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ABSTRACT Historically, the continuous wave electron paramagnetic resonance (CW-EPR) progressive saturation method has been used
to obtain information on the spin-lattice relaxation time (Tie) and those processes, such as motion and spin exchange, that occur on a
competitive timescale. For example, qualitative information on local dynamics and solvent accessibility of proteins and nucleic acids has
been obtained by this method. However, making quantitative estimates of Tle from CW-EPR spectra have been frustrated by a lack of
understanding of the role of Tie (and T2e) in the slow-motion regime. Theoretical simulation of the CW-EPR lineshapes in the slow-motion
region under increasing power levels has been used in this work to test whether the saturation technique can produce quantitative
estimates of the spin-lattice relaxation rates. A method is presented by which the correct Tie may be extracted from an analysis of the
power-saturation rollover curve, regardless of the amount of inhomogeneous broadening or the rates of molecular reorientation. The
range of motional correlation times from 10 to 200 ns should be optimal for extracting quantitative estimates of Tie values in spin-labeled
biomolecules. The progressive-saturation rollover curve method should find wide application in those areas of biophysics where informa-
tion on molecular interactions and solvent exposure as well as molecular reorientation rates are desired.

INTRODUCTION
The aim of this article is to determine whether the power
saturation method of continuous wave electron para-
magnetic resonance (CW-EPR) can be used to deter-
mine relaxation times ofnitroxide spin labels. In the fast-
motion limit where the EPR lines are homogeneously
broadened, the standard saturation theory used to obtain
TIe and T2e is well known and simple to apply ( 1, 2).
However, as the motion slows the lines become inhomo-
geneously broadened because anisotropies in the g- and
A-tensors are no longer completely averaged away, and
the simple theory breaks down. A large body of work
exists to analyze inhomogeneous lineshapes, primarily
in the EPR of solids. To the best of our knowledge, vir-
tually all previous work assumes some form of distribu-
tion ofthe individual, homogeneous resonance lines that
is static on the time scale of the EPR measurement (3-
5). Some treatments do allow spin diffusion (6, 7) but
still assume Gaussian or Lorentzian line shapes. Freed
and co-workers (8, 9) have studied saturation in liquids
and demonstrated the line broadening effects ofhigh mi-
crowave powers. The present treatment extends previous
theoretical developments to show how a saturation
curve may be used to obtain Tie in an experimental situa-
tion.
The primary motivation for this article lies in the re-

cent work of Altenbach et al. ( 10), who used changes in
the apparent relaxation rates of spin labels to determine
molecular structure. A label at a known position in a
molecule that has some contact with a spin relaxing
agent will have a faster relaxation rate compared with a
control with no such relaxing agent. Relaxation rates
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were not measured directly, but were obtained by CW
power saturation of the first-derivative EPR signal. The
CW-EPR signal height, when measured as a function of
incident microwave power, rises to a maximum and
then decreases. The incident power level at which the
signal is reduced by 3 dB is called the "half-power" satu-
ration parameter, PF,2, and Altenbach et al. (10) used
this quantity as a measure of the relaxation rate. Alten-
bach et al. determined the a-helical nature of a trans-
membrane protein from the periodicity of the P112 of a
spin label selectively attached to a single amino acid side-
chain in the sequence. The spin label relaxation rate in-
creased for those amino acids that were in contact with
an oxygen-rich lipid environment.
One assumption in simple theories of the relation be-

tween P112 and the relaxation rate is that the line mea-
sured is a single, homogeneous one. In general, the spec-
tral lines are very definitely not homogeneous, being a
complex mixture of partially averaged tensors and dy-
namical interactions, because the labels are moving in
the nanosecond motional region. Nevertheless, the rela-
tive changes in P112 produced a plausible map of lipid
accessibility. We wish to understand why the saturation
method worked as well as it did and to determine
whether there are any improvements that can be made in
the methodology of the experiments. In particular, we
wish to know whether the true spin-lattice relaxation
time (in agreement with that measured by saturation
recovery EPR) and the true spin-spin relaxation time
can be obtained from power saturation studies when the
motion is in the nanosecond regime. To do this we have
computed EPR spectra of an '4N spin label over a wide
range ofmicrowave powers at various rotational correla-
tion times and have analyzed the results. There are no
assumptions about the distribution function ofthe inho-
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mogeneous broadening. The EPR simulation programs
developed by us (11, 12) (originally for saturation
transfer [ST] -EPR) explicitly include the A- and g-ten-
sors, motion, the Zeeman modulation frequency, and
the relaxation times.

THEORY

The spectra were calculated by solving the spin density
matrix equation that explicitly includes rf field levels,
relaxation times, Zeeman modulation, and the correla-
tion time for isotropic rotational Brownian motion of
the label ( 1 1, 12). The equation ofmotion ofthe density
matrix is:

(Q, t) = -i[H(Q, t), o(Q, t)] - FR{0(Q, t) - C°M t)}

- F0{a(Q, t) - o.(Q, t) }, ( 1)

where a(Q, t) is the spin density matrix, H(Q, t) is the
spin Hamiltonian, and r. is a Markoffian motional oper-
ator affecting only the orientation variable u. rR de-
scribes spin relaxation arising from the modulation of
spatial coordinates other than Q, via a phenomenological
fast-motion or Redfield type matrix, and includes Tle
and T02e ( 13 )-entered directly into the program-and
U°(Q, t), the equilibrium density matrix.' The Hamil-
tonian H(Q, t) may be expressed as:

