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ABSTRACT 

It is shown that the method of Arnoldi can he snccessfnlly used for solving large 
unsymmetric eigenproblems. Like the symmetric Lanczos method, Arnoldi’s algo- 
rithm realizes a projection process onto the Krylov s&space K, spanned by 
or,&,..., A”-‘q, where ur is the initial vector. We therefore study the conver- 
gence of the approximate eigenelements obtained by such a process. In particular, 
when the eigenvalues of A are real, we obtain bounds for the rates of convergence 
similar to those for the symmetric Lanczos algorithm. Some practical methods are 
presented in addition to that of Arnoldi, and several numerical experiments are 
described. 

1. INTRODUCTION 

Efficient numerical methods for solving large unsymmetric eigenvalue 
problems are rare. One might mention in particular the simultaneous itera- 
tion method, which has been extended in recent years to unsymmetric 
matrices [5, 191. Also of interest is singular vector iteration, which reduces 
the problem to a series of symmetric eigenproblems for which powerful 
algorithms already exist [9]. Unfortunately, however, we do not have at our 

disposal such a powerful tool as the symmetric Lanczos method. The 
biorthogonalization Lanczos algorithm for unsymmetric matrices is unstable 
and above all does not possess that convergence property which, for the 
large symmetric problems makes the Lanczos algorithm behave as a rapidly 
converging iterative method. 

This remarkable property of rapid convergence in the symmetric case 
can be explained by considering the method as a Rayleigh-Ritz projection 
method on the Krylov subspace K, spanned by vi, Au,, . . . , A”‘- ‘vl, where 
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vi is the starting vector and A the considered matrix [13, 161. This leads us to 
ask first whether this convergence property holds for unsymmetric matrices. 
In other words, if by any process one computes the Ritz elements of A on 
the Krylov subspace K,, can we expect some of the Ritz elements to 
become, as m increases, good approximations to some eigenelements of A? 
The answer is yes in general, as will be seen. 

Any Rayleigh-Ritz-Gale&in projection process applied to an unsymmet- 
ric matrix A on the Krylov subspaces K, will be said to belong to the class of 
generalized Lanczos methods. The second problem which arises then is to 
find algorithms based upon the generalized Lanczos methods that can be 
effectively used for large matrices. The present paper is more particularly 
devoted to this practical second question than to the first, which will be 
treated in detail in a forthcoming paper. 

The simplest algorithm which achieves the generalized Lanczos method 
is the one proposed by Amoldi in 1951 [l]. It reduces the given matrix A 
sequentially to Hessenberg form. The approximate eigenvalues are obtained 
by computing the eigenvalues of the Hessenberg matrix H, of order m, 
produced at the mth step of Amoldi’s process. However, because of storage 
considerations, the dimension m of the Hessenberg matrix H,,, cannot be 
chosen as large as necessary to ensure the desired accuracy. This difficulty 
may be overcome by using the process iteratively like the iterative Ianczos 
method [15]. Another possibility, which will be discussed, is to perform an 
incomplete orthogonalization. Then A will be represented by a band Hessen- 
berg matrix, but the basis will no longer be orthogonal. 

In Sec. 2 a theoretical introduction to the generalized Lanczos methods is 
given and some results on the convergence are established. In Sec. 3 we 
describe the basic Arnoldi algorithm, the iterative Arnoldi algorithm, and the 
incomplete orthogonalization algorithm. Finally, various numerical experi- 
ments are reported in Sec. 4, including comparisons with the simultaneous 
iteration method. 

2. THE GENERALIZED LANCZOS METHOD - THEORETICAL 
ASPECTS 

2.1. Notations and General Theory 
Given a real matrix A of dimension NX N, and a system V,E 

[q,u,,..., u,] of m linearly independent vectors, the projection method (or 
Gale&in method) on the subspace span [V,] aims to approximate an 
eigenpair A, + of A by a pair AC”‘), (p(“) satisfying 

$Jm)Espan[ Vm], 

(A -hc”‘)l)~$~) I u. 
(2.1) 

?’ i-1,2 ,..., m. 
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Writing $Jrn)= V&y’“‘, it is easily seen from (2.1) that A’“), y (“1 are eigen- 

elements of the generalized eigenvalue problem 

(Cm-A(m)Bm) =o, (2 4 

where the m x m matrices C,,, and B,,, are defined by C,,, = VJAV,, B,,, = 

V,‘V,. Obviously, A(m) and +(“‘) can be obtained by computing the solutions 

on the classical eigenvalue problem 

( B,-‘C,-ti(m)Z)y(“)=O. (2.3) 

All the solutions Xc”) of the problem (2.1) are usually called Ritz values 
on the subspace span [V,]. To each Ritz value AC”‘) is associated a Ritz vector 

r#J’“’ (see [13]). 
Throughout the paper the Ritz vectors (p’“), as well as the eigenvectors + 

of A, are supposed normalized so that I]+(“‘)]] = 1, I]$ ]I = 1, where ]I * I( 
denotes the (complex) Hermitian norm associated with the scalar product 

(*, *). 
Many applications of the projection method involve an orthonormal 

system V,, so that B,,, in (2.2) and (2.3) reduces to the identity matrix. The 

best illustration of such a process is the symmetric Lanczos method. It uses 

as V, the orthonormal system obtained by orthogonalizing the Krylov vectors 

v,,Au,,..., A”‘-‘vi, where ui is a starting vector. In this case, the matrix C,,, 

produced is tridiagonal, and Lanczos has made the remarkable and very 
useful observation that the sequence u,, m = 1,2,. . . , as well as the tridiago- 
nal matrices C, can be obtained from a simple three term recurrence 

formula [El]. 
We shall denote by K, the Krylov subspace of cN spanned by the 

vectors ui, AU,,..., Am-lvl. Any projection method on the subspace K, 

applied to unsymmetric matrices will be referred to as a generalized Lanczos 

method. 

