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PRECLINICAL STUDY

Selective Clearance of Macrophages
in Atherosclerotic Plaques by Autophagy

Stefan Verheye, MD, PHD,* Wim Martinet, PHD,† Mark M. Kockx, MD, PHD,†‡
Michiel W. M. Knaapen, PHD,§ Koen Salu, MD, PHD,† Jean-Pierre Timmermans, PHD,�
Jeffrey T. Ellis, PHD,¶ Deborah L. Kilpatrick, PHD,¶ Guido R. Y. De Meyer, PHARMD, PHD†

Antwerp and Edegem, Belgium; and Santa Clara, California

Objectives The purpose of this study was to investigate whether stent-based delivery of an inhibitor of mammalian target of
rapamycin (mTOR) can selectively clear macrophages in rabbit atherosclerotic plaques.

Background Current pharmacologic approaches to stabilize atherosclerotic plaques have only partially reduced the incidence
of acute coronary syndromes and sudden death. Macrophages play a pivotal role in plaque destabilization,
whereas smooth muscle cells (SMC) promote plaque stability.

Methods Stents eluting the mTOR inhibitor everolimus were implanted in atherosclerotic arteries of cholesterol-fed rab-
bits. In addition, in vitro experiments using explanted atherosclerotic segments and cultured macrophages as
well as SMC were performed.

Results Stents eluting everolimus led to a marked reduction in macrophage content without altering the amount of SMC
compared with polymer control stents. In vitro studies showed that everolimus treatment induced inhibition of
translation in both cultured macrophages and SMC. However, cell death occurred only in macrophages and was
characterized by bulk degradation of long-lived proteins, processing of microtubule-associated protein light chain
3, and cytoplasmic vacuolization, which are all markers of autophagy. Everolimus-induced autophagy was medi-
ated by mTOR inhibition, because cell viability was not affected using tacrolimus, an mTOR-independent everoli-
mus analog. Moreover, mTOR gene silencing was associated with selective induction of macrophage cell death.
Autophagic macrophage cell death was confirmed by transmission electron microscopy both in cultured cells
and in atherosclerotic explants.

Conclusions Stent-based delivery of everolimus selectively cleared macrophages in rabbit atherosclerotic plaques by autoph-
agy, an mTOR inhibition-dependent and novel mechanism to induce cell death in mammalian cells. (J Am Coll
Cardiol 2007;49:706–15) © 2007 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.09.047
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therosclerotic plaque destabilization and rupture are
ne of the main causal events of acute coronary syn-
romes, including myocardial infarctions (1,2). On an-
iography, “vulnerable” rupture-prone plaques are often
ot considered to be at risk, because they seem not to be
ow limiting before destabilization occurs (3). Macro-
hages, which are an essential component of such
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laques, play a pivotal role in the destabilization process,
hereas smooth muscle cells (SMC) contribute to plaque

tability (4). As a consequence, it is generally assumed
hat macrophage removal stabilizes the plaque (5). Yet,
echanisms whereby macrophages can be eliminated

rom plaques without influencing other cell types, includ-
ng SMC, are unknown. Systemic therapy with statins
as been shown to reduce but not eliminate macrophages
rom atherosclerotic plaques (6). Suzuki et al. (7) re-
orted that stent-based delivery of rapamycin (sirolimus),
potent mammalian target of rapamycin (mTOR) in-

ibitor, had a profound effect on inflammatory cell
ctivity and cytokine release in nonatherosclerotic por-
ine arteries. In the present study, we investigated
hether implantation of stents eluting everolimus [40-
-(2-hydroxyethyl)-rapamycin], a rapamycin derivative,

ould selectively clear macrophages from atherosclerotic

laques.
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ethods

n vivo experiments. Twelve New Zealand White rabbits
Merelbeke, Belgium) were fed a 0.3% cholesterol-
upplemented diet for 40 weeks to induce atherosclerotic
laques in the aorta (8). Experiments were approved by the

ocal ethical committee. Procedures were performed on
nesthetized rabbits using sterile techniques. At the index
rocedure, the marginal ear vein was cannulated, and the
abbit was anesthetized with sodium pentobarbital (30
g/kg intravenously). The right carotid artery was dissected

nder sterile conditions and a 6F sheath was introduced.
nder fluoroscopy, a 0.014-inch guide wire (Guidant
hisper; Advanced Cardiovascular Systems, Santa Clara,

