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a b s t r a c t

The maximum computing time of the continued fractions method
for polynomial real root isolation is at least quintic in the degree
of the input polynomial. This computing time is realized for an
infinite sequence of polynomials of increasing degrees, each having
the same coefficients. The recursion trees for those polynomials do
not depend on the use of root bounds in the continued fractions
method. The trees are completely described. The height of each
tree is more than half the degree. When the degree exceeds one
hundred, more than one third of the nodes along the longest path
are associated with primitive polynomials whose low-order and
high-order coefficients are large negative integers. The length of
the forty-five percent highest order coefficients and of the ten
percent lowest order coefficients is at least linear in the degree of
the input polynomial multiplied by the level of the node. Hence
the time required to compute one node from the previous node
using classical methods is at least proportional to the cube of
the degree of the input polynomial multiplied by the level of the
node. The intervals that the continued fractionsmethod returns are
characterized using a matrix factorization algorithm.
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1. Motivation

Algorithms for polynomial real root isolation are an important part of computer algebra but
few lower bounds are known for their maximum computing time functions. One exception is the
continued fractions method (CF-method) due to Vincent (1836) and recommended by Uspensky
(1948). Collins and Akritas (1976) proved that the maximum computing time of the CF-method is at
least exponential in the length of the coefficients of the input polynomial. That lower boundmotivated
two algorithmic innovations, the bisection method by Collins and Akritas (1976) and the CF-method
with root bounds. The computing time of the bisection method has a polynomial upper bound. The
CF-method with root bounds was proposed by Akritas (1978, 1980). Sharma (2007, 2008) modified
Akritas’s method by employing different root bounds in order to obtain a polynomial upper bound for
the computing time. To this day no non-trivial lower bounds are known for the maximum computing
time functions of the bisection method and the CF-method with root bounds.

We show that, when classical computation is used, the maximum computing time of the
CF-method with root bounds dominates n5 where n is the degree of the input polynomial. Our result
applies to Akritas’s original method (1978, 1980) and to variants that use other root bounds. Such
variants were recently considered by Akritas et al. (2007), by Tsigaridas and Emiris (2008), and by
Sharma (2008).

There is no conjecture in the literature that the CF-method with root bounds can require
computing times as large as n5 when classical computation is used. The computing times reported
by Akritas (1978, 1980) for Chebyshev polynomials and for polynomials with random roots seem to
be dominated by n4. Also the computing times reported by Tsigaridas and Emiris (2008, Table 1) seem
to be dominated by n4 or perhaps by n4 log n; Tsigaridas and Emiris consider Laguerre polynomials,
Chebyshev polynomials of the first and second kind, Wilkinson polynomials, Mignotte polynomials
and also the reducible polynomials

(xn − 2(101x− 1)2)(xn − 2((101+ 1/101)x− 1)2), (1.1)

whose computing times seem to be dominated even by n3. Tsigaridas and Emiris then assert that larger
computing times can be obtained using the reducible polynomials

(xn − 2(ax− 1)2)(xn − (ax− 1)2) (1.2)

which were introduced by Eigenwillig et al. (2006) in a paper on the bisection method. The reducible
polynomials in lines (1.1) and (1.2) could be called double-Mignotte polynomials since their two
factors were introduced by Mignotte (1981, 1982, 1995). Sharma (2007, Section 5) conjectures that,
for the polynomials in line (1.2), the number of nodes in the recursion trees of the CF-method with
root bounds dominates n log a.

In the present paper we consider input polynomials for which the CF-method with root bounds
operates identically to the CF-method. We prove for the polynomials

An(x) = xn − 2(x2 − 3x+ 1)2 (1.3)

that the tree height of the CF-method is ⌊n/2⌋+2 if n is different from6 and 10. Unlike the polynomials
in line (1.2), the polynomials An are irreducible. We completely describe the recursion trees for those
polynomials. We then investigate the coefficients of the polynomials that are associated with the
nodes of the recursion trees. This allows us to show that the computing time of the CF-method with
input An dominates n5.

Johnson (1991, Theorem 57) claimed to have proved in just a few lines that the maximum
computing time of the bisectionmethod by Collins andAkritas (1976) also dominates n5. But Johnson’s
original result and also a slightly revised version (1998, Theorem 17) are seriously flawed. Johnson
considers the polynomials

Sn(x) = xn − 2(ax− 1)2 (1.4)

where a ≥ 3 and n ≥ 3. Johnson argues that either the polynomials Sn(x) or the polynomials
Sn(−x + 1) require a computing time that dominates n5. The polynomials Sn(x), introduced by
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Fig. 2.1. Composition of root matchings.

Mignotte (1981, 1982), have a pair of close real roots, one on either side of 1/a. The distance between
either root and 1/a is less than a−n/2−1. Johnson concludes that the number of bisections required
to separate the two roots dominates n, a fallacy in case 1/a is a bisection point. The polynomials
Sn(−x+1) have a pair of close real roots, one on either side of 1−1/a. This solves a perceived number-
theoretical problem: If the binary expansion of 1/a does not contain sufficiently many digits 1, then
the expansion of 1− 1/awill. Johnson asserts without proof that the bisection method will call itself
for polynomials that are dense and have long coefficients. How dense? How many of the coefficients
are long?Do their signsmatter? There is no proof here, just speculation. Some statements do notmake
any sense, for instance the assertion that the length of an arbitrary level number in the recursion tree
of the bisectionmethod is codominant with the height of the tree. A fewmore errors can be discerned
but much of the presentation is unclear.

Eigenwillig et al. (2006) show that the height of the recursion tree of the bisection method for
the double-Mignotte polynomials in line (1.2) dominates n log a. This is the only lower bound those
authors prove for the maximum computing time of the bisection method. So it is still an open
questionwhether themaximum computing time of the bisectionmethod dominates n5. Experimental
evidence (Johnson, 1991, 1998; Rouillier and Zimmermann, 2004; Akritas et al., 2006) suggests
that Mignotte polynomials with a suitable choice of a perhaps require a computing time that
dominates n5.

In Section 2 we present the CF-method and characterize the intervals that can appear in its output.
We also define the universal CF-tree, a notion we use in Section 3, ‘‘A RoadMap’’, to construct difficult
input polynomials. That section also provides an overview of the remainder of the paper.

2. The CF-method

Our statement of the CF-method uses only the reciprocal transformation and translation by one.
But our results carry over to versions of the method that use root bounds and translations by integers
greater than one.

2.1. The algorithm

Definition 1. The translation transformation transforms a polynomial A into the polynomial T(A)(x) =
A(x+1). The translation mapping t : C −→ C is defined by t(z) = z+1. The reciprocal transformation
transforms a polynomial A into the polynomial R(A)(x) = xdeg(A)A(1/x). The reciprocal mapping
r : C − {0} −→ C − {0} is defined by r(z) = 1/z. Let M be a polynomial transformation and I
and J bounded or unbounded intervals and m : I → J a bijective mapping. We call the pair (M,m) a
root matching for (I, J) if, for all real polynomials A and all elements a ∈ I , a is a root of M(A) if and
only if m(a) is a root of A.

Note that the pair (T, t) is a root matching for ((0,∞), (1,∞)) and that (R, r) is a root matching
for ((1,∞), (0, 1)). Root matchings can be composed as shown in Fig. 2.1: If I , J and K are intervals
and (P, p) is a root matching for (I, J) and (Q, q) is a root matching for (J, K) then (P ◦Q, q ◦ p) is a
root matching for (I, K). In particular, (T ◦ R, r ◦ t) is a root matching for ((0,∞), (0, 1)). Thus, if, for
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any polynomial A and any interval I , Z(A, I) designates the set of roots of A in I then

Z(A, (0,∞)) = t(Z(T(A), (0,∞)))

∪ Z(A, {1}) ∪ (r ◦ t)(Z((T ◦ R)(A), (0,∞))). (2.1)

Eq. (2.1) allows us to isolate the roots of A in (0,∞) by isolating the roots of A1 = T(A) and
A2 = (T ◦ R)(A) in (0,∞). We will now state the Descartes rule of signs which will serve as a
terminating condition.

Definition 2. Let a = (a0, . . . , an) be a finite sequence of real numbers. The number of sign variations
in a, var(a), is the number of pairs (i, j) with 0 ≤ i < j ≤ n and aiaj < 0 and ai+1 = · · · = aj−1 = 0.
Let A be the polynomial a0 + a1x+ · · · + anxn. The number of coefficient sign variations in A, var(A), is
var(a).

Theorem 3 (Descartes Rule of Signs). For any nonzero real polynomial the number of coefficient sign
variations exceeds the number of positive real roots – counting multiplicities – by a nonnegative, even
integer.

TheDescartes rule of signs iswell known;Krandick andMehlhorn (2006) provide a proof andhistorical
remarks. Only two special cases are needed for the CF-method: if a polynomial has no coefficient sign
variations then it has no positive roots, and if it has exactly one coefficient sign variation then it has
exactly one positive root. Otherwise, Eq. (2.1) can be applied where the roots of A1 and A2 are isolated
recursively as shown in Algorithm 1. Line 17 of the algorithm maps the isolating intervals for A1 and
A2 back to isolating intervals for A.

Algorithm 1 Continued fractions algorithm (CF-method). The expressions m(CF(B)) in line 17 stand
for {m(I) | I ∈ CF(B)}.
1: procedure CF(A)
2: Input: A, a squarefree integral polynomial.
3: Output: L, a set of isolating open or one-point positive intervals for the positive roots of A.
4: v← var(A)
5: if v = 0 then
6: L← ∅
7: else if v = 1 then
8: L← {(0,∞)}
9: else

10: A1 ← T(A)
11: A2 ← (T ◦ R)(A)
12: if A(1) = 0 then
13: K ← {{1}}
14: else
15: K ← ∅
16: end if
17: L← t(CF(A1)) ∪ (r ◦ t)(CF(A2)) ∪ K
18: end if
19: return(L)
20: end procedure

Definition 4. We call the recursion tree that Algorithm 1 associates with an input polynomial A the
CF-tree of A. The root of the tree is the original invocation of the algorithm for the input polynomial
A. The left child of each internal node is the call CF(A1), the right child is the call CF(A2). We represent
each node of the tree by a string of 1’s and 2’s. The root of the tree is represented by the empty string
ϵ. If a parent is represented by the string s then the left child is represented by s1, and the right child
by s2. In contexts where a string might be misconstrued as an integer we will enclose the string in
quotation marks; for example, we may say that node ‘‘2’’ is the parent of node ‘‘21’’. The level of node



1376 G.E. Collins, W. Krandick / Journal of Symbolic Computation 47 (2012) 1372–1412

s is the length of s; the height of the tree is the maximum level of any node. We associate each node s
with a root matching (Ms,ms) as follows.

(Mϵ,mϵ) = (Id, id)
(Ms1,ms1) = (T ◦Ms,ms ◦ t)
(Ms2,ms2) = ((T ◦ R) ◦Ms,ms ◦ (r ◦ t)).

Furthermore we define

As = Ms(A) and Is = ms((0,∞)).

As Algorithm 1 descends from the root of the tree to a node s, it transforms the input polynomial
A into the polynomial As by successively applying transformations T and T ◦ R. The composition of
these transformations is the transformation Ms. When the recursive calls return, the interval (0,∞)
is mapped onto the interval Is by successive application of mappings t and r ◦ t . The composition of
these mappings is the mappingms.

Whenever Algorithm 1 terminates, the results are correct; this can be shown by induction on the
height of the CF-tree. It is not obvious that Algorithm 1 will always terminate, but Vincent (1836)
proved that it will. Alesina and Galuzzi (1998, 1999) provide an insightful discussion of Vincent’s
result.

In our computing time analysis we will, for given input polynomials Aϵ , track the real and nonreal
roots of the polynomials As on the basis of the following theorem.

Theorem 5. Let A be a nonzero polynomial that does not have any rational root, and let (M,m) be a
composition of root matchings (T, t) and (R, r). Then M(A) is a nonzero polynomial that does not have
any rational root, and the linear fractional mapping m bijectively maps the roots of M(A) onto the roots
of A, preserving the multiplicity of each root, the relation of complex conjugacy, the property of being real
and the property of being nonreal.

Proof. It suffices to consider compositions of length 1. Write A as the product of its linear factors over
C, and verify the assertions for each of the two root matchings. �

2.2. The universal CF-tree

Wenowdefine a tree that does not dependon anyparticular input polynomial. The treewill contain
all the nodes and all the intervals that might arise in the CF-tree of a given polynomial. Each node will
have exactly two children, so the tree will be infinite.

Definition 6. The universal CF-tree is defined as follows. The set of nodes is the infinite set {1, 2}∗ of
the strings of 1’s and 2’s. The empty string, ϵ, is the root of the tree. Each node s has a left child, the
node s1, and a right child, the node s2. The level of node s is |s|, the length of s. Each node s is associated
with a root matching (Ms,ms) using the recursive formulas of Definition 4. Moreover, each node s is
associated with the interval Is = ms((0,∞)).

One can show that, in the universal CF-tree, every finite, full subtree that contains the root arises as
the CF-tree of some input polynomial.

Let s be a node of a CF-tree or of the universal CF-tree. Then the mapping ms is a composition
of translations t(x) and reciprocal mappings r(x). Each of these mappings can be written as a linear
fractional mapping,

x −→
ax+ b
cx+ d

, and be represented by the matrix

a b
c d


.

In the literature, linear fractional mappings are sometimes called Möbius transformations, but here
we reserve the word ‘‘transformations’’ for operations on polynomials. It is well known that the
coefficients of a composition of linear fractional mappings can be obtained by multiplying the
corresponding matrices (Knopp, 1952, for example). We use this fact to define a representation of
the mappingms by a matrixms with coefficients as, bs, cs, ds.
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Definition 7. Let

mϵ =


aϵ bϵ

cϵ dϵ


=


1 0
0 1


and, for any s ∈ {1, 2}∗,

ms1 =


as1 bs1
cs1 ds1


=


as bs
cs ds

 
1 1
0 1


=


as as + bs
cs cs + ds


and

ms2 =


as2 bs2
cs2 ds2


=


as bs
cs ds

 
0 1
1 1


=


bs as + bs
ds cs + ds


.

Theorem 8. The matrix

m =

a b
c d


is a non-empty product of matrices

m1 =


1 1
0 1


and m2 =


0 1
1 1


if and only if a, b, c, d are integers such that 0 ≤ a ≤ b and 0 ≤ c ≤ d and |ad− bc| = 1; in that case,
the factorization ofm into matricesm1 andm2 is unique, and ad− bc = (−1)h where h is the number of
times the matrixm2 occurs as a factor in the product.

Proof. The ‘‘only if’’–part and the assertion concerning h can be shown using the multiplicativity of
the determinant function and complete induction on the length of the total number of matrices in the
product. Uniqueness: Let S = (s1, . . . , sk) and T = (t1, . . . , tl) be sequences of matrices m1 and m2
such that S ≠ T . Each sequence defines a path from the root of the universal CF-tree. Let s and t be
the respective end nodes. Then ms = s1 · · · sk, mt = t1 · · · tl, and s ≠ t . It is easy to see that Is ≠ It ,
but that means ms((0,∞)) ≠ mt((0,∞)) and, in particular,ms ≠ mt . But thenms ≠ mt .

To show the ‘‘if’’-part, let

a, b, c, d integers and 0 ≤ a ≤ b and 0 ≤ c ≤ d and |ad− bc| = 1. (2.2)

We will show thatm can be factored into a product of matricesm1 andm2. It suffices to show thatm
can be factored into a product of matrices

1 f
0 1


and


0 1
1 f


(2.3)

where f takes positive integer values. Indeed, the first matrix equals mf
1 and the second equals

m2 · m
f−1
1 . We will show that Algorithm 2 performs the latter factorization. We start by showing

that, whenever the loop condition in line 6 of the algorithm is tested,

line (2.2) holds andm =

a b
c d


· s1 · · · sk where S = (s1, . . . , sk). (2.4)

Line (2.4) clearly holds when the loop condition in line 6 of the algorithm is evaluated for the first
time since, at that point,

m =

a b
c d


and S = ().

We now assume that line (2.4) holds, and that a ≠ 0 and c ≠ 0. Then 1 ≤ a ≤ b and 1 ≤ c ≤ d,
the quotients in the assignment e← min(⌊b/a⌋, ⌊d/c⌋) on line 7 of the algorithm are well-defined,
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Algorithm 2 The algorithm serves to characterize the intervals in the universal CF-tree. The proof of
Theorem 8 contains a correctness proof.
1: procedure Factor(m)

2: Input: m =

a b
c d


where a, b, c, d are integers, 0 ≤ a ≤ b and 0 ≤ c ≤ d and |ad− bc| = 1.

