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1. Introduction

SupposeG is a finite group andX is a subset ofG. The commuting graph on th
setX, which we denote byC(G,X), hasX as its vertex set withx, y ∈ X joined by an
edge wheneverxy = yx. If X consists entirely of involutions, then we callC(G,X) a
commuting involution graph. Many authors have studiedC(G,X) for different choices of
G andX, and from a number of different perspectives. For example, in the seminal
of Brauer and Fowler [2] this graph is studied in the case whenG has even order an
X =G\{1}. Typical of a number of results obtained is that in a group with more than
conjugacy class of involutions, any two involutions are distance at most 3 apart inC(G,X).
More recently, Segev and Seitz [10] in resolving the Margulis–Platonov conjectur
inner forms of typeAn needed to look at the diameter ofC(G,X) for G a non-abelian
simple group andX = G\{1}. Rapinchuk, Segev, and Seitz [8] in their work on fin
quotients of the multiplicative group of a finite-dimensional division algebra are also fo
to examine certain configurations in this graph. And, in related work, Segev [9] prove
the diameter ofC(G,X) (whereX =G\{1}) is always greater than or equal to 3 whenG
is a minimal nonsoluble group (meaning thatG is not soluble but any proper quotient ofG
is). Further investigations along these lines are to be found in the thesis of Mosh
Of an entirely different flavour we have the contributions of Marchionna Tibiletti
and Pyber [7]. Commuting involution graphs arose in the work of Fischer [4] durin
investigation of the so-called 3-transposition groups (see also [1]), one outcome of
was the discovery of three new sporadic simple groups. ThereX was the conjugacy clas
of involutions which are 3-transpositions.

In this paper we analyse the commuting involution graphC(G,X) whereX is an
involution conjugacy class ofG andG is Sym(n), the symmetric group of degreen.
From now onG denotes Sym(n), for somen, andX is a conjugacy class of involution
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of G. ClearlyG, acting by conjugation, induces graph automorphisms ofC(G,X) and is
transitive on its vertices. Forx ∈X andi ∈ N,∆i(x) denotes the set of vertices ofC(G,X)
which are distancei from x, using the usual distance function for graphs. This dista
function will be denoted by d(,). We useGx (= CG(x)) to denote the stabilizer inG of x.
Evidently∆i(x) will be a union of certainGx -orbits.

Now let a stand for a fixed element ofX (soX = aG) and we suppose, without loss
generality, that

a = (12)(34) · · ·(2m− 1 2m).

Setr = n− 2m. Thusa has cycle type 1r2m and

Ga ∼= (
2m : Sym(m)

)× Sym(r).

The properties ofC(G,X) we shall primarily focus upon are the structure and size
the set∆i(a), theith disc ofa, and, whenC(G,X) is connected, the diameter ofC(G,X).
Our first theorem shows that in the majority of casesC(G,X) is connected.

Theorem 1.1. C(G,X) is disconnected if and only if n= 2m+ 1 or n= 4 and m= 1.

We remark that whenn = 4 and m = 1, C(G,X) consists of three connecte
components each of size 2 while, whenn= 2m+ 1,C(G,X) hasn connected componen
each of which is isomorphic toC(H,Y ) where H ∼= Sym(2m), Y = bH , and b =
(12)(34) · · ·(2m− 1 2m).

Using various results concerning∆i(a) we can pin down DiamC(G,X), the diameter
of C(G,X).

Theorem 1.2. Suppose that C(G,X) is connected. Then one of the following holds:

(i) DiamC(G,X)� 3, or
(ii) 2m+ 2 = n ∈ {6,8,10} and DiamC(G,X)= 4.

We observe that there are many such graphs of diameter 3—for more on such m
we refer the reader to Proposition 3.6 and Theorem 3.7.

This paper is organised as follows. We begin Section 2 by definingx-graphs. These
parameterize theGa -orbits ofX and as a consequence frequently play an important
in our arguments—using these graphs we give a formula for the order ofax for any
involution x ∈ X. We also start looking at the disc∆1(a) in Section 2.2 and in th
following subsection we prove Theorem 1.1. Section 3 is primarily concerned wit
diameter ofC(G,X). Our first result there, Lemma 3.1, is the lynchpin of many of
later arguments. A further noteworthy result is Proposition 3.6, which gives an algo
for deciding whether d(a, x)� 2 or d(a, x)� 3 for a vertexx of C(G,X). This result has
a number of consequences which are recorded in Theorem 3.7. Finally, Section 4 c
detailed descriptions of the three exceptional diameter 4 graphs which arise in part
Theorem 1.2.
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2. Preliminary results

2.1. x-graphs

We assumeG = Sym(n) acts on the setΩ = {1,2, . . . , n} in the usual manner. Pu
V = {{1,2}, {3,4}, . . ., {2m − 1,2m}, {2m+ 1}, . . . , {n}}; so V is the set of orbits ofa
on Ω . For x ∈ X we define a graph, denotedGx , whose vertex set isV andv1, v2 ∈ V
are joined by an edge whenever there existα in v1 andβ in v2 with β = α such thatx
interchangesα andβ . We shall refer toGx as thex-graph. The vertices corresponding to t
2-cycles ofa will be coloured black (�) and the other vertices white (�). So the number o
black vertices ism and the number of white vertices isr. As an example, supposen= 13,
a = (12)(34)(56)(78)(9 10), andx = (13)(24)(56)(10 11)(12 13). ThenGx is

� � � � � � � �
�

{1,2} {3,4} {5,6} {7,8} {9,10} {11} {12} {13}
.

We note that the number of edges in anx-graph must equal the number of black vertic
and they both equalm. Further, a black vertex has valency at most two, and a white ve
has valency at most one. Hence the possible connected components ofGx are:

all black: � �, � �, ���� �����
� �, �

�
, �;

black and white: � � �, � �� � ;

all white: � �, �.

If we say, forx, y ∈X, the graphsGx andGy are isomorphic it will be understood th
the graph isomorphism preserves the black and white vertices. Our interest inx-graphs is
sparked by the following lemma.

Lemma 2.1. (i) Every graph with m black vertices of valency at most two, r white vertices
of valency at most one and exactly m edges is the x-graph for some x ∈X.

(ii) Let x, y ∈ X. Then x and y are in the same Ga -orbit if and only if Gx and Gy are
isomorphic graphs.

