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We study completions of diagrams of extensions of C*-algebras of the form
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find universal solutions to all four of these problems under restrictions of varying
severity, on the given vertical maps and describe the solutions in terms of push-outs
and pull-backs of certain diagrams. Our characterization of the universal solution
to one of the diagrams yields a concrete description of various amalgamated free
products. This leads to new results about the K-theory of amalgamated free
products, verifying the Cuntz conjecture in certain cases. We also obtain new results
about extensions of matricial field C*-algebras, verifying partially a conjecture of
Blackadar and Kirchberg. Finally, we show that almost commuting unitary
matrices can be uniformly approximated by commuting unitaries when an index
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1. INTRODUCTION

It is well-known that in the categories of (not necessarily unital) algebras
and C*-algebras, there exist (necessarily unique) universal solutions to the
pull-back and push-out problems. One may formulate these problems
diagrammatically as

®
®

Such diagrams are to be read as follows: Given objects and morphisms
symbolized by black dots and solid arrows, does there exist a universal
choice of objects and morphisms symbolized by white dots and dashed
arrows, making the diagram commute? The first question translates to the
defining diagram for the amalgamated free product

— — > Em——

e— - >0

[ ]
A
|
|
[¢]

® —> @

B — — — >

/B
A B*AC .......................... >D
C

and the existence of this object gives the affirmative answer to our first
problem. The pull-back construction gives the affirmative answer to the
second.

The study of extensions is central to the theory of C*-algebras and has
widespread applications to most of its subfields. One might mention the
classification problem, KK-theory, exact C*-algebras, and quasidiagonality
as four different examples of research areas in which extensions play a
pivotal role. Continuing the train of thought above, we are lead to consider
the four problems
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where we now, besides commutativity, require horizontal exactness
everywhere.

The purpose of this article is to settle the question of the existence of
non-trivial solutions to these problems, with universal solutions identified
whenever possible. Along the way it will be made clear that the four
problems, despite their apparent similarities, have very different solutions,
requiring quite different methods. In particular, the advantage of working
in the category of C*-algebras instead of just algebras over C increases
dramatically with the number of the diagram.

In fact, Diagram I can always be filled out universally in both of these
categories, for exactly the same reason. Indeed, if a system

B,
lﬁ
0 A - X - B 0
is given, the universal solution is
0 A—5 x, 2 B, 0
I
0 A X B 0

13 K1

where X is the pull-back over X and B, n; and y the universal maps, and
1, the map induced by

A—0>Bl

Pk
We leave the details to the reader.
To explain how we are going to deal with the other three problems, we
recall that the study of (C*-)algebraic extensions is based on two
tools—the pull-back construction, which we have already mentioned, and

the multiplier algebra, which is the universal unital (C*-)algebra containing
the given algebra as an essential ideal. When an extension

04— X2 B-0
is given, there is a morphism

0: X > M(A)
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given by 0(x)a =1"'(x1(a)), and a morphism
n:B— M(A)/A

will be induced. This is an invariant of the isomorphism class of the exten-
sion, the Hochschild or Busby map, depending on whether one works in the
category of algebras or the category of C*-algebras. It has been known
since [ 13] that if an algebra A (over C, without unit) is an essential ideal
in itself, then this correspondence between (isomorphism classes of) exten-
sions of A4 by another algebra B with Hom(B, M(A)/A) is a bijection. The
extension algebra X associated to n: B— M(A4)/A will be the universal
solution of a diagram of type I

B

ln

00— A——> M(A)— M(A)/A—— 0

where the bottom line is the maximal essential extension of 4. We shall
often refer to this situation by

0-A4A->X->B-0 [#7].

The situation working in the category of C*-algebras is similar; all one
must do is replace the Hochschild theory by the corresponding theory due
to Busby ([3]). As every C*-algebra is an essential ideal in itself, we do
not need to make this assumption explicitly.

With these tools at hand, e.g. in the C*-algebra case, we may describe
the universal solution to Diagram I in a different manner: If the original
extension has Busby map #, the completed extension will have Busby map
np. Again, we leave the details to the reader.

When we pass to the diagrams IT and III, we encounter a problem which
rarely has a solution in the category of algebras, but very often does in the
category of C*-algebras. The difficulty stems from the multiplier construc-
tion not being functorial. When trying to perform Busby theory on the
given data in diagrams II and III, we need to induce from the given vertical
map a: A —> A, a map &: M(A)/A— M(A,)/A,. This is only possible for a
very narrow class of algebra morphisms, whereas it is possible for a large
and natural class of C*-algebra morphisms. With the functoriality problem
out of the way, we are able to solve problems II and III fully. We shall
develop a tool, Theorem 2.2 below, which contains the full answer.
Furthermore, we shall describe the universal objects as pull-backs and
push-outs for certain diagrams.
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While a universal solution to diagram IV exists, for rather trivial
reasons, when the given vertical map is surjective, it is the case of injective
vertical maps which is important. We predict that universal solutions will
only very rarely exist in this case. Furthermore, even to achieve non-trivial
solutions requires heavy use of the analytical side of C*-algebra theory, in
particular of corona algebra methods, as described in [23] and [27]. In
order to get just a single nontrivial completion of the diagram, the given
vertical map must be corona extendible ([22]), a notion which turns up in
the study of projective and semiprojective C*-algebras. Surprisingly many
morphisms satisfy this strong condition, and we present a new class of
corona extendible maps in this paper.

Diagrams IIT and IV are of special interest to applications in C*-algebra
theory. Taken together they give a way to analyze Hom(X, —) in terms of
Hom(A, —) and Hom(B, —) when X is an extension of 4 by B. For an
example of why this may be desirable, consider the extension

0-SM,—-»10,-C—-0

involving two of the most basic C*-algebras and the nonunital dimension
drop algebra. The latter C*-algebra has, justifiably, been getting much
press of late, especially with regard to torsion coefficient K-theory and
classification problems, cf. [5], [7], [6], [4]. The study of maps out of [,
(in [17], for example) was essentially based on the isomorphism

l,=SM, *Cy(10, 1[) Co(10, 17).

This a special case of our Proposition 4.2, which identifies the universal
completion to diagram III. Many approximate results about Hom(l,,, —)
(those in [17]) are turned into exact results by using the corona
extendibility concept linked to Diagram IV.