3: Output: S = (s1, . . . , sk), a list of matrices

1 f
0 1


or

0 1
1 f


where f takes positive integer

values, such thatm = s1 · · · sk.
4: S ← ()
5: (a, b, c, d)← the coefficients ofm
6: while a ≠ 0 and c ≠ 0 do
7: e← min(⌊b/a⌋,⌊d/c⌋)
8: b′ ← b− ae
9: d′ ← d− ce

10: insert

0 1
1 e


at the head of S

11:


a b
c d


←


b′ a
d′ c


12: end while
13: if c = 0 then
14: insert


1 b
0 1


at the head of S

15: else
16: insert


0 1
1 d


at the head of S

17: end if
18: return(S)
19: end procedure

and e ≥ 1. Moreover, the integers b′ = b − ae and d′ = d − ce in lines 8 and 9 of the algorithm are
nonnegative. Also, ad′ − b′c = a(d− ce)− (b− ae)c = ad− bc so that

|ad′ − b′c| = 1. (2.5)

By the definition of e we have b′ < a or d′ < c. In case b′ < a we have 0 ≤ b′ ≤ a − 1, so, using
Eq. (2.5),

d′ ≤
1+ b′c

a
≤

1+ (a− 1)c
a

= c +
1− c
a
≤ c.

The case d′ < c is analogous; we have 0 ≤ d′ ≤ c − 1 and hence, again using Eq. (2.5),

b′ ≤
1+ ad′

c
≤

1+ a(c − 1)
c

= a+
1− a

c
≤ a.

Combining the two cases, we have both 0 ≤ b′ < a and 0 ≤ d′ ≤ c or both 0 ≤ d′ < c and 0 ≤ b′ ≤ a.
Furthermore,

a b
c d


=


b− ae a
d− ce c


·


0 1
1 e


=


b′ a
d′ c


·


0 1
1 e


so that line (2.4) holds when line 6 of the algorithm is executed again. This proves that line (2.4) is a
loop invariant.

The loop conditionwill eventually become false. Indeed,we have seen that the loop body computes
new values for a and c that are each at most as large as the corresponding old value, and such that
at least one of the new values is strictly less than the corresponding old value. But since a and c are
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nonnegative, one of a and c will eventually become 0. Then line 13 of the algorithm will be executed.
At that point, a = 0 or c = 0, and the loop invariant, line (2.4), holds.

If c = 0 then |ad| = 1 so a = d = 1. Therefore, if S = (s1, . . . , sk) then

m =

a b
c d


· s1 · · · sk =


1 b
0 1


· s1 · · · sk.

Note that b ≥ 1 since 1 = a ≤ b. If, however, c ≠ 0 when line 13 is reached then a = 0, so |bc| = 1
and hence b = c = 1. Therefore, if S = (s1, . . . , sk) then

m =

a b
c d


· s1 · · · sk =


0 1
1 d


· s1 · · · sk.

Note that d ≥ 1 since 1 = c ≤ d. So, when line 18 of the algorithm is executed and S = (s1, . . . , sk)
then m = s1 · · · sk. Since all the elements that were inserted into S are of the form described in
line (2.3), the proof is complete. �

We can now characterize the intervals in the universal CF-tree.

Theorem 9. An interval I occurs in the universal CF-tree if and only if I = (b,∞)where b is a nonnegative
integer or I = (a/c, b/d) where a, b, c, d are integers such that ad− bc = −1 and either both 0 ≤ a ≤ b
and 1 ≤ c ≤ d or both a ≥ b ≥ 0 and c ≥ d ≥ 1.

Proof. An interval I occurs in the universal CF-tree if and only if I = m((0,∞)) where m(x) =
(ax+ b)/(cx+ d) is a mapping represented by a matrix

m =

a b
c d


that occurs in the tree. By Theorem 8, the matrix m occurs in the tree if and only if m is the identity
matrix or a, b, c, d are integers such that 0 ≤ a ≤ b and 0 ≤ c ≤ d and |ad − bc| = 1. In case c = 0
both a and d must be equal to 1 so that m(x) = x + b and, hence, I = m((0,∞)) = (b,∞). In case
c > 0 and ad − bc = −1 we have d > 0 and a/c − b/d = −1/(cd) < 0 so that I = (a/c, b/d). In
case c > 0 and ad − bc = 1 we have d > 0 and a/c − b/d = 1/(cd) > 0 so that I = (b/d, a/c).
Letting (a′, b′, c ′, d′) = (b, a, d, c) we see that I = (a′/c ′, b′/d′) and a′d′ − b′c ′ = bc − ad = −1 and
a′ ≥ b′ ≥ 0 and c ′ ≥ d′ ≥ 1. �

Remark 10. Theorem 9 can be used to show that every nonnegative rational number occurs as an
interval endpoint in the universal CF-tree. One can further construct a level-preserving permutation
σ on the set {1, 2}∗ of nodes s such that the function s → mσ(s)(1) defines the Stern–Brocot tree
described by Graham et al. (1994).

Lemma 11. The matrix coefficients as, bs, cs, ds have the following properties.

1. If s ∈ {1}∗ then

ms =


as bs
cs ds


=


1 |s|
0 1


.

2. If s /∈ {1}∗ then

ms =


as bs
cs ds


and as, bs, cs, ds are integers and 0 ≤ as ≤ bs and 1 ≤ cs ≤ ds and asds − bscs = (−1)h where h is
the number of times 2 occurs in s.

Proof. Assertion (1): Use induction on |s|, the length of s, starting with |s| = 0. Assertion (2): By
Theorem 8, 0 ≤ as ≤ bs and 0 ≤ cs ≤ ds and asds − bscs = (−1)h for all s ∈ {1, 2}∗, so it suffices
to show that cs > 0 for all s /∈ {1}∗. Note first that ds > 0 for any s ∈ {1, 2}∗. Indeed, if ds = 0 then
cs = 0 and hence |asds − csbs| = 0, a contradiction. So, for any s ∈ {1, 2}∗, cs2 = ds > 0. Also note
that, for all s ∈ {1, 2}∗ and all v ∈ {1}∗, csv = cs by induction on |v|. Now let s /∈ {1}∗. Then s = u2v
for some u ∈ {1, 2}∗ and v ∈ {1}∗, so cs = cu2v = cu2 > 0. �
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Theorem 12. The intervals in the universal CF-tree have the following properties.

1. If s ∈ {1}∗ then Is is an unbounded interval,

Is = (|s|,∞).

2. If s /∈ {1}∗ then Is is a bounded interval with nonnegative rational endpoints. If the number of
occurrences of 2 in s is even then

Is =
bs
ds

,
as
cs


.

If the number of occurrences of 2 in s is odd then

Is =
as
cs

,
bs
ds


.

In either case, the width of Is is 1/(csds), and 0 ≤ as ≤ bs, 1 ≤ cs ≤ ds, gcd(as, cs) = 1,
gcd(bs, ds) = 1.

Proof. Use Lemma11 and that Is = ms((0,∞)) for all s ∈ {1, 2}∗. Note in particular that |asds−csbs| =
1 implies gcd(as, cs) = 1 and gcd(bs, ds) = 1. �

3. A road map

We explain our construction of difficult input polynomials by comparing it to related work in the
literature, and we provide an outline for the remainder of the paper.

3.1. Constructing difficult polynomials

The universal CF-tree can be used to construct difficult input polynomials. Indeed, one can show,
using Definition 7 and Theorem12, that the twowidest intervals< 1 at level h, h > 0, are the intervals
(0, 1/h) and (1−1/h, 1). Let a be an integer, a > 2. Then the latter interval contains the roots 1−1/a
and 1−1/(a+1) of the quadratic polynomial (ax−(a−1))((a+1)x−a) if and only if h < a. Thus, the
height of the CF-tree of that polynomial is at least a. In particular, the height is not dominated by any
polynomial function of the maximum coefficient length. This observation is due to Collins and Akritas
(1976) who also assert that one can construct a similar example for every degree ≥ 2. Note that, for
h ≥ 2, the intervals (1− 1/h, 1) appear in the universal CF-tree along the leftmost path that starts at
node 22; indeed, (1− 1/h, 1) = Is where |s| = h and s = 221 . . . 1.

Akritas (1978) proposes to jump over leftmost paths in CF-trees by computing root bounds. Let s be
a node in the CF-tree of some input polynomial Aϵ , and let the integer h be a nonnegative lower bound
for the positive roots of the polynomial As. Then the roots of As in the interval (0,∞) are the roots of
As in the interval (h,∞), and those roots are the roots of Th(As) in the interval (0,∞), translated by
h. In the CF-tree, the polynomial Th(As) appears on level |s| + h, at node s1 . . . 1, and its computation
from As requires h translations by 1. Akritas proposes to perform a single translation of As by h instead
to obtain the polynomial As1...1 = Th(As), effectively jumping from node s to node s1 . . . 1.

We will construct input polynomials whose CF-trees each contain a long rightmost path; this will
preclude the application of Akritas’s idea. Each rightmost pathwill be an initial segment of the infinite
rightmost path S that starts at node 21. Let s ∈ S be a node on that path. Then s = 21τ for some string
τ ∈ {2}∗, and

Is = ((r ◦ t) ◦ t ◦ (r ◦ t)|τ |)((0,∞)).

The intersection of the intervals Is, s ∈ S, consists of the point a = ((r ◦ t) ◦ t)(ξ) where ξ is the
positive fixed point of the linear fractional mapping r ◦ t . We have ξ = (

√
5 − 1)/2 and, hence,

a = (3−
√
5)/2. One can show, using Definition 7 and Theorem 12, that the intervals containing a or

ξ are the intervals of smallest width among the intervals on the same level of the universal CF-tree.
If an input polynomial has two real roots close to a, the CF-tree will contain an initial segment of the
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Fig. 3.1. (a) Applying Mignotte’s construction. The diagram shows the graphs of x5 (dotted), −2(x2 − 3x + 1)2 (dashed) and
A5(x) = x5 − 2(x2 − 3x+ 1)2 (solid) in the interval (a− 0.04, a+ 0.04) ⊂ (0, 1) where a = (3−

√
5)/2; the horizontal line

represents the x-axis. (b) The CF-tree of the polynomials A8 , A9 and A10; for each node, the number of sign variations is shown.
(c) The roots of – from top to bottom – B0 = A10 , B3 and B4 . The horizontal lines represent the real axis, φ is the golden ratio.
The two close real roots, indistinguishable for B0 , are repelled from 1/φ in the diagrams for B3 and B4 while the other roots are
attracted to−φ.

path S. We obtain such input polynomials by exploiting an idea of Mignotte (1981, 1982) as shown in
Fig. 3.1(a).

Mignotte subtracts from xn, n ≥ 3, the square of a linear polynomial that has a root in the interval
(0, 1). Let the linear polynomial be bx−1where b is an integer, b ≥ 2. Then one obtains the polynomial
xn − (bx − 1)2 which has two close real roots, one on either side of 1/b. As n increases, the distance
between the roots approaches 0. Finally, Mignotte inserts the factor 2, yielding xn−2(bx−1)2, so that
Eisenstein’s irreducibility criterion becomes applicable. But these polynomials are not difficult for the
CF-method. Indeed, by the first paragraph of this section, the two close roots are elements of disjoint
intervals on level b of the CF-tree, regardless of the value of n. Moreover, the node with the isolating
interval (0, 1/b) can be reached from node 2 using a leftmost path of length b− 1.

We modify Mignotte’s construction by subtracting from xn, n ≥ 5, the square of a quadratic
polynomial with the root a ∈ (0, 1). The quadratic polynomial is easily determined by noting that
a = (r ◦ t)(φ)where φ = (1+

√
5)/2 is the golden ratio. Since φ is a root of the polynomial x2−x−1,

the number a is a root of the polynomial (T ◦ R)−1(x2 − x− 1) = x2 − 3x+ 1. So we will consider the
polynomials xn − 2(x2 − 3x+ 1)2 for n ≥ 5.

3.2. Proof strategy

We now outline our plan for proving Theorem 87. We start with some notation. Let B(x) =
x2−3x+1 and An(x) = xn−2B(x)2 with n ≥ 5. Letφ = (1+

√
5)/2 and a = 1/φ2

= (3−
√
5)/2. Then

a is a root of B(x). We will often use approximate values of φ and a, which are φ = 1.6180339887 . . .
and a = 0.3819660113 . . .. We will also frequently use the equation φ2

= φ + 1. Furthermore we
will use the Fibonacci numbers Fk, which are inductively defined for k ≥ 0 by F0 = 0, F1 = 1 and
Fk+2 = Fk+1 + Fk. On occasion we will extend the definition to all k < 0 by the same equation, used
in the form Fk = Fk+2 − Fk+1. We then have F−1 = 1 and, for all integers k, F−k = (−1)k+1Fk. Table 1
lists more symbols that we will use.

The first half of the table lists symbols used in Sections 4 and 5 where we determine the CF-trees
of the polynomials An.

Section 4 We show that An has two real roots that are very close to a.
Section 5.1 We describe the structure of the CF-tree of An in terms of the tree height. This involves an

explicit determination of var(As) for the nodes s = 1 and s = 2; in each case, var(As) does
not depend on n. For the other nodes s of the tree we use a property called ‘‘subadditivity’’ to
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Table 1
Symbols in order of their appearance.

B(x) = x2 − 3x+ 1.
An(x) = xn − 2B(x)2 = xn − 2x4 + 12x3 − 22x2 + 12x− 2, n ≥ 5.
φ = (1+

√
5)/2 = 1.6180339887 . . ., the golden ratio, φ2

= φ + 1.
a = 1/φ2

= (3−
√
5)/2 = 0.3819660113 . . ., B(a) = 0.

a1 , a2 the roots of An in (0, a) and (a, 1), respectively.
(Mk,mk) root matching at node s = 21τ where τ ∈ {2}∗ , |s| = k and k ≥ 2.
Mk = (T ◦ R)k−2 ◦ T ◦(T ◦ R), Bk = Mk(An).
F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for any integer n, the Fibonacci numbers.
mk(x) =

Fk−2x+Fk−1
Fkx+Fk+1

,m−1k (x) = Fk+1x−Fk−1
−Fkx+Fk−2

,m−1k+1 = (t−1 ◦ r) ◦m−1k for k ≥ 2.
Ca =


z ∈ C : |z − 1/φ2

| < 1/φ2

contains a1, a2 and no other root of An .

Pk(x) =


(x−m−1k (α)) where α traverses the roots of An except a1 and a2
Pk(x) = xn−2 + pk,n−3xn−3 + · · · + pk,0 .
a1 = (1+ δ1)a, so δ1 < 0. a2 = (1+ δ2)a, so δ2 > 0.
bk,1 = m−1k (a1) and bk,2 = m−1k (a2) (Sections 10 and 11).
Qk(x) = (x− bk,1)(x− bk,2) = x2 − ckx+ dk .
Rk(x) = Pk(x)Qk(x) = xn + rk,n−1xn−1 + · · · + rk,0 the monic associate of Bk(x).
Bk(x) = bk,nxn + · · · + bk,0 (Sections 12 and 13).

reduce the determination of var(As) to determining the number of roots of An in the interval
Is. That number depends on the signs of An on the endpoints of Is. Those endpoints are of the
form Fk−2/Fk. The height of the tree turns out to be one less than the least positive integer k
such that An(Fk−2/Fk) > 0.

Section 5.2 We approximate An(Fk−2/Fk) using a closed formula for the Fibonacci numbers. Since the
sign of Fk − φk/

√
5 alternates as k traverses the integers, we obtain one lower bound for

even heights of the CF-tree of An, and a different lower bound for odd heights. Theminimum
of those bounds is a lower bound for heights of any parity; that bound dominates n.

Section 5.3 We approximate An(Fk−2/Fk) more precisely and determine the height exactly. This
completes the description of the CF-tree of An. The CF-trees for A8, A9 and A10 are identical;
the tree is shown in Fig. 3.1(b).

The symbols in the second half of Table 1 arise in the computing time analysis. Let S be the infinite
rightmost path defined in Section 3.1, but augmented by the nodes ϵ and 2 so that S starts at the root of
the universal CF-tree. By Section 5.3, any node s ∈ S is a node of the CF-tree of An, n > 10, if and only if
|s| ≤ ⌊n/2⌋+2. For any nonnegative integer k, let (Mk,mk) denote the root matching associated with
the unique node s ∈ S on level k. Table 1 gives a recursion formula for the polynomial transformations
Mk. For any nonnegative integer k, let Bk = Mk(An).

The CF-method computes

Bk+1 = (T ◦ R)(Bk)

for all k, 2 ≤ k ≤ ⌊n/2⌋ + 1. If the transformation T is computed by a classical algorithm, we can
obtain a lower bound for the cost of the transformation by showing that the high-order coefficients
of R(Bk) are large negative integers. We do that by showing that the low-order coefficients of Bk are
large negative integers. We keep track of the coefficients of Bk indirectly, by tracking all the complex
roots of the polynomials Bk. Separately, we track the leading coefficient of Bk. We then reconstruct the
coefficients of Bk as sums of products of the roots, multiplied by the leading coefficient.

The roots of Bk are images of the roots of An under the mappingm−1k . Indeed, by Section 4, An does
not have any rational roots. Hence, by Theorem 5, the linear fractional mappingm−1k bijectively maps
the roots of An onto the roots of Bk, preserving the multiplicity of each root, the relation of complex
conjugacy, the property of being real and the property of being nonreal. We note in particular that
deg(Bk) = n.

