinoma-derived) cells increased ex-
pression of epithelial cell-specific markers, whilst decreasing expression
of cancer-specific markers compared to monolayer grown cells. Further,
3D culture also promoted tight junction formation and cell polarity in
comparison to cell monolayers [151]. However, most of the models re-
ported to date do not incorporate macrophages [123,152], which renders
them unsuitable for investigating AM-mediated adverse responses. Re-
cently, the VitrocellTM system, a tetraculture composed of A549 cells, dif-
ferentiated macrophage-like cells (THP-1), mast cells (HMC-1) and
endothelial cells (EA.hy 926), seeded in a 3D-orientation on a micropo-
rous membrane and grown under air-interface conditions, was reported
as an improved testing system for in vitro screening of PM. The developers
of the VitrocellTM system claim that the model provides a much more
physiologically relevant system inwhich to test inhaled PM, due to obser-
vations such as the accumulation of PMpreferentially in the CD14+THP-
1 macrophage cells and more moderate inflammatory response to low
toxicity, insoluble PM compared to monolayer systems.

Another notable development in in vitro systems is the so-called ‘lung
on a chip’, whichmimics the alveolar-capillary barrier through co-culture
of lung epithelial and endothelial cell monolayers grown on a semi-
permeable, flexible membrane. The serosal chamber is permeated with
a flow of cell culture medium, whilst the mucosal side is grown under
air interface conditions. The innovation of this system is the ability to
apply a vacuum-driven fluctuation in air pressure to the mucosal cham-
ber, which stretches the cells grown on the flexible membrane and
mimics physiological breathing. The authors have shown that the me-
chanical deformation applied to the cell layers represents a more physio-
logically relevant system with regard to barrier permeability and
response to exogenous stimuli [124,153–155]. Further, the model has re-
cently been shown tomimic pulmonary edema, through perfusion of IL-2
via the serosal chamber, resulting in liquid leakage into the alveolar (air-
filled) microchamber and a loss of barrier integrity [156]. Macrophages
have yet to be incorporated into the ‘lung on a chip’ system, but this
may be possible to provide a potentially useful inhalation toxicology
screening technique.

5. Progress to the clinic

The outcomes of nonclinical toxicology investigations, including in-
duced AM effects, are critical in determining whether to progress a
drug candidate into human clinical studies and for the design of those
studies, especially dose selection. Although a consensus is emerging
about the interpretation of different AM responses in nonclinical studies
using healthy animals [15], Regulatory Authorities and clinicians
conducting clinical trials must satisfy themselves regarding the likeli-
hood of adverse effects in humans where an increase in AMs has been
observed nonclinically, i.e. are changes involving AMs likely to occur in
human trial subjects (healthy volunteers or patients)? In patients with
respiratory disease, an important question is how the disease
backgroundmay reduce or enhance the ability of AMs to respond to in-
haled drug in the way that was observed in nonclinical species.

If nonclinical observations do translate into human findings, the con-
cern is whether AM induction will impact respiratory disease/pathology,
i.e. the lung disease for which the inhaledmedicine is being delivered. Al-
though further increases in cellularity in an already inflamed airway such
as asthmamaybe undesirable, it is not clearwhether an adaptive or phys-
iological macrophage response to PM would be of clinical significance
compared to the inflammatory background. There are also potential ef-
fects of altered AM function as a result of inhaling PM such as compro-
mised immune surveillance, impaired bacterial clearance and tissue
remodeling and repair. Another concern is the possibility that non-
adverse effects at doses used in nonclinical or human/patient studies
may become adverse over a life-time of treatment, as in COPD.

Where uncomplicated nonclinical AM changes were reversible,
most of these questions would not apply to healthy human volunteer
studies and the level of concern by clinicians responsible for these stud-
ies would be minimal. The uncertainties regarding studies in patients
with respiratory disease, are mitigated by the pragmatic approach of
using large safety margins in dose setting and dose escalation in the
clinic. Issues around the safety margins used in inhaled product devel-
opment have been discussed previously [3]. A more scientific approach
to dose setting and enabling progression from nonclinical testing to
human testing would be the development and use of meaningful safety
biomarkers; i.e. biomarkers that predict drug-induced changes before
they became adverse/irreversible.

5.1. Biomarkers for safety monitoring in humans

A number of biomarkers of lung damage or function are currently
used in clinical studies, but they are non-validated and limited in spec-
ificity, sensitivity and relevance to alveolar macrophage effects. The
advantages and limitations of the biomarkers currently used or in devel-
opment are described in Table 3.