H(Q, t) = Wo + X,(Q) + e(t),

where the orientation-independent Hamiltonian is given
by:

to = YeHOSz - YnyHOI. + YeaISzIzI, (2)

including isotropic electron Zeeman, nuclear Zeeman,
and electron-nuclear hyperfine interactions. 'Ye and 'Yn
are the electron and nuclear gyromagnetic ratios, Ho is
the DC Zeeman field and d is the isotropic hyperfine
interaction. X, (Q) is the time-independent but orienta-
tion-dependent Hamiltonian and is given in detail else-
where ( 11). XI ( Q) is dependent on the anisotropies of
the A (the electron-nuclear hyperfine) and g (the elec-
tron Zeeman) tensors as well as the rotation angles, Q,
written in terms of the Wigner rotational matrix ele-
ments. The principal axes of the A- and g-tensors are
assumed to be coincident. *I ( Q ) modifies the resonance
position due to the orientation of the molecule, and it is
this term that gives rise to asymmetries in the spectra
when the motion is slow. When the motion is fast
enough to average each manifold to a single line, then
XI ( Q) and F', may be removed from Eq. 1 and used to

compute the linewidth by fast-motion (Redfield) theory.
The relaxation rate and time, predicted by fast-motion
theory ( 13), are RI(m) = [T2(m)]-'. The contribu-
tion of X, (Q) to the linewidth may be estimated as:

R2e( )<+> = <l[k',(Q)x, [r,(Q), S+]]l> dt, (3)

where XI (Q) in the rotating frame is:

,(Q)x= e-i"rTO,(Q)e+iOT.
The equation for the relaxation rate predicted from sim-
ple fast-motion theory is given by Goldman et al. ( 14)
(see Appendix). The total linewidth in the absence of
inhomogeneous broadening is then predicted to be:

R2e(m) = [T2e(m)I-' = Re(m) + [T2e] ' (4)

where an additional contribution to relaxation is speci-
fied only by TI, ( 13 ). Eq. 4 is valid for m = 0 or ±1 for
the '4N and m = ± I /2 for the '5N spin label.
The time-dependent but orientation-independent Ha-

miltonian e( t) describes the interaction ofthe spins with
the rf radiation and the low frequency modulation ofthe
DC field:

e(t) = d0(S+e- jOt + S_e+i`t) + dmSz(e`imt + e+iwmt),

where wo and wr are the frequencies of the microwave
observing field ofamplitude h, and Zeeman modulation
field, ofamplitude hm, respectively. do = ½/27,h, and dm =

½/27ehm are in frequency units. The matrix elements of a

are computed using the eigenfunctions of Xo as a basis
set. The observed signal is the deviation from equilib-
rium, x = r- a°0( 1). In the high-field and high-tem-
perature approximation the equilibrium spin density
matrix is:

a° = {fN-1 - q[0 + Y,( 2)]}P0(2),

and q = h/NkT, P°(Q) is the equilibrium orientation
distribution (assumed isotropic) and N is the number of
spin states (six for '4N and four for '5N). These equa-
tions were programmed and solved for '4N spin labels on
a DEC workstation ( 12). Note that all ofthe terms in the
above equations used to calculate the CW-EPR spectra
are, of necessity, stationary in the rotating frame. This
means that none of the terms can generate a relaxation
process for Tie(terms that are nonstationary in the rotat-
ing frame are needed to produce a Tle). TIe therefore is
added into the equations via the phenomenological Red-
field relaxation matrix, rR, in Eq. 1.

' T72 is the contribution to the linewidth from mechanisms not speci-
fied in the Hamiltonian. In this case it may arise from rapid fluctua-
tions of the non-secular terms. It may be thought of as the intrinsic
linewidth of the powder pattern in the absence of rotational motion.
For spin labels one typically finds 20 < T2, < 150 ns.

LINESHAPE ANALYSIS
The conventional CW-EPR experiment detects the ab-
sorption signal, Ml, at the first harmonic of the low fre-
quency modulation frequency. In the picosecond corre-
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lation time fast-motion limit '4N spin label absorption
spectra consist of three narrow lines, whose amplitudes
are given by (2):

MI= qy~hh + 2A/T2e 21 (5M' ZehmhlA2( + I I/SOT e)(A2 + 1/SIT2 ()j
where

Sr( + (Yehjr)2 )jj (6)

and r = 0, 1, 2, 3 ... is an index that refers to the har-
monic of the modulation; A is the frequency offset from
the center of resonance. In the very fast-motion limit
(picosecond correlation times), the spin-spin relaxation
time is To2e. As the motion slows, T2e is replaced by the
T2e(m) given in Eq. 4. When WmTle << 1, then S1 So
and S0 = { 1 + (Yehi )2T2eTie} -I, which is the usual satu-
ration parameter ( 1 ).2 In this situation, the equation re-
duces to the familiar derivative of a Lorentzian line:

Ml = qYeh h 2A/T2e (7)
y m ~(A2+ 2/ST )2J

The values of A at which the peaks of the derivative oc-
cur are at Amax = ± I/( T2eVii,). The peak-to-peak
width of the line in gauss, L, is given by:

L2 = L2 +
4
h2 T'e) ' (8)

where Lo is the peak-to-peak width in the limit of very
low microwave field, i.e., Lo = 2/(f/T2eYe). Defining
AYas the base-to-peak height ofM' and substituting the
values of Ama into Eq. 7 for M' gives:

AY = 0.7 X q-Yehmh T2eS3/2.
At low powers, So is approximately unity and the signal
is proportional to hl. As h1 increases, S0 decreases, and
the signal levels off. At still higher levels ofhI, the term in
So dominates and the signal decreases, eventually be-
coming proportional to 1/h 2. The peak-to-peak height
will be maximized when h, = 1 / fye2TTIeT2e and So = 2/3.
The experimental variable is the microwave power inci-
dent on the sample, P0, and this is related to h, by the
equation hI = aV' , where a is the power to rf field
conversion factor that is a function of the resonator and
sample used. The relation of signal to microwave power
is now in the standard form ( 1, 2, 15):