alifornia) was positioned in the right or left iliac artery,
nd a single dose of aspirin (60 mg/kg) as well as heparin
100 IU/kg) was administered. Two stainless steel stents
Guidant Multi-Link Penta, 3.5/13 mm) coated with either
verolimus or durable polymer only were deployed (1
nflation at 9 atm during 15 to 20 s) in the infrarenal aorta
f each animal after randomization. Stents were deployed at
minimum distance of 1 cm from each other. All rabbits
ere continued on 0.3% cholesterol-supplemented diet for 4
eeks to evaluate the response to drug-eluting stents.
The rabbits were then killed, the aortas were flushed with

aline, and all sections were harvested and placed in 4%
ormalin. The specimens were immersion-fixed for 24 h
efore processing. Stented vessels underwent plastic embed-
ing (1:1 butyl methacrylate:methyl methacrylate; Techno-
it), and sections were obtained by saw-and-grinding using
tandard techniques. Stented segments were cut into one
idsection. Nonstented segments were embedded in paraf-

n blocks for processing. All specimens were stained with
ematoxylin-eosin for histopathologic analysis. Immuno-
istochemical detection of macrophages (RAM-11, dilution
/1000; Dako, Glostrup, Denmark) and SMC (monoclonal
nti–�-smooth muscle actin, dilution 1/2000; Sigma, St.
ouis, Missouri) were carried out by the indirect peroxidase
ntibody conjugate technique (9–11). The sections were
ncubated with a goat antimouse peroxidase-labeled anti-
ody (Jackson Laboratory, Bar Harbor, Maine) as secondary
ntibody for 45 min.

Analysis was performed by two experienced and blinded
perators. The percentage of the stent strut circumference
urrounded by macrophages or SMC was assessed for each
ingle strut, using RAM-11 or �-SMC actin staining
espectively. The RAM-11 positive area in the plaque was
ssessed for all stented and nonstented segments.
n vitro experiments. CELL CULTURE. The murine macro-
hage cell line J774A.1 was grown in RPMI 1640 medium
Invitrogen, San Diego, California) supplemented with 100
/ml penicillin, 100 �g/ml streptomycin, 50 �g/ml genta-
ycin, 20 U/ml polymyxin B, and 10% fetal bovine serum.
lternatively, peritoneal macrophages were isolated 4 days

fter injection of Brewer’s thioglycolate medium into the

eritoneal cavity of C56BL/6 mice as reported previously o
12). The SMC were isolated
rom mouse or rabbit aorta by
ollagenase type 2 (Worthing-
on, Lakewood, New Jersey) and
lastase (Sigma) digestion (60 to
0 min at 37°C) at 300 U/ml and
U/ml final concentration, re-

pectively, and cultured in F10
am medium supplemented
ith 10% fetal bovine serum and

ntibiotics. Evaluation of cell vi-
bility before and after everoli-
us (10 �mol/l), tacrolimus (10
mol/l; Alexis, Lausen, Switzer-

and), or cycloheximide (10 �g/
l; Sigma) was based on the

ncorporation of the supravital
ye neutral red by viable cells
13). The activity of tacrolimus was evaluated by its ability
o decrease nitrite production by LPS-stimulated J774
acrophages (14). To examine de novo protein synthesis,

ells were treated with everolimus (10 �mol/l) or cyclohex-
mide (10 �g/ml) for 4 hours, and pulse-labeled for 1 h at
7°C with 5 �Ci Pro-mix L-[35S] in vitro cell labeling mix
Amersham Biosciences, United Kingdom) in cysteine/
ethionine-free DMEM. After homogenization of cells in

ypotonic lysis buffer (10 mmol/l Tris, 1 mmol/l EDTA,
.2% Triton X-100), labeled proteins were precipitated with
0% trichloroacetic acid, resuspended in 0.2 N NaOH, and
easured by liquid scintillation counting.
For mTOR gene silencing experiments, cells were trans-

ected with 30 nmol/l On-Targetplus Smartpool short
nterferng (si) RNA specific to mTOR (Dharmacon, Lafay-
tte, Colorado) or siControl RISC-free siRNA (Dharma-
on) using HiPerfect transfection reagent (Qiagen, Valen-
ia, California) according to the instructions of the
anufacturer. To examine siRNA-mediated messenger (m)
NA degradation, complementary (c) DNA was prepared

rom transfected cells using the Fastlane Cell cDNA kit
Qiagen). TaqMan gene expression assays for mTOR
assay ID Mm00445015_m1; Applied Biosystems, Foster
ity, California) were then performed in duplicate on an
BIPrism 7300 sequence detector system (Applied Biosys-

