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Summary [4]. Thus, HCV-induced liver disease is a major challenge for pub-
Hepatitis C virus (HCV) infection is a major cause of chronic liver
disease and hepatocellular carcinoma worldwide. Furthermore,
HCV-induced liver disease is a major indication of liver transplan-
tation. In the past years, direct-acting antivirals (DAAs) targeting
HCV enzymes have been developed. DAAs increase the virologic
response to anti-HCV therapy but may lead to selection of
drug-resistant variants and treatment failure. To date, strategies
to prevent HCV infection are still lacking and antiviral therapy
in immunocompromised patients, patients with advanced liver
disease and HIV/HCV-co-infection remains limited. Alternative
or complementary approaches addressing the limitations of cur-
rent antiviral therapies are to boost the host’s innate immunity or
interfere with host factors required for pathogenesis. Host-target-
ing agents (HTAs) provide an interesting perspective for novel
antiviral strategies against viral hepatitis since they have (i) a
high genetic barrier to resistance, (ii) a pan-genotypic antiviral
activity, and (iii) complementary mechanisms of action to DAAs
and might therefore act in a synergistic manner with current
standard of care or DAAs in clinical development. This review
highlights HTAs against HCV infection that have potential as
novel antivirals and are in preclinical or clinical development.
� 2012 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

With approximately 130 million chronically infected individuals
worldwide, hepatitis C virus (HCV) infection is a major cause of
chronic liver disease including liver cirrhosis, liver failure and
hepatocellular carcinoma (HCC) [1–3]. HCV-induced liver cirrho-
sis and HCC are major indications for liver transplantation (LT)
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lic health [5].
HCV is a single-stranded RNA virus of positive polarity belong-

ing to the Flaviviridae family and the hepacivirus genus (reviewed
in [6]). While six major genotypes and several different subtypes
have been described worldwide, the virus also circulates as a
quasispecies within a given infected individual. This high vari-
ability represents a challenge for preventive and therapeutic anti-
viral strategies as the virus may rapidly evade the host immune
responses and antivirals [7,8]. The current standard of care
(SOC) of chronic HCV infection consists of pegylated interferon-
a (PegIFN-a) and ribavirin (RBV). Moreover, since 2011, the
new SOC for HCV genotype 1 infected patients is a triple combi-
nation of PegIFN-a/RBV and a HCV protease inhibitor (telaprevir
or boceprevir). Although the addition of these direct-acting antiv-
irals (DAAs) improves outcome, an important limitation of these
DAAs that may contribute to therapy failure is their low genetic
barrier for resistance resulting in drug-escape mutants during
long-term treatment due to their general mechanism of action
[9] and without imposing a large viral fitness cost. DAAs are
not approved for LT [10] and IFN-a-based antiviral therapies have
limited efficacy and tolerability in LT recipients. In addition to
licensed DAAs, other DAAs are at various stages of clinical devel-
opment in combination with PegIFN-a or in IFN-free regimens,
including second-generation protease inhibitors, polymerase
and non-structural protein 5A (NS5A) inhibitors. Although a rapid
decline in HCV RNA levels and/or eradication of HCV in IFN-free
regimens have been demonstrated in clinical trials, viral break-
throughs due to the selection of HCV resistant variants as well
as differences in virological outcomes for different genotypes
and subtypes have been reported. Furthermore, many of these
drugs were associated with side effects and raised issues related
to drug–drug interactions [11]. Finally, it is not yet clear whether
DAA-based therapies will be effective in difficult-to-treat
patients, such as null responders to prior PegIFN-a/RBV therapy,
patients with advanced liver disease, LT recipients, HIV/HCV-
co-infected individuals, hemodialysis patients, or immunosup-
pressed patients [10].

Another challenge in the management of chronically infected
patients is the absence of strategies for prevention of liver graft
infection. Development of preventive strategies based on
anti-HCV envelope antibodies has been challenged by the high
variability of HCV, resulting in rapid viral escape [12–15].
Proof-of-concept of broadly cross-neutralizing antibodies in
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Fig. 1. Host factors required for the hepatitis C virus life cycle as antiviral targets. Outline of the hepatitis C virus (HCV) life cycle in polarized hepatocytes. Host-
targeting agents (HTAs) and biological response modifiers (BRMs) are indicated in the figure according to their presumable point of interference with the viral life cycle. ER,
endoplasmic reticulum; HS, heparan sulfate proteoglycans; RTKs, receptor tyrosine kinases; SR-BI, scavenger receptor BI; CD81, cluster of differentiation 81; CLDN1,
claudin-1; OCLN, occludin; NPC1L1, Niemann-Pick C1-like 1 cholesterol absorption receptor; apo, apolipoprotein; BC, bile canaliculus; TJ, tight junction; Ab, antibody; miR,
microRNA; HMGCoA, 3-hydroxy-3-methyglutaryl CoA reductase; MTP, microsomal triglyceride transfer protein; TLR, Toll-like receptor; IFN, interferon.
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humans remains to be demonstrated. Thus, there is an unmet
medical need for efficient and safe antiviral strategies for diffi-
cult-to-treat patients and for prevention of HCV graft infection
during LT.

Recent proof-of-concept studies in preclinical models and
clinical trials have highlighted that host-targeting agents (HTAs)
provide a novel and promising strategy to address current unmet
medical needs and limitations of SOC. Two main concepts for
HTAs are explored: the first strategy aims at interfering with host
factors required for pathogenesis, i.e., to target host factors indis-
pensible for the viral life cycle. These include host cell entry, rep-
lication and assembly factors. The second strategy is to target the
host by boosting the host’s innate immunity, e.g., through the
administration of IFN-k [16] or Toll-like receptor (TLR) agonists
[17–19].

HTAs offer a promising perspective due to the following
features distinguishing them from DAAs: compared to the viral
variability, genetic variability of the host is low. Thus, HTAs
impose a very high genetic barrier to resistance [14,15,20–23].
As HTAs are essential for the viral life cycle, HTAs are character-
ized by a broad pan-genotypic activity while first generation
DAAs targeting HCV are characterized by a very narrow antiviral
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activity limited to genotype 1. Indeed, HTAs have been shown to
inhibit infection by HCV of all major genotypes, highly variable
quasispecies isolated from individual patients and highly
infectious escape variants that are resistant to host neutralizing
antibodies [14,20,21,24–27]. Finally, by acting through a comple-
mentary mechanism of action, HTAs may synergistically act with
current anti-HCV SOC [28,29]. It is expected that this synergy will
increase the genetic barrier for resistance, shorten treatment
schedules and ameliorate adverse effects by reducing the doses
of the individual compounds.