(1 + Po/P2)(
where c is an (adjustable) gain constant, and e is a param-
eter to take account ofthe lineshape: e = 3/2 for a homoge-

2 Poole provides the definition of the S. parameter on p. 590 of( 1).

neous first-derivative absorption line, is unity for a zero
derivative absorption line (3), and is 1/2 for a completely
inhomogeneous derivative absorption line. P2 is a satura-
tion parameter (in units of Watts) and is defined as:

P2= [(y,a)2T1eT2e-1. (10)

Eqs. 9 and 10 are central to the analysis to obtain Ti e-
P2 is obtained from Eq. 9 and TIe is calculated from Eq.
10, provided an estimate of T2e can be obtained. It is the
correct value of T2e to use that has been the major prob-
lem in previous analyses. If the EPR lines are pure Lor-
entzians, then T2e is easily found from the linewidth;
most experimental spectra have much more compli-
cated lineshapes, and the correct T2e value is not obvi-
ous. We believe that this situation can be solved by com-
bining the e parameter of Eq. 9 with a linewidth mea-
sured from the spectrum to obtain an estimate of the
correct "T2e" to use in Eq. 10. The next few paragraphs
justify the use ofe in this endeavor.

Fig. 1 shows the shape ofthe line at the low field turn-
ing point ofthe first harmonic EPR spectrum. It is antici-
pated that the saturation characteristics of this low field
turning point should be those of a first harmonic (or
first-derivative) Lorentzian absorption line (e = 3/2).
When in the fast-motion limit (Fig. 1, top) and approxi-
mately those of a zeroth-derivative Lorentzian absorp-
tion line (e = 1 ) in the near no-motion limit (Fig. 1,
bottom). To go smoothly from the fast-motion limit to
the slow-motion limit, it seems reasonable therefore that
we lete be an adjustable parameter. Often the maximum
of the rollover curve, Pm. is of interest. From Eq. 9 it
follows that Pm. = P2/(2e- 1 ). The P1I2 parameter used
by Altenbach et al. (10) is defined as the intersection ofa
straight line AY0 = (c/2)PI2, with the curve defined by
Eq. 9. The intersection of these two lines occurs when
P1/2 = P2(2" /" -1). For the special case ofa pure absorp-
tion line where e = 1, then P1,2 = Pmax = P2, but other-
wise the three quantities are all slightly different. We con-
sider P2 to be the preferred parameter for analysis be-
cause it is independent of e; Pmax and P,/2 clearly depend
on e.

Protons (or deuterons) surrounding the spin label N-
O moiety cause unresolved broadening. To account for
this effect, the calculated spectra were convolved with a
Gaussian function and subsequently analyzed with Eq.
9. The value of e is influenced by the degree ofhomogene-
ity of the EPR line ( 15 ). Its value ranges from 3/2 for a
single homogeneous line to 1/2 for a completely inhomo-
geneous line. The amount of broadening for protons
(deuterons) is around 0.5 (0.17) G in the fast-motion
limit and around 2.8 (0.9) G in the slow motion limit
( 16). The nonbroadened simulated lines had width < 1

G at the fast-motion limit and several gauss in the slow
motion limit, hence we expect e to be changed when we
perform the convolution.
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TABLE The A and g-tensors and the three relative tuming
points for each nuclear manifold

x y z
A 6 6 31
g 2.0086 2.0066 2.0032

m=--1 1.76 5.15 35.91
m = 0 -4.24 -0.85 4.91
m = +1 -10.24 -6.85 -26.09

m = + 1 (low field), m = 0 (center field), m --1 (high field). A-tensor
elements and turning points are in gauss.

It is our aim to show that Eq. 9 for the saturation
rollover curve is robust enough to give a good accounting
of the power dependence of the EPR signal regardless of
the correlation time or the amount of proton (or deu-
teron) broadening. Changes in the shape of the satura-
tion curve show up as changes in the values of e and P2.
A way to roughly estimate 1 / T2e from the spectrum,

regardless ofthe motional rate, would be to use the width
at half-peak height, W, on the tail ofthe Lorentzian (see
Fig. 1). For a Lorentzian first harmonic (or derivative)
spectrum with e = 3/2 we find that W = 0.809/YeT2e
1 / VyeT2e. The zeroth-derivative absorption Lorentzian
(e = 1.O)yields W = I /yeT2e. Rw-1/ T2e is an effective
linewidth that takes into account the lineshape changes
that occur as the motional rate changes, and is defined
as:

Rw= I /T2, VEYeW9(1
where Wis obtained when h1 is so small that no satura-
tion is present.
Under saturation conditions, lines broaden, and Eq. 8

shows how the line width, L, depends on the observer
amplitude. A linear plot of L2 vs. h2 has been used as a
means of calibrating h1 (17) and can give Tie provided
T2e is known. This method works well at fast motions
typical ofthe spectra in Fig. 1 (top) and could, in princi-
ple, be used to analyze the data at slower correlation
times (2). However, it failed in practice because the plots
were nonlinear. Furthermore, there was no parameter
analogous to e that could take account of shape changes
in a simple way.

METHODS
(a) The EPR spectra were simulated for different values ofthe inci-

dent observer amplitude, h,, with a fixed set of parameters. Table 1
presents the A- and g-tensors used in all of the simulations, as well as
the x, y, and z turning points for each manifold, m = 0, ± 1. The values
of Tie and T72, and the isotropic, Brownian rotational reorientation
with characteristic correlation time, Tc, are in Table 2. The spectra were
convolved with a Gaussian function to include the effects of protons
(see Table 3).

