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Abstract

The postbuckling deflection of an infinite beam that is bonded to a linear elastic foundation and is subjected to an
internal compressive stress is analyzed. The nonlinear equilibrium equation that governs the problem considers exten-
sional deformation of the beam. An analytic solution of the nonlinear equilibrium equation is presented and is found to
be in good agreement with numerical simulations of the problem. The numerical simulations confirm that for a linear
elastic foundation the postbuckling deflection is periodic. The analytic solution shows that the postbuckling wavelength
is unaffected by the level of internal stress, and is equal to the wavelength at the critical state.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Buckling of elastic structures has been investigated intensively during the last two and a half centuries,
beginning with the work of Leonard Euler (Timoshenko, 1953). Buckling occurs in a straight beam that is
subjected to an axial compressive load at its edges. If the compressive load is smaller than a critical value,
the beam contracts elastically and remains straight. On the other hand, if the compressive load exceeds a
critical value, stability of the straight beam is lost and the beam buckles into one of several stable curved
states (Timoshenko, 1936; Brush and Almroth, 1975).

In the case of a simply supported beam, the deformed shape will include a single flexure wave. In two-
dimensional problems such as rectangular plates that are supported along their entire circumference, a
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dense occurrence of multiple flexures may be induced (Shahwan and Waas, 1994; Ziebart et al., 1999). Mul-
tiple flexures may also be induced in beams and plates that are bonded to an elastic foundation and are
subjected to a compressive load (Timoshenko, 1936; Hetenyi, 1946; Brush and Almroth, 1975; Shen and
Li, 2004).

The present study considers the elastic buckling of a pre-stressed infinite straight beam that is bonded to
a linear elastic foundation.

The critical state of a compressively loaded, simply supported finite beam, that is bonded to a linear
elastic foundation is governed by a linear equilibrium equation. This problem has been analytically
solved by Timoshenko (1936). This solution includes the critical stress and the flexures
wavelength. These critical parameters depend on the mechanical and geometrical properties of the sys-
tem (e.g. elastic moduli and length of the beam). However, for a sufficiently long beam, the critical state
is negligibly affected by the beam length, and it asymptotically converges to the critical state of an
infinitely long beam. The solution of the critical state for an infinitely long beam has been
presented by Hetenyi (1946). In that work Hetenyi showed that the deflection waveform is necessarily
periodic.

The postbuckling response of a pre-stressed beam is inherently nonlinear. In the last two decades many
studies of the postbuckling response of a beam that is bonded to an elastic foundation were presented
(Kerr, 1980; Tvergaard and Needleman, 1981; Hui, 1988; Hunt et al., 1989; Hunt et al., 1996; Wadee
et al., 1997; Hunt and Wadee, 1998; Wu and Zhong, 1999; Everall and Hunt, 2000; Tvergaard and Needle-
man, 2000; Wadee and Bassom, 2000; Wadee et al., 2000; Chen and Baker, 2003; Rao and Raju, 2003). In
these studies the nonlinear postbuckling response was solved numerically or by approximated analytic
methods. One solution approach is to minimize the elastic energy in the postbuckling state for a postulated
deflection (e.g. Rayleigh–Ritz method). The other approach is to derive the postbuckling equilibrium equa-
tions and solve them numerically.

In all these studies a nonlinear elastic foundation was considered. This added to the nonlinearity of the
governing equations. In some studies the foundation was in fact plastic (e.g. Kerr, 1980), in some studies the
foundation was visco-elastic (e.g. Hunt et al., 1996), and in others the foundation was nonlinear elastic (i.e.
the stress was a unique, nonlinear function of strain).

In all these studies, it was found that due to the nonlinear response of the foundation, the postbuckling
response was localized (i.e. not periodic). However, Hunt et al. (1989) have shown that for a nonlinear elas-
tic foundation, and for small postbuckling deflections, the response of the pre-stressed beam may be peri-
odic (with no localization occurring).

