Asymptotic Expansions of a Class of Hypergeometric Polynomials with Respect to the Order, II

JERRY L. FIELDS AND YUDELL L. LUKE

Midwest Research Institute, Kansas City, Missouri

Submitted by Richard Bellman

INTRODUCTION

In a previous paper [8], asymptotic properties of the hypergeometric polynomials

\[F_n(z) = \binom{-n, n + \lambda, \alpha_p}{1 + \rho_q} \]

for large order were discussed. However, only the case \(q = p + 1 \) (Case I) was treated extensively. In this paper, the above polynomials for \(q < p \) and \(q > p + 2 \), designated as Cases II and III, respectively, are treated more fully. By confluence, analogous results for lower order hypergeometric polynomials and functions are deduced. In particular, a useful form of the asymptotic expansion for Bessel functions is given.

III. Case II, \(q \leq p \)

As before \(F_q(z) \) obeys a differential equation (see (1.8)) of order \(M = p + 2 \). By direct computation there are \(p + 2 \) descending series solutions of (1.8) of the following form:

\[
L_{p+2,q}(z) = \frac{(\alpha_p - \alpha_i)(z)^{-\alpha_i}}{(1 + \rho_q)_{-\alpha_i}} \\
\times \frac{\Gamma(\alpha_t, \alpha_t - \rho_q)}{\Gamma(1 + \alpha_t + n, 1 + \alpha_t - n - \lambda, 1 + \alpha_t - \alpha_p)} \left(\frac{(-1)^{q-p+1}}{z} \right),
\]

\(t = 1, \ldots, p \).

* This research is a continuation of work supported by the United States Navy through the Applied Mathematics Laboratory of the David Taylor Model Basin under Contract No. Nonr-2638(00)(X). Reproduction in whole or in part is permitted for any purpose of the United States Government.

1 Numbers in square brackets pertain to references at end of paper. References 1–7 are given at the end of [8] which we assume is handy to the reader.

\(\ast \) Sections I and II are contained in [8].
\[\mathcal{H}^{(1)}_2(z) = \frac{(\alpha_p)_n}{(1 + \rho_q)_n} (-z)^n \binom{\cdots n - n}{1 - 2n - \lambda, 1 - n - \alpha_p} \left(\frac{(-1)^{q - p + 1}}{z} \right), \]

\[\mathcal{H}^{(2)}_2(z) = \frac{(\alpha_p)_n - \lambda}{(1 + \rho_q)_n} (-z)^{-n - \lambda} \times q + 1 F_{p + 1} \left(\begin{array}{c} n + \lambda, n + \lambda - \rho_q \\ 1 + 2n + \lambda, 1 + n + \lambda - \alpha_p \end{array} \right) \left(\frac{(-1)^{q - p + 1}}{z} \right), \]

where the notation should be interpreted as in (2.1) and (2.2). Under the restriction that no \(\alpha_i - \alpha_j, i \neq j \), is equal to an integer or zero, the solutions in (3.1) and (3.2) are linearly independent. This restriction can be relaxed by taking limiting forms. In general, \(\mathcal{F}_n(z) \) is equal to a linear combination of (3.1) and (3.2). In fact, under any particular set of restrictions on the parameters \(\alpha_i \) and \(\lambda \), \(\mathcal{F}_n(z) \) equals one and only one of these \(p + 2 \) solutions; e.g.,

\[\mathcal{F}_n(z) = \frac{(n + \lambda)_m}{(n + 1)_m} \mathcal{L}^{(\alpha_m)}_{p + 2, q}(z), \quad (3.3) \]

if some one \(\alpha_m \) is a negative integer, \(-\alpha_m \leq n, \lambda \) is not a negative integer,

\[\mathcal{F}_n(z) = \frac{1}{(n + 1)_{n + \lambda}} \mathcal{H}^{(2)}_2(z), \quad (3.4) \]

if no \(\alpha_i \) is a negative integer, \(\lambda \) is a negative integer, \(2n > -\lambda \), etc. We remark that although the \(\mathcal{L}^{(\alpha_m)}_{p + 2, q}(z) \), \(\mathcal{H}^{(1)}_2(z) \), and \(\mathcal{H}^{(2)}_2(z) \) are descending series in \(z \), the way \(n \) appears makes them suitable for computation for large \(n \). For the purposes of asymptotic equivalence for large \(n \), one permits all solutions to appear, and writes for \(q < p \),