Proof. Part (i) is immediate from the definition ofx-graphs and part (ii) follows from
the fact thatGa is m-transitive on{{1,2}, {3,4}, . . ., {2m − 1,2m}} and r-transitive on
{{2m+ 1}, . . . , {n}}. ✷

Our next result is concerned with the possible orders ofax for x ∈ X. For each
connected componentCi of thex-graph, letxi andai be the corresponding parts ofx anda.
For example, letn= 7, a = (12)(34)(56), andx = (12)(45)(67). Then thex-graph is
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Table 1

Ci xi aixi

��� ���� �
(1s)(23)(45) · · · (s − 2 s − 1) (135· · · s − 1)(2s · · · 4)

� �
(23)(45) · · · (s − 2 s − 1) (135· · · s − 1 s · · · 642)

� �
(αβ) someα,β > 2m (α β)

� � �
(α s)(23)(45) · · · (s − 2 s − 1) (135· · · s − 1 α s · · · 642)

� �� �
(1 α)(β s)(23)(45) · · · (s − 2 s − 1) (135· · · s − 1 β s · · · 642α)

�
�

� � �
{1,2} {3,4} {5,6} {7}

,

whereC1 = {{1,2}}, a1 = x1 = (12), C2 = {{3,4}, {5,6}, {7}}, a2 = (34)(56), andx2 =
(45)(67).

Proposition 2.2. Suppose that x ∈ X and that C1, . . . ,Ck are the connected components
of Gx . Let mi , ri , and ci be, respectively, the number of black vertices, white vertices, and
cycles in Ci . Then

(i) the order of ax is the least common multiple of the orders of aixi (i = 1, . . . , k); and
(ii) for i = 1, . . . , k, the order of aixi is (2mi + ri)/(ci + 1).

Proof. Part (i) follows immediately from the observation that ifi = j , then bothai and
xi commute with both ofaj andxj . Note that forg ∈ Ga , the orders ofax andaxg are
the same, so we may choose the most suitablex from each orbit ofGa . Assume then
thatai = (12)(34) · · ·(s − 1 s) for somes � 2m. Then there are five possibilities forxi ,
presented in Table 1 along withCi andaixi . A simple check shows that the order ofaixi
is, in each case, given by(2mi + ri )/(ci +1). (Note that permutations are applied from l
to right, so they operate on the right.)✷

2.2. The disc ∆1(a)

We begin with the following elementary observation.

Lemma 2.3. Let x ∈X. Then x ∈∆1(a)∪ {a} if and only if each connected component of
Gx is one of �, ��, � �, �, and � �.

We look more closely at theGa -orbits in∆1(a).

Lemma 2.4. Let b ∈∆1(a) and suppose that Gb has k double edges, l loops, and s edges
between two white vertices. Then the number of elements in the Ga-orbit of b is

m! r!
s 2

.

2 k! l! (r − 2s)! (s!)
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Proof. There are
(
m
2k

)
ways of choosing the 2k vertices ofGb for thek double edges an

then(2k− 1)(2k− 3) · · ·1 ways of pairing these vertices up. Since two permutations
rise to the same double edge, there are

2k
(
m

2k

)
(2k− 1)(2k− 3) · · ·1= m!

(m− 2k)! k!

possible permutations associated with the double edges. Clearly, there are
(
m−2k
l

)
ways of

choosing thel loops and
(
r
2s

)
ways of choosing white vertices that will be joined by

edge. For the latter there are(2s − 1)(2s − 3) · · ·1 ways of pairing up the resulting whit
vertices and so (

r

2s

)
(2s − 1)(2s − 3) · · ·1= r!

2s(r − 2s)! s!
ways of choosings edges joining two white vertices. Therefore, the number of elemen
theGa-orbit of b is

m!
(m− 2k)! k!

(
m− 2k

l

)
r!

2s(r − 2s)! s! = m! r!
2sk! l! (r − 2s)! (s!)2

becausem is the number of edges inGb, som− 2k − l = s. ✷
Lemma 2.5. Let µ= min{m, [r/2]} and νi = [(m− i)/2]. Then

∣∣∆1(a)
∣∣=

(
µ∑
i=0

νi∑
j=0

m! r!
2ij ! (r − 2i)! (m− i − 2j)! (i!)2

)
− 1.

Proof. Let x ∈∆1(a)∪{a} and supposeGx has exactlyi components of the form�. Since
m is both the number of black vertices and the number of edges inGx , i is the number of
edges inGx between two white vertices. In particular, 0� i � µ. Also letj be the numbe
of double edges (between black vertices) inGx ; j can take any value between 0 andνi .
Note also that the number of loops inGx ism− i− 2j . Using Lemma 2.4 and the fact th
i = 0 = j implies thatx = a, gives the result. ✷

We next obtain a closed formula for the number ofGa-orbits in∆1(a).

Proposition 2.6. Let µ= min{m, [r/2]}. Then the number N1(a) of orbits in ∆1(a) is

N1(a)= 1

4

{
(2m+ 3−µ)(µ+ 1)+ 1

2

(
(−1)m + (−1)m−µ)}− 1.

Proof. Forx ∈∆1(a)∪{a}, the possible connected components ofGx are �, ��, � �, �,
and � � by Lemma 2.3. Since the number of components� � and � are determined
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by the components consisting only of black vertices, we only need count the latt
observed earlier the number of� components is between 0 andµ. If there arei of these,
then the number of possiblex-graphs is clearly the number of nonisomorphic partition
m− i into parts of size at most 2, which is[(m− i + 2)/2]. Therefore we have

N1(a)=
µ∑
i=0

[
m− i + 2

2

]
− 1 =

[
m+ 2

2

]
+ · · · +

[
m−µ+ 2

2

]
− 1

(the−1 being there to remove{a} from the count). Notice that

N1(a)=
µ∑
i=0

m− i + 2

2
− 1

2
K − 1,

whereK = |{i |m− i + 2 is odd}|. Hence,

K =




µ+ 1

2
if the parities ofm andm−µ are distinct,

µ+ 2

2
if m andm−µ are odd,

µ

2
if m andm−µ are even.