The present study only considers linear elastic foundations. In this case it is numerically validated that
the postbuckling response of the pre-stressed beam is periodic.

In some previous studies the elastic beam was assumed to be inextensible (Hui, 1988; Wadee et al., 1997;
Wu and Zhong, 1999). In the case of very long (or infinite) beams, this assumption may result in a mecha-
nical inconsistency in the sense that at the edges (or at infinity), the shear deformation of the elastic foun-
dation is exceedingly large (unbounded).

In the present study, elastic extension of the beam is considered in the equilibrium equation. The beam is
loaded by internal compressive stress (e.g. stress induced by thermal expansion) and not by external loads
applied at the edges. Therefore, excessive shearing of the elastic foundation does not occur.

The elastic extension adds a nonlinear term to the equilibrium equation. In this work, a new analytic

solution that solves the nonlinear postbuckling equilibrium equation is presented. This analytic postbuck-
ling solution is validated by comparison to finite element simulations in which geometrical nonlinearities
are considered.

In the next section we revisit the analytic solution of the critical state of a pre-stressed infinite beam that
is bonded to a linear elastic foundation. The parameters of the critical state are then used in Section 3 to
rewrite the nonlinear postbuckling equilibrium equation in a normalized form. The normalized nonlinear
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equilibrium equation is analytically solved. This solution is validated in Section 4 by comparison to nume-
rical solutions.
2. Formulation

A schematic view of a pre-stressed beam bonded to an elastic foundation is presented in Fig. 1. The equi-
librium equation that governs the mechanical response of the system is given by (Brush and Almroth, 1975)
D
d4y
dx4

� rh
d2y
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� Eh
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where y is the deflection and x is the longitudinal coordinate. In this equation D = Eh3/12(1 � m2) is the
bending rigidity of the beam (assuming plane strain response, i.e. that the beam height h is much smaller
than the beam width), E is the Young modulus, h is the beam thickness, r is the internal pre-stress (positive
in tension), L is a measure of length (L ! 1), and kf is the elastic modulus of the foundation (measured in
[N/m3]). This foundation can be modeled as an elastic material with Young modulus Ef, Poisson ratio
mf = 0, and thickness hf, such that kf = Ef/hf. This equilibrium equation is valid for states in which the spa-
tial gradient of the deflection is small (1 + (dy/dx)2 � 1).

The four terms on the left-hand-side of (1) are the distributed mechanical forces associated with: bend-
ing, internal pre-stress, extension due to lateral deflection, and elastic foundation. The third term within the
square brackets, accounts for the resultant effect of the beam elongation due to the lateral deflection y(x)
(0 6 x 6 L) that develops in the buckled state. This term dominates the postbuckling response and is accu-
rate for moderate rotations as considered in this study (i.e. 0 < (dy/dx)2 	 1). For larger rotations addi-
tional nonlinear terms must be considered (Brush and Almroth, 1975). In the present study shear effects
are not considered in the beam or in the elastic foundation.

The nonlinearity of the equilibrium equation (1) is due to the third term. In the pre-buckled state and at
incipient buckling (i.e. when y is sufficiently small such that (dy/dx)2 ! 0) this term may be omitted, and (1)
reduces to a linear equilibrium equation.

In the critical state (at the verge of buckling) when the nonlinear term is negligible, the mechanical re-
sponse of the beam is governed by the reduced linear equilibrium equation. In this state, a periodic deflec-
tion is postulated in the form
y ¼ A sinð2px=KcrÞ ð2Þ

where Kcr is the wavelength at the critical state. Substituting (2) into (1) yields
A sinð2px=KcrÞ D
2p
Kcr

