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Abstract

In this paper we present new results on the approximate parallel construction of Huffman codes. Our algorithm achieves linear
work and logarithmic time, provided that the initial set of elements is sorted. This is the first parallel algorithm for that problem with
the optimal time and work. Combining our approach with the best known parallel sorting algorithms we can construct an almost
optimal Huffman tree with optimal time and work. This also leads to the first parallel algorithm that constructs exact Huffman
codes with maximum codeword length H in time O(H) with n/ logn processors, if the elements are sorted.
© 2006 Published by Elsevier B.V.
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1. Introduction

A Huffman code for an alphabet a1, a2, . . . , an with weights p1,p2, . . . , pn is a prefix code that minimizes the
average codeword length, defined as

∑n
i=1 pili . The problem of construction of Huffman codes is equivalent to the

construction of Huffman trees (cf., e.g., [6,9]).
A problem of constructing a binary Huffman tree for a sequence p̄ = p1, . . . , pn consists in constructing a binary

tree T with leaves, corresponding to the elements of the sequence, so that the weighted path length of T is minimal.
The weighted path length of T , wpl(T ) is defined as follows:

wpl(T , p̄) =
n∑

i=1

pili

where li is the depth of the leaf corresponding to the element with weight pi .

✩ A preliminary version of this paper appeared in the Proceedings of the 29th International Colloquium on Automata, Languages and
Programming (ICALP 2002), LNCS, vol. 2380, pp. 845–855.
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The classical sequential algorithm, described by Huffman [6] can be implemented in O(n logn) time. Van Leeuwen
has shown that if elements are sorted according to their weight, a Huffman code can be constructed in O(n) time (see
[9]). However, no optimal parallel algorithm for the problem of the construction of a Huffman code is known. Teng
[14] has shown that the construction of a Huffman code is in class NC. His algorithm uses the parallel dynamic pro-
gramming method of Miller et al. [11] and works in O(log2 n) time on n6 processors. Attalah et al. have proposed an
n2-processor algorithm, working in O(log2 n) time. This algorithm is based on the multiplication of concave matrices.
The fastest n-processor algorithm is due to Larmore and Przytycka [8]. Their algorithm based on a reduction of Huff-
man tree construction problem to the concave least weight subsequence problem runs in O(

√
n logn) time. Milidiu,

Laber, and Pessoa [10] describe an algorithm that works in O(H log log(n/H)) time with n processors, where H is
the height of a Huffman tree.

Kirkpatrick and Przytycka [7] introduce an approximate problem of constructing, so called, almost optimal codes,
i.e. the problem of finding a tree T ′ that is related to the Huffman tree T according to the formula wpl(T ′) � wpl(T )+
n−α for a fixed error parameter α ∈ N (assuming

∑
pi = 1). We call n−α an error factor. If the file size is polynomial

in the size of the alphabet, compression with an almost optimal code instead of the optimal code leads to a compression
loss limited by a constant. Kirkpatrick and Przytycka [7] propose several algorithms for that problem. In particular,
they present an algorithm that works in O(α logn log∗ n) time with n processors on a CREW PRAM, and a O(α2 logn)

time algorithm that works with n2 processors on a CREW PRAM.
The problems considered in this paper were also partially motivated by a work of one of the authors on decoding

the Huffman codes [12,13].
In this paper we improve the before mentioned results by presenting an algorithm that works in O(α logn) time

with n processors. As we will see in the next section, the crucial step in computing a nearly optimal tree is merging
two sorted arrays; this step is repeated O(lognα) times. We have developed a method for performing such a merging
in average constant time.

We also further improve this result and design an algorithm that constructs almost-optimal codes in time O(logn)

with n/ logn processors, provided that elements are sorted. This results in an optimal speed-up of the algorithm of
van Leeuwen [9]. Our algorithm works deterministically on a CREW PRAM and is the first parallel algorithm for that
problem with the optimal time and work. Combining that algorithm with parallel integer sorting algorithms, we obtain
several further results for the case of unsorted weights in Section 5. For instance, there is a deterministic algorithm
that works on a CRCW PRAM in O(α logn) time and with n log logn/ logn processors.

The above described approach also leads to an algorithm for constructing exact Huffman trees that works in O(H)

time with n processors, where H is the height of a Huffman tree. This is an improvement of the result of Milidiu,
Laber, and Pessoa [10]. This is also an improvement of the algorithm of Larmore and Przytycka [8] for the case when
H = o(

√
n logn). We observe that in many situations the height of the Huffman tree is O(logn).

2. The basic construction scheme

Our algorithm uses the following tree data structure. A single element is a tree; if t1 and t2 are two trees, then
t = meld(t1, t2) is also a tree with weight weight(t) = weight(t1)+ weight(t2) so that t1 and t2 are children of t . Initial
elements will be called leaves.

In a classical Huffman algorithm the set of trees is initialized with the set of weights. Then one melds consecutively
two smallest elements in the set of trees until only one tree is left. The tree constructed by the Huffman algorithm can
be proven to be optimal.