For k ≥ 2 we havem−1k+1 = (t−1 ◦ r) ◦m−1k so that

m−1k = (t−1 ◦ r)k−2 ◦m−12 .
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The linear fractional mapping t−1 ◦ r has the fixed points 1/φ and−φ, and the normal form (Knopp,
1952, for example)

(t−1 ◦ r)(z)− 1/φ
(t−1 ◦ r)(z)− (−φ)

= (−φ2)
z − 1/φ
z − (−φ)

where − φ2
= e2 ln(φ)+π i,

so that the mapping is loxodromic. The fixed point 1/φ is repulsive with the local repulsion rate
φ2
= 2.618 . . . and counterclockwise rotation by π , and the fixed point −φ is attractive with the

local attraction rate 1/φ2
= 0.381 . . . and clockwise rotation by π . As k increases, the images of the

roots of An under m−1k will move away from 1/φ and towards −φ, see Fig. 3.1(c). We will track the
images of the two close real rootswith respect to 1/φ, and the images of the other rootswith respect to
−φ. It will be convenient to describe themappingsm−1k using Fibonacci numbers as shown in Table 1.
The formulas can be verified using the matrix calculus of Section 2.2.

Section 6 We use Rouché’s theorem to show that the two close real roots of An are the only roots of
An inside the circle Ca with center and radius a.

Section 7 Since the non-close roots of An are outside of Ca, their images under m−12 = t−2 ◦ r are
in the left half-plane. But then their images under any mapping m−1k , k ≥ 2, are in the left
half-plane. In fact, those images converge to−φ.

Section 8 Let Pk(x) = pk,n−2xn−2+· · ·+pk,0 be themonic polynomial whose roots arem−1k (α)where
α is a root of An that is different from the two close real roots. Since them−1k (α) are close to
−φ, we expect Pk(x) to be approximately equal to (x+ φ)n−2. We note that An is real, so the
nonreal roots of An occur in complex conjugate pairs. Butm−1k preserves complex conjugacy,
so the nonreal roots of Pk occur in complex conjugate pairs as well, hence Pk is real, too. On
the other hand, the coefficients of Pk are sums of possibly nonreal products of the m−1k (α).
We bound those sums from below by bounding the real part of each product from below.We
do that by considering both, the absolute value and the argument of each m−1k (α). In order
for those arguments to be small, we require k to be larger than a logarithmic function of n.
As expected, the coefficients pk,n−2−i turn out to be close to

n−2
i


φi.

Sections 9–11 Let a1 and a2 be the two close real roots of An, let bk,1 and bk,2 be their respective
images under m−1k , and let Qk(x) = x2 − ckx + dk be the monic quadratic polynomial that
has bk,1 and bk,2 as roots. Then ck = bk,1 + bk,2 and dk = bk,1bk,2. We determine lower and
upper bounds for ck and dk. We know that a1 and a2 are close to a = 1/φ2. So m−12 (a1) and
m−12 (a2) are close to m−12 (a) = (t−2 ◦ r)(1/φ2) = 1/φ. But 1/φ is a fixed point of t−1 ◦ r ,
so m−1k (a1) = (t−1 ◦ r)k−2(m−12 (a1)) and m−1k (a2) remain close to 1/φ. Hence ck is close to
2/φ, and dk is close to 1/φ2; the respective distances increase as k increases.

Section 12 Let Rk(x) = Pk(x)Qk(x), and let bk,n be the leading coefficient of Bk(x). Then Bk(x) =
bk,n · Rk(x). So Bk(x) is approximately bk,n · (x + φ)n−2 · (x2 − (2/φ)x + 1/φ2). We analyze
various coefficients of Rk(x) in three separate theorems. For example, letting Rk(x) = rk,nxn+
rk,n−1xn−1 + · · · + rk,0, we show that the coefficients rk,i, 0 ≤ i ≤ n/10, are greater than 1.
Concerning bk,n we prove at first only that bk,n is negative if 2 ≤ k ≤ n/2− 2. Then, letting
Bk(x) = bk,nxn + · · · + bk,0, we show, by induction on k, that the coefficients bk,i are large
negative integers for all i, 0 ≤ i ≤ n/10. We also show that Bk(x) is primitive.

Section 13 We show that the time to compute the polynomial Bk+1 from the polynomial R(Bk)
using classical translation by 1 dominates n3(k − k1) where k1 is an integer that depends
logarithmically on n. The sum, over k, of those computing times yields the lower bound n5

for the computing time of the CF-method for the polynomials An.

4. A set of input polynomials

Let a = (3−
√
5)/2 be one of the roots of the polynomial B(x) = x2 − 3x+ 1. For all n, n ≥ 5, let

An(x) = xn − 2B(x)2, see Table 1. We show that An has two real roots that are very close to a.

Theorem 13. All roots of An are simple, no root is rational.



1384 G.E. Collins, W. Krandick / Journal of Symbolic Computation 47 (2012) 1372–1412

Proof. By the Eisenstein irreducibility criterion (van der Waerden, 1949), An(x) is irreducible. In
particular, all roots of An are simple. Since An is irreducible over the integers, An is irreducible over
the rationals by Gauss’s Lemma (van der Waerden, 1949, Section 23). In particular, An does not have
any rational roots. �

Theorem 14. An(x) has exactly three positive real roots, namely one in each of the three intervals (0, a),
(a, 1) and (1, 2). If n is even, An has exactly one negative real root; if n is odd, An has no negative real root.

Proof. An(0) = −2, An(a) = an, An(1) = −1 and An(2) > 0. So An has a least one root in each of
the three specified intervals. The proof will be completed by showing that An cannot have more than
three positive real roots. Consider the third derivative A(3)

n (x) = n(n − 1)(n − 2)xn−3 − 48x + 72. If
0 < x < 1 then A(3)

n (x) > −48x+ 72 > −48+ 72 > 0. If x ≥ 1 then A(3)
n (x) ≥ 60xn−3 − 48x+ 72 ≥

60x2− 48x+ 72, which is positive by the quadratic formula. So A(3)
n has no positive real roots, A(2)

n has
at most one, A(1)

n has at most two, and An has at most three. If n is even, An(−x) = xn−2(x2+3x+1)2
has one sign variation; if n is odd it has no sign variations. �

We will denote the root of An in (0, a) by a1 and the root in (a, 1) by a2.

Lemma 15. Let h > 0. Then B(a− h)2 > B(a+ h)2.

Proof. B(a + h) = (a + h)2 − 3(a + h) + 1 = h2
+ (2a − 3)h + (a2 − 3a + 1) = h2

+ (2a − 3)h
since a is a root of B(x). Therefore B(a + h)2 = h4

+ 2(2a − 3)h3
+ (2a − 3)2h2 and so B(a − h)2 =

h4
− 2(2a − 3)h3

+ (2a − 3)2h2. Therefore B(a − h)2 − B(a + h)2 = −4(2a − 3)h3 > 0 since
2a− 3 < 0. �

Lemma 16. If 0 < h < a then An(a− h) < An(a+ h).

Proof. 0 < a − h < a + h so (a − h)n < (a + h)n and, by Lemma 15,−2B(a − h)2 < −2B(a + h)2.
Adding these two inequalities completes the proof. �

Theorem 17. Let h = an/2+1. Then An(x) has a root in each of the intervals (a − h, a) and (a, a + h) if
n ≥ 6. The polynomial A5 has a root in (a− h, a) and a root in (a+ h, a+ h+ 0.002).

Proof. Assume first that n ≥ 7. Since An(a) > 0 it suffices to prove that An(a − h) and An(a + h)
are negative. Then, by Lemma 16, it suffices to prove that An(a + h) < 0. We will prove that
(a+h)n < 2B(a+h)2. First note that (a+h)n = (a+an/2+1)n = an(1+an/2)n. That 1+an/2 < 1+1/(3n)
for n ≥ 7 is easily proved by induction on n. So (a+ h)n < an(1+ 1/(3n))n < e1/3an = e1/3h2/a2 <
1.3957h2/0.1458 < 9.573h2. Since a2−3a+1 = 0we have B(a+h) = h2

+(2a−3)h = (h+2a−3)h
and so B(a + h)2 = (3 − 2a − h)2h2. But 2a < 0.7640 and h = an/2+1 ≤ φ−9 < 0.0132 so
(3 − 2a − h) > 2.2228 and 2B(a + h)2 > 2(4.940h2) = 9.880h2 > 9.573h2 > (a + h)n so
An(a+ h) < 0.

Now assume that n = 6. Then h < 0.021287, (a + h)6 < 0.004300 and 2B(a + h)2 > 0.004445,
so An(a+ h) < 0.

Now let n = 5. Then h > 0.034441, (a + h)5 > 0.012519 and 2B(a + h)2 < 0.011500 so that
A5(a+h) > 0. Therefore A5 does not have a root in (a, a+h). But h < 0.034442, (a−h)5 < 0.005070
and 2B(a − h)2 > 0.012230, so An(a − h) < 0 and, hence, A5 has a root in (a − h, a). Furthermore,
a + h + 0.002 < 0.418408, (a + h + 0.002)5 < 0.012824 and 2B(a + h + 0.002)2 > 0.012850, so
A5(a+ h+ 0.002) < 0 and, hence, A5 has a root in (a+ h, a+ h+ 0.002). �

5. CF-trees

We now determine the CF-tree of An for all n, n ≥ 5.

5.1. Tree structure

Table 1 shows that var(An) = 5. Hence the root, node ϵ, is an internal node. We now compute the
number of sign variations at the children, nodes ‘‘1’’ and ‘‘2’’.
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Theorem 18. The polynomial T(An) has exactly one sign variation.

Proof. Let n ≥ 5. Then T(An) = T(xn)+ T(−2B(x)2) where

T(xn) =
n

i=0

 n
i


xi

and T(−2B(x)2) = T(−2x4 + 12x3 − 22x2 + 12x − 2) = −2x4 + 4x3 + 2x2 − 4x − 2. So, if
T(An) = ānxn + · · · + ā0 then āi > 0 for i > 4 and also for i = 3 and for i = 2. Since n ≥ 5,n
4


≥ 5 and therefore ā4 > 0. Since

n
1


≥ 5, ā1 > 0. And since

n
0


= 1, ā0 = −1. We have proved

more than necessary: All coefficients of T(An) are positive except for the last, which is−1. �

Theorem 19. The polynomial T R(An) has exactly two sign variations.

Proof. Let n ≥ 5. By Theorem 14, An has exactly two positive roots < 1. Hence R(An) has exactly two
roots > 1. Thus, T R(An) has exactly two positive roots, and hence var(T R(An)) ≥ 2. To show equality
we will use induction on n. The assertion clearly holds for n = 5 since

T R(A5) = −2x5 + 2x4 + 6x3 − 2x2 − 6x− 1.

The induction step requires some preparation. For any n ≥ 5,

An = xn − 2x4 + 12x3 − 22x2 + 12x− 2

and, hence,

R(An) = −2xn + 12xn−1 − 22xn−2 + 12xn−3 − 2xn−4 + 1.

Thus,

R(An+1) = (R(An)− 1)x+ 1,

and hence

T R(An+1) = (T R(An)− 1)(x+ 1)+ 1.

So, letting T R(An) = bnxn + · · · + b0 and T R(An+1) = cn+1xn+1 + · · · + c0 we have

cn+1 = bn,
ck = bk + bk−1 for 2 ≤ k ≤ n,
c1 = b1 + b0 − 1,
c0 = b0.

In particular, all polynomials T R(An), n ≥ 5, have the same constant term, b0 = −1, and the same
leading coefficient, bn = −2.

As an induction hypothesis assume now that var(T R(An)) = 2 for some n ≥ 5. Let (p, q) and (r, s),
0 ≤ p < q ≤ r < s ≤ n, be the index pairs that contribute to var(T R(An)). Then the coefficient signs
of T R(An) are as follows.

k = 0 0 < k < q k = q q < k < r k = r r < k < n k = n
bk < 0 ≤ 0 > 0 ≥ 0 > 0 ≤ 0 < 0

Hence, in case q = r , the coefficient signs of T R(An+1) are

k = 0 0 < k < q k = q k = q+ 1 = r + 1 r + 1 < k < n+ 1 n+ 1
ck < 0 ≤ 0 ? ? ≤ 0 < 0

where the question marks stand for undetermined signs. But regardless of the signs of cq and cq+1
we have var(T R(An+1)) ≤ 2.
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In case q < r the coefficient signs of T R(An+1) are as follows.

k = 0 0 < k < q k = q q < k < r + 1 k = r + 1 r + 1 < k < n+ 1 k = n+ 1
ck < 0 ≤ 0 ? ≥ 0 ? ≤ 0 < 0

So we have var(T R(An+1)) ≤ 2 in this case as well.
Since, by the first paragraph of the proof, var(T R(An+1)) ≥ 2, we obtain var(T R(An+1)) = 2. This

completes the proof by induction. �

As the CF-method descends the CF-tree, the number of sign variations will decrease or stay the same
by the next theorem.

Definition 20. The polynomial A is subadditive in case

var(T(A))+ var((T ◦ R)(A)) ≤ var(A).

Theorem 21. All polynomials are subadditive.

Proof. Schoenberg’s proof (1934) uses Schoenberg’s theorem (1930) that states that the linear
transformations given by totally positive matrices are variation-diminishing. �

By Theorem 18, node ‘‘1’’ is a leaf node with 1 sign variation. By Theorem 19, node ‘‘2’’ is an
internal node with 2 sign variations; its associated interval, (0, 1), contains exactly two roots of An
by Theorem 14. Moreover, by Theorem 13, An does not have any rational roots. Hence the following
theorem applies with A = An and s = 2.

Theorem 22. Let A be a polynomial that does not have any rational root. Let s ∈ {1, 2}∗ represent an
internal node of the CF-tree of A. Let var(As) = 2, and let Is contain exactly two roots of A. Then, for any
descendant t of s, var(At) equals the number of roots of A in the interval It .

Proof. Due to subadditivity, Theorem 21, var(At) ≤ 2 for any descendant t of s. This can be shown by
induction on the length of the path from s to t . The proof that var(At) equals the number of roots of A
in It is similar. Indeed, if t = s then, trivially, var(At) equals the number of roots of A in the interval It .
Now assume that the assertion holds for some descendant s̄ of s, and that t is a child of s̄. Then var(As̄)
equals the number of roots of A in Is̄ and, since s̄ is an internal node, var(As̄) = 2; moreover, t = s̄1 or
t = s̄2. The bisection points in the CF-method are rational numbers and A does not have any rational
root. Hence each root of A in Is̄ is either in Is̄1 or in Is̄2. So, letting ri be the number of roots of A in the
interval Is̄i, i = 1, 2, we have

r1 + r2 = 2. (5.1)

Let vi = var(As̄i), i = 1, 2. Then, again by subadditivity,

v1 + v2 ≤ 2. (5.2)

Also, by the Descartes rule of signs,

r1 ≤ v1 and r2 ≤ v2. (5.3)

In case r1 = 0 Eq. (5.1) yields r2 = 2, lines (5.3) and (5.2) imply v2 = 2 and Inequality (5.2) yields
v1 = 0. In case r1 = 1 we similarly obtain r2 = 1 and v1 = v2 = 1. The remaining case is r1 = 2; we
obtain r2 = 0, v1 = 2, and v2 = 0. In all three cases, r1 = v1 and r2 = v2, that is, var(At) equals the
number of roots of A in the interval It . �

Theorem 23. Let s be a descendant of node ‘‘2’’ in the universal CF-tree. Then s is an internal node in the
CF-tree of An if and only if a ∈ Is and An is negative at the endpoints of Is.

Proof. First note that 0 < a1 < a < a2 < 1 and that A is positive on (a1, a2), zero at a1 and at
a2, and negative on the remaining parts of (0, 1). If s is an internal node in the CF-tree of An then, by
Theorem 22, Is contains more than one root of An. But Is ⊂ (0, 1), and a1 and a2 are the only roots of
An in (0, 1), so Is contains both a1 and a2. Hence Is contains a and An is negative at the endpoints of Is.
Conversely, if s is such that a ∈ Is and An is negative at the endpoints of Is then Is contains both a1 and
a2. So, again by Theorem 22, s is an internal node in the CF-tree of An. �
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We now describe the intervals in the universal CF-tree that contain a. As a preparation we prove a
Fibonacci identity that is well known for positive odd indices (Ledin, 1970; Carlitz, 1971) and has
recently been stated for all positive indices (Bouhamida, 2009).

Lemma 24. For all integers k,

F 2
k+2 − 3Fk+2Fk + F 2

k = (−1)k.

Proof. Let D(x, y) = x2 − 3xy + y2. Then D(2a − b, a − b) = −D(a, b) for all a, b. In particular,
D(Fk+3, Fk+1) = D(2Fk+2−Fk, Fk+2−Fk) = −D(Fk+2, Fk) for all integers k. SinceD(F2, F0) = D(1, 0) =
1, we obtain by induction proofs on k that D(Fk+2, Fk) = (−1)k for all integers k. This proves the
assertion. �

Lemma 25. Let k be a nonzero integer. Then B(Fk−2/Fk) = (−1)k/F 2
k .