\[p + 2 F_q \left(\begin{array}{c} -n, n + \lambda, \alpha_p \\ 1 + \rho_q \end{array} \right) \sim \sum_{i=1}^p \frac{(n + \lambda)_{-\alpha_i}}{(n + 1)_{\alpha_i}} \mathcal{L}^{(\alpha_i)}_{p + 2, q}(z) \]

\[+ \frac{1}{(n + 1)_{n + \lambda}} \mathcal{H}^{(2)}_2(z) \]

where the connecting constants of the various solutions are those values which hold in the particular situation when \(\mathcal{F}_n(z) \) equals exactly that solution. Then the dominant term of (3.5) under any set of conditions is that solution to which \(\mathcal{F}_n(z) \) is equal exactly.

If \(p > q \), (3.5) is suitable for computational purposes for large \(n \). However,
if \(p = q \), the (in general) dominant term \(\mathcal{H}^{(1)}_{2}(z) \) converges very slowly and we note that in this case,

\[
\mathcal{H}^{(1)}_{2}(z) = \frac{(\alpha_p)_{\lambda}}{(1 + \rho_p)n} (-z)^n \exp \left(- \frac{n(n + \rho_p)}{z(2n + \lambda - 1)(n - 1 + \alpha_p)} \right) - (1 + \rho_{\lambda + \rho_{p + 1}}) (2n + \lambda - 1)(n - 1 + \alpha_p) z \]

as can be shown by elementary series manipulation. As before, the notation \((n + \rho_p)\) should be interpreted as \(\Pi_{j=1}^{p} (n + \rho_j)\), and similar remarks hold for \((n - 1 + \alpha_p)\), \((\alpha_p)_{n}\), and \((1 + \rho_p)_{n}\).

Equation (3.5) holds for all \(z \) except at the singular points zero and infinity, as \(n \to \infty \). For fixed \(n \) and variable \(z \), we require \(|z| \geq O(1) \) to insure that the correction terms remain small.

Finally, we note that by confluence,

\[
\lim_{\sigma \to \infty} \text{P}_q\text{F}_p \left(\frac{-n, n + \lambda, \alpha_p, \sigma}{\sigma} \right) = \text{P}_q\text{F}_p \left(\frac{-n, n + \lambda, \alpha_p}{1 + \rho_{\lambda + \rho_{p + 1}}} \right) \]

and that confluences on the \(\mathcal{L}_{p+2,q}^{(\alpha_p)}(z) \) terms in (3.5) can be carried out in a similar manner. By \(p + 1 - q \) such confluences, we drop from Case II to Case I, and by comparison of the \(\mathcal{L}_{p+2,q+1}(z) \) terms, we see the consistency of our choice of the connecting constants \(A_t, t = 1, 2, \ldots, p \), in (2.5).

IV. Case III, \(q \geq p + 2, N^\beta = n(n + \lambda) \)

Setting \(\beta = q - p + 1 \), our development for \(\beta \geq 3 \) is similar to Case I (\(\beta = 2 \)). \(F_n(z) \) obeys a differential equation, (1.8), of order \(M = p + \beta \). The \(\mathcal{L}_{p+2,q}^{(\alpha_p)}(z) \) functions defined in (3.1) are \(p \) formal, descending series in \(z \) solutions of (1.8). Although in general they are divergent, they serve as asymptotic expansions for large \(z \) to valid solutions of (1.8), and as mentioned before, are suitable for computation if \(n \) is large. The confluence argument at the end of Section III indicates that the \(\mathcal{L}_{p+2,q}^{(\alpha_p)}(z) \) solutions and their connecting constants for \(F_n(z) \) are independent of the case number. The lead terms of the exponential asymptotic expansions of the remaining \(M - p = \beta \) solutions around infinity are computed by the formal procedure given in
section 1, and are denoted by \(\mathcal{X}^{(j)}_{\beta}(z) \), \(j = 1, \cdots, \beta \) — see [4] and the references given there. Thus

\[
F_n(z) \sim \sum_{i=1}^{p} \frac{(n + \lambda) - \alpha_i}{(n + 1)\alpha_i} \mathcal{L}_{\rho_{z+2,q}}(z) + \sum_{j=1}^{\beta} A_{\rho_1,} \mathcal{X}^{(j)}_{\beta}(z) \tag{4.1}
\]

under suitable restrictions on \(z \).

