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Abstract

We concern the centroid �(L) of an n-Lie algebra L over a field F of characteristic p � 0. Let C(L) be
the central derivations of L. We obtain the following results.

(1) If p is not a factor of n− 1, then C(L) is the intersection of �(L) and the derivation algebra of L.
(2) Let B be a nonzero ideal of L and invariant under �(L). Then the vanishing ideal of B is isomorphic

to a subspace of Hom(L/B,ZL(B), where ZL(B) is the centralizer of B.
(3) Suppose L = L1

⊕
L2 with L1, L2 ideals of L. Then �(L1) and �(L2) are components of �(L).

(4) If L is a Heisenberg n-Lie algebra over an algebraically closed field of characteristic 0, then �(L) is
generated by central derivations and scalars, and C(L) is made up of all the inner derivations of L.

(5) If dimL � 2 and �(L) consists of scalars, then the centroid of the tensor product of an associative
algebra and L is the same as the tensor product of the centroids of the two algebras.
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1. Introduction

A centroid of an n-Lie algebra L is closely related to the derivation algebra of L. Some basic
properties of the centroid of n-Lie algebras are obtained in Bai and Meng [4]. This paper is a
continuation of [4].

Filippov [10] classifies n-Lie algebras of dimension n+ 1 over an algebraically closed field
F of characteristic zero. In [11], Kasymov develops the structure and representation theory of
n-Lie algebras. Ling [12] proves that all finite dimensional simple n-Lie algebras over F are
isomorphic to the vector product on Fn+1 for n � 3. In [15] Pozhidaev studies two classes of
central simple n-Lie algebras. Bai and Meng [4] describes the centroid of n-Lie algebras; they also
give some properties of strongly semisimple n-Lie algebras in [5]. Recently, the study on n-Lie
algebras attracts more attention due largely to its close connection with the Nambu mechanics and
geometries [8,16], Poisson and Jacobi manifolds [13], and Hamiltonian mechanics [14]. There
are other results on representations and structures of n-Lie algebras [1,2,6,7,9,13,17].

The organization of the rest of this paper is as follows. Section 2 is for basic notions and
facts on n-Lie algebras. Section 3 is devoted to the structures and properties of the centroid of
n-Lie algebras. Section 4 describes the structures of the centroid of tensor product n-Lie algebras.
Throughout this paper we consider n-Lie algebras with n � 3.

2. Fundamental notions

A vector space L over a field F with characteristic not equal to two is an n-Lie algebra if there
is an n-ary multilinear operation [, . . . , ] satisfying the following identities:

[x1, . . . , xn] = (−1)τ(σ )[xσ(1), . . . , xσ(n)], (2.1)

[[x1, . . . , xn], y2, . . . , yn] =
n∑
i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn], (2.2)

where σ runs over the symmetric group Sn and the number τ(σ ) equals 0 or 1 depending on the
parity of the permutation σ . If chF = 2, then (2.1) should be replaced by

[x1, . . . , xi, . . . , xj , . . . , xn] = 0 if xi = xj for 1 � i /= j � n. (2.3)

A derivation of an n-Lie algebra is a linear transformation D of L into itself satisfying

D([x1, . . . , xn]) =
n∑
i=1

[x1, . . . , D(xi), . . . , xn] (2.4)

for x1, . . . , xn ∈ L. Let DerL be the set of all derivations of L. Then DerL is a subalgebra of
the general Lie algebra gl(L) and called the derivation algebra of L.

The map ad (x1, . . . , xn−1) : L → L given by

ad(x1, . . . , xn−1)(xn) = [x1, . . . , xn−1, xn] for xn ∈ L
is referred to as a left multiplication defined by elements x1, . . . , xn−1 ∈ L. It follows from
identity (2.2) that ad (x1, . . . , xn−1) is a derivation. The set of all finite linear combinations of
left multiplications is an ideal ofDerL, which we denote ad(L). Every derivation in ad(L) is by
definition an inner derivation.

Let L1, L2, . . . , Ln be subalgebras of an n-Lie algebra L. Denote by [L1, L2, . . . , Ln] the
subalgebra ofL generated by all vectors [x1, x2, . . . , xn], where xi ∈ Li , for i = 1, 2, . . . , n. The
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subalgebra L1 = [L,L, . . . , L] is called the derived algebra of L. If L1 = 0, then L is called an
abelian n-Lie algebra.

A one-dimensional central extension of an abelian n-Lie algebra is called the Heisenberg n-Lie
algebra. Bai and Meng [3] introduced methods to construct Heisenberg n-Lie algebras.

An ideal I of an n-Lie algebra L is a subspace of L such that [I, L, . . . , L] ⊆ I . If [I, I,
L, . . . , L] = 0, then I is referred to as an abelian ideal. If L1 /= 0 and L has no ideals except
for 0 and itself, then L is by definition a simple n-Lie algebra. An ideal I is perfect, if I 1 =
[I, . . . , I ] = I . An n-Lie algebra is said to be decomposable if there are nonzero ideals L1, L2
such that

L = L1 ⊕ L2

and [L1, L2, L, . . . , L] = 0. Otherwise, we say thatL is indecomposable. Clearly ifL is a simple
n-Lie algebra then L is indecomposable. For a subalgebra H of L, let

ZL(H) = {x ∈ L|[x,H,L, . . . , L] = 0} (2.5)

denote the centralizer ofH in L. IfH is an ideal of L, then so is ZL(H). In particular, ifH = L,
write Z(L) = ZL(L). We refer to Z(L) as the center of L. Clearly Z(L) is an abelian ideal of L.