� �4
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¼ 0 ð3Þ
Fig. 1. Schematic view of a compressively stressed beam that is bonded to an elastic foundation.
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The nontrivial solution of this equation is given by
K4
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ð2pÞ4 ¼ 0 ð4Þ
The critical wavelength is extracted from the above equation in the form
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To ensure a real critical wavelength Kcr, the stress r must satisfy
r 6 �2

ffiffiffiffiffiffiffiffi
Dkf
h2

r
ð6Þ
It is concluded that the critical compressive stress is given by
rcr ¼ �2

ffiffiffiffiffiffiffiffi
Dkf
h2

r
ð7Þ
and substitution of (7) into (5) yields the value of the critical wavelength
Kcr ¼ 2p
D
kf

� �1=4

ð8Þ
This solution (7) and (8) of the critical state was originally derived by Hetenyi (1946).
3. Analytic solution of the postbuckling state

The postbuckling state of the system is governed by the nonlinear equilibrium equation (1). In this sec-
tion, an analytic solution of this equilibrium equation is presented. This solution assumes a periodic post-
buckling response. This assumption is validated numerically in Section 4 using finite element simulations of
the mechanical response.

The assumption that the postbuckling deflection is periodic allows us to consider a single period of the
deflection. This is done in this section by considering a beam with a finite length and periodic boundary
conditions. If the solution is indeed periodic (as will be shown in the next section) then the deflection of
the infinite beam is a periodic repetition of the deflection of the finite beam with periodic boundaries.

However, the deflection wavelength K of the postbuckled state is not a-priory known. Therefore, the
length of the finite beam that corresponds to the solution of the infinite beam must first be found. This
wavelength is found from energy considerations.

The stable postbuckling deflection of the infinite beam minimizes the strain energy of the system. This
includes the strain energy of the beam and the strain energy of the foundation. Since the solution is peri-
odic, this means that the strain energy per wavelength is also minimized at the postbuckling state. For a
given value of pre-stress, the strain energy per beam length of the finite beam is a function of the beam
length. For a specific length of the finite beam, the strain energy per beam length is minimal. This specific
length is equal to the wavelength of the postbuckling deflection of the infinite beam. This equivalence is
verified numerically in the next section.

The postbuckled state is governed by the nonlinear equilibrium equation (1). This equilibrium equation
is now rewritten in a dimensionless form for a beam with finite length
1
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where
~x ¼ x
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Here a is the normalized length of the finite beam, b is the load parameter, and S is a non-dimensional num-
ber that measures the ratio between the axial stiffness and the roots of the bending and elastic foundation
stiffness of the beam. The non-dimensional number S governs the postbuckling deflection and this work
seems to be the first time it is defined and used.

As in the previous linear analysis, it is postulated that the buckling deflection is of the form
~y ¼ A sin 2p
~x
a

� �
ð11Þ
where A is the normalized amplitude of the deflection, and a is the normalized length of the finite beam. The
deflection of the finite beam (11), represents a single period of the periodic deflection of an infinite beam, in
which the normalized wavelength is enforced to be a.

The postulated deflection has two free parameters (A and a). Next, the equilibrium equation will be aug-
mented by energy considerations to determine the postbuckling state. Namely, energy considerations pro-
vide another equation that determines the value of these two unknown parameters.

Substituting (11) into (9) yields
A
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The nontrivial solution of the above equation is given by
A ¼ 1
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Substituting the amplitude A into the postulated deflection yields the postbuckling solution that is now
given by
~y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2b � a4 � 1

p
p
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The amplitude of the deflection ~y is not only affected by the pre-stress b, but is also affected by the pos-
tulated normalized wavelength. We recall that a is the normalized length of the finite beam with periodic
boundary conditions, or alternatively, the normalized wavelength that we enforce on the infinite beam.

The normalized deflection amplitude is real if the normalized wavelength is bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b �
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b2 � 1
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ð15Þ
Fig. 2 shows the bounds of the normalized wavelength a as function of the load parameter b. For any given
b, buckling can occur for wavelengths a that are within the range (15). Outside this range no buckling will
occur. For values of a that are outside this range, the beam will not buckle because the strain energy asso-
ciated with buckling is higher than the strain energy in the straight pre-stressed beam.