(b) For a fixed set of parameters, a signal versus power rollover
curve was obtained (see Fig. 2) and was fit by least-squares to a linear-
ized version of Eq. 9:

[ y(p(e-1/2))]1/A = (CeFp2) P2 X [AY/Po/2] /,E (12)

to obtain c (which is of no interest), e, and P2.
(c) For a given correlation time, P2 versus / Tie was plotted (see

Fig. 3).
(d) The quantity R2, equivalent to 1 / T2e for a simple Lorentzian

line, can be defined by rearranging Eq. 10:

R2= P2[(yea)2TIe]. ( 13)

R2 was computed for comparison with theory (Eqs. 3 and 11 and the
Appendix).

Table 2 presents the results from the analysis: P2, e, R2 for a = 0.0 G
(no convolution) and R, (measured from W) given in Eq. 1 1. Table 3
shows results similar to Table 2 for spectra convolved with a = 2.0 G.
Table 3 also contains additional information about the effects of inho-
mogeneous broadening (vide infra).

RESULTS
Fig. 1 shows simulated lineshapes for two different corre-
lation times. The top figure has TC = 10 ps (chosen for
comparison with fast-motion theory), and the bottom
one has rc = 30 ns (a correlation time typical of spectra
obtained in the experiments of Altenbach et al. [10]).
The signal height for analysis, AY, as well as the width at
half-height, W, are indicated. The spectra show the sig-
nals well below saturation and have no convolution in-
cluded; in an actual experiment the lines would be fur-
ther broadened by unresolved protons or deuterons on
the label. Clearly, as the correlation time increases, the
spectrum does not remain as three sharp homogeneous
lines.

Fig. 2 is a plot of signal height AY versus the incident
microwave power PO (the "rollover" saturation curve)
for the spectra in Fig. 1. PO was calculated from hI as PO =
(hl1/a)2 and a = 4.5 G/8Watt, which is typical of a
medical advances loop gap resonator (LGR); a = 1.5
G/IW-ati for a standard TE102 cavity (2). Eq. 12 is lin-
earized with respect to c and P2 but requires a nonlinear
search on e. This equation weights the low power terms
more heavily to produce a reasonable fit, as can be
judged from Fig. 2. The solid lines are the best least-
squares fits to the AY predicted by Eq. 12 and the AY
measurements from Fig. 1.

Fig. 3 shows a plot of P2 obtained from the rollover
curves versus T- I for several fixed correlation times and
T°2e. The values of Tle were those entered into the simula-
tion program in Table 2. Superimposed on the data is a
least-squares best fit to the data of P2 = pT-1, where p is
an adjustable constant.

Fig. 4 shows the values of R2 as a function of TC for
different values of Tle given in Table 2. In the curve on
top in Fig. 4, To = 30 ns, and on the bottom curve, T2e =
100 ns. Also plotted is R, given in Table 2, which is a
rough estimate ofR2e forthe low-field manifold obtained
from the line's width at half height. Also shown on Fig. 4
are estimates of R2e given by fast-motion relaxation
theory ( 14), by a first-order modification to fast-motion
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TABLE 2 Input parameters for simulations and parameters of rollover curve analysis

Input values Results

c Tile T2e E P2 R2 T2 W R,

s ,us ns mW Mrad/s ns G Mrad/s

lE-11 0.25 30 1.465 21.3 33.41 29.9 1.55 33.02
IE-1 1* 0.25 100 1.489 6.33 9.94 100.6 0.405 9.96
IE-11 5 100 1.484 0.290 9.34 107.1
1E-9 0.25 30 1.34 26.9 42.15 23.7
1E-9 1 30 1.35 6.76 42.44 23.6
1E-9 5 30 1.302 1.25 39.31 25.4 2.321 46.6
1E-9 5 100 1.447 0.75 23.71 42.2 1.218 25.7
1E-8 0.25 30 1.224 92.7 145.4 6.87
1E-8 5 30 1.211 4.68 146.9 6.80 4.579 88.7
IE-8 5 100 1.224 4.27 134.2 7.45 3.522 68.6
3E-8 0.25 30 1.335 89.9 141.1 7.08 -
3E-8 1 30 1.325 24.4 153.4 6.51
3E-8 5 30 1.313 4.97 156.0 6.41 3.109 62.7
3E-8t 0.25 100 1.348 71.0 111.3 8.98
3E-8 1 100 1.42 19.8 124.3 8.04 -
3E-8 5 100 1.329 4.10 128.6 7.77 2.062 41.8
1 E-7 5 30 1.384 5.03 157.9 6.33
1E-7 15 30 1.375 1.70 160.0 6.25 2.370 48.9
1E-7 5 100 1.418 3.94 123.8 8.07
1E-7 15 100 1.417 1.36 128.2 7.79 1.314 27.5
1E-5 5 30 1.137 1.58 49.76 20.09 1.858 34.8
1E-5 5 100 1.224 0.75 23.78 42.0 0.6036 11.7

Convolution = 0 G. See Table 1 for additional input parameters. The results of e and P2 are from fitting saturation rollover curves according to Eq.
13; R2 is calculated from Eq. 12. W is measured from the low power spectrum (see Fig. 1 for definition) and Rw is calculated from Eq. 11.
* Set of calculations used for Figs. 1 and 2, top.
* Set of calculations used for Figs. 1 and 2, bottom.

theory ( 18 ), and by a generalized spectral density func-
tion suggested by multiple relaxation processes (see Ap-
pendix).