Kirkpatrick and Przytycka [7] presented a scheme for the parallelization of the Huffman algorithm called
Oblivious-Huffman. In [7] the set of element weights p1,p2, . . . , pn is partitioned into classes W1, . . . ,Wm, such
that elements of class Wi satisfy the condition 1/2i � p < 1/2i−1. Here and further we assume that element weights
are normalized. In the following sections elements of Wi are always sorted according to their weight; Wi[c] refers to
the cth smallest element in Wi . For any tree t ∈ Wi , pos[t] denotes its position in Wi , so that Wi[pos[t]] = t . Length
of a class A is denoted by l(A); last(A) denotes the last element in A. For ease of description, we sometimes do not
distinguish between an element (tree) and its weight.

Since in the Huffman algorithm lightest elements are processed first and sum of any two elements in a class Wi is
less than sum of any two elements in a class Wj, j < i, elements of the same class can be melded in parallel before
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1 for i := m downto 1 do
2 if (light[i] �= NULL)
3 t := meld(light[i],Wi [1])
4 remove Wi [1] from Wi

5 if (weight(t) > 1/2i−1)

6 Wi−1 := merge(Wi−1, {t})
7 else
8 Wi := merge(Wi, {t})
9 forall j � �l(Wi)/2� pardo
10 W̃i [j ] := meld(Wi [2j − 1],Wi [2j ])
11 Wi−1 := merge(Wi−1, W̃i )

12 if (l(Wi) is odd)
13 light[i − 1] := last(Wi)

Fig. 1. Huffman tree construction scheme.

the elements of classes with smaller indices are processed. We refer the reader to [7] for a more detailed description
of their algorithm.

In this paper a different schema for the parallelization of the greedy Huffman algorithm, further called Parallel-
Huffman is used. The pseudocode description of this schema is shown on Fig. 1. The result of procedure merge(A,B)

applied to sorted arrays A and B is a sorted array C which consists of all elements of A and B . The algorithm consists
of m iterations, where m is the index of the class to which the smallest element belongs. During the ith iteration all
trees in class Wi , except of may be the last one, are processed. If Wi contains an odd number of elements, the last
element is saved in variable light[i − 1] and will be processed during the next iteration. At the beginning of each
iteration we check whether an element from class Wi+1 that was not processed during the previous iteration is stored
in light[i]. If this is the case, we meld light[i] with the first element of Wi to obtain a new tree t . Then tree t is inserted
into either Wi or Wi−1 according to its weight. After this, the consecutive pairs of elements in Wi are melded and
the resulting new trees are stored in array W̃i (lines 9–10 of Fig. 1). If Wi contains an odd number of elements, the
last element has no sibling; this last element is saved in light[i − 1] (lines 12–13). Our pseudocode description is a
simplified one; we assume that for all classes Wi , i = m, . . . ,1, Wi �= ∅. For completeness a more detailed pseudocode
description is provided in Section 6.

During each iteration elements of some class Wi and, may be, one element light[i] are processed. All elements e in
Wi satisfy the inequality 1/2i � weight(e) < 1/2i−1. We deal with tree light[i], such that weight(light[i]) < 1/2i−1,
in lines 2–8. When tree t is reinstalled properly into Wi or Wi−1, all remaining elements that should be processed
during the ith iteration satisfy the condition 1/2i � weight(e) < 1/2i−1. Hence, all elements of Wi must be melded
before any elements of classes Wa, a < i, are processed. After the elements of Wi−1 are melded, the weights of the
new trees are between 1/2i and 1/2i−1; hence, the new trees must be installed into Wi−1.

Because the total number of iterations of algorithm Parallel-Huffman equals to the maximal class index m and is
linear in the worst case, this approach does not lead to any improvements, if we want to construct an exact Huffman
tree.

Kirkpatrick and Przytycka [7] also describe an approximation algorithm based on Oblivious-Huffman. In this
paper we convert Parallel-Huffman into an approximation algorithm in a different way. We replace each weight pi

with pnew
i = 
pin

α�n−α . That is, pnew
i is the smallest number that is bigger than pi and that is a multiple of n−α .

Since pnew
i < pi + n−α ,

∑
pnew

i li <
∑

pili +
∑

n−αli <
∑

pili + n2n−α

because all li are smaller than n. Hence wpl(T , p̄) � wpl(T , p̄new) < wpl(T , p̄)+n−α+2 for any tree T . Let TA denote
the (optimal) Huffman tree for weights pnew

1 ,pnew
2 , . . . , pnew

n . Let T ∗ denote an optimal tree for weights p1, . . . , pn.
Then

wpl(TA, p̄) � wpl
(
TA, p̄new)

� wpl
(
T ∗, p̄new)

< wpl(T ∗, p̄) + n−α+2

Therefore we can construct an optimal tree for weights pnew, then replace pnew
i with pi and the resulting tree will

have an error of at most n−α+2.
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If we apply algorithm Parallel-Huffman to the new set of weights, then the number of iterations of this algorithm
will be 
α log2 n�, since new elements will be divided into at most 
α log2 n� arrays. The use of approximate weights
has further advantages that will be discussed in Section 5.

3. An O(α logn) time algorithm

In this section we describe an O(α logn) time n-processor algorithm that works on CREW PRAM.
Algorithm Parallel-Huffman performs α logn iterations and in each iteration only the merge operations are diffi-

cult to implement in constant time. All other operations can be performed in constant time. We will use the following
simple fact described in e.g., [15]:

Proposition 1. If array A has a constant number of elements and array B has at most n elements, then arrays A and
B can be merged in a constant time and with n processors.