ems) in 25 �l reaction volumes containing 1� Universal
CR Master Mix (Applied Biosystems). The parameters for
olymerase chain reaction (PCR) amplification were 50°C
or 2 minutes, 95°C for 10 min, followed by 40 cycles of
5°C for 15 s and 60°C for 1 min. Relative expression of
RNA species was calculated using the comparative thresh-

ld cycle method. All data were controlled for quantity of
DNA input by performing measurements on the endoge-
ous reference gene �-actin (assay ID Mm00607939_s1;
pplied Biosystems).
Degradation of long-lived proteins was determined in

erum-containing medium according to a method previ-

Abbreviations
and Acronyms

4E-BP1 � 4E-binding
protein 1

eEF2 � eukaryotic
elongation factor 2

eIF2� � eukaryotic
initiation factor 2 alpha

FKBP12 � FK506-binding
protein 12

LC-3 � microtubule-
associated protein light
chain 3

mTOR � mammalian target
of rapamycin

SMC � smooth muscle
cells
usly reported (15). For DNA fra
gmentation assays, cul-
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ured cells (106) were lysed in 0.5 ml hypotonic lysis buffer
upplemented with 250 �g proteinase K. Lysates were
ncubated for 1 h at 50°C, then supplemented with 5-�l
olumes of DNase-free RNase A (2 mg/ml) and incubated
or an additional hour at 37°C. The samples were precipi-
ated overnight with 1/10 volume of 3 mol/l sodium acetate
nd 1 volume of isopropanol. The DNA pellets were air
ried and dissolved in TE buffer (10 mmol/l Tris, 1 mmol/l
DTA, pH 7.4). After electrophoresis in 2% agarose, DNA

addering was visualized under UV light by staining the
garose gel with ethidium bromide.

For Western blot analyses, cultured cells were lysed in an
ppropriate volume of Laemmli sample buffer (Bio-Rad;
ercules, California). Cell lysates were then heat-denatured

or 4 minutes in boiling water and loaded on a SDS
olyacrylamide gel. After electrophoresis, proteins were
ransferred to an Immobilon-P Transfer Membrane (Mil-
ipore; Bedford, United Kingdom) according to standard
rocedures. Membranes were blocked in Tris-buffered sa-

ine containing 0.05% Tween-20 (TBS-T) and 5% nonfat
ry milk (Bio-Rad) for 1 h. After blocking, membranes
ere probed overnight at 4°C with primary antibodies in

ntibody dilution buffer (TBS-T containing 1% nonfat dry
ilk), followed by 1 h of incubation with secondary anti-

ody at room temperature. Antibody detection was accom-
lished with SuperSignal West Pico or SuperSignal West
emto Maximum Sensitivity Substrate (Pierce, Rockford,
llinois) using a Lumi-Imager (Roche, Mannheim,
ermany).
The following mouse monoclonal primary antibodies

ere used: anti–caspase-3 (clone 19) from BD Transduc-
ion Laboratories (Lexington, Kentucky) and anti–�-actin
clone AC-15) from Sigma. Rabbit polyclonal antibodies
ncluded anti–FK506-binding protein 12 (FKBP12) (Ab-
am, Cambridge, United Kingdom), anti-mTOR, anti–
hospho-mTOR (Ser2448), anti–p70 S6 kinase, anti–
hospho-p70 S6 kinase (Thr389), anti–phospho-p70 S6
inase (Thr421/Ser424), anti–4E-binding protein 1 (4E-
P1), anti–phospho-4E-BP1 (Thr37/46), anti-eukaryotic

nitiation factor 2� (eIF2�), anti–phospho-eIF2� (Ser51),
nti–eukaryotic elongation factor 2 (eEF2), anti–phospho-
EF2 (Thr56), and anti–cleaved caspase-3 from Cell Sig-
aling Technology (Beverly, Massachusetts). Rat anti–
icrotubule-associated protein light chain 3 (LC3)

olyclonal antibody raised against the synthetic peptide
2N-PSDRPFKQRRSFADC-CONH2 was prepared by
urogentec (Seraing, Belgium) and affinity purified on an

mmobilized peptide-Sepharose column. Peroxidase-
onjugated secondary antibodies were purchased from
ako.