DISCUSSION

Slowing of the rotational motion causes inhomogenei-
ties due to the g- and A-tensors to become more pro-
nounced (Fig. 1). The lineshape changes from a super-
position of three homogeneous first-derivative Lorent-
zian shaped lines in the fast-motion limit to a
complicated "powder pattern" spectrum at long correla-
tion times. These changes in shape, especially in the
center of the spectrum, cause the lines to overlap and
make it difficult to estimate the height of the center line
accurately. The peak height of the low field line is the
best quantity to be used for a saturation rollover curve,
as this place represents a spectral position that is easily
identified at all motion times and is clearly associated
only with a single line. This suggests that it would be
better, experimentally, to use the an isotopically substi-
tuted '5N nitroxide spin label rather than the 14N ana-
logue: there are only two EPR lines instead of three and
the low field manifold of 15N gives approximately two
times bigger signal in the slow motion regime than does
the 14N label ( 19).

There is no simple a priori theory for the form of the
rollover curve once one leaves the fast-motion regime.
The use of Eq. 9 (or Eq. 12) to fit the rollover curve
constitutes an approximation. These equations work re-

markably well at fitting the results obtained directly
from the simulations and continue to perform well even
when Gaussian convolution is added. To obtain reliable
estimates of e and P2 using Eq. 12, the rollover curves
must be obtained over a large range of h,: the rf field
amplitude must be large enough to reduce the signal
height at the highest rf field to 50% or less of the maxi-
mum. We note that such conditions in an actual experi-
ment are difficult to obtain from commercial instru-
ments without added heating and drift: the use of large
volume (TE102 or TMo I I) EPR cavities requires W of

power incident on the resonator to produce a 1 G rffield.
LGRs are more suitable for this work as they can pro-
duce 1 G of rf field at -O.l W incident power (2).

Consider now the dependence of e on the correlation
time. e was chosen as an adjustable parameter because it
varied depending on lineshape and degree of inhomo-
geneity. The hypothesis that E would be a valid monitor
ofthe degree ofinhomogeneity seems to be supported by
the results (see Table 2). When the spectra consist of
simple homogeneous first-derivative lines (i.e., fast-mo-
tion limit), then the rollover curves have an e = 1.49 -
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cellent agreement of the simple-proportionality model
with the values of P2 strongly argues that P2 can be real-
ized as a product of T- l and R2, each ofwhich is indepen-
dent of the other. Again, there is no reason a priori that
the P2 saturation rollover curve could be or should be
interpretable in the simple fashion of Eq. 10; that it does
we take as a fact based on our "computer experiments."
This means that the rollover curve method of analysis
allows one to extract values of Tle under experimental
conditions where R2 remains constant. The changes in
Tle are exactly reflected in changes in P2 (and qualita-
tively in PI12).

This was the situation encountered by Altenbach et al.
(10) in their study of PI 2 values from rollover curves.
The spin labels on different residues all had R2's between
10 and 100 Mrad / s. The broad linear EPR linewidths in
this motional range should not be very sensitive to low
levels ofoxygen, a local paramagnetic relaxing agent, but
Tle should be. Tle does change markedly when a spin
label attached to an amino acid side chain is either in
contact with the relatively oxygen-poor environment of
the protein interior or the relatively oxygen-rich lipid
membrane. Altenbach et al. (10) assumed that P1/2 was

0.100 t
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POWER(mW)

0.020 L
0.00)2
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FIGURE I Simulated CW-EPR lineshapes for correlation times of rc =
10 - s (fast motion) and rc = 3 x 0-8 s (slow motion). The signal
height for analysis, A Y, is indicated on the spectra. Parameters used in
the calculation were gx = 2.0086, g, = 2.0066, g& = 2.0032, Ax = AY =

6.0 G,A,= 31.0G, TIe 1 s, T2b= 30ns,hI = 0.04G.

3/2. As the motion slows, the value of e decreases as ex-
pected. When the motion is on the order of 10 ,ts = 1.1
to 1.2 - 1.0 (as expected for the low field turning point
in a pure homogeneous absorption shape). The value of
e at 30 ns motion is around 1.35 (still quite close to 3/2).
This value of e indicates that the line is still homoge-
neous at this correlation time even although the unsatu-
rated CW-EPR spectrum has almost attained its rigid-
limit lineshape.

In Fig. 3, P2 is shown as a function of T- , with the
motional rate and other parameters held fixed. The ex-

I-

LId

z
0

Uf)

0.010

0.001

5.OOOE-4 L
0.0O 2 0.010 0.100 1.000

POWER(mW)
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FIGURE 2 Plot of signal height AY versus the incident microwave
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simulated spectra of Fig. 1: correlation timesTC = 10"sand TC = 3 x
10-8 s. The solid lines are the fits of the simulated lineshapes to the
equation for signal height A Yversus power P0 using Eq. 13. Fit parame-
ters are given in Table 2.
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FIGURE 3 Plot of P2 obtained from the rollover curves like those of
Fig. 2 versus 1/ Tie for several correlation times. The values of TIe were
those entered into the simulation program. The various icons differen-
tiate among P2 values calculated using the following input parameters:
Tc = 10"- ls (circles); T-= l -9 s (triangles); Tc = 10-8 s (squares); Tc =

3 x 10-8 s (inverted triangles). In addition, hollow icons indicate T02,
was 30 ns and filled icons indicate T2e was 100 ns. The solid lines are
the best fit straight lines to the data.

inversely proportional to Tie. Our theory shows that this
is so provided e does not change. At the correlation times
used experimentally, e is approximately independent of
Tie (Table 2), so that their assumption was justified. In
general, plots ofP112 versus T` would be slightly curved
because, in fact, e is a weak function of Tle (Table 2).
This complicates the agreement between changes in PI/2
and changes in Tle. However, P1,2 can be determined
more easily than P2 from a rollover curve, and one is not
required to go to large rfamplitudes; because e is not able
to be found accurately, a direct conversion to a valid Tle
is not possible.
The rollover curves of Fig. 2 show that P2 (as well as

Pmax) is dependent on TC for fixed Tle. In Fig. 2, the top
curve (C = 0.01 ns) is fit with P2 = 6.3 mW and the
bottom one (rC = 30 ns) is fit with P2 = 71.0 mW, -10
times greater. This is because R2 is sensitive to Tc.
The success of Eq. 12 may be contrasted with the fail-

ure of Eq. 8 to relate L2 and P0. Efforts to find a fitting
function to linearize this relationship, that subsumed the
effect of going from a derivative to an absorption shape,
failed badly.