Proof. Since k ≠ 0, Fk ≠ 0. Then, using Lemma 24, B(Fk−2/Fk) = (F 2
k−2 − 3Fk−2Fk + F 2

k )/F 2
k =

(−1)k/F 2
k . �

Theorem 26. Let s be a node in the universal CF-tree. Then a ∈ Is if and only if s = ϵ or s = 2 or s = 21τ
where τ ∈ {2}∗. Moreover, Iϵ = (0,∞), I2 = (0, 1) and, for s = 21τ and τ ∈ {2}∗, the interval Is has
the endpoints F|τ |/F|τ |+2 and F|τ |+1/F|τ |+3 and width 1/(F|s|F|s|+1).

Proof. Definition 7 associates each node of the universal CF-tree with amatrix. Thematrices of nodes
ϵ and ‘‘2’’ are immediate from the definition; the matrices of nodes 21τ are obtained using an easy
induction on |τ |. We have

mϵ =


1 0
0 1


, m2 =


0 1
1 1


, m21τ =


F|τ | F|τ |+1

F|τ |+2 F|τ |+3


.

The intervals Iϵ, I2, I21τ are obtained as the images of the interval (0,∞) under the corresponding
linear fractional mappings

mϵ(x) = x, m2(x) =
1

x+ 1
, m21τ (x) =

F|τ |x+ F|τ |+1
F|τ |+2x+ F|τ |+3

.

The number a is contained in the interval Iϵ = (0,∞) on level 0 and in the interval I2 = (0, 1) on
level 1. The endpoints of the interval I21τ on level |τ |+2 are F|τ |/F|τ |+2 and F|τ |+1/F|τ |+3. By Lemma 25,
B is positive on one endpoint and negative on the other. Hence, a ∈ I21τ . By Theorem 12, the width
of I21τ is 1/(F|τ |+2F|τ |+3). Our list of intervals containing a is complete because it includes one interval
from each level of the tree. �

Corollary 27. The polynomial An is positive on Fk−2/Fk for almost all positive integers k.

Proof. Let k ≥ 2. By Theorem 26, Fk−2/Fk is among the endpoints of the intervals I21τ , τ ∈ {2}∗, and
those endpoints converge to a. But An is a continuous function, and An(a) = an > 0. Hence An is
positive on almost all Fk−2/Fk. �

Theorem 28. Let s = 21τ , τ ∈ {2}∗, and let k be the least positive integer such that An(Fk−2/Fk) > 0.
Then k ≥ 5. Moreover, An is negative at both endpoints of Is if and only if |τ | ≤ k− 4.

Proof. By Lemma 25, An(Fj−2/Fj) = (Fj−2/Fj)n − 2/F 4
j for all nonzero integers j, so we have

An(Fj−2/Fj) < 0 for j = 1, 2, 3, 4 since n ≥ 5. Hence k ≥ 5. By Theorem 26, the endpoints of Is
are F|τ |/F|τ |+2 and F|τ |+1/F|τ |+3. If |τ | ≤ k − 4, then |τ | + 3 < k, so, by the hypothesis on k, An is
nonpositive at both endpoints. But An is nonzero at the endpoints by Theorem 13, so An is negative
at the endpoints. Conversely, assume |τ | > k − 4. Then |τ | ≥ k − 3, so I21τ is a subinterval of the
interval I21σ , σ ∈ {2}∗ and |σ | = k− 3. By Theorem 26, the interval I21σ has the endpoints Fk−3/Fk−1
and Fk−2/Fk and both intervals contain a. So one of the endpoints of I21τ is between Fk−2/Fk and a. But
An is positive at a and, by hypothesis, at Fk−2/Fk. Moreover, by Theorems 13 and 14, the roots of An in
(0, 1) are simple and lie on opposite sides of a. Thus, An is positive at all points between Fk−2/Fk and
a, and, in particular, at one endpoint of I21τ . �
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Theorem 29. Let k be the least positive integer such that An(Fk−2/Fk) > 0; recall that, by Theorem 28,
k ≥ 5. Then the CF-tree of An has height k− 1.

1. The internal nodes of the tree are the nodes ϵ, ‘‘2’’ and all nodes 21τ where τ ∈ {2}∗ and |τ | ≤ k− 4.
The number of sign variations is 5 at ϵ and 2 at each of the other internal nodes.

2. The leaves with one sign variation are the nodes 1, 21τ1 and 21τ2 where τ ∈ {2}∗ and |τ | = k− 4.
3. The leaves with no sign variation are the node 22 and the nodes 21τ1 where τ ∈ {2}∗ and 0 ≤ |τ | <

k− 4.

Proof. We already remarked that var(An) = 5 by Table 1. Hence node ϵ is an internal node. The
assertions regarding nodes ‘‘1’’ and ‘‘2’’ follow from Theorems 18 and 19, respectively; in particular,
node ‘‘2’’ has two sign variations.

Let s be a proper descendant of ‘‘2’’. Then, by Theorem 23, s is an internal node in the CF-tree of An
if and only if a ∈ Is and An is negative at the endpoints of Is. By Theorems 26 and 28, this is equivalent
to s = 21τ where τ ∈ {2}∗, |τ | ≤ k− 4.

From |τ | = 0 we obtain that ‘‘21’’ is an internal node. Hence, by Theorem 22, ‘‘21’’ has two
sign variations and ‘‘22’’ none. If |τ | < k − 4 then s2 is an internal node. Hence, by Theorem 22,
s2 has two sign variations and s1 none. From |τ | = k − 4 we obtain that s1 and s2 are leaves.
Hence, again by Theorem 22, those nodes have one sign variation each. Those nodes are at level
|s1| = |21τ1| = 2+ (k− 4)+ 1 = k− 1. �

5.2. A lower bound for the height

Theorem 29 describes the CF-tree of An in terms of the height, and it reduces the determination of
the height to identifying the least positive integer k such that An(Fk−2/Fk) > 0.

Lemma 30. Let k be an integer, k ≠ 0 and k ≠ 2. Then

An

Fk−2
Fk


> 0 if and only if 4 ln Fk > ln 2+ n ln

Fk
Fk−2

.

Proof. Using Lemma 25,

An

Fk−2
Fk


=

Fk−2
Fk

n
− 2B

Fk−2
Fk

2
=

Fk−2
Fk

n
−

2
F 4
k
.

Hence, An(Fk−2/Fk) > 0 if and only ifFk−2
Fk

n
>

2
F 4
k
.

Taking reciprocals and taking logarithms yields the assertion. �

In the proof of the next result – and also later – we will use the formula

Fk = (φk
− φ̂k)/

√
5 (5.4)

where φ = (1 +
√
5)/2 and φ̂ = (1 −

√
5)/2. The formula holds for all integers k. Knuth (1968)

derives it for k ≥ 0 using a generating function; Hardy and Wright (1938, Section 10.14) use the
theory of continued fractions; Benjamin and Quinn (2003, Identity 240) give a combinatorial proof.
Note that φ̂ = 1− φ = −1/φ < 0.

Theorem 31. Let k be an even positive integer such that An(Fk−2/Fk) > 0. Then k > n/2+ 2.

Proof. By Theorem 28, k ≥ 5. By Lemma 30,

4 ln Fk > ln 2+ n ln
Fk

Fk−2
.
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Since k is even, the formula for the Fibonacci numbers, Eq. (5.4), implies Fk < φk/
√
5, hence

4k lnφ − 4 ln
√
5 > 4 ln Fk > ln 2+ n ln

Fk
Fk−2

.

Since φ̂ = −1/φ and k is even,

Fk
Fk−2

=
φk
− φ̂k

φk−2 − φ̂k−2
=

φk
− 1/φk

φk−2 − 1/φk−2
=

(φ2k
− 1)/φk

(φ2k−4 − 1)/φk−2

=
φ2k
− 1

φ2k−4 − 1
·
φk−2

φk
>

φ2k
− φ4

φ2k−4 − 1
·

1
φ2
= φ2.

Thus, 4k lnφ − 4 ln
√
5 > ln 2+ 2n lnφ and, hence,

k >
ln
√
5

lnφ
+

ln 2
4 lnφ

+
n
2
.

But ln
√
5/ lnφ > 1.672 and ln 2/(4 lnφ) > 0.360, so k > 2.032+ n/2. �

Lemma 32. If k ≥ 2 then
φk−2
≤ Fk < φk−3/2.

Proof. The assertion clearly holds for k = 2 and k = 3. Let j be an integer, j ≥ 2, and assume that the
assertion holds for k = j and k = j+ 1. Then

φj−2
+ φj−1

≤ Fj + Fj+1 < φj−3/2
+ φj−1/2.

Since 1+ φ = φ2, the left-hand sum equals φj, and the right-hand sum equals φj+1/2. The sum in the
middle equals Fj+2. Hence the assertion holds for k = j+ 2. �

Theorem 33. Let k be an odd positive integer such that An(Fk−2/Fk) > 0. Then k > (3/8)n+ 2.
Proof. By Theorem 28, k ≥ 5. By Lemma 30,

−n ln
Fk

Fk−2
+ 4 ln Fk − ln 2 > 0. (5.5)

Since k is odd, the formula for the Fibonacci numbers, Eq. (5.4), implies Fk = (φk
+ φ−k)/

√
5 =

φk(1+φ−2k)/
√
5. Hence, 4 ln Fk = 4k lnφ+4 ln(1+φ−2k)−2 ln 5. Substituting into Inequality (5.5),

−n ln
Fk

Fk−2
+ 4k lnφ + 4 ln(1+ φ−2k)− 2 ln 5− ln 2 > 0. (5.6)

By Lemma 32,
Fk

Fk−2
>

φk−2

φk−2−3/2
= φ3/2.

So, by Inequality (5.6),

−
3
2
n lnφ + 4k lnφ + 4 ln(1+ φ−2k)− 2 ln 5− ln 2 > 0.

Dividing by 4 lnφ yields

k >
3
8
n−

ln(1+ φ−2k)

lnφ
+

ln 5
2 lnφ

+
ln 2
4 lnφ

. (5.7)

Since k ≥ 5, ln(1+ φ−2k) ≤ ln(1+ φ−10). Hence,

−
ln(1+ φ−2k)

lnφ
≥ −

ln(1+ φ−10)

lnφ
> −0.017.

Also, ln 5/(2 lnφ) > 1.672 and ln 2/(4 lnφ) > 0.360. So we obtain from Inequality (5.7)

k >
3
8
n− 0.017+ 1.672+ 0.360 =

3
8
n+ 2.015. �

By Theorems 29, 31 and 33, the height of the CF-tree of An is greater than (3/8)n+ 1.
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5.3. The height

We now determine the tree height precisely.

Lemma 34. For all x, x > 1,

x− 1
x

< ln(x) <
x− 1
x


1+

x− 1
2


.

Proof. For all x, x ≥ 1/2, we have the well-known equation (Abramowitz and Stegun, 1965, (4.1.25))

ln(x) =
x− 1
x
+

1
2

x− 1
x

2
+

1
3

x− 1
x

3
+ · · · .

In our case, x > 1, so all summands are positive, hence the first inequality is clearly true. Moreover,
|(x− 1)/x| < 1, so

x− 1
x
+

1
2

x− 1
x

2
+

1
3

x− 1
x

3
+ · · ·

<
x− 1
x
+

1
2

x− 1
x

2
+

1
2

x− 1
x

3
+ · · ·

=
x− 1
x
+

1
2

x− 1
x

2 
1+

x− 1
x
+

x− 1
x

2
+ · · ·


=

x− 1
x
+

1
2

x− 1
x

2  1
1− x−1

x



=
x− 1
x
+

1
2

x− 1
x

2
x

=
x− 1
x


1+

x− 1
2


which yields the second inequality. �

Lemma 35. Let n and k be integers such that n > 0, k ≥ 8 and k is even. Then

2n lnφ < n ln
Fk

Fk−2
.

If, in addition, n < 2k− 4 then

n ln
Fk

Fk−2
< 2n lnφ + 0.032.

Proof. For k ≥ 4 let

u(k) =
φ−2k+4(1− φ−4)

1− φ−2k+4

and

v(k) = (2k− 4) ln(1+ u(k)).

We start by proving the following assertions.

1. ln(Fk/Fk−2) = 2 lnφ + ln(1+ u(k)) for all even k, k ≥ 4.
2. The function v(k) is a positive, decreasing function of k for k ≥ 4.
3. If k ≥ 8 then 0 < v(k) < 0.032.
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We obtain Assertion (1) from the exact formula for Fk, Eq. (5.4). Indeed, we have for even k, k ≥ 4,

Fk
Fk−2

=
φk
− φ−k

φk−2 − φ−k+2

= φ2
+

φ−k+4 − φ−k

φk−2 − φ−k+2

= φ2

1+

φ−k+2 − φ−k−2

φk−2 − φ−k+2


= φ2


1+ φ−2k+4

1− φ−4

1− φ−2k+4


= φ2(1+ u(k)).

Taking logarithms proves Assertion (1). Since u(k) is positive, ln(1+ u(k)) is positive. So, multiplying
the assertion by n proves the first assertion of the lemma. Also, again because ln(1+ u(k)) is positive,
the function v(k) is positive. To complete the proof of Assertion (2)we shownext that v(k+1)/v(k) <
1 for all k, k ≥ 4.

v(k+ 1)
v(k)

=
(2k− 2) ln(1+ u(k+ 1))

(2k− 4) ln(1+ u(k))
≤

6
4
·
ln(1+ u(k+ 1))
ln(1+ u(k))

.

We remove the logarithms in the quotient on the right using Lemma 34 as follows. We let x =
1+ u(k+ 1) and apply the second inequality of the lemma to the numerator, and we let x = 1+ u(k)
and apply the first inequality of the lemma to the denominator. We thus obtain

6
4
·
ln(1+ u(k+ 1))
ln(1+ u(k))

<
6
4
·

u(k+ 1)
1+ u(k+ 1)

·


1+

u(k+ 1)
2

 u(k)
1+ u(k)

=
6
4
·

u(k+ 1)
1+ u(k+ 1)

·
1+ u(k)
u(k)

·


1+

u(k+ 1)
2


=

6
4
·
u(k+ 1)
u(k)

·
1+ u(k)

1+ u(k+ 1)
·


1+

u(k+ 1)
2


< 1.5 · 0.382 · 1.184 · 1.026
< 1

where the constants in the fourth line are obtained as follows.

u(k+ 1)
u(k)

=
1
φ2
·
1− φ−2k+4

1− φ−2k+2

<
1
φ2

< 0.382,
1+ u(k)

1+ u(k+ 1)
=

1− φ−2k

1− φ−2k+4
·
1− φ−2k+2

1− φ−2k−2

=
1− φ−2k − φ−2k+2 + φ−4k+2

1− φ−2k+4 − φ−2k−2 + φ−4k+2

<
1+ φ−4k+2

1− φ−2k+4 − φ−2k−2

≤
1+ φ−14

1− φ−4 − φ−10

< 1.184,
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1+
u(k+ 1)

2
= 1+

1
2
·
φ−2k+2(1− φ−4)

1− φ−2k+2

≤ 1+
1
2
·
φ−6(1− φ−4)

1− φ−6

< 1.026.

This completes the proof of Assertion (2). Assertion (3) follows from Assertion (2) by evaluation of
v(k) at k = 8.

To prove the second assertion of the lemma we multiply the equation in Assertion (1) by n,
obtaining

n ln(Fk/Fk−2) = 2n lnφ + n ln(1+ u(k)),

and we assume n < 2k− 4 so that

n ln(1+ u(k)) < (2k− 4) ln(1+ u(k)).

The right-hand side equals v(k) which, by Assertion (3), is less than 0.032. So,

n ln(Fk/Fk−2) < 2n lnφ + 0.032,

and the proof is complete. �

Lemma 36. For all x, 0 < x < 1,

x < − ln(1− x) < x

1+

1
2
· x ·

1
1− x


.

Proof. For all x, −1 < x < 1, we have the well-known equation (Abramowitz and Stegun, 1965,
(4.1.24))

− ln(1− x) = x+
x2

2
+

x3

3
+ · · · .

In our case, 0 < x < 1, so all summands are positive, hence the first inequality is clearly true.
Moreover, |x| < 1, so

x+
x2

2
+

x3

3
+

x4

4
+ · · · < x+

x2

2
+

x3

2
+

x4

2
+ · · ·

= x+
1
2
x2(1+ x+ x2 + · · · )

yields the second inequality. �

Lemma 37. Let n and k be integers such that n > 0, k ≥ 8 and k is odd. Then

n ln
Fk

Fk−2
< 2n lnφ.

If, in addition, n < 3k− 5 then

2n lnφ − 0.051 < n ln
Fk

Fk−2
.

Proof. The proof is similar to the proof of Lemma 35. For k ≥ 4 let

u(k) =
φ−2k+4(1− φ−4)

1+ φ−2k+4

and

v(k) = (3k− 5) ln(1− u(k)).