The paper is organized as follows. In the first two sections we develop
two tools—one algebraic, the other analytical in nature—which are
fundamental to most of our further results. We are optimistic that the
applications of those tools are not limited to what is presented here. We
then turn our attention towards Diagrams II, III and IV, solve the
question of universal solutions under certain restrictions on the vertical
map, and describe why corona extendibility is important for Diagram IV.
Expanding the results in [22], we then devise a large new class of corona
extendible maps.

Turning to applications, we study instances of matricial corona
extendibility, in the sense that only maps into corona algebras over (® M,
must be extendible. Combining several results in the paper, we find a class
of matricially corona extendible maps, and this leads to new results about
the class of matricial field algebras defined and studied by Blackadar and
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Kirchberg. Our results also combine with results by Loring, based on Friis
and Rgrdam’s proof of Lin’s theorem regarding almost commuting self-
adjoint matrices, to show that certain maps defined on the two-torus have
a property related to matricial corona extendibility. Out of this we derive
the result that almost commuting unitary matrices may be approximated
by commuting unitaries when a natural index obstruction vanishes.

We are grateful to Ken Goodearl for an inspiring electronic corre-
spondence in the early stages of this work. The authors also acknowledge
the support of their respective science foundations, the NSF (Grant DMS-
9215024) and SNF. The present paper is an enlarged and improved
version of the earlier report “Multiplier realizations and extensions of
C*-algebras,” now obsolete.

2. MORPHISMS OUT OF EXTENSIONS

The main result of this section allows a full description of morphisms out
of an extension X of 4 by B, in terms of morphisms out of 4 and B. We
prove the result using a reformulation concerning maps between exten-
sions, and this basic result is what we shall be using throughout the paper.

The results and their proofs are essentially algebraic in nature, but, as
mentioned above, require what appears to be unrealistic restrictions in
categories without topology. By contrast, the result holds true for
C*-algebras when a certain morphism falls in a large and natural class,
the proper morphisms.

2.1. Proper Maps

To find a subcategory of algebras and morphisms for which the
multiplier construction is functorial, we must in addition to the already
mentioned hypothesis that the objects should be essential ideals in
themselves, add the condition

Ay=a(A)A,=A,0(A)

on the morphisms from A4 to 4,. In this case, we may functorially define
a: M(A)— M(A,) by the formula

a(m)[a(a)a;, ] =a(ma)a,.

to obtain an extension of a. As & extends a, we also get a morphism &
between the corona algebras C(A) = M(A)/A and C(A4,)=M(A,)/A4,.

In the class of C*-algebras, we only need to require one of the equivalent
properties:
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(i) Ay=(A)4; =A4,u(A).
(i1) o(A4) is is contained in no proper, hereditary C*-subalgebra
of 4,.

(ii1) The image under a of an approximate unit for 4 is an
approximate unit for A,.

We say that o is proper when this is the case, and use the last property to
define a. Let an approximate unit (u,) for 4 be given, and define

a(m) a=1lim a(mu,) a
A

which is indeed a *-homomorphism from M(A4) to M(A,) extending o.
Clearly « is unique, so the map does not depend upon the choice of (u,)
and the construction is functorial. We again define &: C(4) — C(A4,) in the
obvious way.

To explain the terminology and demonstrate that this is a natural class,
we return to commutative C*-algebras. In a careless moment a C*-algebraist
might be quoted for saying that there is a covariant functor between the
categories of commutative C*-algebras with morphisms and the category of
locally compact Hausdorff spaces with continuous maps. This, however, is
wrong! Some morphisms (e.g. the zero morphism) do not correspond to
continuous maps and some maps (non-proper ones) do not correspond to
morphisms. The correct categories are:

Compact spaces Unital commutative C*-algebras

Continuous maps Unital morphisms

and

Locally compact spaces Commutative C*-algebras

Proper continuous maps Proper morphisms

The bridge between these two categories are “pointed spaces”, i.e. locally
compact spaces X with an additional point “o0”, written X+, where X * is
the one-point compactification if X is non-compact, and otherwise oo is an
isolated point adjoined to X, with continuous maps g: X* — Y+ with
g(o0)=o0. This corresponds to commutative C*-algebras with arbitrary
unital morphisms via forced unitization. Note how, when both X and Y are
noncompact, precisely the maps g such that g='({oo})={oo} will reduce
to proper continuous maps of X into Y.
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This analogy is made sharper by the noncommutative Tietze extension
theorem. A surjection 4 — A, is certainly proper, and by [26, 10] the
induced morphism M(A)—> M(A,) is surjective. Consider the case
A=CyX) and 4, =C(Z) where Z is closed in X. The fact that any ele-
ment in M(A4,),,= C,(Z, R) lifts to an element in M(A4),,= C,(X, R) is the
reason for calling this an extension theorem.

2.2. Existence of Morphisms Out of Extensions
LeEMMA 2.1.  Given a commutative diagram
4,—— X
Pk
A — X

in which the horizontal maps are embeddings of ideals, with o proper, and
letting

0: X—> M(A), 0,: X, > M(A4,), a:M(A;)—> M(A)
denote the morphisms induced by 1,1,, and a, we have
Oy =ab,.
Proof. Recall that
0(x)a = xa, 0y)a,=ya.
A dense set of elements in A are of the form a(«,) a, and we have
x(x)i(alar)a) = y(xy11(ar))ua)
=(1,(x,a))u(a)
=1(x;a,)a)

=1(a(xya,)a),

proving that Oy =a6,. ||

THEOREM 2.2. Let Busby maps n;: By —> C(A;) and n: B— C(A) be
given, as well as morphisms a: Ay > A and f: B, — B, and assume that o is
proper, so that we have an induced morphism &: C(A) — C(A4,). Consider the
diagram
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0 A4, B X, - B, 0 [7:]
A A
l
0 A d X —= B 0 [#7].

Then there exists a morphism y: X, —» X, necessarily unique, making the
diagram above commute, exactly if

any =np.

Proof. We shall prove the result using the 3D diagram

0 Ay M(Ay) C(Ar) 0
s
0 Ay l X l - B l 0
1 X B
0 A : M(A) C(4) 0
S 7
0 A —~ X — B 0

Note that by construction, the leftmost square and the top, bottom, and
back faces are commutative.