XPLANTS. Four New Zealand white rabbits were fed a
holesterol-rich (1.5%) diet for 14 days. To induce athero-
clerotic lesions, a silicone collar (16) was positioned for 14

ays around the carotid arteries while continuing the cho- p
esterol diet (17). Subsequently, ring segments of these
uffed arteries were incubated in serum-free F10 Ham
edium at 37°C with or without everolimus (10 �mol/l;
ovartis, Basel, Switzerland). Everolimus was stored light

rotected at �20°C as a 10 mmol/l stock solution in
thanol. We used only fresh dilutions of the everolimus
tock in serum-free culture medium. Because everolimus is
nstable in aqueous solution, culture medium containing
verolimus was refreshed every 12 h. After 3 days, the ring
egments were prepared for transmission electron micros-
opy.
ransmission electron microscopy. Cultured macrophages,
MC, or explanted atherosclerotic segments were fixed in
.1 mol/l sodium cacodylate-buffered (pH 7.4) 2.5% glutar-
ldehyde solution for 2 h, then rinsed (3 � 10 minutes) in
.1 mol/l sodium cacodylate-buffered (pH 7.4) 7.5% sac-
harose and postfixed in 1% OsO4 solution for 1 hour. After
ehydration in an ethanol gradient (70% ethanol for 20 min,
6% ethanol for 20 min, 100% ethanol for 2 � 20 min),
amples were embedded in Durcupan ACM. Ultrathin
ections were stained with uranyl acetate and lead citrate.
ections were examined in a Philips CM 10 microscope at
0 kV.
tatistical analysis. Data are expressed as mean � SEM.
he percentage strut circumference surrounded by macro-
hages or SMC was compared between polymer control-
nd everolimus-stented arteries by using the two-tailed
npaired Student t test. The RAM-11–positive area in the
laque, de novo protein synthesis, cell viability, and degra-
ation of long-lived proteins, and the data of the in vitro
ffect of everolimus on the mTOR pathway and protein
ynthesis in cultured macrophages and SMC were com-
ared among groups by using one-way analysis of variance
ANOVA) followed by the Dunnett test. If the variances
ere unequal (Levene test for homogeneity of variances;
� 0.05) then logarithmically transformed values (with

omogenous variances) were analyzed. The relative expres-
ion of mTOR mRNA and the viability of macrophages and
MC were compared between mTOR siRNA- and
iControl-treated cells by using unpaired Student t test. The
PSS software package 12.0 (SPSS Inc., Chicago, Illinois)
as used for these purposes.

esults

n vivo experiments. Polymer control and everolimus-
luting stents were implanted in atherosclerotic arteries of
holesterol-fed rabbits. After 1 month, plaques treated with
olymer control stents were characterized by the presence of
acrophages and SMC (Figs. 1A, 1C, and 1E). In contrast,

n plaques treated with everolimus-eluting stents the mac-
ophage content around the stent struts was significantly
�90%) reduced without changing the smooth muscle cell
ontent (Figs. 1B, 1D, and 1E). Moreover, macrophages
ere also effectively cleared throughout the atherosclerotic

laque (Fig. 1F).
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n vitro experiments. Western blot experiments showed
hat macrophages and SMC contained similar amounts of
he everolimus receptor protein FKBP12 as well as phos-
horylated (Ser2448) and total mTOR, which binds the
verolimus-FKBP12 complex (Fig. 2A). Everolimus treat-
ent resulted in dephosphorylation of the downstream

Figure 1 In Vivo Effect of Everolimus-Eluting Stents on Diet-Ind
Atherosclerotic Plaques in the Infrarenal Aorta of Hyp

Photomicrographs of polymer control-stented arteries (A and C) and everolimus-st
and �-smooth muscle cell (SMC) actin (C and D; brown � SMC). Stent struts (S) w
plaques contained abundant M�, whereas everolimus-stented plaques showed a m
Scale bar � 20 �m. (E) Quantification of M� and SMC around the stent struts. The
plaques (***p � 0.001 vs. polymer control), whereas the strut circumference surroun
was lowest in everolimus-stented plaques (*p � 0.05 vs. polymer control).
TOR targets p70 S6 kinase and 4E-BP1, whereas eIF2� 3
nd eEF2 were hyperphosphorylated (Fig. 2B). Quantita-
ive data are presented in Table 1. Everolimus also inhibited
e novo protein synthesis (Fig. 2C). Viability of macro-
hages decreased rapidly by everolimus treatment in con-
rast to SMC (Figs. 3A and 3B). Administration of tacroli-
us did not result in macrophage cell death in culture (Figs.