This review will highlight recent progress in the development
of HTAs targeting HCV infection that have the potential to clear
chronic HCV infection or prevent HCV infection of the liver graft.
Host-targeting agents against hepatitis C virus infection

The HCV life cycle may be divided into three main steps: viral
entry into the target cell, viral replication as well as assembly
and release of new infectious virions (Fig. 1). Each step of the
HCV life cycle is dependent on host cell factors [30], thereby
offering numerous targets for HTAs (Figs. 1–3 and Table 1).
3 vol. 58 j 375–384



Fig. 2. Host-targeting entry inhibitors for prevention of HCV liver graft infection. During liver transplantation, highly infectious variants of the HCV quasispecies
escaping from the host neutralizing antibodies (nAbs) infect the liver graft. This ‘‘bottleneck’’ effect is related to the implantation of a new graft and the lack of selective
pressure due to the strong immunosuppression (inset). The inset shows the mechanism of re-infection of naïve hepatocytes and viral spread in the liver graft. HCV variants
may spread (i) by cell-free transmission and (ii) by cell–cell transmission. As a consequence, highly infectious HCV variants escaping the host neutralizing immune response
are selected during re-infection of the new liver graft through a ‘‘bottleneck’’ effect [14,15]. HCV entry factors are required for both ways of transmission and are targets of
HTAs. Entry HTAs targeting HCV entry factors inhibit HCV entry and spread of all major genotype as well as of HCV escape variants that re-infect the liver graft
[14,20,21,26,119].
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Entry inhibitors

Viral entry is the first step of HCV-host cell interactions and
involves the HCV envelope glycoproteins E1 and E2 as well as
several host factors. It is believed that cell-free HCV entry is a
highly coordinated multistep process (Fig. 1). Highly sulfated
heparan sulfate proteoglycans [31] represent first attachment
sites, allowing viral concentration on the basolateral hepatocyte
membrane. The virus then interacts with several entry factors
including scavenger receptor BI (SR-BI) [32], CD81 [33], clau-
din-1 (CLDN1) [34] and occludin (OCLN) [35]. The formation of
CD81-CLDN1 complexes is essential for HCV infection [36,37].
In addition, host cell kinases play an important role in regulating
the HCV entry process [21,38,39]. Among them, two cell surface
receptor tyrosine kinases (RTKs) have been identified as HCV
entry factors: epidermal growth factor receptor (EGFR) and eph-
rin receptor A2 (EphA2). EGFR and EphA2 promote CD81-CLDN1
co-receptor interaction that is required for HCV entry [21]. The
Niemann-Pick C1-Like1 (NPC1L1) cholesterol absorption receptor
has recently been proposed as another host entry co-factor [40].
Given its physiological role, NPC1L1 may promote HCV entry
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either directly by interacting with the HCV lipoviral particle cho-
lesterol or act as indirect entry factor by modulating cholesterol
homeostasis and membrane composition required for HCV entry.
HCV is internalized via clathrin- and dynamin-dependent endo-
cytosis and is subsequently delivered to the early endosome
[41–44]. CD81 and CLDN1 associate during internalization
[44,45], but it remains unclear whether other HCV host factors
internalize together with HCV. Although required for CD81-
CLDN1 interaction, EGFR does not seem to be essential for
CD81 internalization [44]. The fusion of the viral and the endo-
somal membrane is pH-dependent and involves both viral and
host proteins [41,46–48]. Among host entry factors, CD81 and
CLDN1 play a role in the HCV envelope glycoprotein-dependent
cell–cell fusion process [34,49], which is regulated by RTK func-
tion [21].

An alternative route of viral entry is direct cell–cell transmis-
sion, which also requires numerous host factors including CD81,
SR-BI, CLDN1, OCLN, EGFR, EphA2 and potentially NPC1L1
[21,40,50,51]. As this entry route is resistant to the majority of
neutralizing antibodies described so far, direct cell–cell transmis-
sion probably represents the main process of viral spread [50,51].
3 vol. 58 j 375–384 377



Fig. 3. Host-targeting agents exhibit a high genetic barrier of resistance. HCV lipoviral particles circulate as quasispecies of viral variants that infect and replicate in
hepatocytes. The mechanism of viral escape to drug therapy differs between direct-acting antivirals (DAAs) and host targeting agents (HTAs). (Left panel) DAAs efficiently
inhibit the replication of DAA-sensitive HCV variants. An HCV variant that is resistant to DAA treatment becomes the predominant HCV variant escaping the antiviral
treatment. (Right panel) Targeting host factors required for HCV entry and infection inhibits a broader spectrum of variants and genotypes since the host factor usage is
usually highly conserved for all viral variants. As a consequence, the genetic barrier of viral resistance to HTAs can be higher compared to many DAAs.
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It is worth noting that there is an overlap of host factors required
for cell-free and cell–cell transmission, as most of the host factors
involved in cell-free entry have also been described to play a role
in cell–cell transmission.

Targeting HCV entry factors may thus allow preventing initia-
tion of HCV infection, such as after LT, and also reduce viral
spread and thus maintenance of infection. However, while cell-
free HCV entry is strictly dependent on CD81, CD81-independent
routes of cell–cell transmission have been described [52,53]. This
has to be taken into account for the development of HTA directed
against HCV entry factors.

Viral entry has been shown to play an important role in the
pathogenesis of HCV infection, especially during HCV reinfection
of the graft after LT [14,15]. Viral entry is thus a very promising
target for prevention of HCV infection of the liver graft (Fig. 2).
Numerous HTAs directed against host entry factors demonstrated
a potent antiviral activity in vitro (reviewed in [54]). Proof-of-
concept studies of HTAs targeting HCV entry have been con-
ducted in vivo using the chimeric uPA-SCID mouse model. Anti-
bodies directed against CD81 and SR-BI have both been
investigated in prophylactic and post-exposure treatment stud-
ies. Administration of 400 lg of either anti-CD81 or anti-SRBI
monoclonal antibodies (mAbs) completely protected mice from
challenge with HCV [55–57]. Noteworthy, only the administra-
tion of anti-SRBI mAb was able to reduce viral dissemination
[56,57]. The clinically approved EGFR inhibitor erlotinib, prevent-
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ing the formation of CLDN1-CD81 complexes, and NPC1L1 inhib-
itor ezetimibe, that decreases systemic cholesterol in patients,
markedly impaired the establishment of HCV infection in the
uPA-SCID mouse model [21,40]. Indeed, administration of erloti-
nib (50 mg/kg/day for 10 days) or ezetimibe (10 mg/kg/day for
2 weeks) prior to viral inoculation significantly delayed the kinet-
ics of HCV infection [21,40]. The clinical potential of kinase inhib-
itors has been emphasized in a recent case report describing
rapid virologic response (RVR) after erlotinib monotherapy
(150 mg/day for 12 months) in a HCV-positive HCC patient after
LT and viral recurrence due to a discontinued SOC treatment
[58]. A clinical trial investigating safety and toxicity of erlotinib
in chronically HCV infected patients will soon be conducted to
further assess the potential of kinase inhibitors as anti-HCV drugs
in combination with DAAs. A phase 1b study assessing the safety
of ITX 5061 [26], a small molecule inhibitor targeting the HCV
entry factor SR-BI, in HCV-treatment naive patients, is ongoing
and an open-label, proof-of-concept phase 1b study assessing
the safety and tolerability of ITX 5061 in LT patients has been ini-
tiated (Table 1).

Although HCV entry inhibitors are still at a very early step of
clinical development, it has been demonstrated that combina-
tions of entry inhibitors with IFN-a, DAAs, or other HTAs
in vitro result in an enhanced antiviral activity, compared to
each compound used in monotherapy, in a synergistic manner
[28,29]. This holds promise for entry inhibitors as part of SOC
3 vol. 58 j 375–384



Table 1. Host-targeting agents against hepatitis C virus infection.