Suppose a y exists so that the front faces commute. By Lemma 2.1 both
the front face and the center square are commutative, whence so is the
rightmost square.

Conversely, suppose that the rightmost square is commutative. We con-
clude that the two morphisms from X, to C(A4) going over M(A) and B,
respectively, agree, and by the universal property of X, we can fill out the
diagram with a unique morphism y for which the center and right front
squares commute. A diagram chase shows that also the left front square
commutes. ||

Remark 2.3. Uniqueness of the map y may fail in the absence
of properness. Consider for instance the diagrams of trivial extensions

0 C CeC C 0
A
0 C CecC C 0

with morphisms y,(a, b) = (0, b) and y,(a, b) = (b, b).
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We shall use Theorem 2.2 to give a complete description of the set of
morphisms out of an extension C*-algebra. Define the idealizer of ¢(A4) in
Y as

Lp(A4) : Y)={yeY|yp(4)+p(Ad)y < p(4)}.
As quotient we obtain the eigenalgebra
E(p(4) 1 Y)=1(p(4) : Y)/p(A),

cf. [24]. Thus working only with the C*-subalgebra ¢(A4) of Y we have
created an extension

0->p(A4)—> Ip(A): Y)—"> E(p(A) : Y)—>0

giving rise to a Busby map

(E(p(A) 1Y) — Clo(A)).

THEOREM 2.4. Given an extension of C*-algebras

0->4->X->B-0 [#7]
and a C*-algebra Y, there is a bijective correspondence between elements ¢
in Hom(X, Y) and pairs (@, V), where ¢ e Hom(A, Y) and y € Hom(B,
E(p(A) . Y)), such that

PC=ny.
Here ( is the Busby map for the extension
0-9(4)—=L(p(4) 1Y) = E(p(4) : Y) =0

and @ is the map induced by the proper morphism @: A — @(A).

Proof. Let ¢ be given and denote by ¢ its restriction to 4. Since A4 is
an ideal in X, ¢(A4) is an ideal in ¢@(X), and ¢ in fact maps into
I(p(A) : Y). We get a diagram

0 A X B 0

s

0—— p(A)—— I(p(A): Y)—— E(p(4): Y)—— 0

with  induced by the other two vertical morphisms. Since @{=ny by
Theorem 2.2, we have established a map out of Hom(X, Y) with the
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described properties. The map is a bijection also as a consequence of this
result.

3. MULTIPLIER REALIZATIONS

In contrast to the tools developed in the previous section, our next result
is highly analytical in nature. Its proof is based on the fact that the multi-
plier algebra of a C*-algebra A embeds naturally as the idealizer of 4 in
the enveloping von Neumann algebra A**.

3.1. A Technical Theorem

THEOREM 3.1. Let C(E) denote the corona of a o-unital C*-algebra E,
and let D and N be separable C*-subalgebras of C(E). For every morphism

p:A— C(EYnD AN+,

where A is a o-unital C*-algebra, and every element m in M(A), there is a
zin C(E)nD' nN* such that o(ma)=z¢(a) and @(am) = ¢(a)z for each
ain A. If 0<m<1 we can choose 0 <z <1.

Proof. By linearity it suffices to consider the case 0 <m < 1. If (u,) is a
countable approximate unit for 4, set

x,=mPu,m? oy, =1=—m"u,(l—m)2

Then we obtain monotone increasing sequences (x,,) and (y,) in 4, such
that x, #/m and 1 — y, ~xm in A**. Equivalently,

lim [[(m —x,)a| =lim [|(1 -y, —m)a|| =0

for every a in A4. (Strict convergence, cf. [25, 3.12.9].)

By Kasparov’s technical theorem, see [23, 3.5] or [27, 8.3], there is an
element e in C(E)n D' n N+ such that 0 <e <1 and ¢(A4)(1 —e)=0. Now
consider the sequences (¢(x,)) and (e —¢(y,)) in C(E),, and note that
one is increasing, the other decreasing, with ¢(x,)<e— ¢(y,,) for all n, m
(because e is a unit for ¢(A4)). Since C(E) has the asymptotically Abelian,
countable Riesz separation property (AA—CRISP) by [23, 3.4] or [27,
6.7], there is an element z in C(A4) N D' such that

¢(xn)<2<e_(ﬂ(yn)
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for all n. In particular, 0 <z<e<1, so ze N*. For each a in 4 we have

I(z = @(x,))"2 @(a) ]
= llp(a*)(z — p(x,))p(a)ll
< llp(a*)(e—p(y,) —@(x,))p(a)l
la*(1 =y, —x,)all
= [a*((1 —=m)' (1 —u,)(1 —m)"2 +m"2(1 —u,) m'?)a|
< (1 =u,)? (1 =m)"2a|? + |(1 —u,) > m"a|?

-0,

N

whence (z — ¢(x,,))@(a) — 0. Since also (m — x,,) a > 0 by our choice of x,,
it follows that zg(a) = @(ma) for every a in A, as desired. ||

COROLLARY 3.2. If the morphism ¢: A— C(E)nD' n N> is injective,
and if I(A) and A" denote the idealizer and the annihilator of ¢(A) in C(E),
there is an extension

0>A*AD' ANt I(A)AnD' AN+ - M(A)—0
Proof. As we have seen above, there is always a natural morphism
0: 1(A) > M(A)

and it is clear from the definition that ker § = A*. In our case we conclude
from Theorem 3.1 that this morphism, even restricted to [(4) "D’ "N+, is
surjective. ||

Remark 3.3. Our proof of Theorem 3.1 uses the Kasparov technical
theorem. However, it is possible to give a uniform proof of Theorem 3.1
and the KTT based on lifting properties of C*-algebra elements. See [ 19].

The potential—which we believe is considerable—of the previous result
lies in the possibility of choosing special subalgebras B of [(A)n D' n N+
that have zero intersection with A+. Certainly the case where B is simple
and defined by a few algebraic relations (like ¢, or the irrational rotation
algebras) should be investigated more closely, perhaps in conjunction with
projection-creating conditions on C(E), such as having real rank zero.

For immediate consumption we shall consider only the simplest case
associated with lifting problems—projective C*-algebras.