Proof. Let C = merge(A,B). We assign a processor to every possible pair A[i],B[j ], i = 1, . . . , c, and j = 1, . . . , n.
If A[i] < B[j ] < A[i + 1], then B[j ] will be the (i + j)th element in array C. Also if B[j ] < A[i] < B[j + 1], then
A[i] will be the (i + j)th element in array C. �

Proposition 1 allows us to implement procedures Wi−1 := merge(Wi−1, {t}) and Wi := merge(Wi, {t}) (lines 5–8
of Fig. 1) in constant time with |Wi | and |Wi−1| processors respectively.

Operation merge(Wi−1,Wi) is the slowest one, because both Wi and Wi−1 can have linear size and merging two
arrays of size n requires log logn operations in the general case (see [15]). In this paper we propose a method that
allows us to perform every merge of Parallel-Huffman in constant time (on average). The key to our method is that
at the time of merging all elements in both arrays know their predecessors in the other array and can thus compute
their positions in a resulting array in constant time. A merging operation itself is performed without comparisons.
Comparisons will be used for the initial computation of predecessors and to update predecessors after each merge and
meld procedure.

We say that element e is of rank k, if e ∈ Wk . A relative weight r(p) of an element p of rank k is r(p) = p · 2k . To
make description more convenient we say that in every array Wk Wk[0] = 0 and Wk[l(Wk) + 1] = +∞. We assume
that whenever e �= e′, r(e) �= r(e′); this can be “enforced” by introducing a tie-breaking rule, which will be described
later. Besides that, if leaf e and tree t are of rank k, and t is the result of melding two elements t1 and t2 of rank k + 1,
such that r(t1) > r(e) and r(t2) > r(e) (r(t1) < r(e) and r(t2) < r(e)), then the weight of t is bigger (smaller) than
the weight of e. This fact can be generalized; in the following proposition, the full tree is a binary tree in which every
internal node has exactly two children.

Proposition 2. Let t be a full tree of rank k and e be an element of the same rank. If all leaves of t have relative weight
smaller (bigger) than r(e), then t has smaller (bigger) weight than e.

This statement can be proven by induction on the depth of tree t . Obviously, if r(t1) < r(t2), and t1 and t2 are of
the same rank, then t1 has smaller weight then t2.

We compute for every leaf e and every class i the value of pred(e, i) = Wi[j ], s.t. r(Wi[j ]) < r(e) < r(Wi[j +1]).
In other words, pred(e, i) is the biggest element in class i, whose relative weight is smaller than or equal to r(e).
At the beginning of our algorithm the values of pred(e, j) for all leaves e and all classes j are found. To find those
values, we copy all elements into an array R and sort R according to the relative weight of its elements. This can be
done in O(logn) time with n processors. Then for every class j an array Cj [i] is constructed, such that Cj [i] = 1 if
R[i] ∈ Wj and Cj [i] = 0 otherwise. We compute prefix sums for all arrays Cj and store them in arrays P j , so that
P j [i] = ∑i

m=1 Cj [m]. Arrays Cj can be constructed from R in O(logn) time with n processors. A prefix sum for
an array with n elements can be constructed in O(logn) time with n processors. Since the total number of arrays Cj

is O(logn), all arrays P j can be computed in O(logn) time with n processors. Let t be the position of an arbitrary
element e in R. Then for all classes j , pred(e, j) = P j [t]. Hence, pred(e, j) can be found in O(logn) time with n

processors.
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If we are able to compute pred(e, j) for all e ∈ W̃i and j = i − 1, i − 2, . . . ,1 after melding the elements of Wi ,
we will be able to merge arrays W̃i and Wi−1 (line 11 of Fig. 1) in constant time.

Our implementation of one iteration of the algorithm Parallel-Huffman consists of the following steps:

A.1. If there is an element light[i], we meld it with the first element of Wi and insert the new element t at the
appropriate position of Wi or Wi−1, as described in lines 2–8 of the pseudocode on Fig. 1. We compute the
values of pred(t, a) for a = i − 1, . . . ,1 and recompute the values of pred(e, i) for all e ∈ W1 ∪ · · · ∪ Wi−1 if
necessary.

A.2. We meld consecutive pairs of elements in Wi and store the resulting elements in W̃i (lines 9–10 of Fig. 1).
A.3. We compute the values of pred(e, a) for all e ∈ W̃i and a = i − 1, . . . ,1, and pred′(e, i) for all e ∈ W1 ∪ W2 ∪

· · · ∪ Wi−1, where pred′(e, i) = s ∈ W̃i , such that r(s) < r(e) < r(next(s)). We denote by next(e) for e ∈ Wi the
element that follows e in Wi (next(e) = Wi[pos[e] + 1]). If e is the last element in Wi , next(e) = +∞.

A.4. Using the values of pred and pred′ computed during the previous step, we merge W̃i and Wi−1, store the result
in Wi−1(line 11 on Fig. 1), and update the values of pred(e, i − 1) for e ∈ Wi−2 ∪ · · · ∪ W1.

A.5. If the number of elements in Wi is odd, we save the last element of Wi in light[i − 1] (lines 12–13 of Fig. 1).