The constants \(A_{\rho_1,} j = 1, \cdots, \beta \) are determined by the exploitation of the fact

\[
\lim_{n \to \infty} F_n \left(\frac{z}{n(n + \lambda)} \right) = \lim_{n \to \infty} {}_{\rho_{z+2}}F_{\rho_{z}} \left(\frac{-n, n + \lambda, \alpha_p}{1 + \rho_q} \left| \frac{z}{n(n + \lambda)} \right. \right)
\]

\[
= {}_{\rho_{z}}F_{\rho_{z}} \left(\frac{\alpha_p}{1 + \rho_q} \left| -z \right. \right) \tag{4.2}
\]

and that for \(0 \leq \arg z \leq \pi - \epsilon, \epsilon > 0 \), the representation (4.1) coalesces with the asymptotic representation of \({}_{\rho_{z}}F_{\rho_{z}}\left(\frac{\alpha_p}{1 + \rho_q} \left| -z \right. \right) \) for large \(z \), see [6]. Thus we write, through the \(\tau_3 \) terms (see (1.20)),

\[
{}_{\rho_{z+2}}F_{\rho_{z}} \left(\frac{-n, n + \lambda, \alpha_p}{1 + \rho_q} \left| z \right. \right) \sim \sum_{i=1}^{p} \frac{(n + \lambda) - \alpha_i}{(n + 1)\alpha_i} \mathcal{L}_{\rho_{z+2,q}}(z) \\
+ \frac{2(2\pi)^{1-\beta/2} \Gamma(1 + \rho_q)}{(\beta)^{1/2} \Gamma(\alpha_p)} (N^2 \lambda \rho_{z})^{\nu} \exp \{N^{2+1/2} \beta \cos(\pi/\beta) + az/3 \} \tag{4.3}
\]

\[
- (N^{2+1/2} \lambda \rho_{z}) \cos(\pi/\beta) + O(N^{-2}) \exp \{N^{2+1/2} \beta \sin(\pi/\beta) + \pi \gamma \}
\]

\[
+ (\beta - 2) \text{ exponentially lower order terms,}
\]

where

\[
\begin{align*}
N^\beta &= n(n + \lambda) \\
\beta &= q - p + 1 \\
D_1 &= \sum_{i=1}^{p} \alpha_i \\
E_1 &= \sum_{i=1}^{q} (1 + \rho_i) \\
D_2 &= \sum_{i=1}^{p} \sum_{t=1}^{(\alpha_i - 1)} \alpha_i \\
E_2 &= \sum_{i=2}^{q} \sum_{t=1}^{(1 - \rho_i)} (1 + \rho_i) (1 + \rho_i) \\
\gamma &= (2\beta - 1)^{-1}((\beta - 1) + 2D_1 - 2E_1) \\
\Omega(z) &= (2\beta - 1)^{-1} \lambda_1 z^2 + (\beta - 1)^{-1} \lambda_2 z - \lambda_3
\end{align*}
\tag{4.4}
\]
section 1, and are denoted by \(\mathcal{X}(z) \), \(j = 1, \cdots, \beta \) — see [4] and the references given there. Thus

\[
F_n(z) \sim \sum_{i=1}^{\beta} \frac{(n + \lambda - a_i)}{(n + 1)a_i} \mathcal{L}_{n+2,a_i}(z) + \sum_{j=1}^{\beta} A_{\beta+1} \mathcal{X}(z) \tag{4.1}
\]

under suitable restrictions on \(z \).