Now
∑µ

0 (m− i + 2)/2 = ((2m+ 4−µ)(µ+ 1))/4, so the lemma follows. ✷
2.3. Connectedness of C(G,X)

As promised we give the

Proof of Theorem 1.1. Whenn = 4 andm = 1 a trivial calculation shows thatC(G,X)
has three connected components consisting of pairs of vertices. Ifn = 2m + 1, thena
fixes only the point 2m+ 1 and so any conjugate ofa which commutes witha also fixes
2m+ 1. By induction every conjugate ofa in the connected component ofa fixes 2m+ 1.
SoC(G,X) is not connected.

We must show that in all other casesC(G,X) is connected. Letx ∈ X\{a}. Since
Sym(n) is generated by transpositions,a can be transformed intox by a series of
conjugations by transpositions. Hence it is sufficient to show thata andat are connected fo
any transpositiont . Suppose thatt = (α β) whereα,β ∈Ω . If at = a, then there is nothing
to prove. So we may assume thata does not interchangeα andβ nor fix bothα andβ .
Suppose thata fixes neither ofα andβ . Thena must contain the 2-cycles(α γ ) and(β δ)
for γ, δ ∈Ω\{α,β}, γ = δ. Sincet conjugates these 2-cycles to(β γ ) and(α δ) and leaves
all other 2-cycles and 1-cycles ofa unchanged,a andat commute as required. Thus w
may suppose thata fixesβ but notα. Son = 2m and hencen� 2m+ 2. By conjugation in
Ga = CG(a)we may assumet = (1 2m+1) and soat = (2m+1 2)(34) · · ·(2m−1 2m). If
n� 2m+3, thenb = (34)(56) · · ·(2m−1 2m)(2m+2 2m+3) ∈X andb commutes with
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botha andat , so we are done. Therefore, it remains to consider the casen= 2m+ 2 � 6.
Let b= (12)(56) · · ·(2m−1 2m)(2m+1 2m+2), c= (1 2m+1)(2 2m+2)(56) · · ·(2m−
1 2m), andd = (2 2m+ 2)(34)(56) · · ·(2m− 1 2m). Thenb, c, d ∈X, ab= ba, bc= cb,
andcd = dc. Sincedt = d , there is a path fromat to d and hence a path froma to at

completing the proof of Theorem 1.1.✷

3. Diameter of C(G,X)

Our first result is important in the proof of Theorem 3.4.

Lemma 3.1. Let x ∈ X. If Gx has no white vertices connected to black vertices, then
d(a, x)� 2.

Proof. Let C1,C2, . . . ,Ck be the connected components ofGx and letai andxi be the
corresponding parts ofa andx, respectively. By assumption, for eachCi the vertices are
either all black or all white. SupposeCi is a cycle consisting of black vertices and,
ease of notation, assume thatai = (12)(34) · · ·(2s−1 2s) andxi = (23)(45) · · ·(1 2s). Set
bi = (12)(3 2s)(4 2s − 1) · · · (s + 1 s + 2), and note thatai andbi have the same numb
of 2-cycles. Further, we see thatbi commutes with both ofai andxi . Now suppose thatCi
is a chain consisting of (one or more) black vertices and again for clarity we assum
ai = (12)(34) · · ·(2s − 1 2s) andxi = (23)(45) · · ·(2s − 2 2s − 1). This time we define
bi = (1 2s)(2 2s − 1) · · ·(s s + 1) and again check thatbi commutes with bothai andxi
and thatai andbi have the same number of 2-cycles. Now letb be the product of all thebi ’s
defined above (and note that the fixed points ofb equal the fixed points ofa). By design,
b has the same number of 2-cycles asa and sob ∈ X. Sinceb commutes withx anda,
d(a, x)� 2, so proving the lemma.✷

As a straightforward consequence of Lemmas 2.3 and 3.1 we have

Corollary 3.2. If n= 2m� 6, then DiamC(G,X)= 2.

Proof. Supposen = 2m � 6. Then there are no white vertices in anyx-graph, so, by
Lemma 3.1, DiamC(G,X) � 2. However, sincen � 6, there existsx ∈ X such thatGx
contains� �

�
�� �� . By Lemma 2.3x /∈∆1 ∪ {a} and hence DiamC(G,X)= 2. ✷

Theorem 3.3. If n > 2m+ 2, then DiamC(G,X)� 3.

Proof. Let x ∈X. Then we may writex as

r1∏
i=1

(
αiα

′
i

) r2∏
i=1

(
βiβ

′
i

) r3∏
i=1

(
γiγ

′
i

) r4∏
i=1

(δi)

r5∏
i=1

(εi),

whereαi , α′
i , βi , andδi are in{1, . . . ,2m} andβ ′

i , γi , γ
′
i , andεi are in{2m+ 1, . . . , n}.

Sincen > 2m+ 2 we haver4 + r5 � 3.
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Suppose thatr2 is even. Let

c=
(

r1∏
i=1

(
αiα

′
i

) r3∏
i=1

(
γiγ

′
i

))
(β1β2) · · · (βr2−1βr2)

(
β ′

1β
′
2

) · · · (β ′
r2−1β

′
r2

)
.

It is easily checked thatxc = cx and thatc ∈ X. Thus, sinceGc has no white vertice
connected to black vertices, Lemma 3.1 implies that d(a, x) � 3. Next we consider th
case whenr2 is odd. Let

d =
(

r1∏
i=1

(
αiα

′
i

) r3∏
i=1

(
γiγ

′
i

))
(β1β2) · · · (βr2−2βr2−1)

(
β ′

1β
′
2

) · · ·(β ′
r2−2β

′
r2−1

)
(αβ),

where α = δ1, β = δ2 if r4 > 1, otherwiseα = ε1, β = ε2. We have thatd ∈ X,
dx = xd and using Lemma 3.1 again gives d(a, x)� 3. Therefore, we have proved th
DiamC(G,X)� 3. ✷
Theorem 3.4. Suppose that n= 2m+ 2 � 12. Then DiamC(G,X)� 3.

Proof. Let x ∈X. If neither of the two white vertices is joined to a black vertex inGx , then
d(a, x)� 2 by Lemma 3.1. When both white vertices are joined to a black vertex, then
ther2 even case in Theorem 3.3)x commutes with an involutionc with Gc having no white
vertices joined to black vertices and so d(a, x)� 3.

It remains to consider the case whenGx has exactly one white vertex joined to a bla
vertex. So the other white vertex is isolated andGx consists of some cycles on the bla
vertices together with one chain which has a white vertex at the end.