Step A.1 We can insert light[i] into Wi in O(1) time using Proposition 1. We can also compute values of
pred(t, a) for a = i − 1, . . . ,1, and correct values of pred(e, i) for all e ∈ W1 ∪ · · · ∪ Wi−1 in O(1) time.
Steps A.2 and A.3 We use the algorithm shown on Fig. 2 to compute values of pred(e, t) for all e ∈ W̃i

and t = i − 1, . . . ,1 after melding the elements from Wi . This algorithm also computes values pred′(e, i) for all e ∈
Wi−1, . . . ,W1. Here and further variables which are local for each processor are denoted by local var in a pseudocode
description.

In lines 1–2 of Fig. 2, we meld the consecutive elements of Wi and store them in an array W̃i . If left and right
children of some element W̃i[c] i.e., Wi[2c − 1] and Wi[2c] have equal pred values for some class a, pred(Wi[2c −
1], a) = pred(Wi[2c], a), then pred(W̃i[c], a) = pred(Wi[2c − 1], a) = pred(Wi[2c], a). In lines 4–5 of Fig. 2 we
check for a more general condition. Namely, we check whether pred(W̃i[c], a) = pred(Wi[2c − 1], a). The case when
pred(Wi[2c − 1], a) �= pred(Wi[2c], a) and pred(Wi[2c − 1], a) �= pred(W̃i[c], a) will be considered later.

In lines 6–11 values of pred′ for elements of all non-empty classes Wa , a < i, are computed. Suppose for some
element e ∈ Wa pred(e, i) = s ∈ Wi , and s has become the right child of some s′ ∈ W̃i . Then s′ = pred′(e, i) after
melding, because the relative weights of both the left and the right children of s′ are smaller than the relative weight
of e. If s is the left child of s′, then the relative weight of e may be smaller than the relative weight of s′. But the
element s′′ preceding s′ in W̃i has smaller relative weight than e, since both of its children are of smaller relative
weight. We can decide between s′ and s′′ and find the correct value of pred′(e, i) in constant time.

When the values of pred′(e, i) for e ∈ Wi−1, . . . ,W1 are known, the computation of pred(e, a) for e ∈ W̃i, a =
i − 1, . . . ,1, can be completed. Consider an element t ∈ W̃i , t = meld(t1, t2), t1, t2 ∈ Wi . Let t ′ and t ′′ be the elements
preceding and following t in W̃i , and let t ′1, t ′2 and t ′′1 , t ′′2 be the children of t ′ and t ′′ respectively. Suppose pred(t2, a) =
p2 and pred(t1, a) = p1 for some a < i, and p2 �= p1 (see Fig. 3). Obviously, pred(t, a) is between p1 and p2 in Wa .
The case pred(t1, a) = pred(t, a) was considered earlier. For all e ∈ Wa, s.t. pos[p1] < pos[e] � pos[p2], pred′(e, i)
is either t or t ′. This follows from the fact that both t ′1 and t ′2 have smaller relative weight than e, and both t ′′1
and t ′′2 have bigger relative weight than e. Furthermore, if pred(t, a) = p and p′ is the element that follows p in
Wa , then r(p′) > r(t). Therefore, we must check for every element p ∈ Wi−1 ∪ · · · ∪ W1, whether the element t

following t ′ = pred′(p, i) has smaller relative weight than the element p′ following p. And if this is the case, we set
pred(t, a) = p (lines 13–16 of Fig. 2).
Step A.4When the elements of Wi are melded, predecessor values pred(e, i) are recomputed, and pred′(e, i) for

e ∈ Wi−1 ∪ · · ·∪W1 are found, classes W̃i and Wi−1 can be merged easily (see Fig. 4). Indeed, pos[pred′(Wi−1[j ], i)]
equals to the number of elements in W̃i that are smaller than or equal to Wi−1[j ]. Analogously, pos[pred(W̃i[j ], i−1)]
equals to the number of elements in Wi−1 that are smaller than or equal to W̃i[j ]. Therefore indices of all elements in
the merged array can be computed in constant time. When elements of W̃i and Wi−1 are merged, pred(e, i − 1) for
all e in Wi−2,Wi−3, . . . ,W1 must be updated. The new value of pred(e, i − 1) is the maximum of pred(e, i − 1) and
pred′(e, i), for all e.

If the number of elements in Wi is odd then the last element of Wi must be saved in light[i − 1] to be inserted into
Wi during the next iteration (step A.5). This can obviously be done in O(1) time with 1 processor.
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1 forall c � l(Wi)/2 pardo
2 W̃i [c] = meld(Wi [2c − 1],Wi [2c])
3 forall a < i pardo
4 if ((r(pred(Wi [2c − 1], a)) < r(W̃i [c])) AND

(r(next(pred(Wi [2c − 1], a))) > r(W̃i [c])))
5 pred(W̃i [c], a) = pred(Wi [2c − 1], a)

6 forall s ∈ Wa , s.t. a < i, Wa �= ∅
7 local var temp := 
pos[pred(s, i)]/2�
8 if r(W̃i [temp]) > r(s)

9 pred′(s, i) := W̃i [temp − 1]
10 else
11 pred′(s, i) := W̃i [temp]
12 forall s ∈ Wa , s.t. a < i, Wa �= ∅
13 local var v
14 if r(next(s)) > r(next(pred′(s, i)))
15 v := next(pred′(s, i))
16 pred(v, a) := s

Fig. 2. Melding consecutive pairs of elements in Wi .

Fig. 3. Computing pred(t, a), if t1 �= t2.