We start by proving the following assertions.

1. ln(Fk/Fk−2) = 2 lnφ + ln(1− u(k)) for all odd k, k ≥ 4.
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2. The function v(k) is a negative, increasing function of k for k ≥ 4.
3. If k ≥ 8 then−0.051 < v(k) < 0.

We obtain Assertion (1) from the exact formula for Fk, Eq. (5.4). Indeed, we have for odd k, k ≥ 4,

Fk
Fk−2

=
φk
+ φ−k

φk−2 + φ−k+2

= φ2
−

φ−k+4 − φ−k

φk−2 + φ−k+2

= φ2

1−

φ−k+2 − φ−k−2

φk−2 + φ−k+2


= φ2


1− φ−2k+4

1− φ−4

1+ φ−2k+4


= φ2(1− u(k)).

Taking logarithms proves Assertion (1). Since u(k) is positive, ln(1−u(k)) is negative. So, multiplying
the assertion by n proves the first assertion of the lemma. Also, again because ln(1−u(k)) is negative,
the function v(k) is negative. To complete the proof of Assertion (2)we shownext that v(k+1)/v(k) <
1 for all k, k ≥ 4.

v(k+ 1)
v(k)

=
(3k− 2) ln(1− u(k+ 1))

(3k− 5) ln(1− u(k))
<

3
2
·
ln(1− u(k+ 1))
ln(1− u(k))

.

We remove the logarithms in the quotient on the right using Lemma 36 as follows.We let x = u(k+1)
and apply the second inequality of the lemma to the negated numerator, andwe let x = u(k) and apply
the first inequality of the lemma to the negated denominator. We thus obtain

3
2
·
ln(1− u(k+ 1))
ln(1− u(k))

=
3
2
·
− ln(1− u(k+ 1))
− ln(1− u(k))

<
3
2
· u(k+ 1)


1+

u(k+ 1)
2

·
1

1− u(k+ 1)


u(k)

=
3
2
·
u(k+ 1)
u(k)

·


1+

1
2
·

u(k+ 1)
1− u(k+ 1)


< 1.5 · 0.415 · (1+ 0.5 · 0.048)
< 1

where the constants in the fourth line are obtained as follows.
For the constant 0.415 consider that

u(k+ 1)
u(k)

=
1
φ2
·
1+ φ−2k+4

1+ φ−2k+2

is a decreasing function of k. Indeed, let w(k) = (1 + φ−2k+4)/(1 + φ−2k+2). Then w(k + 1) =
(1+ φ−2k+2)/(1+ φ−2k) and

w(k+ 1)
w(k)

=
(1+ φ−2k+2)2

(1+ φ−2k)(1+ φ−2k+4)

=
1+ 2φ−2k+2 + φ−4k+4

1+ φ−2k + φ−2k+4 + φ−4k+4
.
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Therefore w(k + 1) < w(k) is equivalent to 2φ−2k+2 < φ−2k + φ−2k+4 or, dividing by φ−2k, to
2φ2 < 1+ φ4, and therefore to (φ2

− 1)2 > 0. Hence, for k ≥ 4,

u(k+ 1)
u(k)

≤
1
φ2
·
1+ φ−4

1+ φ−6

< 0.415.

For the constant 0.048 consider

u(k+ 1)
1− u(k+ 1)

=
φ−2k+2(1− φ−4)

1+ φ−2k+2


1−

φ−2k+2(1− φ−4)

1+ φ−2k+2


=

φ−2k+2(1− φ−4)

1+ φ−2k+2 − φ−2k+2(1− φ−4)

=
1− φ−4

φ2k−2 + φ−4

≤
1− φ−4

φ6 + φ−4

< 0.048.

This completes the proof of Assertion (2). Assertion (3) follows from Assertion (2) by evaluation of
v(k) at k = 8.

To prove the second assertion of the lemma we multiply the equation in Assertion (1) by n,
obtaining

n ln(Fk/Fk−2) = 2n lnφ + n ln(1− u(k)),

and we assume n < 3k− 5 so that

n ln(1− u(k)) > (3k− 5) ln(1− u(k)).

The right-hand side equals v(k) which, by Assertion (3), is greater than−0.051. So,

n ln(Fk/Fk−2) > 2n lnφ − 0.051,

and the proof is complete. �

Lemma 38. Let n and k be integers, n ≥ 5, k ≥ 8. Then the following implications hold.

1. If k is even and k− n/2 < 2.032 then An(Fk−2/Fk) < 0.
2. If k is even and k− n/2 > 2.052 then An(Fk−2/Fk) > 0.
3. If k is odd and k− n/2 < 2.004 and n < 3k− 5 then An(Fk−2/Fk) < 0.
4. If k is odd and k− n/2 > 2.034 then An(Fk−2/Fk) > 0.

Proof. For any k ≥ 8 we have, by Lemma 30,

A(Fk−2/Fk) > 0 if and only if 4 ln Fk − ln 2− n ln
Fk

Fk−2
> 0. (5.8)

We first consider the case that k is even. Then Fk = (φk
− φ−k)/

√
5 = φk(1 − φ−2k)/

√
5 and,

hence,

4 ln Fk = 4k lnφ + 4 ln(1− φ−2k)− 2 ln 5.

Moreover, by Lemma 35,

n ln(Fk/Fk−2) = 2n lnφ + e1

where e1 > 0 and, in case n < 2k− 4, e1 < 0.032. Substituting into Equivalence (5.8) we obtain that
A(Fk−2/Fk) > 0 if and only if

4k lnφ + 4 ln(1− φ−2k)− 2 ln 5− ln 2− 2n lnφ − e1 > 0.
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Dividing by 4 lnφ, A(Fk−2/Fk) > 0 if and only if f (k, n) > 0 where

f (k, n) = k−
n
2
+

ln(1− φ−2k)

lnφ
−

ln 5
2 lnφ

−
ln 2
4 lnφ

−
e1

4 lnφ
. (5.9)

The numerical quantities can be bounded as follows; the first line uses k ≥ 8.

−0.001 < ln(1− φ−2k)/ lnφ < 0,
−1.673 < − ln 5/(2 lnφ) < −1.672,
−0.361 < − ln 2/(4 lnφ) < −0.360,
−0.017 < −0.032/(4 lnφ) < 0.

So, given line (5.9), we have, on the one hand,

f (n, k) < k− n/2− 1.672− 0.360 = k− n/2− 2.032,

proving Assertion (1). On the other hand, in case n < 2(k− 2.052) < 2k− 4,

f (n, k) > k− n/2− 0.001− 1.673− 0.361− 0.017 = k− n/2− 2.052,

proving Assertion (2).
We now consider Equivalence (5.8) in the case that k is odd. Then Fk = (φk

+ φ−k)/
√
5 =

φk(1+ φ−2k)/
√
5 and, hence,

4 ln Fk = 4k lnφ + 4 ln(1+ φ−2k)− 2 ln 5.

By Lemma 37,

n ln(Fk/Fk−2) = 2n lnφ − e2

where e2 > 0 and, in case n < 3k− 5, e2 < 0.051. Substituting into Equivalence (5.8) we obtain that
A(Fk−2/Fk) > 0 if and only if

4k lnφ + 4 ln(1+ φ−2k)− 2 ln 5− ln 2− 2n lnφ + e2 > 0.

Dividing by 4 lnφ, A(Fk−2/Fk) > 0 if and only if g(k, n) > 0 where

g(k, n) = k− n/2+
ln(1+ φ−2k)

lnφ
−

ln 5
2 lnφ

−
ln 2
4 lnφ

+
e2

4 lnφ
. (5.10)

The numerical quantities can be bounded as follows; the first line uses k ≥ 8.

0 < ln(1+ φ−2k)/ lnφ < 0.001,
−1.673 < − ln 5/(2 lnφ) < −1.672,
−0.361 < − ln 2/(4 lnφ) < −0.360,

0 < 0.051/(4 lnφ) < 0.027.

So, given line (5.10) we have, on the one hand, in case n < 3k− 5,

g(k, n) < k− n/2+ 0.001− 1.672− 0.360+ 0.027 = k− n/2− 2.004,

proving Assertion (3). On the other hand,

g(k, n) > k− n/2− 1.673− 0.361 = k− n/2− 2.034,

proving Assertion (4). �

Theorem 39. Let n ≥ 16, and let k be the least positive integer that satisfies An(Fk−2/Fk) > 0. Then
k = ⌊n/2⌋ + 3.
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Proof. Since n ≥ 16 and An(Fk−2/Fk) > 0, we have k > 8 by Theorems 31 and 33; hence Lemma 38
applies.

We will first show that if k ≤ ⌊n/2⌋ + 2 then An(Fk−2/Fk) ≤ 0, contradicting the definition of
k. So assume that k ≤ ⌊n/2⌋ + 2. Then k − n/2 ≤ k − ⌊n/2⌋ ≤ 2. Therefore, if k is even then
An(Fk−2/Fk) < 0 by Lemma 38(1); if k is odd then, by Lemma 38(3), An(Fk−2/Fk) < 0 provided that
n < 3k − 5. If, however, n ≥ 3k − 5 then k ≤ n/3 + 5/3 < (3/8)n + 2 so An(Fk−2/Fk) ≤ 0 by
the contrapositive of Theorem 33. Thus k ≤ ⌊n/2⌋ + 2 implies An(Fk−2/Fk) ≤ 0, contradicting the
definition of k. As a result, k ≥ ⌊n/2⌋ + 3.

To complete the proof we show that k ≤ ⌊n/2⌋ + 3. We do that by showing that An(FK−2/FK ) > 0
for K = ⌊n/2⌋ + 3. Note that K > 8 and K − n/2 ≥ K − ⌊n/2⌋ − 1/2 = 2.5. Therefore, if K is
even then An(FK−2/FK ) > 0 by Lemma 38(2); if K is odd then An(FK−2/FK ) > 0 by Lemma 38(4). So,
An(FK−2/FK ) > 0 regardless of the parity of K . But then theminimality of k implies k ≤ K = ⌊n/2⌋+3.

Since k ≥ ⌊n/2⌋ + 3 and k ≤ ⌊n/2⌋ + 3 we conclude k = ⌊n/2⌋ + 3. �

Theorem 40. The height of the CF-tree of An is 4 if n = 6, 6 if n = 10, and otherwise ⌊n/2⌋ + 2.

Proof. Let kn be the least of the positive integers k that satisfy An(Fk−2/Fk) > 0. By Theorem 29, kn−1
is the height of the CF-tree of An. For n ≤ 15, the assertion can be verified by calculating kn explicitly.
For all other values of n, the assertion holds by Theorem 39. �

Taken together, Theorems 29 and 40 completely describe the CF-trees of the polynomials An.

6. The non-close roots

Following the plan of Section 3.2, we now consider the roots of An that are different from a1 and
a2. We show that those roots are outside of or on a circle Ca with center and radius a = 1/φ2.

Lemma 41. The minimum absolute value of the polynomial B on Ca is 3
√
8a− 3.

Proof. Let z = x+ iywhere x and y are real. Then

B(z) = z2 − 3z + 1 = (x2 − y2 − 3x+ 1)+ i(2xy− 3y).

If z lies on Ca then (x − a)2 + y2 = a2. In particular, y2 = 2ax − x2 and 0 ≤ x ≤ 2a. Making the
substitution for y2 we obtain

B(z) = (2x2 − 2ax− 3x+ 1)+ i(2x− 3)y.

Squaring the real part and the imaginary part yields

|B(z)|2 = (4x4 − 8ax3 − 12x3 + 4a2x2 + 12ax2 + 13x2 − 4ax− 6x+ 1)+ (4x2 − 12x+ 9)y2.

Substituting again for y2 and combining terms,

|B(z)|2 = 4a2x2 − 12ax2 + 4x2 + 14ax− 6x+ 1 = 14ax− 6x+ 1,

since a2 − 3a + 1 = 0. Thus the square of the norm on Ca is a linear function of x, x ∈ [0, 2a], that
achieves its minimum at 2a, where the square of the norm is 28a2 − 12a + 1, which simplifies to
72a− 27 = 9(8a− 3), again using a2 = 3a− 1. �

The following theorem is a specialization of Rouché’s theorem which is proven, for example, in
Marden’s book (1949, Theorem 1.3).

Theorem 42. If P and Q are polynomials, C is a circle, and |P(z)| < |Q (z)| on C, then, counting
multiplicities, the polynomial F = P + Q has the same number of zeros interior to C as does Q .

Theorem 43. The only roots of An inside Ca are a1 and a2.

Proof. By Lemma 41, the minimum absolute value of the polynomial −2B(z)2 on Ca is 18(8a − 3),
which is greater than 1. The maximum absolute value of the polynomial zn on Ca is (2a)n < 1. Thus,
by Rouché’s theorem, Theorem 42, the polynomials−2B(z)2 and zn − 2B(z)2 = An(z) have the same
number of roots insideCa. But the only root of−2B(z)2 insideCa is the double root a, so the polynomial
An has exactly two roots inside Ca. By Theorem 17, those roots must be a1 and a2. �
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7. Linear fractional mappings of the non-close roots

We now track the images of the roots of An that are different from a1 and a2 under the linear
fractional mappings m−1k as k increases. Those images turn out to be in the left half-plane and to
converge to−φ, the negative fixed point of t−1 ◦ r .

Theorem 44. Let α be any root of An other than a1 and a2, and let k ≥ 2. Then m−1k (α) is in the left
half-plane.

Proof. Let α be a root of An, α ≠ a1 and α ≠ a2; note that α ≠ 0. We prove the theorem by induction
on k. We first show thatm−12 (α) = (F3α − F1)/(−F2α + F0) = α−1 − 2 is in the left half-plane. Let r1
and r2 be real numbers such that α = r1+ ir2. By Theorem 43, α is not in the interior of circle Ca with
center a and radius a. So, (r1 − a)2 + r22 ≥ a2 which simplifies to

r21 + r22 ≥ 2ar1. (7.1)

Now let r3 and r4 be real numbers such that α−1 = r3 + ir4. We need to show that r3 < 2. In case
|α| > 1/2 we clearly have |α−1| < 2 and hence r3 < 2. In case r1 ≤ 0 we use r3 = r1/(r21 + r22 )
to conclude r3 < 2. In all other cases, |α| ≤ 1/2 and r1 > 0. Then Inequality (7.1) yields r3 =
r1/(r21 + r22 ) ≤ r1/(2ar1) = 1/(2a) < 4/3 < 2. So, r3 < 2 in every case, and hence m−12 (α) is in the
left half-plane.

Now assume that, for some k, k ≥ 2, m−1k (α) is in the left half-plane. Since the mappings r and
t−1 map the left half-plane to itself, also (t−1 ◦ r ◦m−1k )(α) = m−1k+1(α) is in the left half-plane. Thus,
m−1k (α) is in the left half-plane for all k ≥ 2. �

The following two lemmas are special cases of the well-known equality

Fn+hFn+k − FnFn+h+k = (−1)nFhFk

which is proved in a book by Vajda (1989, (20a)). For Lemma 45, let h = 1, k = −1 and then replace
n by k; for Lemma 46, let h = 1, k = 2 and then replace n by k− 2.

Lemma 45. For any integer k,

Fk+1Fk−1 − F 2
k = (−1)k.

Proof. Graham et al. (1994) call the equation ‘‘Cassini’s identity’’ and give a short proof by induction
on k. �

Lemma 46. For any integer k,

FkFk−1 − Fk+1Fk−2 = (−1)k.

Proof. The left-hand side equals FkFk−1 − Fk+1(Fk − Fk−1) = FkFk−1 − Fk+1Fk + Fk+1Fk−1 = FkFk−1 −
(Fk−1 + Fk)Fk + Fk+1Fk−1 = −F 2

k + Fk+1Fk−1. Now apply Lemma 45. �

Lemma 47. Let k be an integer, k ≥ 2. Then

m−1k (x)+
Fk+1
Fk
=

(−1)k

Fk(Fkx− Fk−2)
.

Proof. Tom−1k (x) = (−Fk+1x+Fk−1)/(Fkx−Fk−2) add Fk+1/Fk, and express the result with a common
denominator,

Fk(−Fk+1x+ Fk−1)+ Fk+1(Fkx− Fk−2)
Fk(Fkx− Fk−2)

=
FkFk−1 − Fk+1Fk−2
Fk(Fkx− Fk−2)

.

Apply Lemma 46 to the numerator to complete the proof. �

Lemma 48. Let k ≥ 2. Then a is between Fk−2/Fk and Fk−1/Fk+1, and φ is between Fk/Fk−1 and Fk+1/Fk.
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Proof. The first assertion was shown in Theorem 26. The second assertion is a well-known fact in the
theory of continued fractions (Hardy and Wright, 1938, Sections 10.13, 10.14). Indeed, Fk/Fk−1 and
Fk+1/Fk are successive convergents to φ. �

Theorem 49. Letα be any root of An other than a1 or a2. For k ≥ 3 let β = m−1k (α). Then |β+Fk+1/Fk| <
5/F 2

k . If k ≥ 4 then |β + Fk+1/Fk| < 4/F 2
k . If k ≥ 5 then |β + Fk+1/Fk| < 3/F 2

k .