Step Target Compound with in vivo
proof of concept or
in clinical development

Stage of development Reference

Entry CD81 Anti-CD81 mAbs Mouse model [55]
SR-BI Anti-SR-BI mAbs Mouse model [56, 57]

ITX 5061 Phase 1b ClinicalTrials.gov identifier: 
NCT01165359

EGFR Erlotinib Mouse model [21]
NPC1L1 Ezetimibe Mouse model [40]

Replication miR122 Miravirsen/SPC3649 Phase 2a [23]
HMGCoA reductase Statins Phase 2 [75, 76]
Cyclophilin A SCY-635 Phase 1 [87]

Alisporivir/Debio 025 Phase 3 [91]
Assembly Glucosidase MX-3253 Phase 2 [108]
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as well as future IFN-sparing regimen(s) for the treatment of
HCV infection.

Key Points 1

• With more than 130 million  chronically infected 
individuals, HCV infection is a major cause of chronic
liver disease and HCC worldwide

• HCV-induced liver cirrhosis and HCC are major
indications for liver transplantation (LT)

• In contrast to hepatitis B virus (HBV), strategies for
immunoprevention of HCV reinfection of the graft are
absent

• The high variability of HCV represents a challenge for
preventive and therapeutic antiviral strategies

• DAAs increase the response to IFN-based antiviral
therapy against HCV genotype 1 but also lead to
selection of drug-resistant HCV variants

• Given their important side effects and drug-drug
interactions, DAAs against HCV are currently not
approved for patients undergoing LT, HCV/HIV 
co-infected patients or pediatric patients

• First generation DAAs are not efficient against all HCV
genotypes

• Although early clinical trials have demonstrated
impressive outcomes for combinations of DAAs in IFN-
free regimens for treatment naïve patients, there will
be a need for novel antivirals addressing resistance,
treatment of patients with co-morbidity, co-medication
or immunosuppression and patients undergoing LT
HCV replication inhibitors

Following HCV entry, the HCV RNA genome is released into the
cytosol. Initiation of HCV translation occurs through binding of
Journal of Hepatology 201
the 40S ribosomal subunit to the HCV IRES and this association
can be enhanced by miR-122, a liver-specific microRNA (miRNA)
[59,60]. miR-122 is also an important host factor for HCV repli-
cation [24] and miR-122 sequestration using 122–20OMe oligo-
mers or miR-122 antisense locked nucleic acid SPC3649
reduces HCV replication in a genotype-independent manner
in vitro [24,25]. Interestingly, weekly intravenous administration
of miR-122 antisense locked nucleic acid miravirsen/SPC3649
(5 mg/kg) for 12 weeks to chronically genotype 1 infected chim-
panzees led to sustained suppression of HCV viremia, with no
evidence of viral resistance [61]. Given the physiological role
of miR-122 in cholesterol metabolism, miravirsen/SPC3649 led
to markedly lowered serum cholesterol in animals but no impor-
tant adverse effects were observed [61–63]. Recently, the safety,
tolerability and efficacy of miravirsen/SPC3649 have been
assessed in a phase 2a study (Table 1). Miravirsen/SPC3649
given as a four-week monotherapy (3, 5 and 7 mg/kg) to treat-
ment-naïve genotype 1 patients was well tolerated and provided
robust, dose-dependent antiviral activity that was maintained
for more than four weeks after the end of therapy [23]. Four
out of nine patients treated at the highest dose with miravir-
sen/SPC3649 (7 mg/kg) became HCV RNA undetectable during
the study. Although markedly decreased pretreatment miR-122
levels had been reported in livers of chronic HCV infected
patients who did not achieve virological response during IFN
therapy [64], data from this first clinical trial indicate that tar-
geting miR-122 in vivo offers a high barrier to viral resistance
and the potential for combination in a future IFN-free regimen
[23]. Most recently, an allosteric self-cleavable ribozyme capable
of releasing antisense sequence to miR-122 only in the presence
of HCV NS5B was developed in order to minimize potential side
effects related to targeting physiological miR-122 functions [65].
The safety and efficacy of this strategy will next have to be
assessed in vivo.

HCV RNA replication depends on viral protein association
with altered intracellular membranes, probably derived from
the endoplasmic reticulum (ER), in a so called membranous
web (reviewed in [66]). The HCV replication complex, i.e., viral
RNA and viral proteins associated to altered host cell membranes,
is dependent on the host cell lipid metabolism. Indeed, this com-
plex requires elements of cholesterol and fatty acid synthesis and
3 vol. 58 j 375–384 379
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geranylgeranylation of host proteins, as in vitro HCV replication
can be disrupted by treatment with inhibitors of 3-hydroxy-3-
methyglutaryl CoA (HMGCoA) reductase – such as the statin lov-
astatin, L-659,699 or ZA – or with an inhibitor of protein geranyl-
geranyl transferase I [67,68]. This is in line with data indicating
that HCV replication during acute infection of chimpanzees is
associated with the modulation of several genes involved in lipid
metabolism [69]. Noteworthy, not all HMGCoA reductase inhibi-
tors also inhibit HCV replication as the statin pravastatin exhibits
no anti-HCV activity while fluvastatin has the strongest antiviral
effect [70]. While initial clinical studies indicated that statin
monotherapy did either not significantly modulate HCV RNA lev-
els or only modestly reduced HCV RNA in chronic HCV patients
[71–73], statins may represent interesting adjuvants to SOC.
Indeed, fluvastatin (20 mg/day) increased the response to Peg-
IFN-a/RBV, especially in aged women who respond poorly to
SOC [74]. Moreover, in two recent large retrospective analyses,
statin use was associated with an improved sustained virological
response (SVR) in patients receiving combination antiviral ther-
apy [75,76]. However, the addition of fluvastatin (80 mg/day) to
PegIFN-a/RBV did not significantly increase SVR rates in HIV/
HCV genotype 1 co-infected patients (also receiving highly active
antiretroviral (HAART) therapy with a complete suppression of
HIV replication) although it did significantly improve the RVR
[77]. Taken together, these clinical trials indicate that, with the
exception of HIV/HCV co-infected patients, statins may increase
the efficacy of SOC in chronic HCV infected patients. Interestingly,
most recently small molecule inhibitors of SKI-1/S1P, a lipogenic
pathway regulator upstream of HMGCoA reductase, have been
described [78]. The most potent inhibitor, PF-429242, inhibited
HCVcc replication more efficiently than statins and, in contrast
to statins, also reduced infectious particle production [78]. SKI-
1/S1P inhibitors may thus also be considered for development
of novel antivirals.