1 forall j � l(Wi−1), k � l(W̃i ) pardo
2 local var k′, j ′
3 k′ := pos[pred′(Wi−1[j ], i)]
4 j ′ := pos[pred(W̃i [k], i − 1)]
5 pos[Wi−1[j ]] := pos[Wi−1[j ]] + k′
6 pos[W̃i [k]] := pos[W̃i [k]] + j ′

Fig. 4. Merging Wi−1 and W̃i .

In the algorithm described in this section we assume that relative weights of all compared elements are different.
We can guarantee that all elements have different weights by the following tie-breaking rule. We replace initial weights
pk by weights p′

k = pk · n + k. Furthermore, if r(e1) = r(e2) we assume that r(e1) � r(e2) if e2 is a leaf and e1 has
children. If both e1 and e2 are leaves of the same relative weight, then e1 and e2 belong to different classes. In this case
we assume that r(e1) ≺ r(e2) if e1 ∈ Wi1 , e2 ∈ Wi2 and i1 > i2 (i.e., e2 has bigger weight than e1). For every non-leaf
node e, the dominating leaf of e is the leaf descendant of e with the largest relative weight. When two elements are
melded, the dominating leaf of the result can be found in constant time. If r(e1) = r(e2) and both e1 and e2 are not
leaves, then r(e1) � r(e2), iff the dominating leaf of e2 has smaller relative weight than the dominating leaf of e1.

Steps A.1, A.4, and A.5 can be implemented to work in constant time with n processors. Computing pred′(e, i) for
all e in Wi−1,Wi−2, . . . ,W1 takes O(1) time with n processors. The total number of operations that we must perform
to compute pred(e, i) for e ∈ W̃m ∪ · · · ∪ W̃1 is O(n logn), because the total number of elements in all classes W̃i

does not exceed the number of internal nodes in a Huffman tree. We can distribute the processors in such way that
computing pred(e, a), a = i − 1, . . . ,1, for class W̃i takes O(
(|W̃i |/n) logn�) time with n processors. Therefore
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computing pred(e, a) for all classes W̃i and all a takes O(logn) time with n processors. Thus steps A.2 and A.3
require O(logn) time for all iterations. We obtain the following

Theorem 1. An almost optimal tree with error factor 1/nα can be constructed in O(α logn) time with n processors
on a CREW PRAM.

4. An O(αn) work algorithm

In this section we describe a further improvement of the merging scheme presented in the previous section. The
modified algorithm works on a CREW PRAM in O(logn) time and with n/ logn processors, provided that initial
elements are sorted.

The main idea of our modified algorithm is that we do not use all values of pred(e, i) at each iteration. In fact, if we
know values of pred(e, i − 1) for all e ∈ W̃i and values of pred′(e, i) for all e ∈ Wi−1, then merging can be performed
in constant time. Therefore, we will use function pred instead of pred such that the necessary information is available
at each iteration, but the total number of values in pred is limited by O(n). Again, we are able to recompute values of
pred in constant average time (averaged by iteration).

For an array R we denote by samplek(R) a subsample of the array R that consists of every 2k th element of R.
We define pred(e, i) for e ∈ Wl as the biggest element ẽ in sample|l−i|−1(Wi), such that r(ẽ) � r(e). Besides that we
maintain the values of pred(e, i) only for e ∈ sample|l−i|−1(Wl). In other words, for every 2|l−i|−1th element of Wl

we know its predecessor in Wi with precision of up to 2|l−i|−1 elements. The total number of values in pred is O(n).
Initial values of pred can be computed as follows. Consider an arbitrary pair of classes Wi and Wj . We store relative

weights of sample|i−j |−1(Wj ) and sample|i−j |−1(Wi) in arrays Rji and Rij respectively. We can merge two sorted

arrays Rji and Rij in O(logn) time with (|Rji | + |Rij |)/ logn processors. Then, we can find the values of pred(e, i)

for e ∈ sample|i−j |−1(Wj ) and pred(e, j) for e ∈ sample|i−j |−1(Wi) also in O(logn) time with (|Rji | + |Rij |)/ logn

processors. Since the total number of elements in all Rij is O(n) all initial values can be computed in O(logn) time
with n/ logn elements.

Each iteration of Parallel-Huffman can now be implemented with the following steps:

B.1. If there is an element light[i], we meld it with the first element of Wi and insert the new element t at the
appropriate position of Wi or Wi−1; this corresponds to lines 2–8 of the pseudocode on Fig. 1. We compute
pred(t, a) for a = i − 1, . . . ,1 and recompute the values of pred(e, i) for all e ∈ W1 ∪ · · · ∪ Wi−1 if necessary.

B.2. We meld consecutive pairs of elements in Wi and store the resulting elements in W̃i (lines 9–10 of Fig. 1).
B.3. We compute the values of pred(e, a) for all e ∈ W̃i and a = i − 1, . . . ,1, where pred(e, a) for each e ∈ W̃i

is the biggest element in s ∈ sample|i−a|−1(Wi), such that r(s) � r(e). We also compute pred′(e, i) for all

e ∈ W1 ∪ W2 ∪ · · · ∪ Wi−1, where pred′(e, i) = s ∈ sample|i−a|−1(W̃i), such that r(s) < r(e) < r(next(s)) for
e ∈ Wa . If necessary, we “refine” the values of pred(e, a) and pred′(e, i) as described below.