lesterolemic Rabbits

arteries (B and D) stained for RAM-11 (A and B; brown � macrophages [M�])
eparated from the media (M) by plaque tissue (P). Polymer control-stented

reduction of the macrophage content, with preservation of the SMC content.
ircumference surrounded by M� was significantly decreased in everolimus-stented
y SMC was unaffected (p � 0.64). (F) The RAM-11–positive area in the plaque
uced
ercho

ented
ere s
arked

strut c
ded b
C and 3D). Massive cell type-specific initiation of cell
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eath was obtained not only with everolimus but also with
he translation inhibitor cycloheximide (Figs. 3E and 3F).
o ensure an involvement of mTOR in everolimus-induced

ell death, gene-silencing experiments with mTOR-specific
iRNA were performed. Down-regulation of mTOR gene
xpression was demonstrated at the mRNA (Fig. 4A) and
rotein (Fig. 4B) levels in both cell types after transfection
ith mTOR-specific siRNA but not with siControl non-

argeting siRNA. The mTOR gene silencing was associated
ith selective induction of macrophage cell death (Fig. 4C),

ndicating that mTOR is the primary target of everolimus,
eading to macrophage-specific cell death.

Cycloheximide-induced macrophage cell death was asso-
iated with cleavage of caspase-3 and internucleosomal
NA fragmentation (Fig. 5A). However, the type of cell

eath induced by everolimus was not characterized by these
eatures, notwithstanding that levels of procaspase-3 in
acrophages decreased during treatment (Fig. 5A). Bulk

egradation of long-lived proteins occurred in macrophages
fter treatment with everolimus but not in SMC (Fig. 5B).

oreover, everolimus-treated macrophages showed conver-
ion of the 18-kDa protein LC3-I into the 16-kDa protein
C3-II (Fig. 5C), resulting in an increased LC3-II/LC3-I

atio. The ratio of LC3-II to LC3-I in SMC remained
naffected during everolimus administration. Nonetheless,
MC underwent bulk degradation of long-lived proteins, as
ell as processing of LC3 in response to amino acid
eprivation by using Earle’s Balanced Salt Solution (EBSS)
Figs. 5B and 5C).

ransmission electron microscopy. Everolimus-treated
acrophages in culture showed an intact nonpyknotic

ucleus and numerous vacuoles in the cytoplasm (Figs. 6B
o 6D), whereas control macrophages did not display
acuolization (Fig. 6A). Transmission electron microscopy
f everolimus-treated macrophages in explanted atheroscle-
otic segments derived from collar-treated rabbit carotid
rteries showed cell shrinkage, depletion of organelles, and
resence of large autophagosomes containing membranous
horls and remnants of cytoplasmic material (Figs. 7A and
B). These findings were not observed in everolimus-treated
MC, either in culture (Figs. 6E and 6F) or in explanted
therosclerotic segments (Figs. 7C and 7D).

iscussion

he major finding of this study is that mTOR inhibition by
verolimus led to a selective removal of macrophages within
abbit atherosclerotic plaques without influencing the via-
ility of SMC. This observation is important in the context
f plaque stabilization, because it is generally assumed that
resence of macrophages triggers plaque destabilization (5).
lthough it has been reported that statins can reduce
acrophages in atherosclerotic plaques (6), they do not
Figure 2 In Vitro Effect of Everolimus on the mTOR
Pathway and Protein Synthesis in M� and SMC

(A) Western blot analysis of everolimus-binding protein FKBP12 and phosphory-
lated (Ser2448) and total mTOR. �-Actin served as a loading control. (B) Western
blot analysis of phosphorylated and total p70 S6 kinase in cells treated with
everolimus (10 �mol/l) for 0 to 12 h showed dephosphorylation of the down-
stream mTOR target p70 S6 kinase at site Thr389 and to a lesser extent at sites
Thr421/Ser424. Everolimus treatment also resulted in an increased expression of
the downstream mTOR target 4E-BP1 without changing its phosphorylation at site
Thr37/46. This corresponds to a relative reduction of 4E-BP1 phosphorylation. In
contrast, phosphorylation of initiation factor eIF2� and elongation factor eEF2
increased. All of these effects were similar between M� and SMC. All protein
bands correspond to their molecular weight (size markers not shown). (C) Adminis-
tration of everolimus (10 �mol/l) resulted in a significant reduction of de novo pro-
tein synthesis in both M� and SMC. Cycloheximide (10 �g/ml; CHX) was used
as a positive control. Versus control: **p � 0.01; ***p � 0.001. 4E-BP1 �

4E-binding protein 1; eEF2 � eukaryotic elongation factor 2; eIF2� � eukary-
otic initiation factor 2�; FKBP12 � FK506-binding protein 12; mTOR � mam-
malian target of rapamycin; other abbreviations as in Figure 1.
educe mortality for several months (18). Therefore, there is
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till a need for adequate local interventional therapies, which
ake it possible to “buy time” until systemic therapies

onfer significant protection (18).