THEOREM 3.4. Let C(E) be the corona algebra of a o-unital C*-
algebra E and let D and N be separable C*-subalgebras of C(E). If
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@:A— C(EYNnD' AN~ is a morphism of a o-unital C*-algebra A and
0: P— M(A) is a representation of a projective C*-algebra P as multipliers
of A, there is a realization morphism y: P— C(E)n D' n N+, meaning that

Y(x)p(a)=p(0(x)a), Yae A, VxeP.

Proof. Using Corollary 3.2 we obtain the following commutative
diagram

M(A) P

P

IS

A———>p(A) ——I(p) —=C(E)n D' N N*

=
5
=

in which I(@)=I(¢(A) : D' n N*). Here, according to the Tietze extension
theorem, ¢ is a surjective morphism extending ¢ and the morphism 7 from
Corollary 3.2 satisfies n(z)y =zy for all z in I(¢) and y in @(A4), and is
surjective. Since P is projective there is a morphism /: P — I(¢) such that
my = @0. For every x in P and a in A we therefore get

as desired. ||

4. UNIVERSAL COMPLETIONS
4.1. Diagram II
Let a system

4,
A

be given, and suppose that a is proper. The universal solution is obtained
by two subsequent pull-back constructions. First, one defines B, as the
pull-back

0

X B 0 [#]

F(d
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B1—’C( 1)

and gets the diagram
0 4, X, > B 1 0 [7:]
O
0 A X B 0 [#]

by the standard Busby construction. Here one observes that Theorem 2.2
applies to give the unique morphism y: X, > X making the diagram
commute. Furthermore, any other completion

Ll

0 A, X B 0 [
A A
0 A X B 0 (7]

of the diagram must factor through this in a unique fashion; for by defini-
tion of B; and Theorem 2.2, there is a unique morphism f”: B} — B; with
the properties

mp =C B =P

By Theorem 2.2 again, there is a unique morphism y”: X; — X; through
which the entire completion factors.
We can describe the C*-algebra X, more explicitly:

PROPOSITION 4.1. In the universal solution above, the square
X, 2 M(4,)
ook
X — M(A)

is a pull-back.
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Proof. There is a commutative diagram

B, b C(Ar)
/ o %
X, l — M (A1) a
X B 5 a C(A)
p e
X M(A)

A diagram chase shows that if all faces of a cubic diagram commute and
if the top, bottom and back faces are pull-backs, so is the front face. |

4.2. Diagram II1

Let a system

A,

be given, and assume that a is proper. The universal solution is

0 A—> X —"5B 0 [7]
A
0 A, X, B 0 [an],

b T

in which the morphism y exists by Theorem 2.2. If another completion is
given by the Busby map {: B' > C(A4,), we get a diagram

0 A X B 0 []
L /1 N
0—/= A —/~X1—/~B——0 [an)

vl

0 A, X' B’ 0
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in which the morphisms in the center exist and are unique by Theorem 2.2.
The center triangle is commutative as a consequence of uniqueness.

Again, a concrete description of the center C*-algebra in the universal
solution is possible.

PROPOSITION 4.2. In the universal solution above, the square
A—— X
]
A, — X,
is a push-out.

Proof. We consider the situation

A——X

|

A —> X1

It is our task to prove that the dotted morphism can be filled in in a unique
fashion. To do this, we abbreviate

l(pa) =1(p(a(A)) : Y) lp)=1I(p(A) : Y)
E(pa) = E(p(a(4)) - Y)  El@)=I(p(A4):Y)

and note that {y must map into /(¢pa) since

Y(x)g(ala)) = y(x)(i(a)) =Y (i(xa)) = p(a(xa)).

We also conclude from 4, =a(A4)A, that I(px) < I(¢). We get a diagram

0 ) o(Ar) I(p) E(w 0 ¢l
. | Pl ¥ = 5 e -
1 ‘ " 1 l P ’ n
0—|—=wla(A)) —|—I(pa) —|— E(y 0 (€]
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in which all the morphisms on the rightmost square are induced by the
morphisms on the other two vertical squares, except f,, which is given by

Bi=15p

To get a morphism making the top face commute, we need
(an) =y

according to Theorem 2.2. We also learn from the other implication of this
result applied to the bottom and back edges that

(p)n=Cp  and  Z{={y1p,

whence (1) will follow if we can show that
Pa = 14(p).

This in turn is a direct consequence of functoriality of the extensions of
proper morphisms to multiplier algebras, applied to the left square in the
3D diagram above.

Denote the unique induced morphism by v and consider it as a map into
Y. Clearly vi; =¢, and vy =y by uniqueness of the center morphism
making the diagram involving only the lower front and upper back short
exact sequences commute. To check uniqueness of the morphism induced,
note that if v': X; - Y is another map with v't; = ¢ and vy =y, we have
v'(X;) < I(p) because A, is an ideal in X,. Hence v’ restricts to a morphism
making the left cube of the 3D diagram commute. We conclude that the
upper right square commutes by a diagram chase, whence v = v’ by uniqueness
in Theorem 2.2. ||

COROLLARY 4.3. If a diagram of extensions

0 A—> X —"5B 0
A
0 A, X, B 0

B o1

is given, with o proper, the diagram is universal of type III, and the left
square is a pushout.

Proof. 1f the Busby map for the upper extension is #, the Busby map
for the lower is &» by Theorem 2.2 and the diagram is universal of type III.
Thus, Proposition 4.2 applies. ||
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Note that if 4, 4,, and X are all commutative in the diagram above, so
is X;. We shall apply this result to determine certain amalgamated free
products of commutative C*-algebras in Section 6.3 below.

Remark 4.4. One should note the duality between Diagrams I and III,
and how the solutions come out as pull-back and push-outs, respectively,
of the given data. It is important to stress, however, that our proof of exist-
ence of a universal solution to Diagram III requires the full force of Busby
theory (hence Diagram I) and proper morphisms. Actually, it follows from
Remark 2.3 that there is no universal solution to the diagram

0 C CecC C 0

y

C

For if there was one, say the trivial extension of C by X, any map out of
C would factor uniquely through X, whence X'=C, and the solution had
to be one of the ones given in Remark 2.3. And then the other solution
could not be factored.