Proof. By Lemma 47,β + Fk+1
Fk

 =  1
Fk(Fkα − Fk−2)

 =  1
F 2
k (α − Fk−2/Fk)

. (7.2)

By the triangle inequality,

|α − Fk−2/Fk| ≥ |α − a| − |a− Fk−2/Fk|. (7.3)

By Theorem 43, |α − a| ≥ a. By Lemma 48, a is between Fk−2/Fk and Fk−1/Fk+1, so |a − Fk−2/Fk| <
|Fk−2/Fk − Fk−1/Fk+1| = 1/FkFk+1 by Lemma 46. Substituting into Inequality (7.3) we have

|α − Fk−2/Fk| > a− 1/FkFk+1.

Now if k ≥ 3 then a−1/FkFk+1 ≥ a−1/6 > 1/5 so, from line (7.2), |β+Fk+1/Fk| < 5/F 2
k . If k ≥ 4 then

a−1/FkFk+1 > a−1/15 > 1/4 so |β+Fk+1/Fk| < 4/F 2
k . If k ≥ 5 then a−1/FkFk+1 > a−1/40 > 1/3

so |β + Fk+1/Fk| < 3/F 2
k . �

Theorem 50. Letα be any root of An other than a1 or a2. For k ≥ 3 letβ = m−1k (α). Then |β+φ| < 6/F 2
k .

If k ≥ 4 then |β + φ| < 5/F 2
k . If k ≥ 5 then |β + φ| < 4/F 2

k .

Proof. By Lemma 48, φ is between Fk+1/Fk and Fk+2/Fk+1. We have

|φ − Fk+1/Fk| < |Fk+1/Fk − Fk+2/Fk+1|
= 1/FkFk+1
< 1/F 2

k

where the equality on the second line is due to Lemma 45. The assertions now follow from Theo-
rem 49. �

Theorem 51. Let α be any root of An other than a1 or a2. Let k ≥ 5, and let β = m−1k (α). Then
φ(1− φ−2k+6) < |β| < φ(1+ φ−2k+6).

Proof. By Theorem 50 and Lemma 32, |β+φ| < 4/F 2
k ≤ 4/φ2k−4 < φ−2k+7. Therefore φ−φ−2k+7 <

|β| < φ + φ−2k+7. �

Theorem 51 reflects the fact that−φ is an attractive fixed point of t−1 ◦ r with the local attraction rate
−1/φ2.

8. The non-close roots and the transformed polynomials

We investigate the contribution of the roots of An that are different from a1 and a2 to the
transformations Bk of An. Let Pk(x) = pk,n−2xn−2+· · ·+pk,0 be the monic polynomial whose roots are
thosem−1k (α) such that α is a root of An other than a1 or a2. We show that, if k is large enough, pk,n−2−i
is approximately

n−2
i


φi.

Theorem 52. Let m be a positive integer, and let β1, . . . , βm be nonzero complex numbers with
|arg(βi)| < π/(4m) for all i, 1 ≤ i ≤ m. Let β = β1 · · ·βm. Then Re(β) > |β|/

√
2.

Proof. Let arg : C − {0} −→ (−π, π] be the argument function (Knopp, 1952, for example),
and let z1 and z2 be nonzero complex numbers. Then arg(z1z2) = arg(z1) + arg(z2) provided that
−π < arg(z1) + arg(z2) ≤ π. We clearly have −π < arg(β1) + · · · + arg(βk) ≤ π for all k,
1 ≤ k ≤ m. Hence |arg(β)| = | arg(β1)+ · · · + arg(βm)| ≤ |arg(β1)| + · · · + | arg(βm)| < π/4. Thus
−π/4 < arg(β) < π/4 and, hence, Re(β) > |β| cos(π/4) = |β|/

√
2. �
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Theorem 53. Let α be any root of An other than a1 or a2. Let k > 1.04 ln n+4.414, and let β = m−1k (α).
Then |β + φ| < π/(8n).

Proof. Since k ≥ 5, Theorem 50 and Lemma 32, respectively, yield |β + φ| < 4/F 2
k and F 2

k ≥ φ2k−4.
Since the latter inequality implies 4/F 2

k ≤ 4/φ2k−4, it suffices to show that 4/φ2k−4 < π/(8n) or,
equivalently, that φ−2k+4 < π/(32n). But that means showing (2k− 4) ln φ > ln 32+ ln n− ln π .
Since ln φ > 0.481, ln 32 < 3.466 and ln π > 1.144, it suffices to show0.481(2k−4) > ln n+2.322
or, equivalently, 0.962k > ln n+4.246. But the latter inequality can be obtained bymultiplying both
sides of the hypothesis k > 1.04 ln n+ 4.414 by 0.962. �

Theorem 54. Letα be any root of An other than a1 or a2. Let k > 1.04 ln n+4.414, and letβ = −m−1k (α).
Then |arg(β)| < π/(4n).

Proof. By Theorem 44, β is in the right half-plane. So, letting x = | arg(β)|we have 0 < x < π/2. By
Theorem 53, |β−φ| < π/(4n), so |Im(β)| < π/(4n). Moreover, |β| ≥ |φ|−|β−φ| > φ−π/(4n) ≥
φ − π/20 > 5/4. Hence,

sin(x) =
|Im(β)|

|β|
<

π

4n


5
4
=

π

5n
. (8.1)

Since n ≥ 5 we have, in particular, sin(x) < π/25 < 1/2 = sin(π/6). But the sine function on
(0, π/2) is monotonically increasing, so we have x < π/6.

Now note that, on (0, π/6], sin(ξ)/ξ is a positive, monotone decreasing function: The function is
positive since both sin(ξ) and ξ are positive; furthermore,

sin(ξ)

ξ
= 1−


ξ 2

3!
−

ξ 4

5!


−


ξ 6

7!
−

ξ 8

9!


− · · · ,

where the parenthesized expressions are easily shown to be positive and monotone increasing on
(0, 1) ⊃ (0, π/6]. Hence ξ/ sin(ξ) is a monotone increasing function on (0, π/6]. In particular,
x/ sin(x) ≤ (π/6)/ sin(π/6) = π/3 < 5/4. So, x < (5/4) sin(x), and thus, using line (8.1),
x < π/(4n). �

Theorem 55. Let m be a positive integer, and let α1, . . . , αm be distinct roots of An, none equal to a1 or
a2. Let k > 1.04 ln n + 4.414. For any i, 1 ≤ i ≤ m, let βi = −m−1k (αi). Let β = β1 · · ·βm. Then
Re(β) > |β|/

√
2.

Proof. By Theorem 54, |arg(βi)| < π/(4n) < π/(4m) for all i sincem ≤ n−2 < n. Now the assertion
follows from Theorem 52. �

Theorem 56. Let k > 1.04 ln n+ 4.414. Then

1
√
2


n− 2

i


φi(1− φ−2k+6)i < pk,n−2−i <


n− 2

i


φi(1+ φ−2k+6)i

for all i, 1 ≤ i ≤ n− 2.

Proof. The monic linear factors of Pk are the polynomials x+ βj where βj = −m−1k (αj) and the αj are
the n− 2 roots of An other than a1 and a2. Therefore pk,n−2−i is the sum of all

n−2
i


products ph of i of

the βj. By Theorem 51,

φ(1− φ−2k+6) < |βj| < φ(1+ φ−2k+6)

for each j, so

φi(1− φ−2k+6)i < |ph| < φi(1+ φ−2k+6)i
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for each product ph. By Theorem 55, Re(ph) > |ph|/
√
2 for each product ph. Therefore

Re(pk,n−2−i) = Re


h

ph

=


h

Re(ph)

>

h

φi(1− φ−2k+6)i/
√
2

=
1
√
2

 n− 2
i


φi(1− φ−2k+6)i.

Since the nonreal βj occur in conjugate pairs, Pk is a real polynomial, that is, Re(pk,n−2−i) = pk,n−2−i,
proving the first inequality of the assertion. The second inequality follows from

pk,n−2−i ≤ |pk,n−2−i| ≤

h

|ph| <

h

φi(1+ φ−2k+6)i

=

 n− 2
i


φi(1+ φ−2k+6)i. �

9. More on the two close real roots

We already have an upper bound for the distances of a1 and a2, the two close real roots of An, from
a = 1/φ2. Now we derive a lower bound.
Theorem 57. Let h = an/2+1, and let h̄ = a1/2h = an/2+3/2. Then a − h < a1 < a − h̄ if n ≥ 5, and
a+ h̄ < a2 < a+ h if n ≥ 6; if n = 5 then a+ h < a2 < a+ h+ 0.002.
Proof. Wewill prove that An(a− h̄) > 0 for n ≥ 5. To do this wewill prove that (a− h̄)n > 2B(a− h̄)2
for n ≥ 5. First notice that (a− h̄)n = an(1−an/2+1/2)n. Observe further that 1−an/2+1/2 ≥ 1−1/(3n)
for n ≥ 5 by induction. Moreover, (1− 1/(3n))n is an increasing function of n that converges to e−1/3
and, for n = 5, (1− 1/(3n))n > 0.708. So, (a− h̄)n > 0.708an = 0.708h2/a2 > 0.708 · 6.854 · h2 >
4.852h2. On the other hand, B(a − h̄)2 = (3 − 2a + h̄)2h̄2 . For n ≥ 5, h̄ ≤ a4 < 0.022; so,
B(a− h̄)2 < (3−0.763+0.022)2h̄2 < 5.104h̄2 and 2B(a− h̄)2 < 10.208h̄2

= 10.208ah2 < 3.900h2.
Thus, (a − h̄)n > 2B(a − h̄)2 and An(a − h̄) > 0. By Lemma 16, also An(a + h̄) > 0. By Theorems 13
and 14, 0 < x < 1 and An(x) > 0 only if a1 < x < a2. Therefore, a1 < a − h̄ and a + h̄ < a2. By
Theorem 17, a− h < a1 and, for n ≥ 6, a2 < a+ h. This proves the first conclusion. The second was
proved in Theorem 17. �

Remark 58. The theorem can be used to show that the height of the CF-tree of An is at most n/2+ 5
without using the results of Section 5 that follow Theorem 26.
Let δ1, δ2 be such that a1 = (1+ δ1)a and a2 = (1+ δ2)a. Note that δ1 < 0 and δ2 > 0.
Lemma 59. Let i = 1 or i = 2, and let n ≥ 6. Then φ−n−1 < |δi| < φ−n.
Proof. By Theorem57, a+an/2+3/2 < a2 < a+an/2+1. Equivalently,φ−2+φ−n−3 < a2 < φ−2+φ−n−2.
By the definition of δ2, a2 = (1+ δ2)φ

−2. Substitution of this value for a2 in the preceding inequality
reveals that φ−n−1 < δ2 < φ−n. A similar argument for a1 shows that φ−n−1 < −δ1 < φ−n . �

Theorem 60. If n ≥ 5 then 0 < δ1 + δ2. If n ≥ 6 then δ1 + δ2 < φ−n−2.
Proof. By definition, a1 = a+ δ1a and An(a1) = 0 so, by Lemma 16, An(a− δ1a) > 0. Since An(x) < 0
for a2 < x < 1, this implies that a − δ1a < a2 = a + δ2a, which implies δ1 + δ2 > 0. Now
assume that n ≥ 6. Then, by Lemma 59,−δ1 and δ2 are both in the open interval (φ−n−1, φ−n) so that
δ1 + δ2 = |δ2 − (−δ1)| < φ−n − φ−n−1 = φ−n−2. �

10. Linear fractional mappings of the close real roots

Wenow track the images of the two close real roots of An under the linear fractionalmappingsm−1k
as k increases. So let bk,1 = m−1k (a1) and bk,2 = m−1k (a2) in this section and in Section 11. The two
roots, a1 and a2, are close to a, and it turns out thatm−1k (a) is particularly easy to track.
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Table 2
Proving Theorem 61. As k increases, the close real roots of Bk are centrifuged around 1/φ,
the positive fixed point of t−1 ◦ r . In each of the last five rows, {i, j} = {1, 2}.

Level (k) The images of a1, a2 under m−1k

0 1/3 < b0,1 < 1/φ2 < b0,2 < 1/2
1 1 < b1,2 < φ < b1,1 < 2
2 0 < b2,2 < 1/φ < b2,1 < 1

k 1/2 < bk,i < 1/φ < bk,j < 1
k+ 1 0 < bk+1,j < 1/φ < bk+1,i < 1

k′ 0 < bk′,i < 1/2 < 1/φ < bk′,j < 1
k′ + 1 0 < bk′+1,j < 1/φ < 1 < bk′+1,i
k′ + 2 bk′+2,i < 0 < 1/φ < bk′+2,j

Theorem 61. Let h be the height of the CF tree of An, and let k be an integer, 0 ≤ k < h. Then bk,1 and bk,2
are both positive.

Proof. We have b0,1 = a1 and b0,2 = a2, so, by Theorem 14, 0 < b0,1 < a < b0,2. Since a = φ−2 and
n ≥ 5,we have an/2+1 = φ−n−2 ≤ φ−7. Hence, by Theorem17, b0,1 > a−φ−7 > 0.381−0.035 > 1/3
and b0,2 < a+ φ−7 + 0.002 < 0.382+ 0.035+ 0.002 < 1/2, and so

1/3 < b0,1 < 1/φ2 < b0,2 < 1/2.

Those inequalities appear in row ‘‘0’’ of Table 2. Row ‘‘1’’ shows the images of b0,1 and b0,2 under
m−11 = t−1 ◦ r; note that (t−1 ◦ r)(1/φ2) = φ2

− 1 = φ. Row ‘‘2’’ shows the images of b1,1 and b1,2
under t−1; note that t−1(φ) = 1/φ.

Regarding the remaining rows of the table wewill say that a row holds if the inequalities of the row
are satisfied for (i, j) = (1, 2) or (i, j) = (2, 1). For example, row ‘‘k + 1’’ holds for k = 1. But row
‘‘k+ 1’’ does not hold for all k ≥ 1. Indeed, the row implies, by the Descartes rule, that var(Bk+1) ≥ 2
which, by hypothesis, does not hold for k = h− 1. So let k′ be minimal such that row ‘‘k+ 1’’ does not
hold for k = k′. Then k′ ≥ 2, and row ‘‘k+ 1’’ holds for k = k′ − 1. Hence,

there are i, j such that {i, j} = {1, 2} and 0 < bk′,i < 1/φ < bk′,j < 1. (10.1)

Now note that, for all k, k ≥ 2, we havem−1k+1 = (t−1 ◦ r) ◦m−1k , so that row ‘‘k’’ implies row ‘‘k+ 1’’.
We conclude that row ‘‘k’’ does not hold for k = k′. Hence,

there are no i, j s. t. {i, j} = {1, 2} and 1/2 < bk′,i < 1/φ < bk′,j < 1. (10.2)

By (10.1) and (10.2) we have 0 < bk′,i ≤ 1/2 and so, since bk′,i is not rational, 0 < bk′,i < 1/2. Hence
row k′ holds and, consequently, rows k′ + 1 and k′ + 2.

The table shows that bk,1 and bk,2 are positive for all k, 0 ≤ k < k′ + 2. To complete the proof
we show k′ + 2 ≥ h by showing that var(Bk′+2) = 1. Indeed, by row ‘‘k′ + 2’’ and Theorem 44, Bk′+2
has exactly one positive root, so var(Bk′+2) is positive and odd by the Descartes rule. Moreover, by
Theorem 19 and subadditivity, Theorem 21, var(Bk′+2) ≤ 2. Hence, var(Bk′+2) = 1. �

The next two lemmas are well-known. Benjamin and Quinn (2003, Corollaries 33 and 34) state them
for positive k and use a different proof method.

Lemma 62. Let k be an integer. Then φk
= Fkφ + Fk−1.

Proof. Induction on k using φ2
= φ + 1 and the Fibonacci recurrence. �

Lemma 63. Let k be an integer. Then (−1)k+1φ−k = Fkφ − Fk+1.

Proof. Replace k by −k in Lemma 62 to obtain φ−k = F−kφ + F−k−1 = (−1)k+1Fkφ + (−1)k+2Fk+1.
Multiplying by (−1)k+1 completes the proof. �
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Theorem 64. Let i = 1 or i = 2. Then, for all k, k ≥ 2,

bk,i −
1
φ
=

−1
(−1)kφ−k+3 + Fkφδi

φk+1δi.

Proof. Substituting ai = (1+ δi)a for x in the formula form−1k (x) in Table 1,

bk,i −
1
φ
=
−Fk+1(1+ δi)φ

−2
+ Fk−1

Fk(1+ δi)φ−2 − Fk−2
−

1
φ
=
−Fk+1(1+ δi)+ Fk−1φ2

Fk(1+ δi)− Fk−2φ2
−

1
φ

=
Fk−1φ3

− Fk+1(1+ δi)φ − Fk(1+ δi)+ Fk−2φ2

Fk(1+ δi)φ − Fk−2φ3

=
Fkφ2
− Fkφ − Fk+1φδi − Fk(1+ δi)

−Fk−2φ2 + Fk−1φ + Fkδiφ
=

−Fk+1φ − Fk
Fk−3φ − Fk−2 + Fkφδi

δi

=
−1

(−1)kφ−k+3 + Fkφδi
φk+1δi,

where line 3 is obtained using Fk = Fk−1 + Fk−2 and φ2
= φ + 1, and the last line is obtained using

Lemmas 62 and 63. �

Lemma 65. If k ≥ 12 then

1.17080 <
Fk

φk−2
< 1.17083.