Figure 3 In Vitro Effect of Everolimus, Tacrolimus, and Cyclohe

(A) Cells were exposed to 10 �mol/l everolimus (0 to 24 h). (B) Cells were exposed
served exclusively to SMC. In contrast, macrophages underwent cell death. (C) Cells
�mol/l tacrolimus for 24 h. Neutral red uptake showed that tacrolimus did not induce
induced rapid cell death of macrophages, whereas the effect on viability of SMC was

uantitative Data of the In Vitro Effect of Everolimus on the mTORathway and Protein Synthesis in Cultured Mouse Macrophages an

Table 1 Quantitative Data of the In Vitro Effect of Everolimus o
Pathway and Protein Synthesis in Cultured Mouse Mac

Macrophages

0 h 4 h

P-p70S6K (T389) 1.00 � 0.00 0.00 � 0.00‡

P-p70S6K (T421/S424) 1.00 � 0.00 0.46 � 0.08†

P-4E-BP1 (T37/46) 1.00 � 0.00 0.29 � 0.03‡

P-eIF2� (S51) 1.00 � 0.00 2.10 � 0.30

P-eEF2 (T56) 1.00 � 0.00 1.90 � 0.40

p � 0.05; †p � 0.01; ‡p � 0.001 versus 0 h, analysis of variance followed by Dunnett test.
4E-BP1 � 4E-binding protein 1; eEF2 � eukaryotic elongation factor 2; eIF2� � eukaryotic init
Our in vivo results showed that everolimus-eluting stents
electively cleared macrophages both around the stent struts
nd throughout the atherosclerotic plaque, the latter being

e on the Viability of Cultured Mouse M� and SMC

10 �mol/l everolimus for 24 h. Neutral red uptake showed that viability was pre-
xposed to 10 �mol/l tacrolimus (0 to 24 h). (D) Cells were exposed to 1 to 10
ath in M� and SMC. (E, F) Similar to everolimus, cycloheximide (10 �g/ml) also

. Versus control: *p � 0.05; **p � 0.01; ***p � 0.001. Open bars � M�;

C

mTOR
ages and SMC

SMC

2 h 0 h 4 h 12 h

� 0.00‡ 1.00 � 0.00 0.00 � 0.00‡ 0.00 � 0.00‡

� 0.01† 1.00 � 0.00 0.33 � 0.02‡ 0.20 � 0.02‡

� 0.01‡ 1.00 � 0.00 0.31 � 0.06‡ 0.12 � 0.01‡

� 0.25† 1.00 � 0.00 2.65 � 0.55 3.15 � 0.65

� 0.55† 1.00 � 0.00 2.15 � 0.35 8.00 � 2.10*

actor 2�; p70S6K � p70 S6 kinase.
ximid

to 1 to
were e
cell de

limited
shaded bars � SMC. Abbreviations as in Figure 1.
d SM

n the
roph

1

0.00

0.22

0.10

3.35

7.35
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ikely attributed to the lipophilic properties of everolimus,
ecause the drug may pass easily through cell membranes,
nabling mural distribution.

The mechanism of selective macrophage clearance by
verolimus-eluting stents was subsequently unraveled in
n vitro experiments. Because mTOR controls translation
19), the effect of everolimus on the protein synthesis
ffectors p70 S6 kinase, 4E-BP1, eIF2�, and eEF2 was
xamined in both macrophages and SMC. These exper-
ments showed a dephosphorylation of p70 S6 kinase and
E-BP1 as well as a hyperphosphorylation of eIF2� and
EF2, all strongly indicating inhibition of protein trans-
ation via mTOR inhibition. Moreover, de novo protein
ynthesis was significantly inhibited by everolimus. These