Cyclophilins are also important host factors for HCV replica-
tion and CypA has been demonstrated to interact with HCV
NS5A [79,80]. Cyclophilins had been identified as host targets
for antiviral therapy more than 20 years ago as cyclosporine, a
widely used immunosuppressive drug, was demonstrated to
inhibit non-A non-B hepatitis virus [81]. More recently, cyclo-
sporine analogs lacking immunosuppressive activity and dis-
playing higher in vitro antiviral activity, e.g., alisporivir/Debio
025, NIM811 and SCY-635, have been developed [82–84]. These
compounds disrupted CypA-NS5A interaction [85,86]. Moreover,
SCY-635, currently in phase 1 clinical study, enhanced secretion
of type I and type III IFNs in replicon cells and increased the
expression of IFN response genes [87]. These data suggest that
in addition to inhibiting viral replication, CypA inhibitors may
restore the host innate immune responses to HCV inhibitors
and thereby enhance their antiviral activity [87]. Interestingly,
alisporivir/Debio 025 has also proven anti-HIV activity in vitro
as this molecule inhibits CypA-HIV capsid protein binding
[88,89]. CypA inhibitors may thus have an additional benefit in
HIV/HCV co-infected patients. In a phase 1 study, 14-day oral
alipsorivir/Debio 025 (1200 mg twice daily) treatment signifi-
cantly reduced HCV RNA serum levels in HIV/HCV co-infected
patients independently of the HCV genotype (1, 3 and 4) [90].
However, a potent synergy between alisporivir/Debio 025 (200,
600 and 1200 mg twice a day for one week and then once daily)
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and PegIFN-a was also observed in a subsequent phase 2 study
demonstrating that addition of alisporivir/Debio 025 increased
RVR [91]. Further phase 2 trials also demonstrated improved
efficacy and good tolerance adding alisporivir/Debio 025 to
PegIFN-a/RBV without selection of resistant variants (reviewed
in [92]). This CypA inhibitor is thus characterized by a high bar-
rier to resistance and is the first HTA that reached phase 3 stud-
ies (Table 1). Given three cases of acute pancreatitis, the FDA
recently put a clinical hold on this trial before proceeding to
the next steps. The fact that the combination of alisporivir/Debio
025 with DAAs resulted in additive antiviral activity in short-
term in vitro antiviral assays [93] holds promise for HTAs as part
of future IFN-sparing regimen(s) for the treatment of HCV
infection.
HCV assembly/release inhibitors

Following HCV replication, new infectious virions are assembled
in the vicinity of lipid droplets and ER [94–97]. The HCV particle
is composed of an encapsidated RNA genome that is surrounded
by an envelope composed of the envelope glycoproteins E1 and
E2 [98,99]. E1 and E2 associate as a non-covalent heterodimer
and are essential for viral infectivity as they mediate interactions
with different host cell factors during viral binding and entry. E1
and E2 are heavily N-glycosylated, contain ER retention signals
and are processed within the ER by glucosidases I and II to ensure
proper folding and assembly [98]. HCV assembly has been sug-
gested to parallel VLDL assembly [100–102]. Microsomal triglyc-
eride transfer protein (MTP), the rate limiting enzyme of VLDL
assembly [103], probably also contributes to HCV particle assem-
bly [101].

Targeting host glucosidases thus represents a promising
strategy to interfere with viral infectivity (Table 1). MX-3253/
celgosivir (reviewed in [104]), an alpha-glucosidase I inhibitor,
induces misfolding of HCV envelope glycoproteins and leads to
reduced viral infectivity in vitro [105,106]. MX-3253/celgosivir
demonstrated modest antiviral efficacy in a phase 2a mono-
therapy study (200 and 400 mg/day for 12 weeks) in treat-
ment-naive and IFN-intolerant genotype 1 HCV patients [107].
While MX-3253/celgosivir (400 mg/day for 12 weeks) demon-
strated clinical benefit in combination with PegIFN-a/RBV in
chronic HCV genotype 1 infected patients [108], the further
development of MX-3253/celgosivir for HCV infection has subse-
quently been halted.

Compounds inhibiting VLDL assembly, such as MTP inhibitors,
also reduce HCV release from infected cells [100–102]. MTP
inhibitors have been developed for treatment of dyslipidemia
and currently several MTP inhibitors are in clinical trials for the
treatment of hypercholesterolemia or hyperlipidemia (reviewed
in [109]). However, whether MTP inhibitors display an antiviral
effect against HCV infection in vivo remains to be determined.
Moreover, recent screens revealed that several approved drugs
display antiviral activity against HCV by targeting HCV assembly
and/or release: these studies identified two anti-cancer drugs,
pterostilbene (a methylated form of resveratrol) and torimefene
(a derivative of tamoxifene) [110] as well as quinidine, a class I
antiarrhythmic agent [111] as potential antivirals against HCV.
Taken together, these data indicate the further potential of clini-
3 vol. 58 j 375–384
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cal development of HCV assembly inhibitors for the treatment of
chronic hepatitis C.

Clinical perspectives of HTAs interfering with the HCV life cycle

To date, the main issue of anti-HCV SOC is to avoid viral resis-
tance and severe side effects. Generally speaking, the use of DAAs
against different potential highly variable viruses, such as HCV,
HIV or influenza virus, is associated with the development of
resistance, while HTAs, acting on cellular targets that are less
prone to mutations, may impose a higher genetic barrier for
resistance (Fig. 3) [112,113]. On the other hand, the principle the-
oretical drawback of using HTAs is their potential greater cellular
toxicity. Nevertheless, it has to be pointed out that the develop-
ment of several DAAs targeting HCV, such as BILN 2061, had to
be stopped due to severe side effects [114]. Moreover, the major-
ity of current drugs widely used for cardiovascular, neurological
or endocrine diseases as well as cancer, target host proteins
[115–117]. Thus, side effects have to be carefully evaluated for
novel antiviral strategies against hepatitis C irrespective of the
drug target.

While DAAs allow increasing the virological response of HCV
genotype 1 infected patients, a large fraction of chronic HCV
patients, especially HIV/HCV co-infected patients and patients
undergoing LT, will not be eligible for DAAs given the important
drug–drug interactions with anti-retroviral therapy and immu-
nosuppressive agents. Noteworthy, synergy between IFN-a, DAAs
and HTAs allowing to decrease the concentrations of the individ-
ual compounds [28,29] holds promise for a variety of possibilities
of future combination therapy treatments of hepatitis C infection
that may be adapted to the individual patient. Furthermore, given
(i) the importance of host entry factors for HCV reinfection of the
graft during LT [15], (ii) the broad antiviral activity of entry inhib-
itors against viral escape variants selected during LT [14,20,21],
and (iii) the synergy between entry inhibitors and neutralizing
anti-HCV envelope antibodies [27], entry inhibitors also repre-
sent a promising strategy to prevent viral reinfection of the liver
graft (Fig. 2).
Conclusions and perspectives

The goal of current anti-HCV SOC is sustained viral eradication.
However, due to the high variability of HCV, viral resistance
and subsequent treatment failure remain major challenges.
Moreover, therapeutic strategies for a large fraction of patients,
especially HIV/HCV co-infected patients, patients with immuno-
suppression and co-morbidity and patients undergoing LT remain
limited [7,118]. Although early clinical trials have demonstrated
impressive outcomes for combinations of DAAs in IFN-free regi-
mens for treatment naïve patients [11] there will be a need for
antivirals addressing resistance, treatment of patients with co-
morbidity, co-medication or immunosuppression and patients
undergoing LT [10].