The constants \(A_{\beta+1} \), \(j = 1, \cdots, \beta \) are determined by the exploitation of the fact

\[
\text{Lim}_{n \to \infty} F_n \left(\frac{z}{n(n + \lambda)} \right) = \text{Lim}_{n \to \infty} \mathcal{F}_{-2} \left(1 + \rho_q \left| \frac{z}{n(n + \lambda)} \right) \right.
\]

and that for \(0 \ll |z| \ll n(n + \lambda) \), the representation (4.1) coalesces with the asymptotic representation of \(\mathcal{F}_{-2}(z) \) for large \(z \), see [6]. Thus we write, through the \(\tau_3 \) terms (see (1.20)),

\[
\mathcal{F}_{-2} \left(1 + \rho_q \left| \frac{z}{n(n + \lambda)} \right) \right.
\]

\[
+ \frac{2(2\pi)^{1-\beta/2}}{(\beta)^{\gamma/2} \Gamma(\alpha_p)} (N^\beta z^\gamma \exp \{Nz^{1/\beta} \cos (\pi/\beta) + az/3 \} \tag{4.3}
\]

\[
- (Nz^{1/\beta})^2 \cos (\pi/\beta) + O(N^{-2}) \cos (Nz^{1/\beta} \sin (\pi/\beta) + \pi \gamma
\]

\[
+ (Nz^{1/\beta})^2 \sin (\pi/\beta) + O(N^{-2})
\]

\[
+ (\beta - 2) \text{ exponentially lower order terms},
\]

where

\[
N^\beta = n(n + \lambda) \quad \beta = q - p + 1
\]

\[
D_1 = \sum_{i=1}^{\beta} \alpha_i \quad E_1 = \sum_{i=1}^{q} (1 + \rho_i)
\]

\[
D_2 = \sum_{i=2}^{\beta} \sum_{l=1}^{\beta-1} (a_i)(\alpha_i) \quad E_2 = \sum_{p=2}^{q} \sum_{l=1}^{p-1} (1 + \rho_i)(1 + \rho_i)
\]

\[
\gamma = (2\beta - 1)(\beta - 1 + 2D_1 - 2E_1)
\]

\[
\Omega(z) = (2\beta - 1)^{-1}\lambda_1 z^2 + (\beta - 1)^{-1}\lambda_2 z - \lambda_3 \tag{4.4}
\]
Since cosine terms of large argument are related to Bessel functions of large argument by

\[J_\mu(z) \sim \left(\frac{2}{\pi z} \right)^{1/2} \cos \left[z - \frac{\mu \pi}{4} - \frac{\pi}{4} \right] \left\{ 1 + O(z^{-2}) \right\} \]

\[- \sin \left[z - \frac{\mu \pi}{4} - \frac{\pi}{4} \right] \left[\frac{\mu^2 - \frac{1}{4}}{2z} + O(z^{-3}) \right], \quad (5.2) \]

\[| \arg z | \leq \pi - \epsilon, \quad \epsilon > 0, \]

for large \(z \), see [9], the zeros of \(F_n(z) \) for Cases I and III can be related to the zeros of Bessel functions.

Let

\[\mu = -(2\gamma + \frac{1}{2}), \quad (5.3) \]

and denote by \(l_j \) the \(j \)th positive zero of \(J_\mu(z) \), then (5.1) can be rewritten

\[n(n + \lambda) A_{j,n} \sim \{ l_j \left[\beta \sin (\pi/\beta) \right] \}^\beta, \quad (5.4) \]

\[\beta = q - p + 1 \geq 2, \]

for fixed \(j \) and \(n \rightarrow \infty \).

Similarly, let \(z_{r,n} \) be the value of \(z \) at which the \(n \)th order polynomial takes on its \(r \)th extremal value, i.e., maximum or minimum, counted in the positive direction. The \(r \)th extremal value of \(\varphi^{+n}_{+n} F_q(-n+\lambda+1,1|z) \) occurs at the \(r \)th zero of \(\varphi^{+n}_{+n} F_{q}(n+\lambda+1,1+1+1|z) \). Therefore, if \(t_r \) is the \(r \)th positive zero of \(J_r(z) \),

\[v = \mu + \frac{2(\beta - 1)}{\beta} = -(2\gamma + \frac{1}{2}) + \frac{2(\beta - 1)}{\beta}, \quad (5.5) \]

we can write

\[(n - 1)(n + \lambda - 1) z_{r,n} \sim \left[\frac{t_r}{\beta \sin (\pi/\beta)} \right]^\beta, \quad (5.6) \]

\[\beta = q - p + 1 \geq 2, \]

for fixed \(r \) and \(n \rightarrow \infty \). The combination of (5.6) with (2.5) and (4.3) generalize results given in [10]-[15].