COROLLARY 4.5. Let morphisms 1:A—>X and a: A— A, have the
properties that o is proper, and that 1 is an inclusion of A an an ideal in X.
We then have a six term exact sequence

Ko(d)—2— Ko(d,) @ Ko(X) —2 Ko A, %, X)

4 lro

Ki(Ay %4 X) 77— K;(4,) ®K1(X)‘71 K;(A4)

v [<]

Proof. Take K-theory on the diagram in 4.3 and apply the Barratt—
Whitehead lemma (cf. [11, 17.4]). |

As a consequence of our proof the maps can be characterized as follows.
Let the morphisms ¢;, 7, y be the ones found in the universal solution
above, and &' the connecting maps in the six-term exact sequence corre-
sponding to the extension of 4 by B. Then

qﬁf:[K"(“)] Vo[ Ky K] T'=Ki(m,)
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4.3. Diagram IV

When a diagram of the form

0 A——> X—"> B 0

lﬁ

B,

is given, with f surjective, the universal solution is

0 A——>X—"> B 0
A
0 A, X—— B 0

as is easily checked. Here 4, is of course the kernel of fz.

The result above is not completely satisfactory since most of the interest-
ing applications lie in the non-surjective case; in fact embeddings B < B,
are the most desirable to handle. Here the methods we have used before
lead nowhere, and we suspect that universal solutions to the problem will
be scarce. This explains our next try at solutions of Diagram IV with forced
boundary conditions.

5. CORONA EXTENDIBILITY

Working in analogy to the universal solutions to Diagram I and III, we
consider the problem

0 . . . 0
i J«
[
)
0—>07——)o———) .—)0_

Requiring that the leftmost C*-algebra in the completion is the same as the
given one assures that the completion—if it exists—is non-trivial. Since we
are not interested in the case where the rightmost morphism is surjective
(but willingly injective), constancy on the left side is really optimal. Giving
up this demand could result in “solutions” like
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We know from Theorem 2.2 that a diagram

0 A X B 0[]
| ¢
A B,

can be completed precisely when there exists a morphism #,: B, —» C(A4)
with 7 =#, f. Solutions to such an extension problem are rarely unique, so
we cannot expect universal solutions.

A highly selective (and yet surprisingly large!) class of morphisms
f: B— B, has the property

B——C(E),

7
)|
s

B,

i.e., every morphism # into the corona algebra of a g-unital C*-algebra E
may be factored through B,. We shall call such morphisms corona
extendible, cf. [22, 1.1].

It is clear that every such morphism has a nontrivial completion in the
sense described above. The aim of this section is to prove the existence of
many corona extendible maps.

5.1. Corona Extendibility and Tensor Products

Lemma 5.1. Let 0: A— X be a morphism between C*-algebras and
assume that A has a faithful representation on a separable Hilbert space.
Then 0 is corona extendible provided only that all injective morphisms
@: A— C(E) extend to X.

Proof. Assume that 6 has the weaker property and consider a general
morphism ¢: A — C(E). Let n: A — B(/?) be a faithful representation of A.
Tensoring if necessary 7 with the identity map on /> we may assume that
n(A) contains no compact operators, ie. m(A4)NK={0}, and thus
consider the injective morphism

7' A B(/2)/K = C(K).

Now ¢ @ 7': A —» C(E@® K) is injective, so by assumption there is an exten-
sion Y: X > C(E® ) such that y0=¢p ®x'. If 7, denotes projection on
the first summand in C(E® K)=C(E)® C(K), we can define ¢ =7n,y to
obtain a morphism of X in C(E) such that g0 =¢. ||
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THEOREM 5.2. Let X be an extension of A by P, where A is o-unital and
has a faithful representation on a separable Hilbert space and P is projec-
tive. Then for every separable, unital, C*-algebra D the embedding map
A®D—- X®D is corona extendible, when ® denotes the maximal tensor
product.

Proof. Consider a morphism ¢: A ® D — C(E), which by Lemma 5.1
we may assume to be injective. Embedding D in M(A® D) as 1®D
(where 1 is the unit in M(A)) and using Theorem 3.1 we can find a
separable C*-subalgebra D, of I(p(A® D)) and a surjective morphism
o: Dy — D such that

zp(a®d)=g(a®a(z)d) (2)

for all z in D, and a®d in A® D. It follows that ker o and ¢(4® D)
annihilate each other. Since both are g-unital C*-algebras it follows from
the SAW* property of C(E) (cf. [26]) that there is an element e in C(FE)
with 0 <e <1 such that

(kerg)e=(1—e)p(A®D)=0 (3)

Consider now the morphism ¢’: 4 - C(E) defined by ¢'(a)=¢p(a®1),

ae A. Note that ¢'(4)=Dyn{l—e}* by (2) and (3). By Theorem 3.4
there is therefore a morphism

P> CE)nDy n{l—e}* (4)

such that #'(x)¢'(a)=¢'(a(x)a) for every x in P and a in A. Here
o: P— M(A) is the morphism that defines the split extension, as described
in [21, 2.17].

By definition of the maximal C*-tensor product there is now a
morphism

7 ®i1:PRD,— C(E)

defined by (7' ®1)(x®z)=n'(x) z. Note here that the ideal P® ker ¢ of
P® D, is contained in ker (7' ® 1), because if z € ker ¢ then

(I ®1)(x®z)=n'(x)z=7n"(x) ez=0

by (3) and (4).
Since we are using the maximal tensor product we have an extension

0->PRkere>PR®Dy,—>PRID—-0
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and from the above we see that n' ®: uniquely defines a morphism
V: P®D - C(E).
We now have the extension

0 AR®D->XRKD—->PRD—-0

which is split exact because the morphism a ®: provides a right inverse to
the quotient map. Now let (u,) be an approximate unit for 4 and compute
for ze Dy, de D, ae A, and x € P that

Y(x®a(2))ela®d)=(1"Q@1)(x®z)p(a®d)
=7'(x)zp(a®d)
=7'(x)p(a®a(z)d)
=lim 7'(x)p'(a)p(u, @ o(2)d)
=lim ¢'(a(x)a)p(u, @ a(z)d)
=p(ux)a®a(z)d).

It follows that

vy e(z)=e((a®1)(y)z), yeP®D, zeA®D

which by [21, 2.2] means exactly that (¢, ) defines a morphism
@: X® D — C(E) that extends ¢. |

THEOREM 5.3. Let X be an extension of a separable C*-algebra A by a
projective C*-algebra P. Then for every separable C*-algebra D the embedding
map A® D - X® D is corona extendible.