Alternative or complementary approaches to current
anti-HCV therapies are to boost the host’s innate immunity or
interfere with host factors required for pathogenesis. HTAs act
on cellular targets and thus may impose a higher genetic barrier
for resistance than DAAs. Moreover, HTAs are usually character-
ized by a pan-genotypic antiviral activity. In the past years,
Journal of Hepatology 201
tremendous progress has been made in the characterization of
the HCV life cycle

Key Points 2

• The HCV life cycle offers several well characterized
host targets for antiviral therapy

• Due to low genetic variability of host factors, HTAs
may impose a higher genetic barrier to resistance than
DAAs

• Most HTAs have a pan-genotypic antiviral activity

• Given their complementary mechanism of action, HTAs
may inhibit viral infection in a synergistic manner in
combination with IFN-α and/or DAAs

• As for DAAs, host-related adverse effects need to be
carefully addressed

• Pan-genotypic antivirals alisporivir/Debio 025, a
specific HTA targeting cyclophilin A, and miravirsen/
SPC3649, a miR-122 antisense locked nucleic acid,
have completed proof-of-concept in humans

• Many other HTAs targeting the HCV life cycle are at
different stages of development

• Synergy between IFN-α, DAAs and HTAs holds
promise for a variety of possible combination therapies
for prevention and treatment of hepatitis C 

• HTAs offer the perspective to improve antiviral
treatment by decreasing resistance, shortening of
treatment duration and ameliorating adverse effects

• Given the importance of host entry factors for HCV
reinfection of the graft during LT, entry inhibitors 
represent a promising strategy to prevent viral 
reinfection of the liver graft

and several host targets for specific antiviral therapy have been
uncovered. Alisporivir/Debio 025 and miravirsen/SPC3649, two
HTAs inhibiting HCV replication, recently completed proof-of-con-
cept in humans [23,92]. Many other HTAs targeting the HCV life cy-
cle are at different stages of preclinical and clinical development
suggesting that the therapeutic arsenal against chronic HCV infec-
tion may widen within the next years. Furthermore, recent studies
underscored the importance of host factors during HCV liver graft
infection and highlighted the potential of HCV entry inhibitors for
prevention of graft infection during LT [15,20,21,57,119].

The recent preclinical and clinical development of HTAs for
HCV as well as novel HTA-based strategies for other pathogens
including other viruses and bacteria [120] highlights the promise
of this approach to address unmet medical needs in the preven-
tion and treatment of virus-induced liver disease.

Financial support

The authors acknowledge financial support of their work by the
European Union (ERC-2008-AdG-233130-HEPCENT and INTER-
3 vol. 58 j 375–384 381



Review

REG-IV-2009-FEDER-Hepato-Regio-Net), Laboratoire d’Excellence
HEPSYS (Investissement d’Avenir; ANR-10-LAB-28), ANRS (2008/
354, 2009/183, 2011/132, 2012/239), Inserm, the Direction Géné-
rale de l’Offre de Soins (A12027MS), University of Strasbourg and
the Strasbourg University Hospitals, France.
Conflict of interest

The authors declare that they do not have anything to disclose
regarding funding or conflict of interest with respect to this
manuscript.

Acknowledgements

We would like to thank Prof. H. Wedemeyer (Medizinische
Hochschule Hannover, Germany) and Prof. M. Levrero (University
of Rome, Italy) for critical reading of the manuscript. We apolo-
gize to all authors whose work could not be cited due to space
restrictions.

References

[1] Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis
C virus infection. Nat Rev Immunol 2005;5:215–229.

[2] El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma.
Gastroenterology 2012;142 (1264–1273):e1261.

[3] Thomas D, Zoulim F. New challenges in viral hepatitis. Gut 2012;61 (Suppl
1):i1–i5.

[4] Mutimer DJ, Lok A. Management of HBV- and HCV-induced end stage liver
disease. Gut 2012;61 (Suppl 1):i59–i67.

[5] Watt K, Veldt B, Charlton M. A practical guide to the management of HCV
infection following liver transplantation. Am J Transplant
2009;9:1707–1713.

[6] Rehermann B, Hepatitis C. Virus versus innate and adaptive immune
responses: a tale of coevolution and coexistence. J Clin Invest
2009;119:1745–1754.

[7] Feinstone SM, Hu DJ, Major ME. Prospects for prophylactic and therapeutic
vaccines against hepatitis C virus. Clin Infect Dis 2012;55 (Suppl.
1):S25–S32.

[8] Torresi J, Johnson D, Wedemeyer H. Progress in the development of
preventive and therapeutic vaccines for hepatitis C virus. J Hepatol
2012;54:1273–1285.

[9] Sarrazin C, Zeuzem S. Resistance to direct antiviral agents in patients with
hepatitis C virus infection. Gastroenterology 2010;138:447–462.

[10] Pawlotsky JM. Treatment failure and resistance with direct-acting antiviral
drugs against hepatitis C virus. Hepatology 2011;53:1742–1751.

[11] Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM. Antiviral strategies in
hepatitis C virus infection. J Hepatol 2012;56 (Suppl. 1):S88–S100.

[12] von Hahn T, Yoon JC, Alter H, Rice CM, Rehermann B, Balfe P, et al. Hepatitis
C virus continuously escapes from neutralizing antibody and T-cell
responses during chronic infection in vivo. Gastroenterology
2007;132:667–678.

[13] Keck ZY, Li SH, Xia J, von Hahn T, Balfe P, McKeating JA, et al. Mutations in
HCV E2 located outside the CD81 binding sites lead to escape from broadly
neutralizing antibodies but compromise virus infectivity. J Virol
2009;83:6149–6160.

[14] Fafi-Kremer S, Fofana I, Soulier E, Carolla P, Meuleman P, Leroux-Roels G,
et al. Viral entry and escape from antibody-mediated neutralization
influence hepatitis C virus reinfection in liver transplantation. J Exp Med
2010;207:2019–2031.

[15] Fofana I, Fafi-Kremer S, Carolla P, Fauvelle C, Zahid MN, Turek M, et al.
Mutations that alter use of hepatitis C virus cell entry factors mediate
escape from neutralizing antibodies. Gastroenterology 2012;143 (223–
233):e229.

[16] Zeuzem S, Arora S, Bacon B, Box T, Charlton M, Diago M, et al. Pegylated
interferon-lambda (PEGIFN-k) shows superior viral response with
improved safety and tolerability versus PEGIFNa-2A in HCV patients (Gl/
2/3/4): EMERGE Phase IIB through week 12. J Hepatol 2011;54:S538–S539
(abstract 1362).
382 Journal of Hepatology 201
[17] Boonstra A, Liu BS, Groothuismink ZM, Bergmann JF, de Bruijne J, Hotho
DM, et al. Potent immune activation in chronic hepatitis C patients upon
administration of an oral inducer of endogenous interferons that acts via
Toll-like receptor 7. Antivir Ther 2012;17:657–667.

[18] Rodriguez-Torres M, Ghalib RH, Gordon SC, Lawitz E, Patel K, Pruitt R, et al.
IMO-2125, a TLR9 agonist, induces immune responses which correlate with
reductions in viral load in null responder HCV patients. Hepatology
2010;52:336A (abstract 333).

[19] Zhang X, Kraft A, Broering R, Schlaak JF, Dittmer U, Lu M. Preclinical
development of TLR ligands as drugs for the treatment of chronic viral
infections. Exp Opin Drug Discov 2012;7:597–611.

[20] Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, Fafi-Kremer S, et al.
Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of
primary human hepatocytes. Gastroenterology 2010;39:953–964.

[21] Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, et al. EGFR and
EphA2 are host factors for hepatitis C virus entry and possible targets for
antiviral therapy. Nat Med 2011;17:589–595.

[22] Li B, Snoeck J, Tang Y, Jones CT, Tiongyip C, Bao W, et al. Alisporivir – a host-
targeting antiviral, provides low viral breakthrough rate and high barrier to
resistance in HCV genotype 1 treatment-naïve patients in the Phase IIb
ESSENTIAL study. Hepatology 2011;54:250A (abstract 1350).