In an infinite beam in which the wavelength is not enforced, the wavelength of the postbuckling deflec-
tion is associated with the minimum of the strain energy in the system. To find this wavelength within the
range (15), the strain energy of the system is next considered.

The total strain energy, per period length, consists of three components associated with axial deforma-
tion (UA), bending (UB), and deformation of the elastic foundation (UEF).
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U ¼ UA þ UB þ UEF ð16Þ
The total energy does not include work of external forces because the loading is applied by internal stress.
The deflection is periodic and therefore the wavelength that minimizes the total strain energy of the infinite
problem also minimizes the total strain energy, per beam length, of one period of length a. Normalizing the
strain energy components (per period length), by the strain energy at the verge of buckling (i.e.,
U cr ¼ r2

crA=2E), yields
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Substituting the analytical solution (14) into the normalized total strain energy yields
eU ¼ U
U cr

¼ eU A þ eU B þ eU EF ¼ 1

4
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a4
þ 1
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4ba2 � a4 � 1
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ð20Þ
Fig. 3 presents the strain energy per beam length as function of a and b. The flatter slopes are the regions
in which no buckling occurs (see Fig. 2) and the strain energy reduces to eU ¼ eU A ¼ b2. Buckling decreases
the energy below this slope, and forms the valley illustrated in Fig. 3. Notice that the valley boundaries cor-
respond to the curve in Fig. 2.

For a given load b P 1, the normalized strain energy has a minimum at a = 1. This is an analytic result
and the other roots of d eU =da ¼ 0 correspond to the curve in Fig. 2 or are non-physical.

This solution is therefore the stable solution of an equivalent infinite beam. Namely, for an infinite beam
with the assumed postbuckling deflection (14), the strain energy of the system is minimized for a = 1. All
other normalized wavelengths within the range (15) are associated with non-stable equilibrium states for
which the strain energy per period length is higher.
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For b > 1 and a = 1 (dashed line in Fig. 3), the strain energy (20) reduces to
eU ¼ 2b2 � 1 ð21Þ

Substituting a = 1 into (14) yields the analytic solution of the postbuckling deflection
~y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b � 2

p

p
sin 2p~xð Þ ð22Þ
Fig. 4 shows the postbuckling deflection amplitude (22) as a function of the normalized load b.
In this section we postulated that the postbuckling deflection in an infinite beam is periodic, and specif-

ically sinusoidal. To validate this assumption, the postbuckling response is computed by a finite elements
code for beams with various lengths. As presented in the next section, the simulated deflections are indeed
periodic, and converge to the analytic solution.
4. Validation by comparison to numerical solutions

In this section the postbuckling deflection of a pre-stressed finite beam is solved numerically using the
ANSYS8 finite element code. To this end, the beam is modeled with BEAM54 elements. This is a beam
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element with axial deformations and bending capabilities, and includes the option of an elastic foundation.
BEAM54 has three degrees of freedom at each node: translations in the nodal x and y directions and rota-
tion about the nodal z-axis. The beam is uniformly discretized into N equal elements. In this numerical
solution the nonlinear effects of large deflections and rotations are considered. The simulation results pre-
sented in the following relate to a beam with m = 0, an elastic foundation that is 10 times thicker than the
beam (hf = 10h) and has a Young modulus that is 1000 times lower than that of the beam (1000Ef = E). For
this case (see definition of kf following (1)):
Fig. 5.
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In our finite element simulation we cannot model an infinite beam, but as in the previous section we may
consider a finite beam with periodic boundary conditions. In contrast to the previous section where the
deflection was assumed to be sinusoidal, in this section the deflection waveform is not constrained. More-
over, the wavelength in the numerical solution is also not constrained (it may be shorter than the beam
length). The numerically computed deflection must be periodic but within the finite beam it may have
any form.