Proof. The assertion clearly holds for k = 12 and k = 13. Now let j be an integer, j ≥ 12, and assume
that the assertion holds for k = j and k = j+ 1. Then

1.17080(φj−2
+ φj−1) < Fj + Fj+1 < 1.17083(φj−2

+ φj−1).

Since 1+φ = φ2, the left-hand side equals 1.17080φj, and the right-hand side equals 1.17083φj. The
sum in the middle equals Fj+2. Hence the assertion holds for k = j+ 2. �

Theorem 66. Let n ≥ 28 and 12 ≤ k ≤ n/2− 2 (and note that δ1 < 0 and δ2 > 0). Then, for even k,

−φ2k−2δ1 < bk,1 −
1
φ

< −1.026φ2k−2δ1, (10.3)

−φ2k−2δ2 < bk,2 −
1
φ

< −0.975φ2k−2δ2. (10.4)

For odd k,

φ2k−2δ1 < bk,1 −
1
φ

< 0.975φ2k−2δ1, (10.5)

φ2k−2δ2 < bk,2 −
1
φ

< 1.026φ2k−2δ2. (10.6)

Proof. Let i = 1 or i = 2. Then |Fkφδi| > 0, so

1
φ−k+3 + |Fkφδi|

< φk−3 <
1

φ−k+3 − |Fkφδi|
. (10.7)

By Lemma 65, Fkφ < 1.171φk−1 and, by Lemma 59, |δi| < φ−n. Therefore, |Fkφδi| < 1.171φk−n−1.
By hypothesis,−n ≤ −2k− 4, so

|Fkφδi| < 1.171φ−k−5 = 1.171φ−8φ−k+3 < 0.025φ−k+3.
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In particular,

|Fkφδi| < 0.025φ−k+3 (10.8)

and hence

|Fkφδi| <
0.025
0.975

φ−k+3. (10.9)

By Inequality (10.8), φ−k+3 − |Fkφδi| > 0.975φ−k+3, hence

1
φ−k+3 − |Fkφδi|

<
1

0.975
φk−3 < 1.026φk−3. (10.10)

By Inequality (10.9), 0.975φk−3
|Fkφδi| < 0.025, hence 0.975φk−3(φ−k+3 + |Fkφδi|) < 1 and so

0.975φk−3 <
1

φ−k+3 + |Fkφδi|
. (10.11)

Combining (10.7) and (10.10),

φk−3 <
1

φ−k+3 − |Fkφδi|
< 1.026φk−3. (10.12)

Combining (10.7) and (10.11),

0.975φk−3 <
1

φ−k+3 + |Fkφδi|
< φk−3. (10.13)

Now suppose that k is even. Then, by Theorem 64, and since δ1 = −|δ1|,

bk,1 −
1
φ
=

1
φ−k+3 − |Fkφδ1|

φk+1
|δ1|,

so, multiplying line (10.12) by φk+1
|δ1| yields

φk−3φk+1
|δ1| < bk,1 −

1
φ

< 1.026φk−3φk+1
|δ1|,

or, equivalently, Assertion (10.3). Again by Theorem 64, and since δ2 = |δ2|,

bk,2 −
1
φ
=

−1
φ−k+3 + |Fkφδ2|

φk+1δ2,

so, multiplying line (10.13) by φk+1δ2 yields

0.975φk−3φk+1δ2 < −


bk,2 −

1
φ


< φk−3φk+1δ2,

or, equivalently, Assertion (10.4).
Next suppose that k is odd. Then, by Theorem 64, and since δ1 = −|δ1|,

bk,1 −
1
φ
=

1
φ−k+3 − Fkφδ1

φk+1δ1 =
1

φ−k+3 + |Fkφδ1|
φk+1δ1,

so,multiplying line (10.13) byφk+1δ1 yieldsAssertion (10.5). Again by Theorem64, and since δ2 = |δ2|,

bk,2 −
1
φ
=

1
φ−k+3 − |Fkφδ2|

φk+1δ2,

so, multiplying line (10.12) by φk+1δ2 yields Assertion (10.6). �

Theorem 66 reflects the fact that 1/φ is a repulsive fixed point of t−1 ◦ r with the local repulsion
rate−φ2.
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11. The close real roots and the transformed polynomials

We investigate the contribution of the close real roots a1 and a2 of An to the transformations Bk of
An. Let Qk(x) be the monic quadratic polynomial that has bk,1 and bk,2 as roots and that is a divisor of
Bk(x). Theorems 67–69 serve to compare Qk(x) to the polynomial x2 − (2/φ)x+ 1/φ2.

Theorem 67. Let n ≥ 28 and 12 ≤ k ≤ n/2− 2. Then, for even k,

−φ−n+2k−4 < bk,1 + bk,2 −
2
φ

< 0.051φ−n+2k−2.

For odd k,

0 < bk,1 + bk,2 −
2
φ

< 1.109φ−n+2k−4.

Proof. First let k be even. In Theorem 66, add lines (10.3) and (10.4) to obtain

− (δ1 + δ2)φ
2k−2 < bk,1 + bk,2 − 2/φ

< (−1.026δ1 − 0.975δ2)φ2k−2
= −0.975(δ1 + δ2)φ

2k−2
− 0.051δ1φ2k−2.

By Theorem 60, δ1+δ2 < φ−n−2, so−φ−n+2k−4 < bk,1+bk,2−2/φ. By the same theorem, δ1+δ2 > 0
and, by Lemma 59,−δ1 = |δ1| < φ−n. Hence, bk,1 + bk,2 − 2/φ < 0.051φ−n+2k−2.

Now let k be odd. In Theorem 66, add lines (10.5) and (10.6), again apply Theorem 60, and note
that, by Lemma 59, δ2 = |δ2| < φ−n; this yields

0 < (δ1 + δ2)φ
2k−2 < bk,1 + bk,2 − 2/φ

< (0.975δ1 + 1.026δ2)φ2k−2 < 0.975(δ1 + δ2)φ
2k−2
+ 0.051δ2φ2k−2

< (0.975+ 0.051φ2)φ−n+2k−4 < 1.109φ−n+2k−4. �

Theorem 68. Let n ≥ 28 and 12 ≤ k ≤ n/2− 2. Then

−0.438φ−n+2k−3 < bk,1bk,2 −
1
φ2

< 0.424φ−n+2k−3.

Proof. By Theorem 66 and Lemma 59 we have, for even k,
1
φ
+ φ−n+2k−3 <

1
φ
+ φ2k−2

|δ1| < bk,1 <
1
φ
+ 1.026φ2k−2

|δ1| <
1
φ
+ 1.026φ−n+2k−2

and
1
φ
− φ−n+2k−2 <

1
φ
− φ2k−2δ2 < bk,2 <

1
φ
− 0.975φ2k−2δ2 <

1
φ
− 0.975φ−n+2k−3.

For odd k,
1
φ
− φ−n+2k−2 <

1
φ
− φ2k−2

|δ1| < bk,1 <
1
φ
− 0.975φ2k−2

|δ1| <
1
φ
− 0.975φ−n+2k−3

and
1
φ
+ φ−n+2k−3 <

1
φ
+ φ2k−2δ2 < bk,2 <

1
φ
+ 1.026φ2k−2δ2 <

1
φ
+ 1.026φ−n+2k−2.

So, for any k,
1
φ
+ φ−n+2k−3


1
φ
− φ−n+2k−2


< bk,1bk,2

<


1
φ
− 0.975φ−n+2k−3


1
φ
+ 1.026φ−n+2k−2


.
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The upper left side is equal to

φ−2 − φ−n+2k−3 + φ−n+2k−4 − φ−2n+4k−5 = φ−2 − φ−n+2k−3(1− φ−1 + φ−n+2k−2)

≥ φ−2 − φ−n+2k−3(1− φ−1 + φ−6)

> φ−2 − 0.438φ−n+2k−3,

while the lower right side is strictly less than

φ−2 + φ−n+2k−3(1.026− 0.975/φ) < φ−2 + φ−n+2k−3(1.026− 0.602)
= φ−2 + 0.424φ−n+2k−3. �

The polynomial Qk was defined as the monic quadratic polynomial with roots bk,1 and bk,2. Now let ck
and dk be such that Qk(x) = x2 − ckx+ dk. Then ck = bk,1 + bk,2 and dk = bk,1bk,2.

Theorem 69. Let n ≥ 28 and 12 ≤ k ≤ n/2 − 2. Then |ck − 2/φ| < 1.109φ−n+2k−4 and
|dk − φ−2| < 0.438φ−n+2k−3. In particular, 1.212 < ck < 1.261 and 0.365 < dk < 0.398.

Proof. The first assertion is immediate from Theorem 67 if k is odd. It also follows from Theorem 67
if k is even since φ−n+2k−4 < 1.109φ−n+2k−4 and also

0.051φ−n+2k−2 = 0.051φ2φ−n+2k−4 < 0.134φ−n+2k−4 < 1.109φ−n+2k−4.

The second assertion is immediate from Theorem 68.
The hypothesis k ≤ n/2− 2 is equivalent to−n+ 2k− 4 ≤ −8 and to−n+ 2k− 3 ≤ −7. Thus

the two proven assertions imply

ck > 2/φ − 1.109φ−n+2k−4 ≥ 2/φ − 1.109φ−8 > 1.236− 0.024 = 1.212,
ck < 2/φ + 1.109φ−n+2k−4 ≤ 2/φ + 1.109φ−8 < 1.237+ 0.024 = 1.261,
dk > φ−2 − 0.438φ−n+2k−3 ≥ φ−2 − 0.438φ−7 > 0.381− 0.016 = 0.365,
dk < φ−2 + 0.438φ−n+2k−3 ≤ φ−2 + 0.438φ−7 < 0.382+ 0.016 = 0.398. �

12. The transformed polynomials

The polynomial Qk represents the contribution of the two close roots of An to the polynomial
transformation Bk of An; the polynomial Pk represents the contribution of the non-close roots of An.
We combine those contributions by letting Rk(x) = rk,nxn + rk,n−1xn−1 + · · · + rk,0 = Pk(x)Qk(x) so
that Rk(x) is the monic associate of the integer polynomial Bk(x). We show that the low-order and
high-order coefficients of the polynomial Bk are large negative integers.

Theorem 70. Let n and k be integers such that n ≥ 28, 12 ≤ k ≤ n/2 − 2 and k > 1.04 ln n + 4.414.
Then rk,n−1 > (n− 2)/

√
2 and rk,n−2 > 21(n− 2).

Proof. To show the first assertion note that rk,n−1 = pk,n−3− ck. By Theorem 56, pk,n−3 > (n−2)(φ−
φ−2k+7)/

√
2 > (n − 2)(φ − φ−17)/

√
2 > 1.14(n − 2). By Theorem 69, and since n − 2 ≥ 26,

ck < 1.261 < 0.05(n− 2). So rk,n−1 > 1.09(n− 2) > (n− 2)/
√
2.

For the second assertion note that rk,n−2 = pk,n−4 − ckpk,n−3 + dk. But, by Theorem 69, dk > 0, so
rk,n−2 > pk,n−4 − ckpk,n−3. We complete the proof with the sequence of inequalities

pk,n−4 − ckpk,n−3 >
1
√
2


n− 2
2


φ2(1− φ−2k+6)2 − ck(n− 2)φ(1+ φ−2k+6)

> (n− 2)φ

0.999

2
√
2

(n− 3)φ − 1.001ck


> (n− 2)φ


0.999
2.829

· 25 · 1.618− 1.263


> (14.284− 1.263)φ(n− 2)
> 21(n− 2)
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where the first inequality is due to Theorem 56. The second inequality holds since φ−2k+6 < 0.0002
by the hypothesis that k ≥ 12. For the third inequality we use n− 3 ≥ 25 and, again, ck < 1.261. �

Lemma 71. Let u, v be real numbers, u > 0 and v > −1. Then the function

x −→
1− x
1+ x

uxv
is monotone decreasing on (0, 1).

Proof. The function that maps x to

uxv ln
1− x
1+ x


= uxv(ln(1− x)− ln(1+ x))

= uxv


−x−

1
2
x2 −

1
3
x3 − · · ·


−


x−

1
2
x2 +

1
3
x3 − · · ·


= −2uxv


x+

1
3
x3 +

1
5
x5 + · · ·


= −2u


x1+v
+

1
3
x3+v
+

1
5
x5+v
+ · · ·


is clearly a decreasing function on (0, 1). But the exponential of a decreasing function is also a
decreasing function. �

Lemma 72. Let n > 1, and let k ≥ 2.08 ln n+ 3. Then

1− φ−2k+6

1+ φ−2k+6
≥

1− 1/n2

1+ 1/n2
.

Proof. We have ln(φ2(k−3)) = (k−3) ln(φ2) > 0.962(k−3) ≥ 0.962 ·2.08 · ln(n) > 2 ln n = ln(n2).
So φ2(k−3) > n2 and, hence, φ−2k+6 < 1/n2. But n > 1, so both 1/n2 and φ−2k+6 are in the interval
(0, 1), and Lemma 71 can be applied with u = 1 and v = 0. �

Theorem 73. Let n and k be integers such that n ≥ 28, 12 ≤ k ≤ n/2− 2 and k ≥ 2.08 ln n+ 3. Then
rk,n−i > dkpk,n−i for all i, 3 ≤ i ≤ 0.45n.

Proof. Since Rk = PkQk, we have rk,n−i = pk,n−2−i − ckpk,n−1−i + dkpk,n−i, so it suffices to show that
pk,n−2−i ≥ ckpk,n−1−i. We first note that, by Theorem 56, pk,n−1−i = pk,n−2−(i−1) > 0. Indeed, the
hypotheses of the theorem are satisfied since k ≥ 2.08 ln n + 3 ≥ 1.04 ln n + (1.04 ln 28 + 3) >
1.04 ln n+ 4.414. So, after dividing by pk,n−1−i it suffices to show that pk,n−2−i/pk,n−1−i ≥ ck.

Applying Theorem 56 again,

pk,n−2−i
pk,n−1−i

>


n− 2

i


φi(1− φ−2k+6)i


√
2

n− 2
i− 1


φi−1(1+ φ−2k+6)i−1

=
n− i− 1

i
·

φ
√
2
· (1− φ−2k+6) ·


1− φ−2k+6

1+ φ−2k+6

i−1

.

We will analyze the four factors of the latter expression from left to right. Since i ≤ 0.45n we have
(n − i − 1)/i ≥ (0.55n − 1)/(0.45n) = 0.55/0.45 − 1/(0.45n) ≥ 0.55/0.45 − 1/(0.45 · 28) >

1.2222 − 0.0794 = 1.1428. Furthermore, φ/
√
2 > 1.144 and, since k ≥ 12, 1 − φ−2k+6 > 0.9998.

Using i− 1 < n/2, Lemma 72, and Lemma 71 with u = 1/2, v = −1/2 and x = n−2,
1−φ−2k+6

1+φ−2k+6

i−1
>


1−φ−2k+6

1+φ−2k+6

n/2
≥


1−1/n2

1+1/n2

n/2
≥


1−1/282

1+1/282

14
> 0.9649.
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In summary,
pk,n−2−i
pk,n−1−i

> 1.1428 · 1.144 · 0.9998 · 0.9649 > 1.261.

But 1.261 > ck by Theorem 69. �

Theorem 74. Let n and k be integers such that n ≥ 28, 12 ≤ k ≤ n/2− 2 and k ≥ 2.08 ln n+ 3. Then
rk,i > 1 for all i, 0 ≤ i ≤ n/10.

Proof. We will apply Theorems 56 and 69. The hypotheses of Theorem 69 are clearly satisfied, and
the hypotheses of Theorem 56 are satisfied since k ≥ 2.08 ln n+ 3 ≥ 1.04 ln n+ (1.04 ln 28+ 3) >
1.04 ln n+ 4.414. We begin by rewriting the inequalities given by Theorem 56 as follows.

1
√
2


n− 2

i


φn−2−i(1− φ−2k+6)n−2−i < pk,i <


n− 2

i


φn−2−i(1+ φ−2k+6)n−2−i

for all i such that 0 ≤ i < n− 2.
We first discuss rk,0 = dkpk,0. By Theorem 56 rewritten, pk,0 > φn−2(1 − φ−2k+6)n−2/

√
2. Since

k ≥ 12, (1 − φ−2k+6) > 0.999 and therefore φ(1 − φ−2k+6) > 1.616. So pk,0 > 1.61626/
√
2. By

Theorem 69, dk > 0.365, so rk,0 = dkpk,0 > 0.365 · 1.61626/
√
2 > 1.