(3.4.1) If there existsy ∈X such thatxy = yx andGy is of the form

� �
v0 v1 v2 vl−2 vl−1 vl

� � � � � �� + {cycles},

then d(a, x)� 3.
Now y commutes with an involutionb ∈X with Gb being of the form

� �
v0 vl v1 vl−1 v2 vl−2

�� � � � � � + {cycles of length 1 or 2}

andb commuting witha. Hence (3.4.1) holds.
Let k be the length of the chain inGx . We relabel the points ofΩ so that the chain

corresponds to

a1 = (n− 2 n− 3)(n− 4 n− 5) · · · (n− 2k n− 2k − 1) and

x1 = (n− 1 n− 2)(n− 3 n− 4) · · · (n− 2k + 1 n− 2k),
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with the fixed points ofa beingn, n− 1, while those ofx aren, n− 2k − 1. Suppose fo
the moment thatk � 5. Now the involution

(n n− 2k− 1)(n− 1 n− 2k)(n− 2 n− 2k+ 1)(n− 4 n− 5)(n− 3 n− 6)

multiplied, whenk � 6, by the involution

(n− 7 n− 8) · · · (n− 2k + 5 n− 2k + 4),

and having fixed pointsn− 2k+ 3, n− 2k + 2, commutes withx1. Taking this involution
and multiplying it by the remaining cycles ofx gives us an involutiony ∈X with xy = yx

andGy as in (3.4.1) (withv0 corresponding to{n− 2k,n− 2k − 1} andvl corresponding
to {n− 4, n− 5}). Notice that for this choice ofy,

b = (n n− 1)(n− 2k n− 2k − 1) · · · ,

and, of course, the fixed points ofb aren− 4,n− 5. Hence d(a, x)� 3, by (3.4.1).
Next we consider the casesk = 3 andk = 4. Thenx1 commutes with

(n n− 2k− 1)(n− 1 n− 2k)(n− 2 n− 2k + 1) (if k = 3)

and

(n n− 2k− 1)(n− 1 n− 2k)(n− 2 n− 2k+ 1)(n− 3 n− 4) (if k = 4).

The graphs corresponding to these involutions contain� �� (with {n− 2k − 1,
n− 2k} being the black vertex) and a chain of length 1 or 2. In order to make an invol
y as in (3.4.1) it suffices to show that a cycle inGx commutes with an involution whos
graph contains a loop. Becausen � 12 there are at least five black vertices and so th
exist cycles inGx . By relabelling points ofΩ we may assume, without loss of general
thata2 andx2 correspond to

a2 = (12)(34) · · ·(2l − 1 2l) and x2 = (23)(45) · · ·(2l − 2 2l − 1)(1 2l).

Sincex2 commutes with

(12)(3 2l)(4 2l − 1) · · · (l + 1 l + 2),

which has a loop on{1,2}, we may form an involutiony of the form in (3.4.1) commuting
with x (notice that the fixed points ofy aren−3,n−4, whenk = 3 andn−5,n−6 when
k = 4). Thus d(a, x)� 3 by (3.4.1).

Now we assume thatk = 2. The involution

(n n− 5)(n− 1 n− 4)(n− 2 n− 3)
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commutes withx1 and has corresponding graph� �� ��. Forming an involutiony by
multiplying the above involution with all except one of the transpositions from the cy
of Gx , yields an involution as in (3.4.1) which commutes withx. So d(a, x)� 3.

Finally, we examine the casek = 1. This time we seek an involutiony which is the
product of(n n− 3)(n− 1 n− 2) with transpositions which commute with the eleme
corresponding to cycles ofGx , with one less edge on the corresponding vertices,
containing a loop. IfGx has two or more cycles, then this can be achieved by remo
an edge from one cycle and forming a loop from another cycle as was done in the
k = 3 and 4. So it remains to consider the situation whenGx has only one cycle. Sinc
n� 12, this cycle must have lengthl = (n− 4)/2 � 4. Again, by relabelling points ofΩ
we may assume that this cycle corresponds to

a2 = (12)(34) · · ·(2l − 1 2l) and x2 = (23)(45) · · ·(2l − 2 2l − 1)(1 2l).

Sincex2 commutes with

(12)(3 2l)(45) · · ·(2l − 4 2l − 3)

which has one edge less and contains a loop in its corresponding graph, we m
a y satisfying the conditions of (3.4.1), whence d(a, x)� 3. Thus in all cases d(a, x)� 3,
so proving Theorem 3.4.✷

We are now able to prove Theorem 1.2. Ifn > 2m+ 2, then by Theorem 3.3 we hav
DiamC(G,X) � 3 and if n = 2m � 6, then DiamC(G,X) = 2 by Corollary 3.2. Since
C(G,X) is assumed to be connected, this by Theorem 1.1, only leaves the case 2m+2= n.
Then Theorem 3.4 and the information gathered in Section 4 ahead complete the p
Theorem 1.2. As a consequence of Theorem 1.2 we have

Corollary 3.5. Suppose H ∼= Alt(n), the alternating group of degree n, and let X be an
H -conjugacy class of involutions. If C(H,X) is connected, then either DiamC(H,X)� 3
or 2m+ 2 = n ∈ {6,10} and DiamC(H,X)= 4.

We now give an algorithm for deciding fromGx whether d(a, x) � 2 or d(a, x) � 3.
Given x ∈ X we begin by constructing various sets whose elements are, apart from
connected components ofGx . So letCx denote the set of connected components ofGx and
Cox those connected components with one white vertex and at least one black verte
that the connected components inCox are chains. Now pair up, arbitrarily, each chain inCox
(if possible) with another chain inCox of the same length. Of course, there may be so
chains inCox which have not been paired up, and we denote the set of such chains byU(x).
The subgraph ofGx given by the union of two paired connected components ofCox will be
called adouble chain. LetP(x) denote the set of double chains. Also let

N(x) = {C ∈ Cx | C is a chain with all vertices black and at least one edge};
R(x) = {

C ∈ Cx
∣∣C /∈ Cox ∪N(x), C has at least one edge

}; and

F(x) = {C ∈ Cx | C has no edges}.
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SoC ∈ F(x) consists of one vertex ofGx (and we shall sometimes think ofF(x) as a set
of vertices). Finally, setb(x), respectivelyw(x), to be the number of black, respective
white, vertices inF(x).