Fig. 4 presents the stable postbuckling deflection amplitude as function of the normalized pre-stress (i.e.
for a = 1). As shown, the numerical computation (�+� marks) is in good agreement with the analytic solu-
tion (solid line). Fig. 5 presents the convergence of the postbuckling deflection amplitude as function of the
number of elements N (for b = 1.2 and a = 1). To this end, the relative error of the numerical solution (re-
lative to the analytic result (22)) is plotted as function of the elements number. As shown, when shear effects
in the elastic beam are ignored, the relative error decreases with increasing number of elements. In this case
the relative error reaches a minimal value of �0.04%. This consistent relative error is attributed to nonlin-
ear effects that are included in the numerical simulation but are not considered in (1) (e.g. curvature non-
linearity (Hui, 1988)). When shear effects are considered in the finite element simulation, the minimal
relative error is of the order of �0.86%, which may still be considered small.

Fig. 6 presents the norm of the difference between the analytic and the simulated deflections, relative to
the analytic deflection amplitude
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merical solution in which shear effects are not considered and the �O� marks present the numerical solution with shear effects.
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The two curves in Fig. 6 relate to the case b = 1.2 and a = 1.
As shown, when shear effects are ignored, the numerically computed deflection converges consistently to

the analytic solution. When shear effects are not ignored, the relative error is nevertheless small (�0.61%).
Fig. 7 compares the numerically computed strain energy with the analytic value, for b = 1.2. The ana-

lytic result agrees with the numerical simulation in which shear effects are ignored (�+�marks) and is slightly
off when these effects are included in the simulation (�O� marks). In both cases, the minimum strain energy
occurs at the normalized wavelength a = 1, which is consistent with the analytical solution.

Fig. 8 presents the numerically computed strain energy per period length, as function of a and b. In this
figure several valleys are apparent, each associated with a different mode of the resulting periodic deflection.
In the first valley, the numerically computed periodic deflection consists of a sinusoidal wave with a single
period. In the second and third valleys, the minimal strain energy is achieved for a sinusoidal deflection with
two and three periods of length a = 1, respectively. For a given load b, the minimal energy solutions within
0.7 0.8 0.9 1 1.1 1.2 1.3

1.41

1.43

1.45

α

U
~

Fig. 7. Analytic and numerically computed strain energy as function of the normalized wavelength a. The solid line presents the
analytic solution, �+� marks present the numerical solution in which shear effects are not considered and �O� marks present the
numerical solution with shear effects.



Fig. 8. Numerically computed total strain energy of the finite beam with periodic boundary condition, as function of b and the
normalized length a.
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each of the higher-mode valleys are identical, and are mere repetition of the minimal energy solution in
Fig. 3.

This repetition of the sinusoidal deflection occurs for yet longer beams and validates that the postbuck-
ling solution is periodic and indeed sinusoidal. The convergence of the numerical computation to the ana-
lytic solution (Figs. 5 and 6) confirms the stability of the analytic solution.
5. Conclusion

In this work the postbuckling state of an infinite beam that is subjected to an internal compressive stress
and is bonded to a linear elastic foundation, is analyzed. In this study the extension of the beam is
considered.

An analytic postbuckling solution of the nonlinear equilibrium equation is presented. The stable post-
buckling solution is found by minimizing the strain energy. This solution is in good agreement with the
numerical simulations of the equivalent problem of a finite beam with periodic boundary conditions.
The numerical simulations confirm that the postbuckling deflection of an infinite beam bonded to a linear
foundation is indeed sinusoidal.

The presented analysis shows that for a linear elastic foundation, the postbuckling wavelength is unaf-
fected by the level of internal stress, and is equal to the wavelength at the critical state.
Acknowledgment

This work was partially supported by the Israel Ministry of Science and Technology.
References

Brush, D.O., Almroth, B.O., 1975. Buckling of Bars, Plates, and Shells. McGraw-Hill, New York.
Chen, G., Baker, G., 2003. Rayleigh–Ritz analysis for localized buckling of a strut on a softening foundation by Hermite functions.

International Journal of Solids and Structures 40 (26), 7463–7474.
Everall, P.R., Hunt, G.W., 2000. Mode jumping in the buckling of struts and plates: a comparative study. International Journal of

Non-Linear Mechanics 35 (6), 1067–1079.