It is important to introduce the orthogonal projector rr,,, on the subspace 

K, (see [IS]). Another way of stating the problem (2.1) is then 

so that the Ritz vectors are nothing but the eigenvectors of the operator 
A,,,= T,,, AT,,, which belong to K,, and the Ritz values are the corresponding 
eigenvalues. Note that each vector belonging to K,$ is an eigenvector of A,,, 

associated with the eigenvalue 0. These will be called trivial eigenvectors. 
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2.2. The Convergence 
In this section a brief analysis of the convergence will be given. Given an 

eigenvalue X of A, with associated eigenvector +, we may naturally ask 
whether there is a (finite) sequence of approximate eigenelements ti’“), 4’“) 

which converge rapidly to A, +. Indeed, it is usually observed that the Ritz 
elements x’“), r#J’“) converge so rapidly to the exact eigenelements that 

satisfactory accuracy is obtained for values of m much smaller than the 
dimension N of the matrix A. 

In order to analyze this property of fast convergence, it is important to 

establish certain a priori error bounds. This will be accomplished in two 

stages. We first give error bounds in terms of ]I (I- T,,,)+ ]I, the distance 

between $J and the Krylov subspace K, (Sec. 3.21). Then the behavior of 

]](Z-v,)+]] is studied in Sec. 3.2.2. 
Let us mention that the theory developed in [6], [ll], and [16], for the 

symmetric Lanczos method, uses mainly the Courant characterization of the 
eigenvalues, which is no longer valid here, since the operator A is not 

self-adjoint. Consequently, we suggest another approach using the residual 
vectors. If one wants to assert that the nontrivial eigenpair A’“), G(m) of A,,, is 

close to an eigenpair h, + of A, one should show that either of the residuals 
(A-X(“)Z)+(,(“) or (Am-AZ)+ is small [20]. 

The second of these possibilities is considered in the following theorem. 

THEOREM 2.1. Let y,=]]rrmA(Z-~,,,)]]. Then 

Proof. We have 

= -rr,,,(A-XZ)(Z-T,&-A(Z-T&L 

Since Z - T,,, is a projector, the factor (I- TV)+ can be replaced by (Z-n,)‘+ 
to yield (A,-XI)+= -T~(A-AZ)(Z-r,,,)(Z-T,)+-~(Z-T,&#J. The two 
vectors on the right hand side are orthogonal; thus 

P-5) 
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Observing that the first term on the right hand side satisfies 

then (2.4) follows directly from (2.5). 

2.3. Zneqdities for II (I- r,,,)+II 

From now on we shall assume for simplicity that the eigenvalues of A are 
all simple. The starting vector ur of the Krylov subspace K, can then be 
written as 

N 

u1= 2 “j@j’ (2.6) 
i=l 

where @$/=1,2....,N is a basis of CN formed by eigenvectors of A, of norm 1. 

We shall denote by P, the space of polynomials of degree not exceeding k. 

The next proposition is easy to prove. 

hOPOSITION2.1. LetusassUmethatcY,#OUndlet5i=~~_li,,I”i1/1”iI. 
Then 

ll(z-Tn)~ill < Ei min maJc IPGql. 
PEP,,_, j=1,2,...,N 

p(U=l j#i 

We shall set throughout 

p$, j=~,NIP(hi)l' 

p(b)=1 j#i 

(2.7) 

(W 

so that Proposition 2.1 now reads 
. 

The polynomial j?(z) which achieves the minimum in (2.8) is the best 
uniform approximation of the null function on the (discrete) set {Xi}lzr by 
polynomials of degree m- 1 satisfying the constraint p(X,) = 1. E$“‘) is there- 
fore the so-called degree of approximation of the null function by these 



274 Y. SAAD 

polynomials [ll], and the inequality (2.9) shows that the problem of studying 
the convergence is reduced to that of estimating this degree of approxima- 
tion. 

The problem of estimating the degree of approximation is a difficult one. 
Except for some particular shapes of spectra, such as purely real spectra or 
almost purely real spectra, it will not be easy to establish bounds for sirn) 
which are at the same time sharp and simple. 

Consideration is however given below to the cases of purely real spectra. 
The general case will be studied in a forthcoming paper which will be 
devoted to a detailed analysis of the convergence. It is also briefly discussed 
in [17]. 

THEOREM 2.2. Assume that all the eigenvalues of A are real and simple, 
and number them in descending order: 

A, >A,> * * * >A,. 

Set 

'i-'i+l 

yi=1+2hi+,-h, 

and 

if ifl, 

(2.10) 

where T,(x) is the k th degree Tchebycheff polynomial of the first kind. 

Proof. Let Qi be the space of all polynomials of the form q(x) = li( x)r( x), 
where 

(x-&)(x-&)* * * (x-h,_,) 
1i(x)= (hi-A,)(Ai-A,)* *. (A,-A,_,) 
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[when i=l take Zr(x)=l], and where r is a polynomial of degree not 
exceeding m-i, satisfying r(X,)=l. Clearly QEP,_~ and q(A,)= 1, so that 
from (2.8) we get 

(2.11) 

Since q(Ai)=O, j= 1, i- 1, the maximum in (2.11) is attained for a certain Aj 
with i>i. Hence 

elm) < min 
(xj-xl)o.. ('j-'i-1) r(A,) 

rEP,_, i$CJ (AimA,)* * ’ (Ai-A,_,) ’ 
r(h,)=l 

< Ki min max Ir(x)l* 
TEP,_i X<X<h,,l 
r(h,)=l 

(2.12) 

Now it is well known that the minimax term in (2.12) is equal to [ 7” _ i ( y,)] - ’ 
(see [lo]), which completes the proof. W 

A comparison with the results in [16] shows that when the eigenvahres 
are all real, the rates of convergence of the generalized Lanczos methods are 
bounded by quantities similar to those of the symmetric Lanczos process. 

REMARKS. 