Proof. Consider again an injective morphism ¢: A ® D — C(E). Since
we no longer assume that D is unital we have instead an embedding
A->A®1=M(A® D). Using Theorem 3.1 we can find a separable C*-
subalgebra A4, of I(¢(A® D)) and a surjective morphism o: A, > A such
that

zp(a®d)=¢p(a(z)a®d)

for all zin Ay and a®d in A® D.
With D the unitization of D we define a morphism ¢': 4, ® D — C(E) by

P'(z® (d+21))=¢(o(z) ®d) + Az,
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for z in A, and d+ A1 in D. Moreover, if a: P— M(A) is the Busby map
for the extension X we can find a lifting morphism

P—— M(4)

because P is projective.

The situation has now been reduced so that we can apply Theorem 5.2
with 4., f, D and ¢’ instead of 4, «, D and ¢ to obtain a morphism
Y: P® D — C(E) such that

Y(x®d) 9'(z®8) = ¢'(f(x)z® de)

for all x in P,z in A, and 4, & in D. If we now take d, e in D and for a in
A choose z in A, such that o(z) =a, then

Y(x®d) pla®@e)=yY(x®d) p(a(z)®e)
=y(x®d) ¢'(z®e)
=¢'(B(x)z @ de)
= p(a(f(x)z) ® de)
=p(a(f(x))o(z) @ de)
= p(a(x)a @ de)
=p((u(x)@d)(a®e)).

It follows that the pair (¢ | P® D, ¢) defines an extension ¢: X® D —
C(E), as desired. |

Remark 54. To illustrate the possibilities of the preceding result, con-
sider the situation where x is a self-adjoint element in the multiplier algebra
M(A) of a separable C*-algebra A. Let sp,,(x) denote the “essential
spectrum” of Xx, i.e. the spectrum of the image of x in C(A4). If now sp,.(x)
is an interval containing 0 and X = C*(4, x), then the embedding map
A® D — X® D is corona extendible for every separable C*-algebra D. The
argument for this is quite simple. If P = Cy(sp,(x)\{0}), then P is projec-
tive and the map f+ f(x) given by spectral theory defines a morphism
a: P— M(A) corresponding to the (split) extension

0>A->X->P-0,

consequently the conditions in Theorem 5.3 are met.
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If the element x above is invertible, the result may fail. To consider the
simplest case, let A be a non-unital C*-algebra and with x =1, the unit in
M(A), put A=A+ C1l. Examples where the embedding AQ D > A® D is
not corona extendible occur already in the commutative case. To be
specific, let A =Cy(]0,1]) and D=C & C. Then

A®D=A®A={feC([-1,1])|f(0)=0}
= C¥x|llxll <1, x=x%).

On the other hand 4= C([0,1]), so AQ D=C([0,1])® C([0, 1]). If we
now let R, =[0, oo and set E= Cy(R ), then

CE)=CyR,)/Co(R,)=C(BR\R,)

and this algebra has no non-trivial projections because AR, \R, is
connected by [ 12, 3.5]—it has one end, cf. [ 1]. Choose any element f in
C(BR_\R,) such that | /|| =1, f=/* and +1esp(f) (e.g. the continua-
tion of f(x)=sinx to fR,). Then sp(f)=[—1,1], so C*(f)=A®D,
providing an embedding of A ® D into C(E). This embedding can not be
extended to A® D, because the latter algebra contains non-trivial
projections.

6. FURTHER APPLICATIONS

6.1. Extensions of Codimension One

In this section we apply our results about Diagram III to find a charac-
terization of extensions of 4 by C when A is g-unital. In this, the strict
Urysohn lemma ([28]) is instrumental.

LEmMMA 6.1. If A is o-unital and there is an extension
0-A4-X—"C-0,

then there exist morphisms o, & with o proper, so that the diagram

0 A X C 0

] ]

0—— Co(10, 1[) —— Co(10,1]) —— C——0

commutes.
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Proof. By [28] we can find 4 in X with 0</A <1, such that n(h)=1
and 1 — h? is a strictly positive element in 4. Defining & by sending ¢ to /4,
we note that the ideal generated by 7 —t? is C,(]0, 1[ ). Hence & restricts
to a map into A4 which is proper by assumption. |

By Corollary 4.3 the diagram above is universal of type III, and since
universal solutions (filled out identically to the right) are equivalent, we
conclude:

PROPOSITION 6.2. Any extension
0-4-X->C—-0
with A o-unital is equivalent to the extension
0— A4 — A% 30,1r) Co(10,1]) > C >0
arising from a proper morphism o.: Co(]0, 1[) — A.

In examples, it is often easy to find a concrete choice of /2 (and hence of a).
For instance, in the case of the extension leading to the nonunital dimen-
sion drop algebra mentioned in the introduction, one may take h=11.

6.2. Matricial Field Algebras

Recall that, according to Blackadar and Kirchberg, a separable
C*-algebra is a matricial field (an MF-algebra) if it is an asymptotic induc-
tive limit of finite-dimensional C*-algebras. They show ([2, 3.2.2]) that
this happens precisely when 4 can be embedded in a corona algebra of a
special form, viz.

AgnMnk/(—B Mnk=M<@ M,,k>/@ M,

for some (infinite, possibly repetitive, non-decreasing) sequence (7;) in N.
C*-algebras that are residually finite dimensional (i.e. embeds into [T M, ,
see [9]) are MF-algebras [2, 3.2.2], so all projective C*-algebras are
MF-algebras by [21, §1].

By Busby theory A4 is an MF-algebra if and only if there exists an
essential extension

0-DM,>X>4-0,

and this can be reformulated, [2, 3.2.2], as the condition that there is an
essential and quasi-diagonal extension

0-K-o>X->4-0.
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It is clear why corona extendibility is relevant for this question. But since
we only need to consider a limited sort of corona extendibility involving
only C(E) where E=@® M, we shall use the term matricially corona
extendible for morphisms with this property. We then get:

LEMMA 6.3. Given an extension
04— X2 B-0,

where both A and B are MF, and 1 is matricially corona extendible, then X
is MF.