B.4. Using the “refined” values of pred and pred′ computed during the previous step, we merge W̃i and Wi−1, store
the result in Wi−1 (line 11 on Fig. 1), and update the values of pred(e, i − 1) for e ∈ Wi−2 ∪ · · · ∪ W1.

B.5. If the number of elements in Wi is odd, we save the last element of Wi in light[i − 1] (lines 12–13 of Fig. 1).

Steps B.1–B.5 are almost identical to steps A.1–A.5 from Section 3; the only difference is that the values of pred
and pred′ are computed and maintained. Now we turn to the description of steps 2 and 3, i.e. we show how pred can be
recomputed after elements in a class Wi are melded. We assign one processor to every pair (e, i) for which pred(e, i)

must be computed.
Observe that if |i − a| = 1, sample|i−a|−1(Wi) = sample0(Wi) = Wi . Hence for |i − a| = 1 and e ∈ Wi ,

pred(e, a) = pred(e, a), and the values of pred(e, a) are known for all e ∈ Wi . Therefore, if a = i − 1 pred(e, a)

for e ∈ W̃i and pred′(e, i) for e ∈ Wi−1 can be recomputed after melding in the same way as in Section 3. Below we
show how the values of pred(e, a) for e ∈ Wi and a = i − 2, i − 3, . . . , and pred′(e, i) for e ∈ Wi−2 ∪Wi−3 ∪ · · · ∪W1

are maintained. In this case step B.3 consists of the following substeps:
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Fig. 5. Recomputing pred(e, a), if pred(es , a) = pred(e, a).

B.3.1. We compute for each e ∈ sample|a−i|−2(W̃i) and a = i − 2, . . . ,1 the biggest p in sample|i−a|−1(Wa), such

that r(p) < r(e), and for each e′ ∈ sample|i−a|−1(Wa), a = i − 2, . . . ,1, the biggest p′ ∈ sample|i−a|−2(W̃i)

such that r(p′) < r(e′).
B.3.2. For each e ∈ sample|a−i|−2(W̃i) and a = i − 2, . . . ,1, we compute the biggest p in sample|i−a|−2(Wa), such

that r(p) < r(e). (We refine the values of pred(e, a).)
B.3.3. For each e′ such that e′ ∈ sample|i−a|−2(Wa) and e′ /∈ sample|i−a|−1(Wa), a = i − 2, . . . ,1, we compute

pred′(e′, i). (We compute the missing values of pred′).

Step B.3.1 We denote by sibling(e) an element with which e will be melded in Parallel-Huffman. Consider
an arbitrary pair (e, a), e ∈ sample|i−a|−1(Wi). First, the value pred(e, a) is known, but the value of pred(es, a), where
es = sibling(e) may be unknown. Let ep and en be the previous and the next elements of e in sample|i−a|−1(Wi), let
e = meld(e, es) (see Fig. 5). The set sample|i−a|−1(Wi), a < i−1, consists of elements e such that pos[e] = 0 (mod 2),
therefore when consecutive elements of Wi are melded all e ∈ sample|i−a|−1(Wi) will always be the right children of

elements in W̃i . Since es precedes e in Wi then the correct value of pred(es, a) is between pred(ep, a) and pred(e, a).
We check whether pred(e, a) = pred(e, a), and if this is the case set pred(e, a) to pred(e, a). We will show below
how the correct value of pred(e, a) can be computed if pred(e, a) �= pred(e, a).

Next, we compute the values of pred′(e′, i) for e′ ∈ samplei−2(W1) ∪ samplei−3(W2) ∪ · · · ∪ sample1(Wi−2).
Suppose that e′ ∈ sample|a−i|−1(Wa). Let e = pred(e′, i), es = sibling(e) and e = meld(e, es). The computation

of pred′(e′, i) is similar to the computation of pred′ in Section 3. But now pred(e′, i) can only be the right child
of e; hence, the relative weight of e′ is bigger than the relative weight of e, and pred′(e, i) = e. When the val-
ues of pred′(e, i) are known, the computation of pred(e, i) can be completed as follows. Observe that pred(e, a) �=
pred(e, a) ⇒ pred(es, a) �= pred(e, a). Since the case pred(e, a) = pred(e, a) was considered above, only the case
pred(e, a) �= pred(e, a) (and hence pred(es, a) �= pred(e, a)) has to be considered (see Fig. 6). Let e′ = pred(e, a)

and let f ′ be the element following e′ in samplei−a−1(Wa). Since f ′ � pred(e, a), r(f ′) < r(en), where en is the
element following e in W̃i . Therefore, pred′(f ′, i) = e. Hence, pred(e, a) is such element e′ that r(e′) < r(e) and
pred′(f ′, i) = e, where f ′ is the element that follows e′ in samplei−a−1(Wa). A pseudocode description of the paral-
lel meld operation is shown on Fig. 8.
Steps B.3.2 and B.3.3 When elements from Wi are melded the new elements will belong to W̃i . Since we

have melded consecutive pairs of elements from Wi , distances between consecutive elements from sample|i−a|−1(Wi)

have decreased by factor 2 and we now know pred(e, a) in sample|i−a|−1(Wa) for every 2|i−a|−2th element from Wi .
Now we have to compute pred(e, a) in sample|i−a|−2(Wa). Suppose pred(e, a) = Wa[p · 2|i−a|−1] for some p. We
can find the new “refined” value of pred(e, a) by comparing r(e) with r(Wa[p · 2i−a−1 + 2i−a−2]). When the new
correct values of pred(e, i) for e ∈ sample|a−i|−1(Wi) are known, we can compute pred′(e, i) for new elements e

from sample|i−a|−2(Wa). Let e′ be a new element in sample|i−a|−2(Wa) and let e′
p and e′

n be the next and the pre-
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Fig. 6. Recomputing pred(e, a), if pred(es , a) �= pred(e, a).