(1) As indicated in [16], the right side of (2.10) is of the same order as 

2KiT,-m+i, where ri = yi + r yi - 1 . So one can take ri as a lower bound for 
the rate of convergence of the process. For example, when - 1= h, < h,_ r 
< *.. <A,=l<X, we have 

(2) There is no difficulty in proving a result similar to (2.10) for the case 
of purely imaginary spectra or for the cases where the spectrum lies on a 
straight line of the complex plane. 
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3. PRACTICAL METHODS 

In this section some algorithms based upon the generalized Lanczos 
method will be presented. We first shall describe the method of Amoldi in 

Sec. 3.1. Then in order to remedy some practical difficulties encountered 

with Amoldi’s method, an alternative algorithm, which will be called the 

incomplete orthogonalization algorithm, will be proposed in Sec. 3.2. 

3.1. The Method of Arnoldi 
Let ul be a starting vector of norm one, and let m be chosen not 

exceeding the dimension N of the matrix A. The method of Amoldi com- 

putes a sequence of vectors vi, os, . . . , u,,, by the recurrence 

hi+liui+l =Aui- 1: hiiui, 
i=l 

(34 

wherethehii,i=l,j+l,arechoseninsuchawaythatui+llui,i=1,...,~, 
and 1) ui+ 1 II= 1. This can be done by the following algorithm. 

ALGORITHM 3.1. 

Forj:=luntilmdo 

1. w:=Aui. 
2. Fori:=luntiljdo 

w:=w-uix(hii:=(Aui,ui)). (3.2) 

3, 

(3.3) 

One notes that the algorithm stops for j < m if hi+ 1, i vanishes. For simplicity 
it will be assumed throughout that at each step i we have h,+,,,#O, 

j=2,3 ,***, m. This is not actually a strong restriction on the vector q. 
Indeed, it can be shown that it is equivalent to the following assumption. 

For any polynomial p , p(A)u,=O --+ degree(p) >m. (3.4) 
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In other words, the annihilating polynomial of u1 bus degree not less than m. 
Note that it is also equivalent to the fact that dim( K,) = m (see [15] for the 
proofs of analogous results in the symmetric case). The above algorithm 
builds up ui+r from ur,ua,.... ui by first computing the vector Aui, which is 
then orthononnalized against the vectors ur, us,. . . , ui. The following theo- 
rem is easy to prove: 

THEOREM 3.1. 

(1) The system {q,~~,..., u,,,] computed from the algorithm (3.1) is an 
orthonormul basis of the subspace K, spanned by {ul,Aul,,..,Am-‘ur}. 