Fig. 4 shows the values of R2 as a function of -rc for
different values of Tie (see Table 2). In the top curve of
Fig. 4, T7e = 30 ns, and on the bottom curve, T2e = 100
ns. The values ofR,, given in Table 2 and plotted on Fig.
4, provide a good estimate ofR2 (equivalent to 1 / T2e) in

the fast-motion limit. Also plotted are estimates of R2e
(im) from Eq. 4 for m = + calculated from fast-motion
theory given by Goldman ( 14) (long, dashed line), first-
order modified fast-motion theory given by Hwang et al.
( 18) (short, dashed line), and a modified theory based
on a generalized spectral density function (solid line; see
Appendix). R2 at slow correlation times is a measure of
the effective homogeneous linewidth under saturation.
We would expect that R2 could not exceed a rate equiva-
lent to the full linewidth of the low-field manifold, LT
(the distance between the z and y turning points). From
Table 1 the value ofLT is 19.24 G (equal to 338 MRad/s
as a rate). Ifthe entire manifold were homogeneous with
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FIGURE 4 Plot of the value ofR2 P2 [(yea )2Tie] versus correlation
time, taken from column 7 ofTable 2. (Top) R2 (open circles) is plotted
as a function of TC for the case where T2, = 30 ns and (Bottom) is the
same as top except R2 is represented by open squares and r2e = 100 ns.
Also plotted is Rw (open triangles) (see Table 2) calculated from the
measured linewidth, for comparison with R2. The long dashed line is
R2e (Eq. 4 and Appendix) estimated by standard fast-motion theory
(K = 0, d = 2). The short dashed line is R,e from the Hwang et al. ( 18)
modified fast-motion theory (K = 1, ( = 2). The solid line is R2e(m)
calculated from the modified spectral density function with K = 1.0 and
,B = 1.3 (See Appendix).

60 ipyiclJunl600 Biophysical Journal Volume 64 March 1993



this value of Lr, then the effective R2 would be LT/2.
From Table 2 one can see that LT/2 = 169 Mrad/s is a
very reasonable upper bound for R2.

Both R2 and e are independent estimates of the extent
of homogeneity of the EPR spectrum under conditions
of saturation and both show that the lines appear to re-
tain a large amount of homogeneous character even
when the motion is slow (on the linear EPR timescale).
Under such conditions, the (partially) saturated line-
shapes are sensitive to Tie as already discussed. A practi-
cal consequence of this is found in the slow-motion '5N
spin-label study by Gaffney et al. (20). They observed
broadening of the CW-EPR spectrum down to submi-
crosecond correlation times. We interpret this as an ef-
fect of saturation. As the motion slowed, Tie lengthened
so much so that the (fixed) observer power produced
saturation. The slower the motion, the greater the degree
of saturation, and hence the greater the line broaden-
ing (21 ).
We have established that a value of R2e can be found

from the simulations that enable one to calculate an accu-
rate Tie It would be more satisfying to understand R2e
and how it varies with correlation time based on a more
rigorous theory using spectral density functions. To il-
lustrate the possible dependencies of R2e (and R2) on
motion, we present a single, general spectral density
function estimate for R2e that subsumes some specific
cases considered by others:

R2e 62
TC

+ (14)1 + (K X 6 X TJ) T2e

This form is consistent with fast-motion theory if K = 0

and 6 = [2/(3/5)]iYeLT = 100 Mrad/s. The modified
fast-motion theory ofHwang et al. ( 18) has K = 1 and =

2. (The full equations used for the calculations are given
in the Appendix.)

Figure 4 shows that fast-motion theory values of R2e
(m = 1 ) are always larger than R2 and those for the modi-
fied fast-motion theory are smaller than R2. The modi-
fied fast-motion theory clearly avoids the (obviously in-
correct) prediction that R2 grows without bound as the
motion slows. Although R2e (m = 1) from the latter
theory and Rw follow the same trend throughout the mo-
tional range, neither agrees well with R2 from the satura-
tion curve.

We now consider how R2 is measured and why fast-
motion theory cannot account for the observed values at
correlation times slower than 5 ns. R2 is obtained under
conditions ofmaximum saturation. As such, features of
the EPR spectrum are responding nonlinearly to the ob-
server power, and the linewidths of the individual pack-
ets are being broadened. On the timescale determined by
T2e, only correlation times out to 300 ns can be detected.
TIe being on the microsecond timescale allows very slow
rotation ofthe spin label (correlation times as great as 10

TABLE~ ~ ~3 nu aaeesfrsmuain aaeeso

TABLE 3 Input parameters for simulations and parameters of
rollover curve analysis

Input values Results

%c Ti,e Te e P2 R2 T2 R T2

s ,uS ns mW Mrad/s ns Mrad/s G

IE-11 0.25 30 1.25 29.0 45.56 21.9 79.9 0.77
1E-9 5 30 1.255 1.81 56.85 17.6 83.7 1.03
1E-8 5 30 1.167 4.67 146.7 6.81 168.9 0.0
1E-8 5 100 1.167 4.34 136.2 7.34 157.8 0.0
1E-7 5 30 1.292 5.53 173.6 5.67 178.7 1.71