[23] Janssen HL, Reesink HW, Zeuzem S, Lawitz E, Rodriguez-Torres M, Chen A,
et al. A randomized, double-blind, placebo (plb) controlled safety and anti-
viral proof-of-concept study of miravirsen (mir), an oligonucleotide
targeting miR122, in treatment naive patients with genotype 1 (gt1)
chronic HCV infection. Hepatology 2011;54:101A (abstract LB106).

[24] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of
hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science
2005;309:1577–1581.

[25] Li YP, Gottwein JM, Scheel TK, Jensen TB, Bukh J. MicroRNA-122 antagonism
against hepatitis C virus genotypes 1–6 and reduced efficacy by host RNA
insertion or mutations in the HCV 50 UTR. Proc Natl Acad Sci U S A
2011;108:4991–4996.

[26] Syder AJ, Lee H, Zeisel MB, Grove J, Soulier E, Macdonald J, et al. Small
molecule scavenger receptor BI antagonists are potent HCV entry inhibi-
tors. J Hepatol 2011;54:48–55.

[27] Zahid MN, Turek M, Xiao F, Dao Thi VL, Guérin M, Fofana I, et al. The post-
binding activity of scavenger receptor BI mediates initiation of hepatitis C
virus infection and viral dissemination. Hepatology 2012, http://dx.doi.org/
10.1002/hep.26097.

[28] Fofana I, Xiao F, Thumann C, Lupberger J, Leyssen P, Neyts JH, et al. Synergy
of entry inhibitors and direct acting antivirals or interferon-alfa identifies
novel antiviral combinations for hepatitis C virus infection. Hepatology
2011;54:401A (abstract 484).

[29] Zhu H, Wong-Staal F, Lee H, Syder A, McKelvy J, Schooley RT, et al.
Evaluation of ITX 5061, a scavenger receptor B1 antagonist: resistance
selection and activity in combination with other hepatitis C virus antivirals.
J Infect Dis 2012;205:656–662.

[30] Da Costa D, Turek M, Felmlee DJ, Girardi E, Pfeffer S, Long G, et al.
Reconstitution of the entire hepatitis C virus life cycle in non-hepatic cells. J
Virol 2012, [Epub ahead of print].

[31] Barth H, Schäfer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, et al. Cellular
binding of hepatitis C virus envelope glycoprotein E2 requires cell surface
heparan sulfate. J Biol Chem 2003;278:41003–41012.

[32] Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, et al.
The human scavenger receptor class B type I is a novel candidate receptor
for the hepatitis C virus. EMBO J 2002;21:5017–5025.

[33] Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, et al. Binding
of hepatitis C virus to CD81. Science 1998;282:938–941.

[34] Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, et al.
Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry.
Nature 2007;446:801–805.

[35] Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, et al. Human
occludin is a hepatitis C virus entry factor required for infection of mouse
cells. Nature 2009;457:882–886.

[36] Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, et al.
CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J
Virol 2008;82:5007–5020.

[37] Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, et al. Claudin
association with CD81 defines hepatitis C virus entry. J Biol Chem
2010;285:21092–21102.

[38] Trotard M, Lepere-Douard C, Regeard M, Piquet-Pellorce C, Lavillette D,
Cosset FL, et al. Kinases required in hepatitis C virus entry and replication
highlighted by small interference RNA screening. FASEB J
2009;23:3780–3789.
3 vol. 58 j 375–384

http://dx.doi.org/10.1002/hep.26097
http://dx.doi.org/10.1002/hep.26097


JOURNAL OF HEPATOLOGY

[39] Farquhar MJ, Harris HJ, Diskar M, Jones S, Mee CJ, Nielsen SU, et al. Protein

kinase A-dependent step(s) in hepatitis C virus entry and infectivity. J Virol
2008;82:8797–8811.

[40] Sainz Jr B, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, et al.
Identification of the Niemann-Pick C1-like 1 cholesterol absorption
receptor as a new hepatitis C virus entry factor. Nat Med 2012;18:281–
285.

[41] Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C,
et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J
Virol 2006;80:6964–6972.

[42] Codran A, Royer C, Jaeck D, Bastien-Valle M, Baumert TF, Kieny MP, et al.
Entry of hepatitis C virus pseudotypes into primary human hepatocytes by
clathrin-dependent endocytosis. J Gen Virol 2006;87:2583–2593.

[43] Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a critical
postinternalization step and delivery to early endosomes via clathrin-
coated vesicles. J Virol 2006;80:11571–11578.

[44] Farquhar MJ, Hu K, Harris HJ, Davis C, Brimacombe CL, Fletcher SJ, et al.
Hepatitis C virus induces CD81 and claudin-1 endocytosis. J Virol
2012;86:4305–4316.

[45] Coller KE, Berger KL, Heaton NS, Cooper JD, Yoon R, Randall G. RNA
interference and single particle tracking analysis of hepatitis C virus
endocytosis. PLoS Pathog 2009;5:e1000702.

[46] Tscherne DM, Jones CT, Evans MJ, Lindenbach BD, McKeating JA, Rice CM.
Time- and temperature-dependent activation of hepatitis C virus for low-
pH-triggered entry. J Virol 2006;80:1734–1741.

[47] Lavillette D, Bartosch B, Nourrisson D, Verney G, Cosset FL, Penin F, et al.
Hepatitis C virus glycoproteins mediate low pH-dependent membrane
fusion with liposomes. J Biol Chem 2006;281:3909–3917.

[48] Lavillette D, Pecheur EI, Donot P, Fresquet J, Molle J, Corbau R, et al.
Characterization of fusion determinants points to the involvement of three
discrete regions of both E1 and E2 glycoproteins in the membrane fusion
process of hepatitis C virus. J Virol 2007;81:8752–8765.

[49] Kobayashi M, Bennett MC, Bercot T, Singh IR. Functional analysis of
hepatitis C virus envelope proteins, using a cell–cell fusion assay. J Virol
2006;80:1817–1825.

[50] Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, Harris HJ, et al.
Hepatitis C virus cell–cell transmission in hepatoma cells in the presence of
neutralizing antibodies. Hepatology 2008;47:17–24.

[51] Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, et al.
Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J
Virol 2011;85:596–605.

[52] Witteveldt J, Evans MJ, Bitzegeio J, Koutsoudakis G, Owsianka AM, Angus
AG, et al. CD81 is dispensable for hepatitis C virus cell-to-cell transmission
in hepatoma cells. J Gen Virol 2009;90:48–58.

[53] Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ, Ploss A, et al. Real-
time imaging of hepatitis C virus infection using a fluorescent cell-based
reporter system. Nat Biotechnol 2010;28:167–171.

[54] Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF. Hepatitis C virus entry into
hepatocytes: molecular mechanisms and targets for antiviral therapies. J
Hepatol 2011;54:566–576.

[55] Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I,
Reiser H, et al. Anti-CD81 antibodies can prevent a hepatitis C virus
infection in vivo. Hepatology 2008;48:1761–1768.

[56] Meuleman P, Catanese MT, Verhoye L, Desombere I, Farhoudi A, Jones CT,
et al. A human monoclonal antibody targeting scavenger receptor class B
type I precludes hepatitis C virus infection and viral spread in vitro and
in vivo. Hepatology 2012;55:364–372.