Figure 4 Gene-Silencing Experiments
With mTOR-Specific siRNA

(A) Downregulation of mTOR gene expression at the mRNA level in both
macrophages (M�) and smooth muscle cells (SMC) 24 h after transfection
with mTOR-specific siRNA but not with siControl nontargeting siRNA. (B)
Downregulation of mTOR gene expression at the protein level in both M�

and SMC after transfection with mTOR-specific siRNA but not with siControl
nontargeting siRNA. (C) mTOR gene silencing induces macrophage cell
death of M� but not of SMC. Versus control, unpaired Student t test: **p �

0.01; ***p � 0.001. mTOR � mammalian target of rapamycin.
ffects occurred in both macrophages and SMC. How-
ver, in contrast to SMC, the viability of macrophages
apidly decreased, indicating a cell type-specific initiation
f cell death.
Everolimus binds with high affinity to FKBP12; this

omplex subsequently binds to mTOR, inhibiting its func-
ion. To examine whether the observed induction of cell
eath in macrophages by everolimus is related to the
nhibition of mTOR and is not merely a consequence of
inding to FKBP12, additional experiments with tacrolimus
FK506; a rapamycin analog) were performed. Although
acrolimus also binds to FKBP12, only the everolimus-
KBP12 complex but not the tacrolimus-FKBP12 complex

Figure 5 Characterization of Macrophage (M�) Cell
Death Induced by Cycloheximide and Everolimus

(A) Macrophages and smooth muscle cells (SMC) were treated with cyclohexi-
mide (10�g/ml) or everolimus (10 �mol/l) for 0 to 24 h. To characterize the
type of cell death induced by both compounds, cleavage of procaspase-3
(procasp-3) and internucleosomal DNA fragmentation (both apoptosis markers)
were analyzed using Western blotting (upper panel) and agarose gel electro-
phoresis (lower panel), respectively. SMC treated with the combination of
tumor necrosis factor (TNF)-alpha (30 ng/ml) and cycloheximide (CHX, 20
�g/ml) for 12 h served as a positive control. (B) Assaying degradation of long-
lived proteins as a biochemical marker for autophagy was studied by treating
cells with everolimus (10 �mol/l) or Earle’s balanced salt solution (EBSS) for
12 h. Versus control: **p � 0.01; ***p � 0.001. (C) Western blot analysis
of microtubule-associated protein light chain 3 (LC3) processing was performed
in both cell types as an alternative method to detect autophagy. Cells were
treated with everolimus (10 �mol/l; 0 to 12 h) or EBSS (8 h). All results are
representative of 3 independent experiments.
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s a highly specific inhibitor of mTOR (20). Tacrolimus, at
he same concentration as everolimus, did not result in
acrophage cell death in culture, confirming that the

nduction of cell death in macrophages by everolimus is a
onsequence of mTOR inhibition. This is in accordance
ith a recent report showing that in vivo treatment with

acrolimus did not affect the amount of macrophages in
therosclerotic plaques of collared apoE�/� mice, either in
e novo (developing) atherosclerosis or in pre-existing

esions (21). Additional evidence for an involvement of
TOR in everolimus-induced cell death was provided by

ene-silencing experiments with mTOR-specific siRNA.
he mTOR gene silencing was associated with selective

nduction of macrophage cell death, further indicating that
TOR is the primary target of everolimus leading to
acrophage-specific cell death.
Massive cell type-specific initiation of cell death was

Figure 6 Everolimus-Induced Autophagy in Cultured Macrophag

(A) Ultrastructural features of a normal mouse macrophage as an untreated contr
(10 �mol/l) showing different stages of autophagic cell death, which was characte
ence of an intact, nonpyknotic nucleus (N). (E) Ultrastructural features of a norma
induced in everolimus-treated (10 �mol/l, 6 h) SMC. Scale bar � 3 �m.
btained not only with everolimus but also with the trans- a
ation inhibitor cycloheximide, suggesting that inhibition of
rotein translation suppresses normal macrophage function,
hich in turn leads to macrophage cell death. In contrast, it
as been reported that inhibition of translation in SMC

nduces a modulation towards a differentiated, quiescent,
ontractile phenotype (22) which renders the cells less
ensitive to cell death mediated by inhibition of protein
ranslation. In this context, it is important to note that
acrophages are metabolically highly active whereas SMC

re not. Cycloheximide-induced macrophage cell death
orresponded with apoptosis, as shown by cleavage of
aspase-3 and internucleosomal DNA fragmentation. How-
ver, the type of cell death induced by everolimus was not
haracterized by these apoptotic features, notwithstanding
hat levels of procaspase-3 in macrophages decreased during
reatment as a result of nonspecific protein degradation.
herefore, induction of nonapoptotic cell death such as