We now use the sets above to define an integerl(x). This is done using the followin
procedure which cancels edges and components or double chains from the sets ab
concludes by counting the edges remaining after cancellation.

Step 1. Cancel an edge from a chain inU(x) and cancel a component or double ch
with a maximal number of edges inP(x) ∪N(x).

Step 2. Repeat Step 1 until either there are no edges left inU(x) or there are no
components or double chains left inP(x)∪N(x).

Step 3. If P(x) ∪ N(x) is now empty, then letl(x) be the total number of edge
remaining inU(x) and stop the procedure here. Otherwise continue to Step 4.

Step 4. Now cancel an edge from a component or a double chain from which an
had already been cancelled, if such an edge exists. If not, cancel an edge from a com
or a double chain with a minimal number of edges inP(x) ∪N(x) ∪ R(x). In either case
we then also cancel a component or double chain with a maximal number of ed
P(x) ∪ N(x), providing the cancelled edge is not in that component or double cha
there is a choice of elements with a minimal number of edges inP(x)∪N(x)∪R(x), edges
from elements ofR(x) should always be removed in preference to those from elemen
P(x)∪N(x).

Step 5. Repeat Step 4 until either:

(a) P(x)∪N(x) contains no edges or
(b) P(x) ∪N(x) has just one component or double chainC left with edges (and this ha

fewer edges than every component inR(x)).

For possibility (b) we distinguish two cases:

(i) edges were cancelled fromC or
(ii) edges werenot cancelled fromC.

In case (a) and (b)(i) letl(x) be the number of edges left in the last component or do
chain from which edges had been cancelled. In case (b)(ii) letl(x) be the number of edge
in C.

We give two examples to illustrate the calculation ofl(x).

Example 1.

Gx = C1 �

v1

�

v2

�

v3

, C2 �

v4

�

v5

�

v6

, C3 �

v7

�

v8

, C4 �

v9

�

v10

, C5 �

v11

�

v12

�

v13

�

v14

�

v15

,

C6 �

v16

�

v17

, C7 ��

v18

, C8 �

v19

, C9 �

v20

�

v21

.

PairingC1 with C2 andC3 with C4 (the only possible choice here) givesP(x)= {C1 ∪
C2,C3 ∪ C4} andU(x) = {C5}. Also N(x) = {C6}, R(x) = {C7,C9}, andF(x) = {C8}.
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Sob(x)= 0 andw(x)= 1. SinceP(x)∪N(x) contains two double chains and one cha
applying Step 1 three times leavesP(x) ∪N(x)= ∅ and

U(x)= {{ �

v11

�

v12

�

v13

�

v14

�

v15

}}
.

Therefore, by Step 3,l(x) = 1. Consequently, asb(x) + w(x)/2 = 1/2< 1 = l(x),
d(a, x)� 3 by Proposition 3.6 below.

Example 2.

Gx = C1 �

v1

�

v2

�

v3

, C2 �

v4

�

v5

�

v6

, C3 �

v7

�

v8

, C4 �

v9

�

v10

, C5 �

v11

�

v12

,

C6 �

v13

�

v14

, C7 ��

v15

, C8 �

v16

�

v17

.

We haveP(x) = {C1 ∪ C2,C3 ∪ C4}, U(x) = {C5}, N(x) = {C6}, R(x) = {C7,C8},
andF(x)= ∅. One pass through Step 1 yields

U(x)= {{ �

v11

�

v12

}}
and P(x)∪N(x)= {C3 ∪C4,C6}.

As there are no further edges inU(x) andP(x) ∪N(x) = ∅, we go to Step 4. Looking
atP(x)∪N(x)∪R(x)= {C3 ∪C4,C6,C7,C8} we can (using Step 4) cancelC3 ∪C4 with
the edge inC8 and then cancelC6 with the edge inC7. Then

P(x) ∪N(x) ∪R(x)= {{ �

v15

}
,
{ �

v16

�

v17

}}
.

The last edge was removed fromC7, an element ofR(x), and hence, by Step 5,l(x)= 0.
As b(x)=w(x)= 0, Proposition 3.6 below implies d(a, x)� 2.

Proposition 3.6. Suppose C(G,X) is connected and let x ∈ X. Then d(a, x) � 2 if and
only if l(x)� b(x)+w(x)/2.

Proof. Suppose first thatl(x) � b(x)+ w(x)/2. We will use the connected compone
of Gx to constructGy for somey ∈ X which commutes withx anda. If a andy are to

commute, then by Lemma 2.3 the only possible connected components forGy are � � ,
� �, ��, �, and �. The following diagrams show, for various possible connec

components ofGx on the left, some arrangement of edges forGy on the right so thaty
will commute withx anda. Note that in the first four cases the number of edges in
graphs on the left and right are the same but in the last three cases the right-hand gr
one more edge than that on the left.
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(1)
�

�

�

�

�

�

�

�

�

�

�

�

(2) �
�

�

�

�

�

�

�

� �

�

�

�

�

�

��

(3)
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(4) �
�

� �

�

�

�

�

�

�

�

�

�

�

�

��

(5)
�

�

�

�

�

�

�

�

�

�

�

�

(6) �
�

� �

�

�

�

�

�

�

�

��

(7)
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

For each connected component inR(x) we may use (1)–(4) to construct the correspond
part ofGy so thaty commutes withx anda. It may be necessary to change this construc
if edges have to be taken from one of these components in the argument which fo
Now consider the chains inN(x) and the double chains inP(x). These can be dealt wit
using the graphs in (5)–(7) but in each case we must cancel an edge from some othe
Gx so as to makey ∈X. The algorithm for calculatingl(x) tells us the order in which to d
this. We first use edges from chains inU(x) and, if these are exhausted, then we use ed
from an element ofP(x) ∪N(x) ∪ R(x) with a minimal number of edges (taking edg
from R(x) if there is a choice). For each component ofGx from which edges have bee
cancelled let all the corresponding vertices inGy have valency 0. Furthermore, if case (b)(
in Step 5 occurs, let also all vertices corresponding to the componentC have valency 0
By the definition of l(x), at the end of this process we havel(x) edges left amongs
components ofGx which have not been accounted for inGy . Sincel(x)� b(x)+w(x)/2
there are enough vertices inF(x) to accommodate these edges using loops inGy on the
black vertices ofF(x) and using edges between pairs of white vertices inF(x). This
completes the construction ofGy and hence ofy, so d(a, x)� 2.