Definition 2.1. Let End(L) be the endomorphism algebra of L. Then the following subalgebra
of End(L)

�(L) = {ϕ ∈ End(L)|ϕ([x1, x2, . . . , xn]) = [ϕ(x1), x2, . . . , xn] for x1, . . . , xn ∈ L}
is called the centroid of L.

It follows from Theorem 2.1 in [4] that �(L) is an associative algebra with the unit element
idL. By identity (2.1) or (2.3), for every ϕ ∈ �(L) and x1, . . . , xn ∈ L, we have

ϕ([x1, . . . , xn]) = [x1, . . . , ϕ(xi), . . . , xn] for 1 � i � n (2.6)

and ϕ and ad(x1, . . . , xn−1) commute. An n-Lie algebra is called a central n-Lie algebra if its
centroid is isomorphic to F , the base field.

Example 2.2. Let L be a 4-dimensional 3-Lie algebra over an algebraically closed field of char-
acteristic 0 with the multiplication table on a basis e1, e2, e3, e4 of L given by

[e2, e3, e4] = e1

and other multiplications are zero. Let φ(e1) = ae1 and φ(ei) = aie1 + aei for a, ai ∈ F, i =
2, 3, 4. Then φ ∈ �(L).

3. Centroid of n-Lie algebras

In this section we study the structure of the centroid of n-Lie algebras over a field F of
characteristic p � 0.

Proposition 3.1. Let L be an n-Lie algebra over F and B a subset of L. Then

(1) ZL(B) is invariant under �(L).
(2) Every perfect ideal of L is invariant under �(L).
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Proof. For any ϕ ∈ �(L), x ∈ ZL(B), by (2.5) we have

0 = ϕ([x, B,L, . . . , L]) = [ϕ(x), B,L, . . . , L].
Therefore ϕ(x) ∈ ZL(B), which implies that ZL(B) is invariant under �(L).

To show (2) let B be a perfect ideal of L. Then B = B1, and so for any x ∈ B there exist
xi1, x

i
2, . . . , x

i
n ∈ B with 0 < i < ∞ such that x = ∑

i[xi1, xi2, . . . , xin]. If ϕ ∈ �(L), then

ϕ(x) = ϕ

(∑
i

[xi1, xi2, . . . , xin]
)

=
∑
i

[ϕ(xi1), xi2, . . . , xin] ∈ B.

This shows that B is invariant under �(L). �

Definition 3.2. Let L be an n-Lie algebra over F and ϕ ∈ End(L). Then ϕ is called a central
derivation, if ϕ(L) ⊆ Z(L) and ϕ(L1) = 0.

The set of all central derivations ofL is denoted byC(L). It is a simple fact thatC(L) ⊆ �(L).
Indeed, C(L) is an ideal of �(L). A more precise relationship is summarized as follows.

Proposition 3.3. If the characteristic of F is 0 or not a factor of n− 1. Then

C(L) = �(L) ∩DerL. (3.1)

Proof. If ϕ ∈ �(L) ∩DerL then by virtue of (2.4) and (2.6) we have ϕ(L1) = 0 and ϕ(L) ⊆
Z(L) where the assumption that the characteristic of F is 0 or not a factor of n− 1 is used. It
follows easily that �(L) ∩DerL ⊆ C(L).

To show the inverse inclusion let ϕ ∈ C(L). Then

0 = ϕ([x1, . . . , xn]) = [x1, . . . , ϕ(xi), . . . , xn] for 1 � i � n

and thus ϕ ∈ �(L) ∩DerL. This implies �(L) ∩DerL = C(L). �

If B is a �(L)-invariant ideal of L let

V (B) = {ϕ ∈ �(L)|ϕ(B) = 0}
be its vanishing ideal. Let Hom(L/B,ZL(B)) be the vector space of all linear maps from L/B

to ZL(B) over F . Define

T (B) = {f ∈ Hom(L/B,ZL(B))|f ([x̄1, . . . , x̄n]) = [x1, . . . , f (x̄i), . . . , xn]}, (3.2)

where x̄i ∈ L/B and i = 1, . . . , n. Then T (B) is a subspace of Hom(L/B,ZL(B)).

Theorem 3.4. Let B be a nonzero �(L)-invariant ideal of L over F. Then

(1) V (B) ∼= T (B) as vector spaces.
(2) If �(B) = FidB, then �(L) = FidL ⊕ V (B) as vector spaces.