VI. CONFLUENT POLYNOMIALS

By confluence

\[\lim_{\lambda \rightarrow \infty} \varphi^{+n}_{+n} F_q \left(\frac{-n, n + \lambda, \alpha_p}{1 + \rho_q} \bigg| \frac{\pi}{n + \lambda} \right) = \varphi^{+n}_{+n} F_q \left(\frac{-n, \alpha_p}{1 + \rho_q} \bigg| z \right). \quad (6.1) \]
Thus the asymptotic representation for the polynomials $p+1F_p^{(-n, \alpha_p} \mid z)$ may be derived from the corresponding results for $p+2F_p^{(-n, \alpha_p} \mid z)$ except in the case when $p = q$ which can be treated directly by the methods used in [8].

We now treat the case $q = p + 1$ explicitly. Replacing z by $z/(n + \lambda)$ corresponds to replacing θ by \{z/(n + \lambda)\} in (2.5). Since the lead constants of (2.5) are only asymptotic in nature for terms $O(N^{-2})$ and higher, one considers \(\lim_{\lambda \to \infty} \frac{\tau_m \left(\frac{t}{n + \lambda} \right)}{\lambda^{(m+1)/2}} \) instead of \(\lim_{\lambda \to \infty} N^{-m-1} \frac{t^{1/2}}{(n + \lambda)^{1/2}} \) in the notation of (2.5) and (1.20). Thus

\[

p+1F_{p+1}^{(-n, \alpha_p} \mid z) \sim \frac{(\alpha_p - \alpha_t - \alpha_t - \alpha_t - \frac{1}{2})}{(n + 1)_{\alpha_t}} \\
\times p+2F_p^{(\alpha_t, \alpha_t - \rho_p + 1} \mid z) \\
+ \frac{\Gamma(1 + \rho_{p+1})}{\Gamma(n+1)^{1/2}} (n\pi)^{1/2} \exp \left\{ \frac{1}{2} + (n\pi)^{-1/2} \psi_1(z) + \mathcal{O}(n^{-5/2}) \right\} \\
\times \cos \left(2(n\pi)^{1/2} + \gamma \right) - (n\pi)^{-1/2} \psi_1(z) - (n\pi)^{-3/2} \psi_3(z) + \mathcal{O}(n^{-5/2}),
\]

where

\[
B_1 = \sum_{t=1}^{p} \alpha_t \\
B_2 = \sum_{s=2}^{p} \sum_{t=1}^{s-1} (\alpha_s)(\alpha_t) \\
B_3 = \sum_{r=3}^{p} \sum_{s=2}^{r-1} \sum_{t=1}^{s-1} (\alpha_r)(\alpha_s)(\alpha_t) \\
C_1 = \sum_{t=1}^{p+1} (1 + \rho_t) \\
C_2 = \sum_{s=2}^{p+1} \sum_{t=1}^{s-1} (1 + \rho_s)(1 + \rho_t) \\
C_3 = \sum_{r=3}^{p+1} \sum_{s=2}^{r-1} \sum_{t=1}^{s-1} (1 + \rho_r)(1 + \rho_s)(1 + \rho_t)
\]

etc.

\[
\gamma = (4)^{-1}(1 + 2B_1 - 2C_1) \\
\psi_1(z) = (12)^{-1}z^2 + (2)^{-1}(B_1 - C_1)z + \omega_1 \\
\psi_2(z) = (16)^{-1}z^2 + \omega_2 \\
\psi_3(z) = (320)^{-1}z^4 + (48)^{-1}(B_1 - C_1)z^3 + \omega_3z^2 + \omega_4z + \omega_5
\]
\[\omega_1 = (4)^{-1}(B_1 - C_1)(3B_1 + C_1 - 2) + C_2 - B_2 - 3/16 \]