Fig. 7. Computing predecessors of Wa after elements of Wi are melded.

1 forall c � l(Wi)/2 pardo
2 W̃i [c] := meld(Wi [2c − 1],Wi [2c])
3 forall a < i − 1, b � l(sample|i−a|−2(Wi))

4 local var c, s

5 c := b · 2i−a−2

6 s := pred(Wi [2c], a)

7 if r(s) < r(W̃i [c]) AND
r(Wa [pos[s] + 2i−a−1]) > r(W̃i [c])

8 pred(W̃i [c]) := s

9
10 forall a < i − 1, b � l(sample|i−a|−1(Wa)) pardo
11 local var s

12 s := Wa [b · 2|i−a|−1]
13 pred′(s, i) := W̃i
pos[pred(s, i)]/2�
14 forall a < i − 1, b � l(sample|i−a|−1(Wa)) pardo
15 local var d1, s, e

16 d1 := 2|i−a|−1

17 s := Wa [b · d1]
18 e := pred′(s, i)
19 if r(e) > r(Wa [pos[s] − d1])
20 pred(e, a) := Wa [pos[s] − d1]

Fig. 8. Melding elements of Wi for the improved algorithm for a < i − 1.

vious elements in sample|i−a|−2(Wa) (Fig. 7). Obviously, e′
n and e′

p are also in sample|i−a|−1(Wa). If pred′(e′
p, i) =

pred′(e′
n, i) then pred′(e′, i) = pred′(e′

p, i) = pred′(e′
n, i). Otherwise, let e = pred′(e′, i) and let ep and en be the

elements preceding e and following e in sample|i−a|−2(W̃i). If e �= pred′(e′
p, i) (i.e., pred′(e′, i) �= pred′(e′

p, i)),
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then pred(e, a) = e′
p and en has bigger relative weight than e′. Therefore the values of pred′(e′, i) can be found

as follows: First for all a < i and all e′, such that e′ ∈ sample|i−a|−2(Wa) and e′ /∈ sample|i−a|−1(Wa) we check

if pred′(e′, i) = pred′(e′
p, i). Then, for all e ∈ samplei−a−2(Wi) and all a < i we check if the element e′ follow-

ing pred(e, a) in samplei−a−2(Wa) has bigger relative weight than e and smaller relative weight than the element
following e in samplei−a−2(Wi). If this is the case, we set pred′(e′, i) = e.

Step B.4 Using the values of pred and pred′, we can merge Wi−1 and W̃i in constant time in the same way as
described in Section 3. When elements of W̃i were added to Wi−1, distances between elements for which pred(e, j),
j < i − 1, is known may exceed 2|j−i|−1. However, those distances never exceed 2|j−i|. We can find the new values
using the refinement procedure similar to the procedure described above.

Since the total number of pairs (e, i) for which pred(e, i) or pred′(e, i) must be computed during all iterations of
Parallel-Huffman is O(n), we can perform α logn iterations of Parallel-Huffman in O(α logn) time. Therefore we
obtain

Theorem 2. An almost optimal tree with error factor 1/nα can be constructed in time O(α logn) and with n/ logn

processors, if elements are sorted according to their weight.

5. Almost-optimal codes for the unsorted set of weights

We can combine the algorithm that constructs a Huffman tree for a sorted set of weights with algorithms for the
parallel bucket sort. Depending on the chosen computation model and assumptions about the size of the machine word
we can get several slightly different results. We show that in this case optimal time-processor product can be achieved
under reasonable conditions.

Recall that our algorithm works with weights pnew
i ; pnew

i can be generated from pi in O(logn) time with n/ logn

processors. Each weight pnew
i is of the form m · n−α for m ∈ 0..nα , i.e. pnew

i is a product of n−α and an integer in
the range 0..nα . Hence, we can sort pnew

i by sorting polynomially bounded integers (i.e. integers whose values are
bounded by a polynomial function of n). Observe that the algorithm of [7] works with weights that may be arbitrarily
small.

Using a parallel bucket sort algorithm described in [4] we can sort polynomially bounded integers in
O(logn log logn) time with n/ logn processors on a priority CRCW PRAM. Using the algorithm described by Bhatt
et al. [2] we can also sort polynomially bounded integers in the same time and processor bounds on arbitrary CRCW
PRAM. Combining these results with our modified algorithm we get

Proposition 3. An almost optimal tree with error 1/nα can be constructed in O(α logn) time and with n log logn/ logn

processors on an arbitrary CRCW PRAM.

Applying an algorithm of Hagerup [5] we get the following result:

Proposition 4. An almost optimal tree with error 1/nα can be constructed for the set of n uniformly distributed
random numbers with n/ logn processors in time O(α logn) and with probability 1/C−√

n for any constant C.

Observe that in the case of Proposition 4 the weights of symbols are chosen uniformly at random; hence, the
weights of different symbols are different with high probability.