To prove the converse, suppose that d(a, x)� 2 and lety ∈∆1(a)∩∆1(x). We need to
prove thatGy has at leastl(x) edges between the vertices ofF(x). We first prove
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(3.6.1) LetC be a connected component ofGx . Then one of the following holds:

(i) the vertices ofC are vertices ofF(y);
(ii) there exists a connected componentC′ of Gx and an isomorphismψ :C → C′

(preserving black and white vertices) such thatv is connected toψ(v) in Gy , for every
vertexv ∈ C. Note that in the case whenC′ = C, the vertices ofC are connected in
Gy as shown in the right-hand side of (1)–(6).

GivenC ∈ Cx , we define the following subset ofΩ

ΩC =
⋃
v∈C

v.

Notice thatΩC is an orbit of〈a, x〉, and that〈a, x〉 commute withy. Hence ify fixes some
element ofΩC , thenΩC is fixed byy, and case (i) holds.

Suppose that no element ofΩC is fixed byy. Forz ∈X, and two verticesv, v′ ∈ Gz we
will say thatv, v′ are adjacent inGz if there exists at least one edge betweenv andv′ in
Gz (notice thatv = v′ is allowed only in case of a loop). LetBz(v) be the set of vertice
v′ ∈ Gz adjacent tov. It is easy to verify that if two verticesv, w are adjacent inGy ,
then, sincex andy commute, eachv′ ∈ Bx(v) is adjacent inGy to a uniquew′ ∈ Bx(w).
Now sincey fixes no element ofΩC , and sincey commutes witha, every vertex in
v ∈ C is adjacent inGy to a unique vertexψ(v) (Lemma 2.3). The above argument sho
that C′ := {ψ(v) | v ∈ C} is a connected component ofGx and thatψ is the required
isomorphism. This completes the proof of (3.6.1).

Let nowy ∈X satisfy (i) and (ii) of (3.6.1). Set

Ay = {
C ∈ Cx | C /∈ F(x) andΩC ⊆ Fix(y)

}
,

where Fix(y)⊂Ω are the fixed points ofy. Let

By := Cx − (
Ay ∪ F(x)).

Let C ∈ By and letC′ andψ be as in (ii) of (3.6.1). IfC = C′, then the subgraph o
Gy on the vertices ofC is as shown in the right-hand side of (1)–(6). IfC = C′, then the
subgraph ofGy on the vertices ofC ∪C′ is obtained by drawing two edges betweenv ∈C
andψ(v) if v is a black vertex and drawing a single edge betweenv ∈ C andψ(v) if v is a
white edge. SupposeC ∈ R(x). Since the components ofR(x) already have the maxima
possible number of edges, it follows that the number of edges on the vertices ofC ∪ C′
(both in the case whenC = C′ and in the case whenC = C′) is the same inGx and inGy .
If C ∈ N(x) andC′ = C, then the number of edges on the vertices ofC is exactly one
more inGy than inGx (see (5) and (6)), while ifC = C′, then the number of edges on t
vertices ofC ∪C′ is exactly two more inGy than inGx (see (7) and (8) below).

(8)
� � � � � � � �
� � � � � � � �



C. Bates et al. / Journal of Algebra 266 (2003) 133–153 147

ces

in

o

that

r
f

Finally, if C ∈ Cox , then necessarilyC′ = C and then the number of edges on the verti
of C ∪C′ is exactly one more inGy than inGx (see (7)).

Hence the number of edges inGy between vertices that are not inF(x) is exactly

∑
C∈By∩R(x)

|C| +
∑

C∈By∩N(x)

(|C| + 1
)+

∑
C∈By∩Cox

(|C| + 1/2
)
,

where|C| is the total number of edges in the componentC. Since the number of edges
Gy is the same as that inGx , it follows that the number of edges between vertices ofF(x)

in Gy is

µy :=
∑
C∈Ay

|C| − ∣∣By ∩N(x)∣∣− 1

2

∣∣By ∩ Cox
∣∣.

We claim thatl(x)�µy .
Notice now that the algorithm used to obtainl(x) may be thought of as a way t

constructy ∈ X satisfying (i) and (ii) of (3.6.1) and such that the sum
∑

C∈Ay
|C| is

minimized while the number of elements ofP(x) ∪ N(x) “thrown out” is maximized,
i.e., the sum|By ∩ N(x)| + (1/2)|By ∩ Cox | is maximized, and hencel(x) � µy , for
any y ∈ X satisfying (i) and (ii) of (3.6.1). For example, notice that (3.6.1) shows
after a suitable pairing of the components inCox all the vertices of components inU(x)
must be inF(y). Thus if the total number of edges ofU(x) is larger than the numbe
of elements inP(x) ∪N(x), then it is clear thatl(x) � µy . This completes the proof o
Proposition 3.6. ✷

We close this section with an application of Proposition 3.6.

Theorem 3.7. Let m� 3. If n� 4m+ [(−1+ √
1+ 8m)/2], then DiamC(G,X)= 2 and

if 2m+ 3 � n� 4m+ [(−1+ √
1+ 8m)/2] − 1, then DiamC(G,X)= 3.

Proof. Fix m and letx ∈X be such thatGx has the following form, whereq is the largest
integer such thatq(q + 1)/2�m,

q




� �

� � �

...
� � � �

� � � � � � �︸ ︷︷ ︸
m− q(q+1)

2

� · · · �︸ ︷︷ ︸
n−2m−q

.

An easy calculation shows that

q =
[−1+ √

1+ 8m
]
.

2
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Since all the chains are inU(x) we see thatl(x)=m andb(x)= 0. So by Proposition 3.6
if d(a, x) = 2, then 2m � w(x) = n − 2m − q . So n � 4m + q . This implies that for
n� 4m+ q − 1 there existx ∈X for which d(a, x)� 3 and so DiamC(G,X)� 3. So if
4m+ q − 1� n� 2m+ 3, then DiamC(G,X)= 3 by Theorem 3.3.