Proof. By assumption we have embeddings
p: A-C(E), y:B->C(F),

where E=@® M,,, F=® M,, . We may also by assumption extend ¢ to
a morphism ¢: X — C(E). Letting y =y we have a morphism out of X
with ker y = 4. Consequently,

ker ¢ nker y = {0},

and we have an injective morphism ¢ @y of X into
apocrn-c(om,).

where (r;) =) {m,} u{n,}, suitably reordered, possibly with repeti-
tions. ||

Extending a previous result, [22, 5.7], we now have:

THEOREM 6.4. Let A, D and P be separable, nuclear C*-algebras and
assume that AQ D is MF and P is projective. Then for any extension X of
A by P the C*-algebra X® D is MF.

Proof. Since P is projective, it can be embedded in the mapping cone
of P (see [21, §2]) and is therefore contractible; ie. there is a path
{n,]0<t<1} in Hom(P), continuously embedded in C(Px[0, 1], P),
such that 7, =0 and 7=; =id. Evidently this implies that also P® D is
contractible, and therefore quasi-diagonal by [29]. But every nuclear,
quasi-diagonal C*-algebra is MF by [2, 3.2.2], so P® D is MF. We can
therefore apply Proposition 6.3 according to Theorem 5.3. |1
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LeEMMA 6.5. The natural morphism
Co(10,2[) = Co(10, 11)® Co([ 1, 2[)

is matricially corona extendible.

Proof. Let a morphism

(p:couo,z[)ﬁnMnk/@ M,

be given and extend it to a map from Cy(]0,2[)~ to [IM,, /& M,, by
sending the unit to the unit. It suffices that this has an extension to the
unitization of Cy(]0, 1])@® Cy([ 1, 2[ ). This is easily seen to be equivalent
to finding a logarithm for a unitary in [ M,, /@® M,, . As every contraction
in M,, has a logarithm bounded in norm by 2, this follows. ||

THEOREM 6.6. Suppose that the sequence
04— X" C-0

is exact and A is o-unital. Then the morphism 1 is matricially corona
extendible.

Proof. By Proposition 6.2 there is a diagram

0 A X C 0 [n]

L

0—— Co(10, 1[) —— (10, 1)) —— C——=0  [{]

with a proper, so that it is universal of type IIl. Considering the map
0,: Co([1,2[)— C we can take the universal solution to Diagram I and
achieve the vertical faces of the diagram

0 4 . X il 5 C 0 [7]]
. A/ Ta N 5}\// T’l ™ C'o([LZD—%—’O [n61]
'———_‘“‘)CU 0,1 ;CO 071
0 — Gl ) —— Gi0.1) 0k

0 ——= C5(J0, 1]} ———— C4(]0,2])
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Here we have identified the pull-back in the lower horizontal face with
Co(]10, 2[ ), whereafter the map y becomes restriction. By the universal
properties of the extension involving Y (or directly by Theorem 2.2) there
is a morphism v: Cy(]0, 1[ ) —» Y making the diagram commute.

Note also that since # = &{ by universality of the back face, we have
;751 = &Cél s

and also the front face is universal with respect to Diagram III. Applying

the isomorphism given by Proposition 4.2, we may read off from the
diagram that the morphism 4 between the two amalgamated free products,

Y=4 *Cy(10, 17) Co(10, 2[) 2 A *C(10, 1[) Co(10,1]) =
is the one given by restricting functions and leaving A4 fixed.
Suppose now that ¢: 4—>][M, /@ M, is a given morphism. Since
Co([1,2[) is projective 7, is corona extendible, and ¢ extends to

¢ Y->IIM, /@ M,,. Let y =¢'v and note that

W(f) =o' (1)) = e(a( 1)),

for fin Cy(]0, 1[). By Lemma 6.5 there is an extension of { to

1 Co(10,321) @ Co([3/2,2[) ~ [ M, /@ M,, .

Let Z: Co(10, 17) = Co(10, 3/21) @ Co([3/2, 2[ ) be defined by

where

= [ f(2) 0<t<l1
_{f(l) 1<1<3)2.

For fin Cy(]0, 1] ) we have

YAS) = d(f®0) =P (f®0) =y (/) = p(a( f)).

Therefore ¢ and /1 determine the desired extension to the algebra
A *cyq0,10) Go(10,1])=X. 1
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COROLLARY 6.7. Suppose that the sequence
0-4-X->C-0

is exact and A is c-unital. If A is MF then X is MF.

Proof. 1Tt is clear that C is MF. Hence we may combine Proposition 6.6
and Lemma 6.3 to get the result. ||

6.3. Almost Commuting Matrices

It is possible to rephrase the methods used in the short proof of Lin’s
theorem ([15]) about almost commuting self-adjoint matrices recently
found by Friis and Re¢rdam ([10]) in terms of matricially corona
extendible maps. Combining this with our characterization of certain
amalgamated free products leads to new results about almost commuting
matrices, which we shall present in this section.

The connection between almost commuting matrices and corona exten-
sibility will be explored in detail in [ 19]. We present here a sketch of some
new results, emphasizing the power of our universal solution to diagram
III. The ability to “exchange ideals” allows results about very special
C*-algebras to be upgraded to work for a broad class of C*-algebras. The
situation is akin to that of working on a CW complex cell by cell, where
the key results are often results about spheres or disks. In fact, we now use
Proposition 4.3 to derive theorems about various CW complexes from a
result in [20] about the two-sphere.

Consider first the following definition:

DEeFINITION 6.8. A unital C*-algebra A is matricially semiprojective if
for any sequence n; in N and any unital morphism

erﬁl_[Mnk/GD M, ,

there exists N and a unital morphism

so that py@ = @, where p, is defined by

pN((bNa bN+19 )) =(0, e 0, bN’ bN+17 ) + @ Mnk'
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To obtain Lin’s result it suffices to prove that C(D) is matricially
semiprojective. Replacing the disk by a square, we consider the diagram

C(EH) ................. . HZO:N M.,
)=

PN

\&

Here w is the inclusion that corresponds to the surjection of spaces
arising from identifying the “internal” boundary components to points, and
the downward map in the triangle is given via some retraction onto the
grid. This triangle will not be commutative, but if the number of holes is
large, it can be made to commute up to any positive constant ¢ on the
image under w of some set of generators of C([0, 1]?). It is implicit in [10]
that the morphism @ is matricially corona extendible, so we can choose
to make the lower square commute. Since the C*-algebra over the one-
dimensional grid is semiprojective by [ 18], the dotted morphism making
the rightmost square commute exists, so we achieve a lift of ¢ up to ¢ on
a set of generators. In the finitely generated case, in particular for C([0, 173),
the existence of approximate lifts ensures matricial semiprojectivity. See
[15] or [20].