By using the results of Andersson, Hagerup, Nilsson and Raman [1], n integers in the range 0..nα can be sorted in
O(logn) time and with n log logn/ logn processors on a unit-cost CRCW PRAM with machine word length O(logn).
Finally, [1] shows that n integers can be probabilistically sorted in an expected time O(logn) and expected work O(n)

on a unit-cost EREW PRAM with word length O(log2+ε n). In [3] it was shown that polynomially bounded integers
can be deterministically sorted in O(logn) time with n/ logn processors, if the word size is O(log2 n).

Proposition 5. An almost optimal tree with error 1/nα can be constructed in time O(α logn) with n/ logn processors
on a EREW PRAM with word size log2 n.
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The last statement shows that an almost-optimal Huffman tree can be constructed in logarithmic time with O(n)

operations on a CREW PRAM with polylogarithmic word length.

6. Application to the case of exact Huffman trees

The algorithm described in the previous section can also be applied to the construction of exact Huffman trees. The
difference is that in the case of exact Huffman trees weights of elements are unbounded and the number of classes
Wi is O(n) in the worst case. It is easy to modify the algorithm Parallel-Huffman, so that the number of iterations is
proportional to the number of non-empty classes. The pseudocode description of the modified variant called Detailed-
Parallel-Huffman is provided on Fig. 9; nextclass[i] is the next non-empty class after Wi . Let b be the number of
non-empty classes processed by Detailed-Parallel-Huffman. Below we show that b = O(H) where H is the height
of a Huffman tree.

Proposition 6. Suppose there is node e of depth di in some Huffman tree T , such that e ∈ Wi . Then there is at most
one node e′ of depth di in T , such that e′ ∈ Wi+2 ∪ Wi+3 ∪ · · · ∪ Wb.

Proof. Suppose that there are two nodes e1 ∈ Wi1 and e2 ∈ Wi2 so that both e1 and e2 are of depth di , and i1 > i + 1,
i2 > i + 1. We can swap the sibling of e1 and e2; this does not change the weighted path length of T . Now the weight
of the parent node of e1 and e2 is smaller than 1/2i , but the weight of e is at least 1/2i . Since e is of depth di and the
parent of e1, e2 is of depth di − 1, we can swap e and the parent of e1 and e2, and obtain the tree T ′. The weighted
path length of T ′ is smaller than that of T ; hence, T is not a Huffman tree.

It follows from Proposition 6 that H � b/3 and b = O(H).
We can sort the initial set of elements in O(logn) time with n processors. Then, elements can be assigned to classes

Wi in time O(logn) with n/ logn processors. First, for every element e we compute a value diff(e); diff(e) equals
to 1, if e and its predecessor belong to different classes, otherwise diff(e) is 0. Using prefix sums computation, we can
identify elements that belong to the logn lowest not empty classes and distribute them into classes in time O(logn)

with n/ logn processors. After this, logn iterations of the algorithm Detailed-Parallel-Huffman can be performed
in O(logn) time with n/ logn processors as described in Section 4. Then the elements of the following logn not
empty classes are distributed to classes and the next logn iterations of Detailed-Parallel-Huffman are performed.
Proceeding in this way, we can perform O(H) iterations in O(H) time with n/ logn processors. Thus we get

1 i := m

2 while i � 1 do
3 if (light[i] �= NULL)
4 t := meld(light[i],Wi [1])
5 remove Wi [1] from Wi

6 if (weight(t) > 1/2i−1) OR (Wi �= ∅)
7 if (nextclass[i] �= i − 1)

8 nextclass[i − 1] := nextclass[i]
9 nextclass[i] := i − 1
10 if (weight(t) > 1/2i−1)

11 Wi−1 := merge(Wi−1, {t})
12 else
13 Wi := merge(Wi, {t})
14 forall j � �l(Wi)/2� pardo
15 W̃i [j ] := meld(Wi [2j − 1],Wi [2j ])
16 Wi−1 := merge(Wi−1, W̃i )

17 if (l(Wi) is odd)
18 light[nextclass[i]] := last(Wi)

19 i := nextclass[i]

Fig. 9. Huffman tree construction scheme (detailed description).
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Theorem 3. A Huffman tree of height H can be constructed in O(H) time with n processors. A Huffman tree of height
H can be constructed in O(H) time with n/ logn processors, if elements are sorted according to their weight.

7. Conclusion

This paper describes the first optimal work approximate algorithms for the construction of Huffman codes. The
algorithms have polynomially bounded errors. We also show that a parallel construction of an almost optimal code for
n elements is as fast as the best known deterministic and probabilistic methods for sorting n elements. In particular,
we can deterministically construct an almost optimal code in logarithmic time and with linear number of processors
on CREW PRAM or in O(logn) time and with n log logn/ logn processors on CRCW PRAM. We can also construct
an almost-optimal tree with linear work in logarithmic time provided that the machine word size is log2 n. This is the
first optimal work and the logarithmic time algorithm for that problem.

Our approach also leads to the first parallel algorithm that works in O(H) time and with n processors. This gives
the improvement of the construction of Huffman trees for the case when H = o(

√
n logn), where H is the maximum

codeword length. The question of the existence of algorithms that deterministically sort polynomially bounded integers
with linear time-processor product and achieve optimal speed-up remains widely open. It will be also interesting to
know, whether efficient construction of almost optimal trees is possible without sorting initial elements.
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