(2) Let V, be the NX m matrix formed by the column vectors 
u,,,. Then the matrix H,,,= VjAV, is an upper m X m Hessenberg 

~~~~th elements hii given by (3.2) and (3.3). 

REMARKS. 

(1) This result is true in exact arithmetic. In finite precision the computa- 
tion of w by (3.2) undergoes a severe cancellation, so that the resulting 
system {u1,u2,..., u,} can be far from orthonormal. Reorthogonalization is 
usually an effective remedy for loss of orthogonality [3]. Practically we shall 
use the modified Gram-Schmidt method developed in [3]. It performs 
reorthogonalization only when an important cancellation occurs, and carries 
on reorthogonalization as long as cancellation persists. We do not intend to 
describe this algorithm in detail, but we would like to point out that our 
experiments suggest that the parameters o and B invoked in [3] should be so 

chosen that they ensure strong orthogonality (0= fi ) in the beginning of 
Amoldi’s process (j < [m/2] say) and a less perfect orthogonality at the end. 
Any orthogonalization scheme involved in the present paper will refer to the 
modified Gram-Schmidt method mentioned above. 

(2) If the matrix A is symmetric then H, reduces to a symmetric 
tridiagonal matrix and the algorithm (3.1) reduces to the symmetric Lanczos 
method. 

Theorem 3.1 means that the matrix Bi ‘C, of the problem (2.3) is simply 
the Hessenberg matrix H,,, computed by Arnoldi’s algorithm. Therefore 

COROLLARY 3.1. !l%e Ritz values of A in K, are the eigenl;alues A(;“) of 
H,,,, and the Ritz vectors are the vectors V,y!“), where the yirn) are 
eigenvectors of H,,, associated with the h(l”). 

As with the symmetric Lanczos method, one might easily compute the 
residual norms by using the formula IJ(A-~(“)l)~((m)l(=h,+l,,le,Ty(m)l, 
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where e, is the m-dimensional vector e,,,= (O,O, . . . ,O, 1)r. This is a direct 
consequence of the following equality, which derives from the algorithm 
(3.1): 

It is therefore quite simple to check step by step (or periodically) 
whether the desired accuracy is attained and to stop as soon as it is so. The 
inverse iteration method is perfectly suited for cheaply computing the 
successive eigenvectors y(“) of H,. 

On the practical side, there remains the problem of choosing the number 
m of steps. In theory m should be taken as large as necessary to ensure good 
accuracy. In practice, however, storage considerations will not allow this. 

The storage of the Hessenberg matrix requires about $ m2 locations, and 
if one wants to store the vectors uj in core memory, then N X m extra 
locations are needed. When N is large, this may become impossible if we 

consider that convergence is often achieved for values of m such as rn=fl. 
Therefore the number of steps, m, is limited by the available core memory. 
After computing the Ritz values and Ritz vectors with the maximum possible 
m according to core memory capacity, one may find the eigenelements have 
not converged to the desired accuracy. 

The simplest way to overcome this difficulty is to repeat the process with 
ui replaced by a Ritz vector or a combination of Ritz vectors. This will be 
called the iterative Arnoldi algorithm. The idea is essentially the same as that 
developed in the iterative Lanczos method [ 111 and the iterative block- 
Lanczos method [4]. 

For example, the iterative Arnoldi algorithm for computing the duminut- 
ing eigenvalue A, of A (]h,]>]h,] for j=2,..., N) is the following: 

ALGORITHM 3.2. 

1. Choose m and ui. 
2. Construct V, and H, by Algorithm 3.1, and compute the dominating 

Ritz value x’?) and the associated Ritz vector +\““. 
3. If the pair AC;“), $J’;“) is sufficiently accurate, then stop. Otherwise take 

ui = (pi”‘) and go back to 2. 

FtEMARKS. 

(1) For simplicity the above algorithm is described only for the problem 
of computing one eigenvalue and the associated eigenvector. p dominant 
eigenvalues can be computed by the iterative Amoldi algorithm as well. One 
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should then take as a new starting vector u; in step 3 a combination of 
cp’;“‘, +P) ,***, +,“). We suggest the following combination: 

where (Y is a normalizing factor. The first reason for this choice is to avoid 
complex arithmetic. It is important to note that Re(+(im)) is a combination of 
the complex pair of eigenvectors +j”) and +icim), so that u; represents +irn) in 

the same way as r#+ cm). The second reason is to attempt to balance the 
accuracy of the desired eigenvectors. The residual norms introduced in the 
above combination favor the eigenvectors which converge slowly. Thus 
the slow convergence is set off by an initial vector which is richer in the 
corresponding exact eigenvectors. 

(2) The dominant eigenvalues are not the only ones which converge 
rapidly. In effect, the best accuracy is first obtained for those eigenvalues 
which he on the outer part of the spectrum. This generalizes the well-known 
property of the Lanczos method for symmetric matrices, which states that 
the best accuracy is first achieved for the largest eigenvalues as well as the 
smallest (see [6], [ll], and [IS]). 

Our experiments reveal that the iterative Arnoldi algorithm is competi- 
tive with the simultaneous iteration method of [5] and [la], even when full 
reorthogonalization is used. (See our experiments in Sec. 4.1.) 

As with the symmetric Lanczos method, we also observed that the 
convergence is slowed down when Arnoldi’s algorithm is used iteratively. 
This means that in general, if Algorithm 3.1 were run with a dimension m of 
the form m=p Xm’, then it would provide much better accuracy than with 
p iterates of Algorithm 3.2 with the dimension m’. 

3.2. The Incomplete Orthogonaliznticm Algorithm 

3.2.1. The Algorithm, Motivation, and Basic Properties. In what fol- 
lows we try to develop algorithms which require less core memory than 
Arnoldi’s. The development of such methods is based upon the observation 
made in many experiments, that the elements hij of the matrix ZZ, become 
slowly smaller as i increases (with i fixed). This suggests that one should 
orthogonalize the vector Auf produced after the jth step, against the previous 