Convolution = 2 G. All parameters have the same meaning as in Table
2; however, all simulations were convolved with a 2-G Gaussian
broadening function and then analyzed by the rollover curve method
for P2 (and R2) and E, according to Eqs. 12 and 13. RT was calculated
from Eq. 16, where the Gaussian had a = 2.0 G = 35.2 Mrad/s. d was
calculated from Eq. 17.

ms) to couple EPR resonance lines before the EPR signal
decays (22).3 The individual resonance lines are there-
fore in communication due to the motion on the time-
scale set by Tie. In the slow-motion regime, at a fixed
field-frequency position, there are many overlapping
lines. In the absence of any motion, all lines relax with
the same rate; when there is motion, the lines do not
relax at the same rate because transfer ofsaturation com-
petes with R2 relaxation. This leads to a clustering of
different relaxation rates about a mean. The theory that
treats such a situation suggests that R2 can be explained
by the Cole-Davidson spectral density function in the
frequency domain (or by a Williams-Watts stretched ex-
ponential function in the time domain) (23). The Cole-
Davidson model has 1 </ < 2, depending on the degree
of spread of relaxation rates.

Consider how : depends on the correlation time and
Tie. When Tc is longer than Te, the flow of saturation
between resonance lines ceases and a = 2. When the
motion is faster than Tie, the resonance lines are in com-
munication, so 3< 2. Conversely, if TIe becomes smaller
at a fixed correlation time, then A would become larger.
Eq. 14 would therefore predict a slight decrease in R2 if
TIe were shorter. Table 2 shows that this prediction is
correct: a 20-fold change in TIe produces only a few per-
cent change in R2. Therefore, even in the very slow mo-
tion region, P2 can reasonably be interpreted as the prod-
uct ofR2 and T-le
The effects ofprotons (or deuterons) on the EPR spec-

trum have been simulated by a convolution with a Gauss-
ian function of width a. Generally a- spans the range
from 0.2 to 2.8 G. Several sets of calculated lineshapes
were convoluted with a Gaussian (a = 2 G), and the
saturation rollover curve of these spectra was analyzed

3 See in particular Eq. 2.10 of Robinson et al (12).
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according to Eq. 12. The results in Table 3 are rather
surprising. The values of e decreased in all cases, as ex-
pected, removing some of the effect on R2 of the added
inhomogeneity. Not all of the inhomogeneity was ac-
counted for, and therefore the R2 (a= 2) was larger than
the R2 (u = 0) for the corresponding set of lineshapes.
Only for the spectra where Tr was about 10 ns did it
happen that the decrease in e was just enough to keep R2
constant. One can be more quantitative by considering
the expression given by Bales (16) for the effects of
Gaussian convolution, adapted to our notation:

R 2(o) = 1. ( 5(R2(a)) ( R2(o)) (15)

This relation shows that the resulting linewidth, R2(a),
can be estimated if one has a Lorentzian line, character-
ized by R2(0), that is convoluted by a Gaussian ofwidth
a to give a Voightian lineshape. This relationship can be
used to show how well the fitting function retrieves the
original R2(0). Eq. 15 can be rearranged to solve for R2

= 2), called RI, the total value one would expect if
none of the convolution were removed:

T = R2(0) x 1+ f1 + 12(u/R2(0))2} (16)

R2 (given in Table 3) would be expected to be an upper
bound to R2, and, presumably, if e did not change, RT
would equal the R2 extracted from the rollover fitting
procedure. These expectations are borne out by the re-
sults in Table 3. Another way of viewing Eq. 15 is to
rearrange it and solve for a, called (see Table 3), which
is now an estimate of how much convolution was left
behind after e was adjusted and the fitting was optimized:

R2(u) x [R2(U)- R2(0)] (17)
3

R2( U) is the R2 in Table 3 and R2(0) is the R2 in Table 2
for the corresponding, nonconvoluted case. The conclu-
sion is that when rc is <10 ns, a is reduced by about a
factor of 2. Because the amount of convolution is small
(<0.5 G) in this motional regime and half is removed,
then the effects ofGaussian broadening are probably not
going to affect estimates to P2 and R2. However, when rC
is slower than 10 ns and the amount of broadening in-
creases to around 2.8 G, considerable broadening re-
mains. The results are clearly dependent on the motion.
This finding is rather sobering for those who have used e
in the past to remove the effects of inhomogeneous
broadening.

CONCLUSIONS
We have tested whether the simple idea of a saturation
rollover curve, as given for a pure Lorentzian line, could
be extended to estimate TIe for nitroxide spin labels un-

dergoing motion. The first, and most fundamental, re-
sult is that Eq. 9 gives a remarkably good accounting of
the simulated lineshapes (e.g., Fig. 2) when e is allowed
to vary and be least-squares optimized. The second re-
markable result is that P2 is very nearly proportional to
T1-. These two results mean that the method can be
used to obtain meaningful estimates ofP2. Changes in P2
reflect changes in TIe under conditions where R2 re-
mains constant. As modifications to the experimental
protocol, we recommend measuring saturation on the
low-field turning point and using Eqs. 9 or 12, with vari-
able e to analyze the data. The method works well on the
low-field line and does not work well on the center line.
Measurements are made on the center line and analyzed
but are not reported. Under some circumstances, e > 1.5
was found! This occurred because the outer lines over-
lapped the center one, and this increases with increasing
hI due to broadening, raising the wings of the line to
make it appear "super Lorentzian." Therefore, experi-
mentally, one would be better off using the '5N isotopi-
cally substituted analogue for the nitroxide spin label.
Moreover, because does not remove Gaussian convolu-
tion very effectively, one is better off to use a fully per-
deuterated '5N spin label with the narrowest possible line-
width for careful quantitative studies.
T` can be determined directly from spectral simula-

tion: the A- and g-tensors, as well as T°2e, a, and the mo-

tional rate, are all determined from the linear CW-EPR
lineshape. Tle is only one unknown parameter remain-
ing to be quantitatively determined from the rollover
curve. Of course, rollover curves also can be simulated,
using the programs that are derived from Eq. 1, varying
Tle until optimal agreement is found.
This process may be avoided by rearranging Eq. 13 for