Now we discuss rk,1 = dkpk,1 − ckpk,0 and, for 2 ≤ i ≤ n/10, rk,i = pk,i−2 − ckpk,i−1 + dkpk,i. We
shall consider the ratio dkpk,i/ckpk,i−1 for all i, 1 ≤ i ≤ n/10. By Theorem 56 rewritten,

dkpk,i
ckpk,i−1

> dk
n− i− 1

i

1− φ−2k+6

1+ φ−2k+6

n−2−i
ck
√
2φ(1+ φ−2k+6).

Again, we have dk > 0.365. Using Lemma 72, n − 2 − i < n, and Lemma 71 with u = 1, v = −1/2
and x = n−2,

1−φ−2k+6

1+φ−2k+6

n−2−i
≥


1−1/n2

1+1/n2

n−2−i
>


1−1/n2

1+1/n2

n
≥


1−1/282

1+1/282

28
> 0.931.

By Theorem 69, ck < 1.261. Also,
√
2 < 1.4143, φ < 1.6181, and 1+ φ−2k+6 ≤ 1+ φ−18 < 1.0002.

Evaluating,

dkpk,i
ckpk,i−1

>
0.365 · 0.931

1.261 · 1.4143 · 1.6181 · 1.0002
·
n− i− 1

i
> 0.1177 ·

n− i− 1
i

.

For i = 1 we obtain dkpk,1/ckpk,0 > 0.1177(n − 2) ≥ 0.1177 · 26 > 2 and therefore rk,1 > ckpk,0.
But ckpk,0 > pk,0 by Theorem 69, and we already determined that pk,0 > 1. So rk,1 > 1. For i such that
2 ≤ i ≤ n/10 we have

n− i− 1
i

≥
n− i
i
−

1
2
≥ 9−

1
2
= 8.5,

so dkpk,i/ckpk,i−1 > 0.1177 · 8.5 > 1. Therefore, dkpk,i > ckpk,i−1 and, hence, rk,i > pk,i−2. By Theo-
rem 56 rewritten, pk,i−2 > (φ(1 − φ−2k+6))n−i/

√
2. We already determined that φ(1 − φ−2k+6) >

1.616. So,

pk,i−2 >
1.616n−i

√
2
≥

1.6160.9n

√
2

>
1.54n

√
2

> 1,

and thus rk,i > 1. �

In the remainder of this section, and in Section 13, let the polynomial Bk be given as Bk(x) = bk,nxn
+ · · · + bk,0.

Theorem 75. Let n and k be integers, n ≥ 5 and 2 ≤ k ≤ n/2 − 2. Then bk,n and bk,0 are both negative
and bk+1,n = bk,0.
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Proof. Using the entry for An in Table 1 we obtain B1(x) = (T ◦ R)(An(x)) = T(−2xn + 12xn−1 −
22xn−2 + 12xn−3 − 2xn−4 + 1). Since T preserves leading coefficients, we have b1,n = −2. Since b1,0
is the sum of the coefficients of R(An), we have b1,0 = −1. The leading coefficient of B2 is the same as
the leading coefficient of B1 since B2 = T(B1). So b2,n = −2.

Now let 2 ≤ k ≤ n/2 − 2. Then the product of the negatives of the roots of Bk is positive. Indeed,
by Theorem 61, the two close real roots are positive. By Theorem 44, all the other roots of Bk are in
the left half-plane. Of those roots, the real roots are negative and the nonreal roots occur in conjugate
pairs. It follows that the product of the negatives of the roots of Bk is positive. Therefore, bk,n and bk,0
have the same sign whenever 2 ≤ k ≤ n/2− 2.

In particular, b2,n and b2,0 are both negative. This is the basis of a proof by induction on k. For the
induction step observe that, if bk,0 < 0 for some k, 2 ≤ k ≤ n/2 − 3, then bk+1,n = bk,0 < 0 since
Bk+1 = (T ◦ R)(Bk) and T preserves leading coefficients. �

Theorem 76. Let n ≥ 28, let k1 be the least integer that is at least 12 and at least 2.08 ln n + 3, and let
k2 be the greatest integer that is at most n/2− 2. Let φ̄ = φ(1− φ−18). Then bk,i ≤ −φ̄(n−5)(k−k1) for all
k, k1 ≤ k ≤ k2 and all i, 0.55n ≤ i ≤ n.

Proof. Let k be such that k1 ≤ k ≤ k2. Then k ≥ 2.08 ln n + 3 ≥ 1.04 ln n + 1.04 ln n + 3 ≥
1.04 ln n + 1.04 ln 28 + 3 > 1.04 ln n + 4.414, so Theorems 56, 70 and 73 are applicable. Since
Rk is monic and of degree n, rk,n = 1. By Theorem 70, rk,n−1 > 1 and rk,n−2 > 1. By Theorem 73,
rk,n−i > dkpk,n−i for all i, 3 ≤ i ≤ 0.45n. By Theorem 56, pk,n−2−i >

n−2
i


φ̄i/
√
2 for all i, 1 ≤ i ≤ n−2,

hence pk,n−i >
n−2
i−2


φ̄i−2/

√
2 for all i, 3 ≤ i ≤ n. But φ̄ > 1 and

n−2
i−2


≥ n− 2 for all i, 3 ≤ i ≤ 0.45n,

and so rk,n−i > (n−2)dk/
√
2 ≥ 26dk/

√
2. By Theorem 69, dk > 0.365. So rk,n−i > 26 ·0.365/

√
2 > 1

for all i, 3 ≤ i ≤ 0.45n. So far we have shown that rk,i ≥ 1 for all k, k1 ≤ k ≤ k2, and for all i,
0.55n ≤ i ≤ n.

Let k again be such that k1 ≤ k ≤ k2. Since Rk is the monic associate of Bk we have bk,i = bk,n · rk,i
for all i, 0 ≤ i ≤ n. By Theorem 75, bk,n is negative. Since bk,n is also an integer, we have bk,n ≤ −1.
Hence, bk,i = bk,n · rk,i ≤ bk,n ≤ −1 for all i, 0.55n ≤ i ≤ n. This proves the assertion for k = k1.

We now perform an induction step. Assume that, for some k such that k1 ≤ k < k2 we have
bk,i ≤ −φ̄(n−5)(k−k1) for all i, 0.55n ≤ i ≤ n. Then, in particular, bk,n ≤ −φ̄(n−5)(k−k1). By Theorem 56,
pk,0 > φ̄n−2/

√
2. Since Rk = Pk · Qk, we have rk,0 = pk,0dk > φ̄n−2dk/

√
2. As before, dk > 0.365, so

dk/
√
2 > 0.258 > φ−3 > φ̄−3. Hence, rk,0 > φ̄n−5, and thus bk,0 = bk,n · rk,0 < −φ̄(n−5)(k−k1)φ̄n−5

=

−φ̄(n−5)((k+1)−k1). By Theorem 75, bk+1,n = bk,0. So, we have bk+1,i = bk+1,n · rk+1,i ≤ −φ̄(n−5)((k+1)−k1)

for all i, 0.55n ≤ i ≤ n, completing the induction step. Hence the assertion holds for all k, k1 ≤ k ≤
k2. �

Theorem 77. Let n ≥ 28, let k1 be the least integer that is at least 12 and at least 2.08 ln n + 3, and let
k2 be the greatest integer that is at most n/2− 2. Let φ̄ = φ(1− φ−18). Then bk,i < −φ̄(n−5)(k−k1) for all
k, k1 ≤ k ≤ k2 and all i, 0 ≤ i ≤ n/10.

Proof. Let k be such that k1 ≤ k ≤ k2. For all i, 0 ≤ i ≤ n/10, we have

bk,i = bk,n · rk,i
< bk,n
≤ −φ̄(n−5)(k−k1)

where the equality holds since Rk is the monic associate of Bk. The first inequality holds since,
by Theorem 75, bk,n is negative and, by Theorem 74, rk,i > 1. The second inequality holds by
Theorem 76. �

We note that the coefficients of Bk cannot be reduced by extracting a common factor. Indeed, An is
monic and, hence, primitive so that the following results apply.

Lemma 78. Let A be a primitive polynomial. Then T(A) is primitive.



G.E. Collins, W. Krandick / Journal of Symbolic Computation 47 (2012) 1372–1412 1409

0 0 0 0
↓ ↓ ↓ ↓

an → a0,0 a0,1 a0,2 a0,3
an−1 → a1,0 a1,1 a1,2
an−2 → a2,0 a2,1
an−3 → a3,0

Fig. 13.1. Computing T(A) using additions. The coefficients of A are in the leftmost column with the leading coefficient at the
top. Each element ai,j , (i, j) ∈ In , is the sum of its upper and left neighbors. The antidiagonal contains the coefficients of T(A)

with the leading coefficient at the top, see Theorem 81.

Proof. For all polynomials A let T−1(A)(x) = A(x − 1). Note that, for all polynomials A and B,
T−1(A · B) = T−1(A) · T−1(B). Hence, if p is a real number and B is a polynomial then T−1(p · B) =
p · T−1(B). Assume now that T(A) is not primitive. Then there is an integer p, p > 1, and an integer
polynomial B such that T(A) = p · B. Then A = T−1(p · B) = p · T−1(B). But T−1(B) is an integer
polynomial, so A is not primitive. �

Theorem 79. Let A be a primitive polynomial. Then all polynomials in the CF-tree of A are primitive.

Proof. Every polynomial in the CF-tree of A is obtained from A by applying a sequence of translations
T and reciprocal transformations R. Both transformations preserve primitivity, T by Lemma 78, and R
since R preserves the set of non-zero coefficients. �

13. A lower bound for the computing time

We define classical translation by 1 by prescribing the arithmetic operations that are to be
performed (Johnson et al., 2005). We then derive a lower bound for the time required to translate
the polynomials R(Bk). When the CF-method is applied to the polynomials An, the total time for those
translations dominates n5.

Definition 80. Let n be a nonnegative integer, and let A be a polynomial, A(x) = anxn+· · ·+a1x+a0.
Let In = {(i, j) : i, j ≥ 0 and i+ j ≤ n}. For any k ∈ {0, . . . , n} and any (i, j) ∈ In, let

a−1,k = 0,
ak,−1 = an−k,
ai,j = ai,j−1 + ai−1,j.

Fig. 13.1 illustrates the definition.

Theorem 81.

A(x+ 1) =
n

h=0

an−h,hxh.

Proof. The assertion clearly holds for n = 0; so we may assume n > 0. For every k ∈ {0, . . . , n} let
Ak(x) =

k
h=0 ak−h,hx

h. The coefficients of the polynomial Ak reside on the k-th antidiagonal of the
matrix in Fig. 13.1 with the leading coefficient at the top. Then, for all k ∈ {0, . . . , n − 1}, we have
Ak+1(x) = (x+1)Ak(x)+an−(k+1). Nowan easy induction on k shows thatAk(x) =

k
h=0 an−k+h(x+1)

h

for all k ∈ {0, . . . , n}. In particular, An(x) =
n

h=0 ah(x+ 1)h = A(x+ 1). �

ByTheorem81, the coefficients of T(A) canbe computed from the coefficients ofAusing only additions.
No explicit additions are needed to compute the top row in Fig. 13.1, the elements a0,0, . . . , a0,n.

Definition 82. A method that computes the coefficients of T(A) from the coefficients of A is called
classical translation by 1 if, in the notation of Definition 80, the method performs the additions
ai,j = ai,j−1 + ai−1,j for the pairs (i, j) such that 1 ≤ i ≤ n and 0 ≤ j ≤ n and i+ j ≤ n.

Note that Definition 82 calls for n(n+ 1)/2 additions.
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Theorem 83. For all (i, j) ∈ In,

ai,j =
 i+ j

j


an +

 i+ j− 1
j


an−1 + · · · +

 j
j


an−i.

Proof. The assertion follows from Definition 80 by induction on i+ j. �

We analyze computing times using the integer length function L and the dominance relation between
functions; both concepts are well known (Collins, 1974).
Theorem 84. Let c be a constant, 0 < c ≤ 1. For any nonnegative integer n, let b be a negative integer
and let A(x) = anxn + · · · + a1x + a0 be an integer polynomial such that an−i ≤ b, for all i, 0 ≤ i ≤ cn.
Then the time to translate A by 1 using the classical method dominates n2 L(b).

Proof. Using Theorem 83, we have, for all (i, j) ∈ In, 0 ≤ i ≤ cn,

ai,j =
 i+ j

j


an +

 i+ j− 1
j


an−1 + · · · +

 j
j


an−i

≤

 i+ j
j


+

 i+ j− 1
j


+ · · · +

 j
j


b

=

 i+ j+ 1
j+ 1


b

≤ b,

and hence L(ai,j) ≥ L(b). According to Definition 82, the classical computation of T(A) requires the
computation of ai,j = ai,j−1 + ai−1,j for all pairs (i, j) ∈ In such that 1 ≤ i ≤ cn. But the number of
those pairs dominates n2. So the total computing time for all those additions dominates n2 L(b). �

Theorem 85. Let n ≥ 28, let k1 be the least integer that is at least 12 and at least 2.08 ln n+ 3, and let k2
be the greatest integer that is at most n/2− 2. Let k be such that k1 ≤ k ≤ k2. Then the time to compute
the polynomial Bk+1 from the polynomial R(Bk) using classical translation by 1 dominates n3(k− k1).

Proof. Let φ̄ = φ(1− φ−18) and b =

−φ̄(n−5)(k−k1)


. By Theorem 77, bk,i ≤ b for all i, 0 ≤ i ≤ n/10.

But the coefficients of R(Bk) are the coefficients of Bk in reverse order. So the coefficient of xn−i in R(Bk)
is less than b for 0 ≤ i ≤ n/10. Now Theorem 84, applied with c = 1/10, A = R(Bk), and b, yields that
the time to translate R(Bk) dominates n2 L(b). But L(b) dominates n(k− k1). �

Theorem 86. Let n ≥ 28, let k1 be the least integer that is at least 12 and at least 2.08 ln n+ 3, and let k2
be the greatest integer that is at most n/2− 2. Let k be such that k1 ≤ k ≤ k2. Then the time to translate
the polynomial Bk using classical translation by 1 dominates n3(k− k1).

Proof. Let φ̄ = φ(1 − φ−18) and b =

−φ̄(n−5)(k−k1)


. For all i, 0 ≤ i ≤ 0.45n, we have

0.55n ≤ n − i ≤ n and so, by Theorem 76, bk,n−i ≤ b. Now Theorem 84, applied with c = 0.45,
A = Bk, and b, yields that the time to translate Bk dominates n2 L(b). But L(b) dominates n(k− k1). �

Theorem 87. The time required for An by the CF-method with classical translation by 1 dominates n5.

Proof. Wemay assume n ≥ 100. Then the height of the CF-tree of An is ⌊n/2⌋ + 2 by Theorem 40. In
particular, themethod computes the polynomials Bk for all k, k1 ≤ k ≤ k2 where k1 is the least integer
greater than 2.08 ln n+ 3 and k2 = ⌊n/2⌋ − 2. Since n ≥ 100 we have k1 ≥ 13 and k2 ≥ 48 and

(k2 − k1)/n ≥ ((n/2− 5/2)− (2.08 ln n+ 4))/n
= 1/2− 5/(2n)− (2.08 ln n)/n− 4/n
≥ 1/2− 5/200− 0.0208 ln 100− 4/100
> 1/3

where the second inequality holds since the expression to the right of the equal sign is an increasing
function of n. Then, by Theorem 85, the total time to compute the polynomials Bk+1 from the
polynomials Bk for all k, k1 ≤ k ≤ k2, dominates n3k2

k=k1+1
(k − k1) = n3k2−k1

j=1 j > n3 ⌊n/3⌋
(⌊n/3⌋ + 1)/2 which dominates n5. �
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The lower bound also applies when the CF-method uses root bounds in the way of Procedure CF in
Sharma’s paper (2008, Section 2). Table 2 and the proof of Theorem 61 show how that method will
work if one assumes the computation of ideal polynomial root bounds. The ideal polynomial root
bound is defined as the floor of the smallest positive root. According to the table, the ideal polynomial
root bound is 0 at nodes ϵ and 21τ where τ ∈ {2}∗ and 2 ≤ |21τ | ≤ h − 1. At node ‘‘2" the ideal
polynomial root bound is 1. Hence Procedure CF computes, for all k, 2 ≤ k ≤ h − 1, the polynomial
Bk+1 from the polynomial R(Bk) in the same way as the CF-method that we analyzed. Therefore,
Theorems 85 and 87 apply also to Procedure CF. The theorems also apply to earlier statements of the
CF-method with root bounds (Akritas, 1978, 1980; Akritas et al., 2007; Tsigaridas and Emiris, 2008)
for the same reasons.

The time required for An by the CF-method is dominated by n5 if classical translation by 1 is used. If
either of the asymptotically fastmethods E and F in the paper by von zur Gathen and Gerhard (1997) is
used, the computing time is dominated by n4(log n)k for somepositive integer k; it is not clearwhether
such a function would be codominant with the computing time.
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