In addition to the limitations noted in Table 3, current biomarkers do
not provide the resolution provided by histopathological evaluation in
animal studies. In addition, equivalent endpoints have not generally
been evaluated in nonclinical studies; hence, there is currently no direct
comparison between clinical and nonclinical data. Combining BAL bio-
markers with some of the novel endpoints advocated elsewhere in
this paper (i.e. genomic/proteomic markers of macrophage activation)
may provide a translatable endpoint in the future. Another prospect is
to label blood monocytes and use imaging to determine whether and
how they are recruited into the lung. These approaches have the poten-
tial to provide step changes in the ability to translate nonclinical studies
into humans, but will require extensive validation in nonclinical and
clinical settings to realize their potential.

5.2. Case Study 3: biochemical biomarkers to support progress to the clinic

BAL has been used for several decades to identify the hazard of
inhaled materials in nonclinical studies and to investigate clinical re-
sponse and diagnoses in patients [157–159]. As analytes have expanded
from simple toxicity assays (e.g., total protein, and lactate dehydroge-
nase) to include cytokine arrays and other biochemical markers, a
wider range of more sensitive information is being obtained. This infor-
mation may be used in concert with other biomarkers to define early
signs of adversity in nonclinical toxicology studies.

In the following case study, several dextran polymers of differing mo-
lecular size, dextran succinate 5 KDa (D5), 10 KDa (D10)and 20 KDa
(D20), and side chain substitution (dextran 5 propanyl-succinate; D5PS)
were compared in 7-day repeat dose inhalation rat studies (6–10 animals
per group) atmatched doses, aerosol concentrations, exposure times, and
particle sizes (1.1 mg/kg/day; 0.3 mg/L; 60 min; ~2.4 μm MMAD)
[160,161]. Further, D10 doses were expanded to include lower (0.1 mg/
kg/day) and higher (8.7 and 34.4 mg/kg/day) levels. Subsequent to



Table 3
Biomarkers and functional markers for safety monitoring in humans.

Biomarkers and functional markers Advantages Limitations

Cell-based • Differential counts of inflammatory cells,
macrophages and other cells in induced
sputum

• Sputum samples are easy to obtain • Sputum samples do not contain representative
numbers of AMs

• Routine evaluations of cytokines or activation
states is not performed due to expense

• Bronchoscopy and BAL • Improved sampling of AMs compared to sputum
• Cell counts plus cytokine assays/activation assays
are routinely performed

Invasive sampling procedure
Numbers of cells recovered is often variable and
operator-dependent
More representative of the airways rather than the
alveolar region of the lungs

• Lung tissue biopsy • High cell numbers
• Cell counts plus cytokine assays/activation assays
are routinely performed, plus evaluation of other
biomarkers, e.g. SP-D and SP-A, KL-6, HGF

Invasive sampling procedure
Tissue from the bronchial wall; alveolar tissue
sampling is rare
Cells isolated from tissue biopsies may be more
representative of IMs rather than AMs

Functional Spirometry
Forced vital capacity (FVC) and forced
expiratory volume (FEV)

Well established method Primarily reflects airway rather than alveolar function
Not pathognomonic for specific pathologies
Unlikely to be sensitive enough to detect modest effects,
especially in animal models

• Gas diffusion tests Diffusing capacity of the
lung for carbon monoxide (DLCO)

• Well established method • Not pathognomonic for specific pathologies
• Unlikely to be sensitive enough to detect modest
macrophage effects, especially in animal models

• High variability endpoints
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exposure, BAL was performed on the left lung while standard H&E slides
were prepared from the right lung for histopathology. BAL analyses in-
cluded cell differentials, LDH, total protein and a cytokine array (IL-2, 4,
6; TNF-α, IL-18, GRO-KC and RANTES).

AM responses were similar to control groups at all levels and physi-
cal parameters were unaffected in all groups. However, relative in-
creases in total protein, LDH, total cells, PMNs, and cytokines
(primarily IL-4, 6 and TNFα) in BAL reflected those groups that tended
to have mixed inflammatory incidence that were above background
air controls. The materials inducing these responses were D5, D5PS
and D20. D10 produced responses at or above 8.7 mg/kg/day, but at
1.1 mg/kg day findings reflected control values. These data suggest
that BAL parameters can be used to screen candidates for inflammatory
potential, with these signals above the background variation in uncom-
plicated macrophage response across control and test groups providing
an index of safety/toxicity in a nonclinical setting. Specifically this study
suggests that selection and ‘tuning’ of compounds using BAL analysis in
concert with histopathology as an index of safety may by possible.
5.3. Case Study 4: functional biomarkers to support progress to the clinic

The use of pulmonary function tests (PFT) has long been a standard
of care in patients with COPD, asthma, and fibrosis [162–165]. PFT are
used routinely to assess the efficacy of new formulations of ‘old drugs’
(e.g., beta agonists, muscarinic antagonists) and novel treatments in
clinical studies. In a nonclinical setting, it is generally expected that
these assays will be adversely affected during toxicology studies only
at extreme burdens of inert particles where substantial histopathology
is observed. However, it remains to be demonstrated whether or not
more sensitive PFT assays (e.g., DLCO and vital capacity) could be used
as a translational marker in nonclinical and clinical development of
drugs in which a macrophage response is observed.