Tle:

T- = P2(,ye,a)21R2 - (18)

Quantitative estimates of Tie can be obtained using the
values ofP2, determined from the experimental rollover
curve, and R2, generated by simulation or taken from
Table 2. Methods for determining a are described else-
where (2). We have considered in detail the parameters
that affect R2 and to what degree R2 is a valid description
of the homogeneous linewidth under saturation.
We argue that R2 has validity in its own right, even

though there is no simple a priori formula to determine
it. The first point is that R2 is the same as that predicted
by fast-motion theory in the regime where that theory is
valid. The second point is that R2 is qualitatively de-
scribed by the Hwang et al. (18) modified fast-motion
theory over the entire motional range of interest. For
example, at maximum R2, modified fast-motion theory
underestimates R2 by only -20%. The third point is that
Table 2 and Fig. 4 demonstrate that R2 is a very weak
function of T- . The fourth and final point is that it is
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plausible that the plateau of R2 between 10 and 200 ns
may be accounted for by a motion-dependent A. Despite
the limitations that have been pointed out in the discus-
sion, Fig. 4 may be used to obtain a first-order estimate
to R2.
For rotational times faster than 5 ns, R2 may be esti-

mated quite accurately from the fast-motion equations
given in the Appendix. For rotational times from 10 to
200 ns, R2 is rather insensitive to motion. This then
should be the optimal motional regime for obtaining Tie
by progressive saturation. For motions slower than a mi-
crosecond, ST-EPR spectra are directly sensitive to Tie
and can be directly compared (or simulated) to estimate
Tle (24).
We note that when wmTle > 1.0, then the DC field

modulation can affect the value of Tle experimentally
obtained (see Eq. 6). Based on direct measurements of
Tie with saturation recovery pulsed EPR (25), this con-
dition is violated for motions slower than 0.1 ns when
100-kHz field modulation is used. It is therefore advis-
able that a modulation frequency much less than this be
used in experiments with slower moving molecules.

APPENDIX
The equation for R' (m) is given below. This was originally given in
Goldman et al. ( 14) and later modified in Hwang et al. ( 18). It is
further modified below to include a generalized spectral density func-
tion.

R'(m) = A(m) + mB(m) + m2C(m),

where A(m), B(m), and C(m) depend on m, which takes on the val-
ues m = 0, ± I for "4N. The following formulae are valid only for 14N
where I = 1. These equations are identical to those in Goldman et al.
( 14) when K = 0 and f# = 2 and reduce to the A, B, and C parameters
defined therein and are identical to those in Hwang et al. ( 18) when K =
1 and,B= 2.

A(m)= ( 1 (1 + )(2J)

x I

[ Jjs.(w(m)) + Ja(OW(m))] +
7

J,2
S2E( 2) )( i( 3()3 i,(e}

+ 5± (1 +2)(Gj) { Jj,#((3(m)) + Jj2 (we)}e

B(m) = ±z ( 1 + 2)(2D { +

X= J ( 3(m)) - Jj>(W3j(m))- + Jj,2(e)

The sum overj is only for0j = andj = 2. C(m) is not defined, or
needed, for m = 0. The generalized spectral density function is:

i2 i 1 + ( )

and is valid for] = 0 and 2 only. o = 2/6d and i2= 1i/(2d ,+ o
where dl and dL are the Einstein diffusion coefficients for rotation ofan

axially symmetric object about its unique axis and perpendicular to the
unique axis, respectively. These equations assume that the D (diffu-
sion) and g and A tensors are all coincident. w, = yeH0, where wS is the
electron Larmor frequency and wa = yea/2.
The other frequencies used constitute the various possible linearcom-

binations associated with the manifold separations and widths:

W.'(m) = Wa + (-1)(1+i/2)[±F0 + (-1)M 2 ] '

and

W30(n) = | (Fo + mD')

The elements ofD and G are:

Do = [Az I (A + AY)]

Go =I We gz
I

(g. + g )]

D2
I

-Yt(Ax-AY) G2 = ae[gx gy],4 1

D' 'Y2 Az[ - - (Ax + AY)]

Fo We [gz 2 (g. gy)]/

Do and D2 are multiplied by 27r as compared with Do and D2 defined by
Goldman et al. (14). Go and G2 are multiplied by 'w/2 as compared
with the Go and G2 defined by Goldman et al. ( 14).
To investigate how the generalized spectral density function of Eq.

14 could account for the observed values ofR2, K was set equal to one,
various values of, were chosen, and the resultant R2, curves were
overlaid on the data. Having ,B < 2 produces a broader maximum, but
if,B is set equal to unity, R2e reaches a maximum and remains constant
at longer TC. No attempt was made to make / a function of Tr or Ti, as
would be necessary in a complete treatment. The estimate ofR2(m)
using ,B = 1.3 (solid line, Fig. 4) shows that Eq. 14 can give a reasonable
explanation of the dependence of R' (m) (and by implication R2 as
well).
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