ut Not in SMC

normal cell morphology. (B to D) Treatment of macrophages with everolimus
by cell shrinkage, extensive vacuolization (*), depletion of organelles, and pres-
e smooth muscle cells (SMC) as an untreated control. (F) Autophagy was not
es B

ol with
rized
l mous
utophagy was considered.
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Autophagy is a major intracellular degradation process
biquitous in eukaryotic cells. In normal conditions, auto-
hagy contributes to the turnover of cellular components by
elivering portions of the cytoplasm and organelles to

ysosomes (23). Continuous stimulation of this cellular
egradation process leads to autophagic cell destruction,
lso known as type II programmed cell death (23,24).
nduction of autophagic cell death by inhibition of mTOR
s tightly controlled in eukaryotic cells. Experiments in yeast
howed that the TOR pathway regulates phosphorylation of
tg13, a protein important for autophagy (25). The Atg13
rotein is phosphorylated in healthy cells but rapidly de-
hosphorylated upon inhibition of TOR, stimulating its
ffinity to Atg1. This Atg1-Atg13 association is required for
nduction of autophagy, because it is part of a putative

Figure 7 Everolimus-Induced Autophagy in Explanted Atheroscl

(A) Ultrastructural features of a macrophage in an atherosclerotic plaque of rabbit
mus (10 �mol/l) for 3 days resulted in autophagic cell death and was characterize
containing membranous whorls and remnants of cytoplasmatic material. (C) Ultras
carotid arteries. (D) Autophagy was not induced in SMC in atherosclerotic plaques
autophagy vesicles; arrows � myeline figure; L � lipid droplet; N � nucleus.
omplex that regulates preautophagosomal membrane for- m
ation. Autophagy was detected by bulk degradation of
ong-lived proteins in everolimus-treated macrophages but
ot in SMC and by an increased LC3-II/LC3-I ratio, a
eliable marker of autophagosome formation (26). The ratio
f LC3-II to LC3-I in SMC remained unaffected during
verolimus administration, suggesting absence of autoph-
gy. These biochemical hallmarks of autophagy were con-
rmed by transmission electron microscopy, which is con-
idered the gold standard for morphologic assessment of
utophagy (26). Autophagic features include an intact non-
yknotic nucleus and numerous vacuoles in the cytoplasm.
imilar findings were observed in explanted atherosclerotic
egments derived from collar-treated rabbit carotid arteries
ncubated with everolimus.

The consequences of autophagy in macrophages of hu-

c Segments Derived From Collar-Treated Rabbit Carotid Arteries

d arteries. (B) In vitro treatment of these atherosclerotic plaques with everoli-
ell shrinkage, depletion of organelles, and presence of large autophagosomes
ral features of a smooth muscle cell (SMC) in atherosclerotic plaques of rabbit
d with everolimus (10 �mol/l) for 3 days. Scale bar�3 �m. Arrowheads �
eroti

caroti
d by c
tructu
treate
an atherosclerotic plaques are currently unknown. How-
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ver, autophagy rather than apoptosis is likely to be the
referred type of cell death to clear macrophages from
therosclerotic plaques. Massive apoptotic cell death of
acrophages is associated with depletion of phagocytes and
ith the production of a large number of apoptotic bodies in

he atherosclerotic plaque. The accumulation of apoptotic
odies in a condition of defective phagocytic clearance
ventually results in secondary necrosis of the apoptotic
odies, which contributes to necrotic core formation, in-
ammation, and thrombosis. These phenomena may fur-
her promote plaque instability and increase the risk of acute
therothrombotic clinical events (27).

Although experimental plaques do not represent a human
vulnerable” situation, the present results are novel in that
he drug-induced autophagy in macrophages is an addi-
ional strength of stents eluting an mTOR inhibitor, on top
f their well-described reduced rate of in-stent restenosis
28), the latter being beyond the scope of the present study.

In conclusion, mTOR inhibition by everolimus leads to a
elective, clean, and safe removal of macrophages within the
therosclerotic plaque without influencing the viability of
MC. This selective clearance of macrophages occurred by
utophagy due to everolimus-induced inhibition of mTOR,
hich is a novel mechanism to induce cell death in mam-
alian cells. Therefore, stent-based delivery of an mTOR

nhibitor is a promising method to selectively remove
acrophages from the atherosclerotic plaque without affect-

ng viability of SMC, favoring plaque stability.
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