\[\omega_2 = (16)^{-1}(C_1 - B_1)(8B_2 - 8B_1^2 + 11B_1 + C_1 - 2) \]
\[+ (4)^{-1}(C_2 - B_2)(2B_1 - 3) - (2)^{-1}(C_2 - B_2) + 3/64 \]

\[\omega_3 = (32)^{-1}(B_1 - C_1)(2B_1 - 3C_1) + (8)^{-1}(B_2 - C_2) - 1/128 \]

\[\omega_4 = (16)^{-1}(B_1 - C_1)[8B_2 - 5B_1^2 - C_1^2 - 2B_1C_1 + 6B_1 + 2C_1 - 3/4] \]
\[+ (4)^{-1}(B_2 - C_2)(B_1 + C_1 - 2) - (2)^{-1}(B_2 - C_2) \]

\[\omega_5 = (128)^{-1}(B_1 - C_1)[C_1^3 + 5B_1C_1^2 + 35B_2C_1^2 - 105B_1^2 + 236B_1^3 \]
\[+ 160B_1B_2 - 24B_2C_1 - 8C_1C_2 - 40B_1C_1 - 4C_1^2 - 192B_2 \]
\[- 64B_3 - (291/2) B_1 - (1/2) C_1 + 9] + (24)^{-1}(B_2 - C_2)[2C_2 - 10B_2 \]
\[+ 6C_1 - 30B_1 - 7B_1C_1 + 15B_2^2 + 73/4] \]
\[+ (6)^{-1}(B_2 - C_2)(C_1 - 3B_1 + 6) \]
\[+ (3)^{-1}(B_4 - C_4) + 21/1024 \]

and the notation in (6.2) is interpreted to make sense, i.e., \(\Gamma(\alpha_p) \) stands for \(\Pi_{j=1}^p \Gamma(\alpha_j) \) and the denominator parameters of the hypergeometric functions on the right-hand side of (6.2) are \((1 + \alpha_t + n)\) and \((1 + \alpha_t - \alpha_j), (j = 1, \ldots, p, j \neq t)\).

As usual (6.2) holds for all fixed \(z \) as \(n \to \infty \) except at the singular points zero and infinity, and along the negative real axis. If \(n \) is fixed and \(z \) is allowed to vary, additional restrictions must be put on \(z \) to insure that the correction terms remain small.

Just as in Section V, the values of \(z \) at which \(\psi_{p+1}F_{p+1}(\frac{-n+\alpha_p}{1+\rho_{p+1}}|z) \) takes on its zeros and relative extrema can be related to the zeros of certain Bessel functions, and this in conjunction with (6.2) generalizes known results, see [16] and [17].

Treating (2.7) in a similar fashion, and using the same notations as in (6.2), we have

\[
\psi_{p+1}F_{p+1}\left(\begin{array}{c}
-n, \alpha_p \\
1 + \rho_{p+1}
\end{array}\mid -z\right) \sim \sum_{t=1}^{\infty} \frac{(\alpha_p)_{-\alpha_t}(e^{\pi i z})^{-\alpha_t}}{(n + 1)_{\alpha_t}(1 + \rho_{p+1})^{-\alpha_t}} \]
\[\times \frac{\Gamma(1 + \rho_{p+1})(nz)^{\nu}}{\Gamma(\alpha_p) \pi^{1/2}} \exp\{-z/2 - (nz)^{-1}\psi_{p+1}(z) + O(n^{-2})\} \]
\[\times \cosh\{(2nz)^{1/2} + (nz)^{-1/2}\psi_{p+1}(-z) - (nz)^{-3/2}\psi_{p+1}(-z) + O(n^{-5/2})\}, \]
\[|\arg z| \leq \pi - \epsilon, \epsilon > 0, \delta = + (-) \text{ if } \arg z \leq (>) 0. \]
VII. Confluent Functions