The following example illustrates a study design in which the most
sensitive PFT available, DLCO and vital capacity, were used to provide en-
hanced reassurance for progression of drug into clinical testing. A novel
antibody targeting αvβ6 integrin has previously been administered sub-
cutaneously to mice (murine form) and cynomologus macaques to pro-
vide dose ranging information for Good Laboratory Practice toxicology
studies and clinical dosing [166–168]. Anti-αvβ6 is currently in clinical
development for the treatment of pulmonary fibrosis based on its poten-
tial inhibition of cleavage of latent TGF-βbyαvβ6. The latter is essential in
the deposition of collagen matrix in the fibrotic process.
Doses of 0.3, 0.6, 1.0 and 20 mg/kg/day and 0.1 and 10.0 mg/kg/day
were administered by inhalation for 28 consecutive days in the mouse
and NHP studies, respectively. Consistent with earlier murine studies, a
response was induced that was indistinguishable by microscopic exami-
nation from the minimal to mild uncomplicated AM response seen
upon inhalation of inhaled pharmaceuticals or inert PM [169,170]. A
threshold was observed at levels at or above 10 mg/kg. At these doses, a
minimal to mild mixed cell inflammatory response was induced. When
DLCO and vital capacity were assessed after treatment and a 4 week re-
covery period, no adverse effect of treatment was observed in either spe-
cies. These data were used to support further development and eventual
clinical administration of anti-αvβ6. This study illustrates how sensitive
PFT measures can be used to support progress to the clinic.
6. Conclusions and future perspectives

The APSGB-HESI workshop highlighted many areas in which prog-
ress has been made in our understanding of AM biology. This included
a number of assays that are currently being used or are being developed
in an attempt to predict much earlier those AM responses which are
likely to affect the development pathway for inhaled pharmaceuticals.
However, there remains a long way to go to optimize the models and
batteries of tests currently being used for this purpose, and to utilize
fully the scientific and technical knowledge available to our best advan-
tage in this endeavor. A summary of the current unknowns and the re-
search approaches that might help address these is provided in Table 4.

A greater role for in vitro testing is currently limited by the absence of
reliable or validated assays for AM responses to inhaled medicines. There
is a lack ofmulticellular/organotypic cellularmodelswhich include anAM
component. Since it is clear that the response of AMs to inhaled particles
depends not only on the nature of thematerial itself, but also on the cross-
talk with other cells of the immune system and the respiratory tract, fur-
ther advances in this area are needed to provide models which more
closely resemble the in vivo situation. There are examples of single cell
[53,171], and multicellular systems in use [172–176], but none can be
considered optimized for studying and predicting the response of AMs
to inhaled materials in vivo and information on their human relevance
is uncertain. In addition, it is clear that cell type (cell line versus normal
or patient-derived primary cells) and culture conditionswithin these sys-
tems can influence the phenotype exhibited by cultured cells. For exam-
ple, air–liquid interface versus submerged cultures [175], substrate type
and stiffness [177], and medium components influence macrophage



Table 4
A summary of the research approaches that may help address the challenge of measuring and interpreting macrophage responses to inhaled medicines.

Challenge Unknown/unmet need Research approach

Scientific understanding Macrophage phenotyping Develop methods to define macrophage responses as adaptive or adverse, e.g. based on biochemical,
morphometric or functional indicators.

Longitudinal studies Utilize study designs that address the question of whether macrophage responses resolve, stabilize or
progress over time, e.g. long term studies, use of imaging to track responses.

Mechanisms of response Understand the biological mechanisms that lead to different types of macrophage responses and the
consequences of this. Define the underpinning cellular pathways that indicate an adverse macrophage
response through the use of appropriate investigative tools

Candidate selection and lead
optimization for industry

Predictive science Develop algorithms for predicting adversity/safety based on dose, material, and macrophage responses
observed in vitro and in vivo during non-clinical development.