p+ 1 vectors u/_~, I)~_~+~, . . . , 4, rather than against all the previous vectors 
ui, . . . , ui. Such a process will be referred to as the incomplete orthogonaliza- 
tion algorithm. Note that the system { ui, . . . , u,,,} now has no reason to be 
orthonormal, so that we need to relate this algorithm with the generalized 
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Lanczos method in a certain way. Before doing so, let us first describe the 
algorithm in its simplest form. The vector ur is again an initial vector of norm 
1, and the integers p and m satisfy p + 1 < m < N. 

ALC~RITHM 3.3 (Incomplete orthogonalization) 

For i:= luntilmdo 
1. w:=Avi. 
2. For i:=max{l,i-p} until m do 

w:=w-u,~(h,~:=(Au~,u~)). (3.5) 

3. 

“j+~~~w/(h~+~,j~~llwll)~ (3.6) 

Here again, in practice, stage 2 should be replaced by the more stable 
version of the Gram-Schmidt algorithm described in [3]. 

The assumption (3.4) ensures again that the algorithm does not stop 
before the mth step, in other words that hf+i,j#O, i=l,...,m-1. 

We denote by I? the band-Hessenberg matriz whose nonzero elements 
are those elements hri in position (i, j) satisfying i - 1 < i < i + p + 1 and given 
by (3.5) and (3.6). Therefore 

0 ii,= Ri 0 

(3.7) 

With this matrix in hand, one may ask how to define the Ritz elements. 
According to (2.1), and since in general the system { ui, us, . . . , u,} is not 

orthonormal, the Ritz values are now the eigenvalues of the matrix II:%,, 
where B,,, = V,‘&,, C,,, = VZAV,. But in practice it would be prohibitive to 
actually perform the computation of the matrices B,,,, Cm, and Bi’C,,,. A 
useful property, which will simplify this problem, is that, except fur a rank 
one perturbation matrix, B; ‘C,,, is equal to I?,,,. This is stated in the 
following analogue of Theorem 3.1. 
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THEOREM 3.2. 

(1) Z%e system {q,. . 
Kylcv subspace K, and 
gonality property): 

. , u,,,} computed from Algorithm 3.3 i-s a basis of the 
satisfies the foliinuing property (incon$ete ortb 

(u,J$=$ fm Ii-j1 <p+l, (3.8) 

where 6,, denotes the Kronecker symbol. 
(2) Let V, be the NX m matrix f_brme by the column vectors ulr us.. . . , u,,, 

and set B,,, = Vm’V,, C,,, =VzAV,, H,,,=B;‘C,,,, andr,=h,+,,,B,-‘V,TU+,. 
Then 

(3.9) 

Proof. (1): Under the assumption (3.4), the vectors ur, Av,,.. ., A’“-‘u, 
form a basis of the subspace K,, so that each vector vi+i, i < m- 1 can be 
written as vt+i = Z~,aekAkvr. 

[Lh,+i,, 

It is clear from (3.5) and (3.6) that ef is just 
I-‘, which is nonzero. This shows that vi, u,, . . . , V~ are linearly 

independent. That (3.8) is satisfied can easily be shown by induction. 
(2): From the algorithm we can write for i = 1,2,. . . , m 

i+r 
Avi= 2 hiiui, where i,=max(l, i-p), 

f-0 

yielding the matrix equation 

AV,=V,&+hm+l,mum+le~T. (3.10) 

Multiplying on the left by V,’ gives C, = B,E?, + h,, 1, ,VLv,,,+ le$ and (3.9) 
results on multiplying again on the left by Bi’. n 

The first part of the theorem states that the matrix B, has the following 
form: 

B,,,= 
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The second part implies that the matrix Bi’C, that is required for the 

solution of problem (2.3) has the form: 

ii,= 

0 [RI 0 

(3.11) 

It differs from & only in its last column. It is interesting to remark that 

L=hna+i J?,+r;,+i~ where V,’ denotes the pseudoinverse of V, (see [Is]). 
The next corollary of Theorem 3.2 is the analogue of Corollary 3.1. 

COROLLARY 3.2. The Ritz values of A in K, are the &gem&es A’;“) of 
I?,,,, and the Ritz vectors are the vectors V; yl”), where the yi(“‘) are 
eigenvectors of I!,,, associated with the Xc,“). 

So far nothing has been said about the practical computation of the Ritz 

elements. Computing the eigenelements of the matrix (3.11) does not cause 
any difficulty. But before that one should have already computed the 

perturbation r,,,e,,, T in (3.9). Now this can be expensive, since the matrix 
B,,, = V,‘V, is required to obtain the vector r,,,. We can avoid this difficulty in 

two different ways. The first way is to ignore the perturbation r,em. 
Indeed, even though this perturbation is not negligible, one observ:s the 

s:rprising fact that the approximate eigenpairs obtained on replacing H, by 
H,,, are also good approximations to certain eigenelements of A, and that the 
accuracy improves as m increases until a certain dimension is attained. After 

that the accuracy starts decreasing slowly, so one should stop at this stage 
and restart the process if necessary. This process will be described in Sec. 
3.2.2. 

The second way to avoid the abovementioned d$ficulty is to attempt to 
actually compute the last column of the matrix H,,, by particular means 
without having to use the matrix B, explicitly. This will be described in Sec. 
3.2.3. 

3.2.2. Incomplete Orthogonulization without Correction. Suppose that 
we neglect the rank one correction matrix r,ez in (3.9) and consider instead 
of the Ritz elements x’“), +(‘“) the approximate eigenekments p(“), $(“), 
where $l”) is an eigenvalue of fi?,, and I/J”“) is related to the corresponding 
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eigenvector Ztrn) according to #(“)= V,zCm). There are two important points 
that should be considered concerning the approximation of A, t#~ by a pair 
pCrn), GCrn). The first point is to give an explanation of the fact that #‘“) 
provides a good approximation to $L The second is to provide reliable 
stopping criteria in order to prevent the accuracy of the approximate 
eigenvector 4’“) from deteriorating by stopping the process at a suitable 
step. 

Tbe next proposition clarifiesJn a certain measure the first point. let 
x(~), I/“) denote an eigenpair of ZZ,, 6”) = V, . y (“I denote the Ritz vector, 
and z.&“‘), z(~),#(“‘) be defined as above. Also set Gi+l=Aul-Zf,,Ok,~~,, 
i,=max(l, j-p). 

PROPOSITION 3.1. 

(1) Set qm=(Z-~&L+i, where TT,,, is the orthogonal projection on K,. 
Then the residual of the pair A(“), +(‘“) by A satisfies 

(A-~(m)Z)~(m)=eTy’“‘.q 
m m* (3.12) 

(2) Let rm_be defined as in Theorem 3.2. Then the residual of the pair 
A(“), y(“) by H,,, satisfies 

(3.13) 

Proof. (1): Let us first remark that the vector q,,, is also equal to 