Since by confluence,

$$\lim_{n \to \infty} pF_{q} \left(\begin{array}{c} -n, n + \lambda, \alpha_v \\ 1 + \rho_q \end{array} \right) \frac{z}{n(n + \lambda)} = \lim_{n \to \infty} p+1F_{q} \left(\begin{array}{c} -n, \alpha_p \\ 1 + \rho_q \end{array} \right) \frac{z}{n}$$

$$= \sum F_{p} \left(\begin{array}{c} \alpha_p \\ 1 + \rho_q \end{array} \right) \frac{z}{n} \quad (7.1)$$

asymptotic representations of $pF_{q} \left(\begin{array}{c} \alpha_p \\ 1 + \rho_q \end{array} \right) \frac{z}{n}$, $p < q$, for large z can be deduced from (2.9), (2.7), (4.3), (4.5) and (6.2). In particular for $q = p + 1$, one obtains from (6.2),

$$pF_{p+1} \left(\begin{array}{c} \alpha_p \\ 1 + \rho_{p+1} \end{array} \right) \sim \sum_{i=1}^{p} (z)^{-\alpha_i} \frac{(\alpha_p - \alpha_i)}{(1 + \rho_{p+1} - \alpha_i)}$$

$$\times 2F_{p+1} \left(\begin{array}{c} \alpha_t, \alpha_t - \rho_{p+1} \\ 1 + \alpha_t - \alpha_p \end{array} \right) \frac{1}{z} + \frac{\Gamma(1 + \rho_{p+1})}{\Gamma(\alpha_p) \pi^{1/2}} (z)^{\nu} \exp \left(\omega_2 z^{-1} + O(z^{-2}) \right)$$

$$\times \cos \left(2\pi z^{1/2} + \pi \gamma - \omega_2 z^{-1/2} - \omega_2 z^{-3/2} + O(z^{-5/2}) \right), \quad (7.2)$$

$$\arg z \leq \pi - \epsilon, \epsilon > 0,$$

for large z, and where the notation is the same as that in (6.2). Since the case $p = 0$ in (7.2) is of particular interest in connection with Bessel functions, we develop that case further by recourse to the original methods of [8].

Assume that the differential equation satisfied by

$$I(\nu + 1) \left(\frac{2}{z} \right) J_{\nu}(z) = pF_{1}(1 + \nu | -z^2/4) \quad (7.3)$$

has a solution of the form

$$K \exp \left[c_0 z + 2c_1 \log z - \sum_{m=2}^{\infty} \frac{c_m}{m-1} z^{1-m} \right] \quad (7.4)$$

where K and c_m are constants. Put (7.4) into this differential equation. Equating the coefficients of powers of z^{-1} to zero leads to the recursion formulas

$$c_0^2 + 1 = 0 \quad (7.5)$$

$$(2\nu + 1 - m) c_{m+1} + \sum_{l=0}^{m+1} c_l c_{m+1-l} = 0.$$
combination of the two possible solutions of the form (7.4) with the known
asymptotic expansion of \(J_\nu(x) \) for large \(x \) then yields the formula

\[
J_\nu(x) \sim \left(\frac{2}{\pi x} \right)^{1/2} \exp \{ A_\nu(x) \} \cos \left(B_\nu(x) - \frac{\pi \nu}{2} - \frac{\pi}{4} \right),
\]

(7.6)

for large \(x \) where

\[
A_\nu(x) = - \sum_{m=1}^{\infty} \left(\frac{\mu - 1}{2m - 1} \right) \frac{4^m}{m} = \frac{(\mu - 1)}{16z^2} \left(\frac{\mu - 13}{8z^2} + \frac{(\mu^2 - 53\mu + 412)}{48z^4} + O(x^{-6}) \right),
\]

\[
B_\nu(x) = \frac{1}{2} \left\{ 1 + \frac{(\mu - 25)}{48z^2} + \frac{(\mu^2 - 114\mu + 1073)}{640z^4} + \frac{(5\mu^3 - 1535\mu^2 + 54703\mu - 375733)}{128z^6} + O(x^{-8}) \right\},
\]

\(\mu = 4\nu^2 \).