Discriminatory assays Define discriminatory screens that provide early assessment of whether compounds will induce
macrophage responses during non-clinical and clinical development, e.g. improved in vitro assays (cell
systems, biomarkers, toxicological or functional end-points).

Clinical relevance and monitoring Translation Establish how responses to different inhaled materials translate between species and between healthy
lungs and those with respiratory disease.

Clinical monitoring Develop validated non-invasive monitoring techniques and biomarkers to enable clinical development
of projects where induced macrophage responses have been observed.
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polarization andourunderstandingof howbest to control this needs to be
improved. Likewise, the differences between MDMs and resident AMs
need to be better understood in the context of developing optimalmodels
for studying AM responses—are MDMs a good surrogate? There is also a
need for nisms of, and sequelae to, the cellular response that leads to
the ‘foamy’ appearance. There is also a lack of in vitromodels which sup-
port the translation of responses in nonclinical species to humans. Most
recent advances in cell and tissue culture have focused on the use of
human cells/tissues [176], but systems are also required to understand
how nonclinical species will react to inhaled materials so that this can
be related to responses observed in humanvolunteers and patients. In ad-
dition tomore complex models, a truly high throughput method is need-
ed for rapid screening during drug discovery.

One of the most critical issues with respect to AM findings during in-
haled drug development is to establish and define clearly what is consid-
ered to be an adverse AM response as differentiated from an adaptive
response. Someprogress has beenmadehere in rationalizing the adaptive
nature of an uncomplicated macrophage-only response [15] and making
recommendations for reporting pathology results consistently and appro-
priately. However, methods are unavailable tomonitor induction of mac-
rophages in the clinic and provide confirmatory safety reassurance.
Existing pulmonary function tests are not sufficiently sensitive to detect
early signs of an adverse response, thus selective and sensitive cell ormo-
lecular biomarkers are still required. Ideally, such assays would be
minimally-invasive, e.g. based on blood/plasma biomarkers or imaging
techniques. Building on recent advances in our understanding of the var-
ious markers of AM phenotype (e.g. cell surfacemarkers, cytokine release
profiles)may go someway towards achieving this goal. The use of disease
models for toxicology studies is a complex andunder-developed field and
has the potential to investigate questions regarding the impact of respira-
tory disease on AM responses to inhaled drugs.

In the field of particle toxicology much work has been done to un-
derstand how the physical and chemical characteristics of particles
can influence toxicity, and to identify some of the pitfalls when studying
these effects experimentally [178,179]. Coupling these new approaches
with a better understanding of PK/PD in the lung (e.g. dissolution rates,
transfer rates across respiratory epithelium—see Section 4.2) could lead
to an improved ability to predict the behavior of inhaled drugs and spe-
cifically their likely effects on AMs in animals, healthy human volun-
teers and patients.

A number of initiatives designed to reduce attrition due to AM-related
safety concerns are in various stages of advancement and have been
highlighted in this review. These efforts begin with harmonization of ter-
minology in pathology reporting across the pharmaceutical industry, an
important step which will enhance both internal development and regu-
latory processes. A bolder step in this directionwould be the development
of a cross-industry consensus on nonclinical study designs to evaluate
responses and agree upon cut-offs/dosing limits for studies to aid regula-
tory comparisons and allow a unified critical regulatory review process.

There are currently a plethora of in vitromethods and culture systems
available which are, or could be, used for increasing our fundamental un-
derstanding of AM biology. However, none are currently qualified to pre-
dict likely adverse effects which may occur later in development, and so
enable better candidate selection decisions early in development. It is
clear thatmanypharmaceutical companies have invested varyingdegrees
of effort in evaluating some of these systems, but that no clear definition
of an optimum system or battery of systems currently exists which ad-
dresses this. Recent examples of pre-competitive data sharing initiatives
[153,180] have shown the value of sharing experiences, methodologies
and data, and of working together on the scientific issues that surround
such problems. We suggest that this approach would be invaluable
here, allowing bigger data sets to be analysed, experiences of what
works and what does not to be shared, and ultimately to achieve the ad-
vancement of predictive science in inhaled drug development with the
goal of reducing safety related attrition. To this end, organizations are in
the early stages of initiating a collaboration to enable longitudinal and
non-invasive assessment of inflammation and foamy macrophages in
the same animal through a series of dose escalation stages [181].

In summary, an improved essential understanding of AM responses in
the context of inhaled drug development is fundamental to reducing safe-
ty-related attrition during inhaled drug development. Advances in macro-
phage bioscience would underpin the development of better methods for
early identification of compounds with adverse safety profiles and, by en-
abling evidence-based decision making, ease the development pathway
for drug candidates or formulations that induce non-adverseAMresponses.
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