C&+1- V,r,. Indeed, q,,, = i?,,,+ 1 - TT,,,~,,,+ 1 and, as is well known, r,,&+ i is 
equal to V,(V~V,)-‘V~6~+, ,fiwhich is also Vmrm. Now from (3.10) and (3.9) 
one gets (A-$(“)Z)V =V (H -x(“)Z)+(&,+,-V,r,)ez. On multiplying m mm 
by y(“) one gets 

(A-A(“‘Z)V,y’“‘=V,+&ti(“‘Z)y(“’ 

+ ( iTm+1- Vmrm)e,Tycm). 

The first term on the right side vanishes, and the second term is ezy(m)q,,,, 

which is the desired result. 
(2): From (3.10) one gets easily 

(A-X(")Z)V,=V,[ I!?,--A(” +6m+lei. 
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Multiplying on the right by y(“) yields 

By multiplying on the left by V,, we obtain 

so that (I?, - x(")Z) y (“) = - Z3; iv,‘“, ieiy(“) and the proof is complete. n 

The relations (3.12) and (3.13) of the proposition can be gathered 
together into one formula as follows: 

I\( I?,-ti”)Z)y’“‘~~ = #/(A-ti”‘Z)r$“)II. (3.14) 

This equality implies that as long as the factor 11 rm II/ 11 g, II remains not 
too large, the eigenelements A (“), y(“) of fi” admit a residual which is of the 
same order of magnitude as ll(A-h’“)Z)~#~(“)ll. Note that IIr”II can be 

bounded by r(B”)*h”+l,“, where r(B”) is the condition number of B”, 

Furthermore, II q,,, II is also equal to II (I - r”)Au” II, which measures how 
independent AU” is of the previous vectors ol,. . , , u,. 

In order to obtain a reliable algorithm based upon the incomplete 
orthogonalization algorithm, it is of prime importance to find a means for 
checking periodically the accuracy of an approximate eigenpair z_&“), #cm). 
This can be done by computing periodically the residual norm I[( A - 
z.~“)Z)~C/(“) 11. In practice, however, this is uneconomical, since it requires that 
the vector $(“) be formed. The following proposition solves this difficulty by 
providing a simple way for computing this residual norm in terms of the last 
component of the vector z(“). 

PROPOSITION 3.2. The residuul of the approximate eigenpair p(“), +(“) 

satisfies 

~~(A-~(“)Z)~(“)~~=hm+l,m~e~z(m)~. (3.14) 

Proof. This result is an immediate consequence of the equality (3.10). n 

Note here that if 11 z(“) II = 1, th en it is not true that II+(“) 11 =l, as would 
be the case of V, were orthonormal. However, our experience is that the 
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right side of (3.14) still provides a good estimate of the actual residual norm. 
The reason for this is that, in general, the dominating components of zcrn) are 
the first ones and that the first vectors of the system V, are orthonormal (or 
nearly orthononnal). This suggests the following algorithm. 

ALGORITHM 3.4. 

1. Choose an integer p, sufficiently large, a starting vector ur, and a 
tolerance s. 

2. For m=l,2 ,..., do: 
(a) Construct the matrix fim by the Algorithm 3.3 and store the 

vectors u, in auxiliary memory (if necessary). 
(b) Compute pe+dically the desired eigenvalues pcrn) and eigenvec- 

tors .zcm) of H,, and estimate the residuals by the formula (3.14). 
If all the residual norms are less than E, then stop. 
If two successive residual norms have a quotient greater than a 
tolerance T (for example r= l), then go to 3, else continue. 

3. Form an appropriate combination of the approximate eigenvectors 
$ici’“) and go back to 2 with ur replaced by this combination. 

For the step 2(b) the eigenelements are first computed using the QR 
method and the inverse iteration method for the eigenvectors. After that one 
should only make use of a Rayleigh quotient iteration. 

For the third step see Remark 1 following Algorithm 3.2. 
In this way the algorithm gives satisfactory results and is competitive 

with the simultaneous iteration method and with the iterative Amoldi 
process (see Sec. 4). 

3.2.3. Correcting the Matrix I?,,,. We need the following corollary of 
‘IJreorem 3.2, which gives a simple expression of the required last column of 
H fn* 

COROLLARY 3.3. The last column of I?,,, is equal to V,’ Au,,,. 

Proof. Multiplying Eq. (3.10) on the right by e,,, gives 

Therefore 

=ii,e,+r,. 
(3.15) 
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Now a comparison with (3.9) shows that the right hand side of (3.15) is just 
the last column of Gm. n 

The above corollary shows that.one can get the matrix I?,,, from I?,,, by 
just replacing the lust column of H,,, with the column vector s,= V,’ Au,,,. 
The vector s, may be computed by the classical formula 

sm=(V,TVm)-‘V;Av~. (3.16) 

This, however, makes explicit use of the matrix B,= VLV, and involves the 
solution of a full mXm linear system. 

Another way of computing s, is by solving the least squares problem 

minimize]]V,x-Au,,,)], 
x 

(3.17) 

the solution of which is the desired vector s, (see [IS]). 
Powerful algorithms are available for solving (3.17); e.g., see BjSrk and 

Elfving [2] and Paige [ 121. Ou r experience reveals that the vector s, need 
not be very accurate. 

3.3. Generalization 
Let VI, v,, . . . , V,‘. . . , v,,, be constructed by the recursion 

j+l 

Au,- 2 h,jvl=O, i=l.2 ,..., m, (3.18) 
i-1 

where the hi,, i=l,..., i+ 1, are chosen so as to make the vector v5+i satisfy 
certain requirements (see generalized Hessenberg processes in [20, pp. 
377-3951). By (3.18) one obtains a sequence of vectors vi, v,, . . . , v, and 
a Hessenberg matrix G,,, defined as in Sec. 3.2.1. 

It is clear that under the assumption (3.4) the system vi, va,.. ., v, is still 
a basis of tht~ Krylov subspace K,. Here ag%n one may ask how to correct 
the matrix H,,, in order to get the matrix H,,,=(VzV,)-‘VZAV,,, so as to 
achieve a generalized Lanczos process. 

It is easily seen that the second part of the Theorem 3.2 and the 
Corollary 3.3 remain v_$id here. Consequently, th_ answer to the above 
question is _the same: H, can be obtained from H,,, by replacing the last 
column of H,,, with s,,,= V, Au,,,. 

Obviously the previous algorithms are particular cases of the generaliza- 
tion (3.18). The Amoldi method is obtained by choosing the hii, i = 1,2,. . . , 
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i + 1, such that vi+ i is orthogonal to ui, . . . , u, and has norm one. In 
incomplete orthogonalization, vi+ i has norm one and is orthogonal to the 

p + 1 previous vectors. 

Note that the simplest recurrence of the form (3.18) is the recurrence 