Now let n � 4m + q , with q as defined above, and suppose there existsz ∈ X such
that d(a, z)� 3. Let t (z) be the number of connected components ofGz with two white
vertices. In addition, letp(z) be the number of double chains inP(z) which have been
cancelled (as whole double chains) when the algorithm for calculatingl(z) terminates.
Let S(z) be one ofU(z), R(z), P(z), andP(z) ∪N(z). Then|S(z)| will denote the total
number of edges inS(z). Clearly,p(z)� |P(z)|. We will show thatl(z)�m− t (z)−p(z).
Since each connected component ofGz with two white vertices contains at least one ed
t (z) cannot exceed the total number of edges occurring in such components. NowR(z)

contains all components ofGz with two white vertices, along with all cycles of blac
vertices inGz. So clearlyt (z) � |R(z)|. Consider the algorithm for findingl(z). If this
stops at Step 3, thenl(z) � |U(z)| � m − |R(z)| − |P(z)| � m − t (z) − p(z). Now
suppose the algorithm continues to Steps 4 and 5. If case (b) of Step 5 occurs thl(z)

is simply the number of edges remaining inP(z) ∪N(z) when the algorithm terminate
so l(z) � |P(z) ∪ N(z)| − p(z). If case (a) occurs then eitherl(z) = 0 or, if an edge of
an elementC of R(z) was removed in the last step,l(z) is the number of edges left inC.
But for this to happen,C must have had a minimal number of edges in the remai
members ofP(z) ∪ N(z) ∪ R(z), and at the same time a component or double chaiC′
with a maximal number of edges would have been cancelled fromP(z)∪N(z). NowP(z)
contains at leastp(z) double chains and thus(P (z)∪N(z))\{C′} contains at leastp(z)−1
components or double chains (each of which must contain at least one edge). There

∣∣P(z)∪N(z)∣∣ � p(z)− 1+ |C′|, hence |C′| − 1 �
∣∣P(z) ∪N(z)∣∣− p(z),

where|C′| denotes the number of edges inC′. We have thatl(z) is the number of edges le
in C after at least one edge has been removed. ButC had a minimal number of edges in th
remaining members ofP(z)∪N(z)∪R(z), and sol(z)� |C′|−1� |P(z)∪N(z)|−p(z).
Therefore, when the algorithm stops at Step 5, in either case, we have

l(z) �
∣∣P(z)∪N(z)∣∣− p(z)�

(
m− ∣∣R(z)∣∣)− p(z)�m− t (z)− p(z).

So in every casel(z)�m− t (z)− p(z). Rewriting this we get

l(z)+ t (z)+ p(z)�m.

By Proposition 3.6,l(z) > b(z)+w(z)/2. Thereforew(z)+ 2(t (z)+p(z)) < 2(l(z)+
t (z)+ p(z))� 2m. Sincen� 4m+ q there are at least 2m+ q white vertices inGz. Now
w(z) is the number of white vertices with valency 0 inGz, 2t (z) is the number of white
vertices which occur in components containing 2 white vertices, and 2p(z) is the number
of white vertices occurring in the double chains which have been cancelled. Give
w(z)+2t (z)+2p(z) < 2m and thatn� 4m+q , at leastq+1 white vertices are in chain
of Coz . Furthermore, these chains are not contained in double chains ofP(z) which have
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been cancelled. LetV (z) denote the collection of chains inCoz which are not containe
in double chains ofP(z) that have been cancelled. If distinct chains inV (z) have distinct
length than the total number of black vertices involved in chains ofV (z) would be at leas
(q + 1)(q + 2)/2> m, a contradiction. By the algorithm definingl(z), there is at mos
one double chain which has not been cancelled. Thus, there is a subsetV ′(z) ⊂ V (z) of
sizeq − 1 such that distinct chains inV ′(z) have distinct length and two additional cha
C1,C2 ∈ V (z) − V ′(z) having the same length. Note thatV ′(z) ⊆ U(z) and hence the
total number of edges (and black vertices) occurring in components inU(z) is at least
q(q − 1)/2. Furthermore, since the algorithm definingl(z) ended with a double chain th
had not been cancelled, all the edges in chains ofU(z) were cancelled. It follows tha

Table 2
TheGa -orbits in the casen= 6,m= 2

x-graph Size x-graph Size

∆1
1(a)

� � � ��
2 ∆2

1(a)
� � � �

2

∆1
2(a)

� � � �
4 ∆2

2(a)
� � � �

4

∆1
3(a)

� � � ��
8 ∆2

3(a)
� � � �

8

∆1
4(a)

� � � �
16

Fig. 1.n= 6,m= 2.
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vertices

we
there were at leastq(q − 1)/2 components or double chain inP(z) ∪N(z) that had been
cancelled. Since each such component or double chain contains at least two black
we have at leastq(q − 1) black vertices in components or double chains inP(z) ∪N(z)
that had been cancelled. Also inC1 ∪C2 there are at least 2 black vertices. Finally, as

Table 3
TheGa -orbits in the casen= 8,m= 3

x-graph Size x-graph Size x-graph Size

∆1
1(a)

� � � � �� �
3 ∆2

1(a)
� � � � �

6 ∆3
1(a)

� � � � ��
6

∆1
2(a)

� � � � ��
12 ∆2

2(a)
� � � � ��

24 ∆3
2(a)

� � � � �
24

∆4
2(a)

� � � � ��
12 ∆5

2(a)
� � � � �

24 ∆6
2(a) � �

� �
�

8

∆1
3(a)

� � � � �� �
12 ∆2

3(a)
� � � � ��

48 ∆3
3(a)

� � � � �
96

∆4
3(a)

� � � � �
24 ∆5

3(a)
� � � � �

96 ∆1
4(a)

� � � � �
24

Fig. 2.n= 8,m= 3.
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mentioned above, the total number of black vertices occurring in a components inU(z) is
at leastq(q − 1)/2. It follows that the total number of black vertices is at least

q(q − 1)+ 2+ q(q − 1)

2
= 3q(q − 1)

2
+ 2.