[57] Lacek K, Vercauteren K, Grzyb K, Naddeo M, Verhoye L, Slowikowski MP,
et al. Novel human SR-BI antibodies prevent infection and
dissemination of HCV in vitro and in humanized mice. J Hepatol
2012;57:17–23.

[58] Bardou-Jacquet E, Lorho R, Guyader D. Kinase inhibitors in the treatment of
chronic hepatitis C virus. Gut 2011;60:879–880.

[59] Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, et al. MicroRNA-
122 stimulates translation of hepatitis C virus RNA. EMBO J
2008;27:3300–3310.

[60] Jangra RK, Yi M, Lemon SM. Regulation of hepatitis C virus translation and
infectious virus production by the microRNA miR-122. J Virol
2010;84:6615–6625.

[61] Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk
ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic
hepatitis C virus infection. Science 2010;327:198–201.

[62] Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-
mediated microRNA silencing in non-human primates. Nature
2008;452:896–899.
Journal of Hepatology 201
[63] Hildebrandt-Eriksen ES, Aarup V, Persson R, Hansen HF, Munk ME, Orum H.
A locked nucleic acid oligonucleotide targeting microRNA 122 is well-
tolerated in Cynomolgus monkeys. Nucl Acid Ther 2012;2:152–161.

[64] Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim MH, Filipowicz W.
Decreased levels of microRNA miR-122 in individuals with hepatitis C
responding poorly to interferon therapy. Nat Med 2009;15:31–33.

[65] Lee CH, Kim JH, Kim HW, Myung H, Lee SW. Hepatitis C virus replication-
specific inhibition of microRNA activity with self-cleavable allosteric
ribozyme. Nucl Acid Ther 2012;22:17–29.

[66] Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev
Microbiol 2007;5:453–463.

[67] Ye J, Wang C, Sumpter Jr R, Brown MS, Goldstein JL, Gale Jr M. Disruption of
hepatitis C virus RNA replication through inhibition of host protein
geranylgeranylation. Proc Natl Acad Sci U S A 2003;100:15865–15870.

[68] Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by
host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A
2005;102:2561–2566.

[69] Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al.
Genomic analysis of the host response to hepatitis C virus infection. Proc
Natl Acad Sci U S A 2002;99:15669–15674.

[70] Ikeda M, Abe K, Yamada M, Dansako H, Naka K, Kato N. Different anti-HCV
profiles of statins and their potential for combination therapy with
interferon. Hepatology 2006;44:117–125.

[71] O’Leary JG, Chan JL, McMahon CM, Chung RT. Atorvastatin does not exhibit
antiviral activity against HCV at conventional doses: a pilot clinical trial.
Hepatology 2007;45:895–898.

[72] Bader T, Fazili J, Madhoun M, Aston C, Hughes D, Rizvi S, et al. Fluvastatin
inhibits hepatitis C replication in humans. Am J Gastroenterol
2008;103:1383–1389.

[73] Patel K, Jhaveri R, George J, Qiang G, Kenedi C, Brown K, et al. Open-label,
ascending dose, prospective cohort study evaluating the antiviral efficacy of
Rosuvastatin therapy in serum and lipid fractions in patients with chronic
hepatitis C. J Viral Hepat 2011;18:331–337.

[74] Sezaki H, Suzuki F, Akuta N, Yatsuji H, Hosaka T, Kobayashi M, et al. An open
pilot study exploring the efficacy of fluvastatin, pegylated interferon and
ribavirin in patients with hepatitis C virus genotype 1b in high viral loads.
Intervirology 2009;52:43–48.

[75] Harrison SA, Rossaro L, Hu KQ, Patel K, Tillmann H, Dhaliwal S, et al. Serum
cholesterol and statin use predict virological response to peginterferon and
ribavirin therapy. Hepatology 2010;52:864–874.

[76] Rao GA, Pandya PK. Statin therapy improves sustained virologic response
among diabetic patients with chronic hepatitis C. Gastroenterology
2011;140:144–152.

[77] Milazzo L, Caramma I, Mazzali C, Cesari M, Olivetti M, Galli M, et al.
Fluvastatin as an adjuvant to pegylated interferon and ribavirin in HIV/
hepatitis C virus genotype 1 co-infected patients: an open-label random-
ized controlled study. J Antimicrob Chemother 2010;65:735–740.

[78] Blanchet M, Seidah NG, Labonte P. SKI-1/S1P inhibition: a promising
surrogate to statins to block Hepatitis C virus replication. Antiviral Res
2012;95:159–166.

[79] Hanoulle X, Badillo A, Wieruszeski JM, Verdegem D, Landrieu I, Bartensch-
lager R, et al. Hepatitis C virus NS5A protein is a substrate for the peptidyl-
prolyl cis/trans isomerase activity of cyclophilins A and B. J Biol Chem
2009;284:13589–13601.

[80] Kaul A, Stauffer S, Berger C, Pertel T, Schmitt J, Kallis S, et al. Essential role of
cyclophilin A for hepatitis C virus replication and virus production and
possible link to polyprotein cleavage kinetics. PLoS Pathog
2009;5:e1000546.

[81] Teraoka S, Mishiro S, Ebihara K, Sanaka T, Yamaguchi Y, Nakajima I, et al.
Effect of cyclosporine on proliferation of non-A, non-B hepatitis virus.
Transplant Proc 1988;20:868–876.

[82] Paeshuyse J, Kaul A, De Clercq E, Rosenwirth B, Dumont JM, Scalfaro P, et al.
The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor
of hepatitis C virus replication in vitro. Hepatology 2006;43:761–770.

[83] Chatterji U, Bobardt M, Selvarajah S, Yang F, Tang H, Sakamoto N, et al. The
isomerase active site of cyclophilin A is critical for hepatitis C virus
replication. J Biol Chem 2009;284:16998–17005.

[84] Hopkins S, Scorneaux B, Huang Z, Murray MG, Wring S, Smitley C, et al.
SCY-635, a novel nonimmunosuppressive analog of cyclosporine that
exhibits potent inhibition of hepatitis C virus RNA replication in vitro.
Antimicrob Agents Chemother 2010;54:660–672.

[85] Coelmont L, Hanoulle X, Chatterji U, Berger C, Snoeck J, Bobardt M, et al.
DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a
cyclophilin A induced cis-trans isomerisation in domain II of NS5A. PLoS
ONE 2010;5:e13687.
3 vol. 58 j 375–384 383



Review

[86] Hopkins S, Bobardt M, Chatterji U, Garcia-Rivera JA, Lim P, Gallay PA. The

cyclophilin inhibitor SCY-635 disrupts HCV NS5A-cyclophilin A complexes.
Antimicrob Agents Chemother 2012;56:3888–3897.

[87] Hopkins S, Dimassimo B, Rusnak P, Heuman D, Lalezari J, Sluder A, et al. The
cyclophilin inhibitor SCY-635 suppresses viral replication and induces
endogenous interferons in patients with chronic HCV genotype 1 infection.
J Hepatol 2012;57:47–54.

[88] Ptak RG, Gallay PA, Jochmans D, Halestrap AP, Ruegg UT, Pallansch LA, et al.
Inhibition of human immunodeficiency virus type 1 replication in human
cells by Debio-025, a novel cyclophilin binding agent. Antimicrob Agents
Chemother 2008;52:1302–1317.

[89] Daelemans D, Dumont JM, Rosenwirth B, De Clercq E, Pannecouque C.
Debio-025 inhibits HIV-1 by interfering with an early event in the
replication cycle. Antiviral Res 2010;85:418–421.