6058 S. Abu-Salih, D. Elata / International Journal of Solids and Structures 42 (2005) 6048–6058
Hetenyi, M., 1946. Beams on Elastic Foundation; Theory with Applications in the Fields of Civil and Mechanical Engineering. The
University of Michigan press, Ann Arbor.

Hui, D., 1988. Postbuckling behavior of Infinite beams on elastic foundations using Koiter improved theory. International Journal of
Non-Linear Mechanics 23 (2), 113–123.

Hunt, G.W., Bolt, H.M., Thompson, J.M.T., 1989. Structural localization phenomena and the dynamical phase-space analogy.
Proceedings of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences 425 (1869), 245–267.

Hunt, G.W., Muhlhaus, H.B., Whiting, A.I.M., 1996. Evolution of localized folding for a thin elastic layer in a softening visco-elastic
medium. Pure and Applied Geophysics 146 (2), 229–252.

Hunt, G.W., Wadee, M.A., 1998. Localization and mode interaction in sandwich structures. Proceedings of the Royal Society of
London Series A—Mathematical Physical and Engineering Sciences 454 (1972), 1197–1216.

Kerr, A.D., 1980. An improved analysis for thermal track buckling. International Journal of Non-Linear Mechanics 15 (2), 99–114.
Rao, G.V., Raju, K.K., 2003. Thermal postbuckling of uniform columns on elastic foundation—Intuitive solution. Journal of

Engineering Mechanics—ASCE 129 (11), 1351–1354.
Shahwan, K.W., Waas, A.M., 1994. A mechanical model for the buckling of unilaterally constrained rectangular-plates. International

Journal of Solids and Structures 31 (1), 75–87.
Shen, H.S., Li, Q.S., 2004. Postbuckling of shear deformable laminated plates resting on a tensionless elastic foundation subjected to

mechanical or thermal loading. International Journal of Solids and Structures 41 (16–17), 4769–4785.
Timoshenko, S., 1936. Theory of Elastic Stability, First ed. McGraw-Hill Book Company, inc., New York, London.
Timoshenko, S., 1953. History of Strength of Materials, with a Brief Account of the History of Theory of Elasticity and Theory of

Structures. McGraw-Hill, New York.
Tvergaard, V., Needleman, A., 2000. Buckling localization in a cylindrical panel under axial compression. International Journal of

Solids and Structures 37 (46–47), 6825–6842.
Tvergaard, V., Needleman, A., 1981. On localized thermal track buckling. International Journal of Mechanical Sciences 23 (10), 577–

587.
Wadee, M.K., Bassom, A.P., 2000. Characterization of limiting homoclinic behaviour in a one-dimensional elastic buckling model.

Journal of the Mechanics and Physics of Solids 48 (11), 2297–2313.
Wadee, M.K., Higuchi, Y., Hunt, G.W., 2000. Galerkin approximations to static and dynamic localization problems. International

Journal of Solids and Structures 37 (22), 3015–3029.
Wadee, M.K., Hunt, G.W., Whiting, A.I.M., 1997. Asymptotic and Rayleigh–Ritz routes to localized buckling solutions in an elastic

instability problem. Proceedings of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences 453
(1965), 2085–2107.

Wu, B.S., Zhong, H.X., 1999. Postbuckling and imperfection sensitivity of fixed-end and free-end struts on elastic foundation. Archive
of Applied Mechanics 69 (7), 491–498.

Ziebart, V., Paul, O., Baltes, H., 1999. Strongly buckled square micromachined membranes. Journal of MicroElectroMechanical
Systems 8 (4), 423–432.


	Analytic postbuckling solution of a pre-stressed infinite  beam bonded to a linear elastic foundation
	Introduction
	Formulation
	Analytic solution of the postbuckling state
	Validation by comparison to numerical solutions
	Conclusion
	Acknowledgment
	References