However, by the definition ofq we must have

3q(q − 1)

2
+ 2<

(q + 1)(q + 2)

2
,

Table 4
TheGa -orbits in the casen= 10,m= 4

x-graph Size x-graph Size

∆1
1(a)

� � � � � �� �
12 ∆2

1(a)
� � � � � �

12

∆3
1(a)

� � � � � �� � �
4 ∆4

1(a)
� � � � � ��

24

∆1
2(a) � �

�
�� �� � � ��

32 ∆2
2(a) � �

� �
� �

48

∆3
2(a)

� � � � � �
48 ∆4

2(a)
� � � � � �� �

24

∆5
2(a)

� � � � � ��
96 ∆6

2(a)
� � � � � �

192

∆7
2(a)

� � � � � ��
96 ∆8

2(a)
� � � � � �

48

∆9
2(a)

� � � � � ��
96 ∆10

2 (a)
� � � � � �� �

24

∆11
2 (a)

� � � � � �
192 ∆12

2 (a)
� � � � � �� �

48

∆13
2 (a) � �

�
�� �� � � �

32 ∆1
3(a)

� � � � � �
768

∆2
3(a)

� � � � � �
384 ∆3

3(a)
� � � � � �

96

∆4
3(a)

� � � � � ��
384 ∆5

3(a)
� �

� �

�
�� �� �

128

∆6
3(a)

� � � � � ��
96 ∆7

3(a)
� � � � � �� � �

16

∆8
3(a)

� � � � � �
192 ∆9

3(a)
� � � � � �� �

96

∆10
3 (a)

� � � � � ��
384 ∆11

3 (a)
� � � � � �

192

∆12
3 (a)

� � � � � �
192 ∆1

4(a)
� � � � � �

768
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

8

8

8

12

8

0

16

8

16

8

8

15
Table 5
n= 10,m= 4 (Forn= 10, a ‘picture’ would not be easy on the eye, so we give the data in matrix form)

{a}∆1
1∆

2
1∆

3
1∆

4
1∆

1
2∆

2
2∆

3
2∆

4
2∆

5
2∆

6
2∆

7
2∆

8
2∆

9
2∆

10
2 ∆11

2 ∆12
2 ∆13

2 ∆1
3∆

2
3∆

3
3∆

4
3∆

5
3∆

6
3∆

7
3∆

8
3∆

9
3∆

10
3 ∆11

3 ∆12
3 ∆1

4

{a} 0 12 12 4 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∆1
1 1 3 4 2 4 8 8 4 2 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0

∆2
1 1 4 7 0 0 0 12 8 4 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∆3
1 1 6 0 3 12 0 0 0 0 0 0 0 12 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∆4
1 1 2 0 2 3 4 0 0 2 4 0 4 4 8 2 8 4 4 0 0 0 0 0 0 0 0 0 0 0 0

∆1
2 0 3 0 0 3 9 12 0 3 6 12 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0

∆2
2 0 2 3 0 0 8 11 4 0 8 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 1 2 0 0 0 4 5 2 0 8 0 0 0 0 0 2 0 0 8 8 0 0 0 0 0 0 0 0 12

∆4
2 0 1 2 0 2 4 0 4 1 4 0 8 4 4 0 0 2 4 0 0 4 0 0 0 0 0 0 0 8 0

∆5
2 0 1 0 0 1 2 4 0 1 3 8 2 0 0 0 4 0 2 8 0 0 8 0 0 0 0 0 0 8 0

∆6
2 0 0 1 0 0 2 4 2 0 4 9 0 0 0 0 0 0 0 16 8 0 4 0 0 0 0 0 0 0 2

∆7
2 0 0 0 0 1 0 0 0 2 2 0 3 2 0 0 4 0 0 8 0 0 4 4 2 0 4 0 4 4 8

∆8
2 0 0 0 1 2 0 0 0 2 0 0 4 7 0 2 12 0 0 0 0 0 8 0 4 2 0 0 8 0 0

∆9
2 0 0 0 0 2 0 0 0 1 0 0 0 0 11 4 12 2 2 0 0 0 4 0 0 2 0 4 8 0 0

∆10
2 0 0 0 3 2 0 0 0 0 0 0 0 4 16 5 8 0 0 0 0 0 0 0 4 2 0 8 0 0 0

∆11
2 0 0 0 0 1 0 0 0 0 2 0 2 3 6 1 11 2 2 0 0 0 8 0 2 0 0 4 8 0 0

∆12
2 0 0 0 0 2 0 0 2 1 0 0 0 0 4 0 8 1 0 0 8 4 8 0 0 0 4 2 8 0 0

∆13
2 0 3 0 0 3 4 0 0 3 6 0 0 0 6 0 12 0 3 0 0 0 12 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 1 4 1 0 0 0 0 0 0 14 5 2 5 1 0 0 2 0 3 3 3

∆2
3 0 0 0 0 0 0 0 1 0 0 4 0 0 0 0 0 1 0 10 9 1 6 2 0 0 2 0 2 4 2

∆3
3 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 2 0 16 4 3 0 0 0 0 4 2 0 4 4

∆4
3 0 0 0 0 0 0 0 0 0 2 2 1 1 1 0 4 1 1 10 6 0 7 0 1 0 0 1 4 0 2

∆5
3 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 6 6 0 0 7 6 0 0 0 6 6 0

∆6
3 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 4 0 0 0 0 0 4 8 3 2 4 2 4 4 4

∆7
3 0 0 0 0 0 0 0 0 0 0 0 0 6 12 3 0 0 0 0 0 0 0 0 12 1 12 6 0 0 0

∆8
3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 8 4 2 0 0 2 1 9 3 0 0 4

∆9
3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 8 1 0 0 0 2 4 0 2 1 6 2 12 0 0

∆10
3 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 4 1 0 6 2 0 4 2 1 0 0 3 9 0 0

∆11
3 0 0 0 0 0 0 0 0 1 4 0 2 0 0 0 0 0 0 12 8 2 0 4 2 0 0 0 0 9 0

∆12
3 0 0 0 0 0 0 0 3 0 0 2 4 0 0 0 0 0 0 12 4 2 4 0 2 0 4 0 0 0 7

∆1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 4 1 4 2 1 0 4 1 8 2 2
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and an easy calculation shows thatq = 1. Sinceq = [(−1+ √
1+ 8m)/2], m� 2, which

contradicts the hypothesis. So ifn � 4m + q , then d(a, z) � 2 for all z ∈ X. Hence
DiamC(G,X)= 2. ✷

4. The diameter 4 graphs

Here we display the collapsed adjacency graphs forC(G,X) when 2m + 2 = n ∈
{6,8,10}. We use∆ji (a) to denote aGa orbit contained in theith disc∆i(a). The specific

definitions of the∆ji (a), in terms ofx-graphs, are given in Tables 2–4. The requi
calculations were carried out by hand, except in Table 5, for which we used the com
algebra package MAGMA [3].
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