At+ - vi + i = 0, which constructs the Krylov sequence vi =Ai-iul, i= 1,. . . , m. 
However, one expects the computation of s,= V,’ Au, to be harder in this 
case. In this sense this choice is unstable. Amoldi’s method and incomplete 

orthogonalization method aim to avoid instability by constructing an ortho- 

normal or an almost orthonormal system vi,. . . , u, such that the computation 

of s,= V,’ Au,,, becomes easier. Many other algorithms exist. and remain to 
be studied in detail and compared. 

4. NUMERICAL EXPERIMENTS 

All the experiments described in this paper have been run on the 
IRIS-80, CII-HB computer of the Grenoble Computing Center. We used 

double precision (mantissa of 56 bits). 

4.1. Numerical Experiments with Iterative Arrwldi Method 
We tested Arnoldi’s method described in Sec. 3.1 on a class of test 

matrices borrowed from 1191. These matrices represent the transition matrices 
of the Markov chains describing a random walk on an (n+ 1) X (n + 1) 

triangular grid (Fig. 1). A transition may take place from the node (i, i) to 

one of the four adjacent nodes (i + 1, i), (i, i+ l), (i - 1, i), (i, i- 1). The 
probability of jumping from the node (i, i) to either of the nodes (i + 1, /) or 

(i, i+l) is 

p(i, j)=O.S- 2 

(This transition can occur only for i + 1 < n and i + 1 < n.) The probability of 
jumping from the node (i, i) to either of the nodes (i, i - 1) or (i - 1, i) is 

* . 
pd(i,j)=$, 

this probability being doubled if either i or i is 0. 

The nodes are numbered in the order (0, 0), (1, 0), . . . , (n, 0), (0, l), (1, l), . . . . 
It is then known that the transpose of the matrix of transition probabilities 
admits 1 as eigenvalue. In this particular case - 1 is an eigenvalue as well. 
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FIG. 1. 

The matrix AT need not be generated explicitly. Instead, one only needs a 
routine which computes y = ATx for any given vector x. This routine, together 
with a more detailed description of this interesting class of sparse matrices, 
may be found in [19]. 

We are interested in the computation of the eigenvector corresponding 
to the eigenvahre unity, since it represents the steady state probabilities of 
the chain. 

We begin by a comparison between the simuhaneous iteration method 
and the iterative Amoldi process. 

In the first test we chose n = 13, so that the dimension of AT is N= (n + 
l)( 7~ + 2)/2 = 105. The simultaneous iteration method was run with different 
values of the number of columns M on which the iterations are performed. 
(See [19].) The process was stopped as soon as the Euclidean norm of the 
residual of the desired eigenvector was less than E = lo- lo. Table 1 gives the 
number IT of iterations that were necessary, as well as the number M X IT of 
operations x+y = Ax and the run times. The first vector of the starting 
system U. was always e=(l,l,..., l)=. The other vectors were generated 
randomly. 

The simultaneous iteration algorithm used here is the one described in 

[51. 
We emphasize that an important drawback of the simultaneous iteration 

method, in the unsymmetric case, is that it does not, in general, ahow 
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TABLE 1 

Run time 
M IT MXIT bw 

4 196 784 0.37 
6 137 822 0.44 
8 116 928 0.62 

10 98 980 0.62 

efficient use of the Tchebycheff iteration as it usually does .for symmetric 

matrices. Nevertheless this can be done when all the eigenvalues are real or 
when many extreme eigenvalues are real. For example, if the Tchebycheff 
iteration is used, one obtains when M = 4,6 the results in Table 2 instead of 

those of Table 1. 
In Table 3 we give the results obtained with the iterative Amoldi method 

when m takes the values m=5,10,15,20,25. The stopping criterion was the 
same as above, and the starting vector was ui =e/]] e I(. Note that when 
m = 20 and rn= 25 the residual norms obtained were 1.7 X lo-l3 and 5 X 

lo- 13, respectively. This indicates that for large values of m one should 

check the residual frequently. 

Let us mention that if the matrix A were a full matrix, then the run times 
would be nearly proportional to the numbers M X IT and m X IT of operations 

x+y = Ax needed, so that a comparison between the tables reveals a sharp 

superiority of Arnoldi’s method. 

Many other tests were performed with several sparse matrices of various 
sizes (the largest was 450), issued from a Markov chain analyzer. These 

matrices are stochastic, and we sought, as above, the eigenvectors of their 
transposes, associated with the eigenvalue unity. An important simplification 
in this case is that the eigenvalue is known. The method is now extensively 
used for the solution of these problems, and it appears that it is much more 
efficient than the simultaneous iteration. Note, however, that a competitive 
method is provided by inverse iteration using either a sparse matrix code or a 
least squares method [2, 121 for solving the problems 

TABLE 2 

Run time 
M IT MXIT cm) 

4 115 460 0.27 
6 94 564 0.37 
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m IT rnXIT b4 
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TABLE 3 

5 16 80 0.13 
10 9 90 0.20 
15 4 60 0.17 
20 3 60 0.25 
25 2 50 0.25 

4.2. Experiments with the Incomplete Orthogodization Algorithm 

4.2.1. In the next experiment the incomplete orthogonalization algo- 
rithm was tested with a matrix A of the same type as in Sec. 4.1, with n= 16, 

so that the dimension is N= 153. It is instructive to plot for several values of 
m the residual norms ll(A-~(~(“))Z)~‘“)II/II~(“)II, where p($(“‘)) denotes 
the Rayleigh quotient (A+(““, $(“))/ I($(“‘) 11 2. This was done with p = 19, 
which means that the band-Hessenberg matrices f?,, had bandwidth 20. The 
starting vector or was generated randomly. 

Figure 2 shows the evolution of the above residual norms when m takes 

the values 5,10,15,. . . , 90. It shows at the same time the evolution of the 

residuals that were obtained with Arnoldi’s method with m = 5,10,45, using 

the same starting vector. 
A few comments are in order. Let us first recall that the first 20 steps are 

nothing but Arnoldi steps. In a second stage, after the step m= 20, actual 
incomplete orthogonalization steps are performed, and it is observed that the 