We will restate the result from [20] that we need. To do this, we must
introduce some terminology regarding “punching holes” in certain CW
complexes. Suppose X is a two-dimensional CW complex with one
two-cell, that is

X= Xl Ugl D.
Here X, is the one-skeleton and there is a (pushout) diagram

X

Xl/ \D
N A
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Let us denote by X' the result of replacing a point in the interior of the
two-cell by a circle. More specifically, let

D[l]z {re2m'(9| 1 <}’<2}

and define B: S' — DM to send e* to 2¢*. Then X' is defined by the
pushout diagram

[

X /X 1]\11)[1}
oA

S

There is a surjection DI — D sending re® to (r—1)e*" and this
induces a surjection Xt'! — X. Notice that one may give X1 a cell struc-
ture that again has only one two-cell. (Note first that this is true of the
annulus Dt"Y). Therefore we may repeat the procedure, and so define X"
which surjects onto X, and is one-to-one except that n points have inverse
image a circle. We shall denote the corresponding unital morphism from
C(X) to C(X™") by wl™,

In particular, we have (S?)!"1 which is homeomorphic to the closed disk
with n—1 holes removed. Let U be any open set, homeomorphic to R?
that misses the selected n points. Let

1: Co(R?) — C(S?)
and
(: Cy(R?) — C((57))

denote the resulting inclusions. Assume further that a morphism
a: Co(R?) — A is given. Using «, 1, and 11") we can form the amalgamated
free products

Py

A=A xc C(S?)
At =4 *C\(R?) C((S*)t ).
Let 1¢ 2y denote the canonical inclusion of Co(R?) into A.
A result in [20] now shows that if ¢: 4 - C(P M, ) is given, then if the

K-theory of i (g, 1s zero (which is a consequence of [16, p. 199] if Ky(A4)
is pure torsion), then there exists @ so that
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Al
idA*w["]T ¢
1N N
Co(®) - A5 ClO M)

commutes. We show here how our results regarding Diagram III allow us
to identify 4 and A" coherently for some commutative choices of 4,
proving that the corresponding map w!”! has similar properties.

Let A, denote the following quotient of the half-open annulus:

a d-fold identification

Ag={re s <r< 1}/of the boundary S'.

(Notice 4, U {0} is RP?), and identify R* with

collapse the boundary

27i6 | 1
re s<r<l .
{ 2 }/Sl to a point.

Clearly the identity of the half-open annulus induces a proper map from A4,
to R?, and transposing produces a proper morphism

o Co(R?) = Co(A ).
We identify

§2 o /collapse the boundary
~ /8! to a point

and choose U < S? as the canonical embedding given by the identifications
above. Finally, fix n points in S>\U. When W, denotes the d-Moore space
(so W,=RP?), we then have

PrOPOSITION 6.9. There are isomorphisms making the diagram

—

Co(Ay) ———— Co(W,)

wlnl

idC01 ) =oln] l

Col A )" ——— Co((W,)1)

commute.
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Proof. There is a commutative diagram with exact rows:

0—— Co(4,) —— Co(W,)) —— (D) —— 0

0—— Cy(R?>) —— (C(S8?) —— C(D)—— 0,
where we have identified

a d-fold identification

wW,=D
a4 / of the boundary S

In the diagram, the quotient maps arise from the restriction to the closed

disks of radius 1/2 at the origin of either W, or S2 Since « is proper, we

may apply Proposition 4.3 to see that the left square is a pushout.
Repeating the last argument, but with identifications

a d-fold identification

w \n1 = pln]
(Wa) / of the “outer” S

and

($2)t1 = pl~l collapse the “outer”
S! to a point

we find that AU~ Cy((W,)!")) in a coherent fashion, so that the given
isomorphisms lead to a commuting diagram as above. ||
THEOREM 6.10. The map o™: C(W,) — C((W )t™) is corona extendible.

Proof. Since Ky(Cy(A4,)) =7Z/dZ, we may apply [20, Lemma 11(1)] to
the morphism id+c, (4, '™, As any isomorphism is corona extendible, the
result follows from Proposition 6.9 above.

In the latter result we may of course place the n holes anywhere on W,
since any isomorphism is corona extendible. It is then straightforward to
modify the Friis-Rgrdam proof of Lin’s theorem to conclude:

COROLLARY 6.11. C(W,) is matricially semiprojective.
Since we may identify RP? as
{(21922)662|Z§ —lz1l) 21}

we obtain:
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COROLLARY 6.12.  For every ¢>0 there is a 0>0 so that if d is an
integer and x, y are contractions in M, and

Ilx, x*TI <o [y, y*1lI<d |[x ]l <9,
and if moreover
Iy* = (1= Ix]) x| <0,
then there exists commuting normal contractions X and y in M, such that
lx—xl<e and  [y—yl<e

If in place of Cy(A,) one uses Cy(T'), where
eZnil ~ e2ni(3/47 1)

T— {reznio|§<r<1}/e for te[0,1/4],

2ri(1/4+1) e2m’(l —1)

then Cy(T)~ = C(T?). We define a proper map « as above, and get by
similar reasoning:

ProrosITION 6.13.  There are isomorphisms making the diagram below
commute.

e — od

Co(T)

idgg (7 *w!™] l winl

Co(T?)

——[n]

Co(T)  —== Co((T*)I")

Applying [20, Lemma 11(2)] we get

THEOREM 6.14. Consider a diagram

C (%))

anf E

Co(R?) —— C(T?) — 2= C(B My,

where the K-theory of @i is zero. There exists ¢ so that the diagram com-
mutes.

In this case, combining the Friis-Rgrdam methods with the fact that the
winding number index is just K-theory (see [ 8]) yields the following result:
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in

COROLLARY 6.15. For every ¢>0 there is a 0 >0 so that when d is an
teger and u and v are in U(My) with

luv —vu|| <9,

and moreover

th

10.

11.

13.

14.

15.

winding # (A det(Auv + (1 — 1) vu)) =0,

en there exist i and v in U(M,) that commute and for which
lu—i| <e and [v—7] <e.
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