We remark that (7.6) is exact for \(\nu = \pm \frac{1}{2} \) since

\[
J_{1/2}(x) = \left(\frac{2}{\pi x} \right)^{1/2} \sin x,
\]

(7.8)

\[
J_{-1/2}(x) = \left(\frac{2}{\pi x} \right)^{1/2} \cos x.
\]

For future reference, we note

\[
A_\nu(-x) = A_\nu(x), \quad A_{-\nu}(x) = A_\nu(x),
\]

\[
B_\nu(-x) = -B_\nu(x), \quad B_{-\nu}(x) = B_\nu(x).
\]

(7.9)

Also, in terms of (7.7), the asymptotic expansions of other Bessel functions
can be written by altering the connecting constants, e.g.,

\[
Y_\nu(x) \sim \left(\frac{2}{\pi x} \right)^{1/2} \exp \{ A_\nu(x) \} \sin \left(B_\nu(x) - \frac{\pi \nu}{2} - \frac{\pi}{4} \right),
\]

\[
H^{(1)}_\nu(x) \sim \left(\frac{2}{\pi x} \right)^{1/2} \exp \{ A_\nu(x) + i \left[B_\nu(x) - \frac{\pi \nu}{2} - \frac{\pi}{4} \right] \},
\]

(7.10)

\[
\Phi_\nu(x) \sim \left(\frac{2}{\pi x} \right)^{1/2} \exp \{ A_\nu(x) \} \cos \left(B_\nu(x) - \frac{\pi \nu}{2} - \frac{\pi}{4} + \alpha \right),
\]

\(| \arg x | \leq \pi - \epsilon, \epsilon > 0 \),
for large z, where $Y_r(z)$ is the Bessel function of the second kind, $H_r^{(1)}(z)$ is the Hankel function of the first kind, and $\mathcal{G}_r(z)$ is the cylinder function defined by

$$\mathcal{G}_r(z) = J_r(z) \cos \alpha - Y_r(z) \sin \alpha. \quad (7.11)$$

We remark that (7.6) and (7.10) hold for all ν as $z \to \infty$, $|\arg z| \leq \pi - \epsilon$, $\epsilon > 0$. However, if z is held fixed one needs the additional restriction $|\nu| < |z|$ on z for the correction terms of (7.6) and (7.10) to remain small.

Inverting the series $B_r(z) = w$, one obtains

$$z = \Psi_r(w) = w^\mu + \left(1 + \frac{(7\mu - 31)}{48\pi^2} + \frac{(83\mu^2 - 982\mu + 3779)}{1920\pi^4} + O(w^{-8})\right),$$

$$\mu = 4\nu^2. \quad (7.12)$$

Thus, the jth positive zero of $\mathcal{G}_r(z)$ occurs at $\Psi_r((\pi/4) [4j + 2\nu - 1] - \alpha)$. This result corresponds to the McMahon expansions given in [9] and [18].

For an application of the above results, consider expressions of the form $J_{\nu}(z) + J_{\nu}(z)$. Using (7.6), (7.9) and elementary identities, we can write

$$J_{-\nu}(z) + J_{\nu}(z) \sim 2 \cos (\pi \nu/2)(2/\pi z)^{1/2} \exp \{A_r(\xi)\} \cos \{B_r(\xi) - (\pi/4)\},$$

$$J_{-\nu}(z) - J_{\nu}(z) \sim -2 \sin (\pi \nu/2)(2/\pi z)^{1/2} \exp \{A_r(\xi)\} \sin \{B_r(\xi) - (\pi/4)\},$$

$$|\arg \xi| \leq \pi - \epsilon, \epsilon > 0, \quad (7.13)$$

as $\xi \to \infty$. Thus the jth positive zeros of $J_{-\nu}(z) + J_{\nu}(z)$ and $J_{-\nu}(z) - J_{\nu}(z)$ occur at $\Psi_r((\pi/4) [4j + 2\nu - 1])$ and $\Psi_r((\pi/4) [4j + 1])$, respectively. If $\nu = 1/3$, (7.13) gives information on the Airy functions $Ai(-z)$ and $Bi(-z)$, since

$$Ai(-z) = (3)^{-1/2} \left[J_{-1/3}(\xi) + J_{1/3}(\xi)\right],$$

$$Bi(-z) = (z/3)^{1/3} \left[J_{-1/3}(\xi) - J_{1/3}(\xi)\right], \quad (7.14)$$

$$\zeta = (2/3) \; z^{3/2}.$$

References

12. Vacca, Maria Teresa, Determinazione asintotica per $n \to \infty$ degli estremi relativi dell' nesimo polinomio di Jacobi. *Boll. Unione Mat. Ital.* (3) 8, 277-280 (1953).