residuals are decreasing until m = 35. After that, there is a third stage where 
the residual norms start oscillating. With the last values of m one notices, 
however, that the accuracy is not lost. Instead there is a slow improvement 

achieved in an oscillating way. At m=35 a second copy of the eigenvalue 1 

appears. The curve obtained is a typical one. 
The phenomenon observed in the third stage is, in a certain measure, 

similar to that occurring with the symmetric Lanczos method without 
recwthogmalizution. Unfortunately, our theoretical results do not give an 
explanation to this phenomenon, for the system (oi, . . . , 0,) is certainly far 
from orthonormal at that stage; only the second stage can be interpreted 
with the help of Proposition 3.1. 

However, it should be added that in practice it is wiser, and in general 
more efficient, to halt at the end of the second stage (m = 35 in the present 
example) and to restart if necessary, as in Algorithm 3.4. For example, the 
results obtained with Algorithm 3.4 on the same matrix are the following: 

1st iterations: Halt atm=40, IJres(rC1(35))II-7X10-4, reStart with ol= 

p3. 9 
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2nd iteration: Halt at m=30, llres(rC/(25))11-5X10-7 (best vector ob- 
tained I/J(~)). 

Therefore, with 40+30 = 70 matrix by vector operations, one obtains as 
residual norm 5 x 10m7, whereas the last residual obtained without restarting 
was at m = 90, only a little less than 2.6 X lode at the price of 90 matrix by 
vector operations and a higher run time. 

In order to show that the equality (3.14) provides a good estimate to the 
residual norms ll(A - ~~(~(~))Z)~‘“‘Il/ll~(~)ll and to ll(A - p(“)Z) 
$(“‘) 11 /II IJ(“) 11, we compare these quantities in Table 4 with their corre- 
sponding estimates h,+l,,Ile,Tz(m)II/IIZ(m)ll for m=30,...,90. It is ob- 
servedthat,evenforlargevaluesofm,thequantitiesh,+,,,le,Tz(”)I/IIz(“)II 
remain rather good estimates for the residual norms. 

4.2.2. An interesting application of the incomplete orthogonahzation 
method takes place when the matrix A is almost symmetric, that is, when its 
skew-symmetric part $( A -AT) is small in comparison with its symmetric 

part ;(A+A~). Th is is not uncommon when one discretizes eigenvalue 
problems involving non-selfadjoint partial differential operators. 

Let us, for example, consider the following simple problem: 

-Au(x,y)+~[a(r,y)u(x,y)]=u(r,y) 
for(~,y)~]O,l[XlO,l[, 

u(x,y)=O on the boundary. 

Taking a(x, y) = 1 and discretizing with centered differences yields the 
following matrix A(n), where n is the chosen number of interior mesh points 

TABLE 4 

m 

30 
40 
50 

60 
70 
80 

90 

1st residual 2nd residual 
norm norm 

1.11 x 10-3 1.16x 1O-3 
1.19x 10-3 1.20x 10-3 
4.51 x 10-4 4.72 x 1O-4 
2.47x 1O-4 2.50x 10-4 
6.18X 10-5 6.24 x lo-’ 
3.45x 10-5 3.51 x 10-s 
2.62X10-e 2.62 x lo-’ 

Estimate 

1.15x 10-3 
1.14x 10-3 
4.36x 1O-4 
2.16x 1O-4 
5.22x 10-5 
2.94x 10-5 
2.18x 1O-6 
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on each side of the square: 

B,, -Z - 

_I . . 

A(n)= . : 

10 

with 

4 
b 

B,= 

-0 

a 

- 

. f 

. . 

0 

a 

b 4, 

0 

-Z 

-Z B, 

anda=-1+1/2(n+l), b=-l-1/2(n+l). B,andA(n)havedimensions 
n and N=n2, respectively. 

Algorithm 3.4 was run on the 225 X 225 matrix A(15) obtained by taking 
n = 15 mesh points on each side. We took p = 19 again, and the algorithm 
was stopped as soon as the actual residual norm was less than E= lo-‘. The 
starting vector was again a random vector. 

The results obtained are as follows: 

1st iteration: 
@s’. 

Halt at m=SO, )lres(~(45))11-8X10-5, restart with t)i= 

2nd iteration: Stop at m=40, (]res($(“O))]]-9 X 10-l’, eigenvahre ob- 
tained: h, = 7.92218308949660. 

4.2.3. In this final experiment, we compare the simultaneous iteration 

method SRRIT developed by G. W. Stewart [19] with Algorithm 3.4, on a 
matrix taken from the class of matrices described in Sec. 4.1. Taking n = 30 

provides a 496 X496 matrix. We first reproduce in Table 6 the results 
obtained in [19] with the SRRIT routine for this matrix, when the number of 
columns M used takes the values 2,4,6,8. The convergence criterion used 
there was that both eigenvectors associated with the eigenvalues + 1 and - 1 

admit a residual norm less than lo-‘. According to the convergence theory, 
the two approximate eigenvectors converge with the same rate of conver- 
gence. So the results would have been nearly the same if the convergence 
criterion had dealt only with the eigenvector associated with the eigenvalue 
unity. 
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TABLE 6 
RESULTS FROM [19] 

M IT MXIT 

2 1737 3474 
4 523 2092 
6 325 1950 
8 188 1504 

TABLE 7 

P IT NOPE 

14 3 95 
19 4 110 

Two runs were made on the same matrix as above, with the Algorithm 
3.4 applied to the computation of the eigenvector associated with the 
eigenvalue unity. The stopping criterion was that the residual norm be 
smaller than 10e5 , In the first run, p was chosen equal to 14 (bandwidth 15). 
The trial vector was generated randomly. The results obtained are as follows: 

1st iteration: Halt at m=40, llres($(35))1(-l.7X lo-‘; 
2nd iteration: Halt at m = 35, 1 jres( t./@‘) )( = 1.6 X 10e4; 
3rd iteration: Stop at m=20, Ilres(rc/(20))1J=9.5X lo-‘. 

With p= 19, these results became: 

1st iteration: Halt at m=30, )Jres(+(25)))j-2.3X10-2, 
2nd iteration: Halt at m-30, ([res($@s))((-3.2 X 10e4, 
3rd iteration: Halt at m=30, llres($(25))(1-2X 10P5, 
4th iteration: Stop at m=20, Ilres(\C/(20))()-4.1 X lo-‘. 

We sum up in Table 7 the number NOPE of operations r+Ax required in 
the two cases in order to permit a comparison with the results obtained with 
the SRRIT routine. This shows again that Algorithm 3.4 requires many less 
matrix by vector multiplications. However, we should note that it needs 
more memory. But it still remains advantageous, especially for fuU matrices 
(or not very sparse matrices). 

The author wishes to thank Professor A. Ruhe for some very useful 
rem&s and for suggesting the generalization of Sec. 3.3. The author is also 
indebted to one of the referees for improving the presentation of Corollny 
3.3. 
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