[90] Flisiak R, Horban A, Gallay P, Bobardt M, Selvarajah S, Wiercinska-Drapalo
A, et al. The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C
effect in patients coinfected with hepatitis C and human immunodeficiency
virus. Hepatology 2008;47:817–826.

[91] Flisiak R, Feinman SV, Jablkowski M, Horban A, Kryczka W, Pawlowska M,
et al. The cyclophilin inhibitor Debio 025 combined with PEG IFNalpha2a
significantly reduces viral load in treatment-naive hepatitis C patients.
Hepatology 2009;49:1460–1468.

[92] Flisiak R, Jaroszewicz J, Flisiak I, Lapinski T. Update on alisporivir
in treatment of viral hepatitis C. Exp Opin Invest Drugs 2012;21:375–
382.

[93] Coelmont L, Kaptein S, Paeshuyse J, Vliegen I, Dumont JM, Vuagniaux G,
et al. Debio 025, a cyclophilin binding molecule, is highly efficient in
clearing hepatitis C virus (HCV) replicon-containing cells when used alone
or in combination with specifically targeted antiviral therapy for HCV
(STAT-C) inhibitors. Antimicrob Agents Chemother 2009;53:967–976.

[94] Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The
lipid droplet is an important organelle for hepatitis C virus production. Nat
Cell Biol 2007;9:1089–1097.

[95] Boulant S, Targett-Adams P, McLauchlan J. Disrupting the association of
hepatitis C virus core protein with lipid droplets correlates with a loss in
production of infectious virus. J Gen Virol 2007;88:2204–2213.

[96] Roingeard P, Hourioux C, Blanchard E, Prensier G. Hepatitis C virus budding
at lipid droplet-associated ER membrane visualized by 3D electron
microscopy. Histochem Cell Biol 2008;130:561–566.

[97] Bartenschlager R, Penin F, Lohmann V, Andre P. Assembly of infectious
hepatitis C virus particles. Trends Microbiol 2011;19:95–103.

[98] Lavie M, Goffard A, Dubuisson J. Assembly of a functional HCV glycoprotein
heterodimer. Curr Issues Mol Biol 2007;9:71–86.

[99] Tews BA, Popescu CI, Dubuisson J. Last stop before exit – hepatitis C
assembly and release as antiviral drug targets. Viruses 2010;2:1782–1803.

[100] Huang H, Sun F, Owen DM, Li W, Chen Y, Gale Jr M, et al. Hepatitis C virus
production by human hepatocytes dependent on assembly and secretion of
very low-density lipoproteins. Proc Natl Acad Sci U S A
2007;104:5848–5853.

[101] Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, Chisari FV. Cellular
determinants of hepatitis C virus assembly, maturation, degradation, and
secretion. J Virol 2008;82:2120–2129.

[102] Jiang J, Luo G. Apolipoprotein E but not B is required for the formation of
infectious hepatitis C virus particles. J Virol 2009;83:12680–12691.

[103] Jamil H, Chu CH, Dickson Jr JK, Chen Y, Yan M, Biller SA, et al. Evidence that
microsomal triglyceride transfer protein is limiting in the production of
384 Journal of Hepatology 201
apolipoprotein B-containing lipoproteins in hepatic cells. J Lipid Res
1998;39:1448–1454.

[104] Durantel D. Celgosivir, an alpha-glucosidase I inhibitor for the potential
treatment of HCV infection. Curr Opin Invest Drugs 2009;10:860–870.

[105] Chapel C, Garcia C, Roingeard P, Zitzmann N, Dubuisson J, Dwek RA, et al.
Antiviral effect of alpha-glucosidase inhibitors on viral morphogenesis and
binding properties of hepatitis C virus-like particles. J Gen Virol
2006;87:861–871.

[106] Chapel C, Garcia C, Bartosch B, Roingeard P, Zitzmann N, Cosset FL, et al.
Reduction of the infectivity of hepatitis C virus pseudoparticles by
incorporation of misfolded glycoproteins induced by glucosidase inhibi-
tors. J Gen Virol 2007;88:1133–1143.

[107] Yoshida E, Kunimoto D, Lee SE, Sherman M, Heathcote JE, Enns R. Results of
a phase II dose ranging study of orally administered celgosivir as
monotherapy in chronic hepatitis C genotype-1 patients. Gastroenterology
2006;130:A-78 (abstract S1059).

[108] Kaita K, Yoshida E, Kunimoto D, Anderson F, Morris S, Marotta P, et al.
Phase II Proof of Concept Study of Celgosivir in combination with
peginterferon alfa-2b and ribavirin in chronic hepatitis C genotype-1
non-responder patients. J Hepatol 2007;46:S56–S57 (abstract 127).

[109] Raval SK, Raval PS, Jain MR. Emerging therapies for dyslipidemia: known
knowns and known unknowns of MTP inhibitors. Recent Pat Endocr
Metabol Immune Drug Discov 2012;6:24–29.

[110] Gastaminza P, Whitten-Bauer C, Chisari FV. Unbiased probing of the entire
hepatitis C virus life cycle identifies clinical compounds that target
multiple aspects of the infection. Proc Natl Acad Sci U S A
2010;107:291–296.

[111] Chockalingam K, Simeon RL, Rice CM, Chen Z. A cell protection screen
reveals potent inhibitors of multiple stages of the hepatitis C virus life
cycle. Proc Natl Acad Sci U S A 2010;107:3764–3769.

[112] Delang L, Vliegen I, Froeyen M, Neyts J. Comparative study of the genetic
barriers and pathways towards resistance of selective inhibitors of
hepatitis C virus replication. Antimicrob Agents Chemother
2011;55:4103–4113.

[113] Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, et al.
Human host factors required for influenza virus replication. Nature
2010;463:813–817.

[114] Vanwolleghem T, Meuleman P, Libbrecht L, Roskams T, De Vos R, Leroux-
Roels G. Ultra-rapid cardiotoxicity of the hepatitis C virus protease
inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse.
Gastroenterology 2007;133:1144–1155.

[115] Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and
number of drug targets. Nat Rev Drug Discov 2006;5:821–834.

[116] Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are
there? Nat Rev Drug Discov 2006;5:993–996.

[117] Landry Y, Gies JP. Drugs and their molecular targets: an updated overview.
Fundam Clin Pharmacol 2008;22:1–18.

[118] Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development
of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines
2009;8:333–345.

[119] Zeisel MB, Zahid MN, Xiao F, Dao Thi VL, Cosset F-L, Fofana I, et al.
Monoclonal antibodies specific for the SR-BI N-terminal ectodomain block
hepatitis C virus entry into human hepatocytes at postbinding steps and
cell–cell transmission. Hepatology 2011;54:87A (abstract 91).

[120] Nathan C. Fresh approaches to anti-infective therapies. Sci Transl Med
2012;4:140sr142.
3 vol. 58 j 375–384


	Host-targeting agents for prevention and treatment of  chronic hepatitis C – Perspectives and challenges
	Introduction
	Host-targeting agents against hepatitis C virus infection
	Entry inhibitors
	HCV replication inhibitors
	HCV assembly/release inhibitors
	Clinical perspectives of HTAs interfering with the HCV life cycle

	Conclusions and perspectives
	Financial support
	Conflict of interest
	Acknowledgements
	References