Proof. It is easily seen thatV (B) is an ideal of the associative algebra �(L). To prove (1) consider
the following map α : V (B) → T (B) given by

α(ϕ)(ȳ) = ϕ(y),

where ϕ ∈ V (B) and ȳ = y + B ∈ L/B. The map α is well defined. For if ȳ = ȳ1, then y − y1 ∈
B, and so ϕ(y − y1) = 0. It follows easily that α is injective. We now show that α is onto. For
every f ∈ T (B), set
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ϕf : L → L, ϕf (x) = f (x̄) for all x ∈ L.
It follows from identity (3.2) that, for all x1, . . . , xn ∈ L,

ϕf ([x1, . . . , xn])= f ([x̄1, . . . , x̄n]) = [x1, . . . , f (x̄i), . . . , xn]
= [x1, . . . , ϕf (xi), . . . , xn].

Thus ϕf ∈ �(L), and so ϕf ∈ V (B) since ϕf (B) = 0. But α(ϕf ) = f implies that α is onto. It
fairly easy to see that α preserves operations on vector spaces L/B and ZL(B). This proves (1).

We now prove (2). If �(B) = FidB , then for all ϕ ∈ �(L), ϕ|B = λidB , for some λ ∈ F .
If ϕ /= λidL, let ψ(x) = λx, for all x ∈ L. Then ψ ∈ �(L) and ϕ − ψ ∈ V (B). Clearly ϕ =
ψ + (ϕ − ψ). Furthermore, FidL ∩ V (B) = 0, and so (2) is proved. �

Corollary 3.5. If the characteristic of F is 0 or not a factor of n− 1, then the following is true

C(L)= {ϕ ∈ Der(L)|Imϕ ⊆ Z(L)}
= V (L1) ∼= T (L1).

Proof. Similar proof to that of Proposition 3.3 yields C(L) = V (L1) = {ϕ ∈ Der(L)|Imϕ ⊆
Z(L)}. It follows from Theorem 3.4 that C(L) ∼= T (L1). �

Theorem 3.6. Let L be an n-Lie algebra. Then ϕD is a derivation for ϕ ∈ �(L), D ∈ DerL.
Proof. If x1, . . . , xn ∈ L then

ϕD([x1, . . . , xn])=
n∑
i=1

ϕ([x1, . . . , D(xi), . . . , xn])

=
n∑
i=1

[x1, . . . , ϕD(xi), . . . , xn].

Thus ϕD is a derivation. �

Theorem 3.7. Let L be an n-Lie algebra. Then for any D ∈ DerL and ϕ ∈ �(L),

(1) DerL is contained in the normalizer of �(L) in gl(L).
(2) Dϕ is contained in �(L) if and only if ϕD is a central derivation of L.
(3) Dϕ is a derivation of L if and only if [D,ϕ] is a central derivation of L.

Proof. For any D ∈ DerL, ϕ ∈ �(L) and x1, . . . , xn ∈ L

Dϕ([x1, . . . , xn])= [Dϕ(x1), . . . , xi, . . . , xn] +
n∑
i=2

[ϕ(x1), . . . , D(xi), . . . , xn]

= [Dϕ(x1), . . . , xi, . . . , xn] +
n∑
i=2

[x1, . . . , ϕD(xi), . . . , xn]

= [Dϕ(x1), . . . , xi, . . . , xn] + ϕD([x1, . . . , xn])
− [ϕD(x1), . . . , xi, . . . , xn].

Then we get
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(Dϕ − ϕD)([x1, . . . , xn]) = [(Dϕ − ϕD)(x1), . . . , xn],
that is, [D,ϕ] = Dϕ − ϕD ∈ �(L). This proves (1). From Theorem 3.6 and (1),Dϕ is an element
of �(L) if and only if ϕD ∈ DerL ∩ �(L). Thanks to Proposition 3.3, we get the result (2). It
follows from (1), Proposition 3.3 and Theorem 3.6 that (3) holds. �

Now we study the relationship between the centroid of a decomposable n-Lie algebra and the
centroid of its factors.

Theorem 3.8. Suppose that L is an n-Lie algebra over F and L = L1
⊕
L2 with L1, L2 being

ideals of L. Then

�(L) ∼= �(L1)⊕ �(L2)⊕ C1 ⊕ C2 as vector spaces, (3.3)

where

Ci = {ϕ ∈ Hom(Li, Lj )|ϕ(Li) ⊆ Z(Lj ) and ϕ(L1
i ) = 0 for 1 � i /= j � 2}.

Proof. Let πi : L → Li be canonical projections for i = 1, 2. Then π1, π2 ∈ �(L) and π1 +
π2 = idL. So we have for ϕ ∈ �(L),

ϕ = π1ϕπ1 + π1ϕπ2 + π2ϕπ1 + π2ϕπ2. (3.4)

Note that πiϕπj ∈ �(L) for i, j = 1, 2. We claim

�(L) = π1�(L)π1 ⊕ π1�(L)π2 ⊕ π2�(L)π1 ⊕ π2�(L)π2 as vector spaces. (3.5)

It suffices to show that π1�(L)π1 ∩ π1�(L)π2 = 0 (other cases are similar). For any ϕ ∈
π1�(L)π1 ∩ π1�(L)π2, there exist fi ∈ �(L), i = 1, 2 such that ϕ = π1f1π1 = π1f2π2.
Thenϕ(x) = π1f2π2(x) = π1f2π2(π2(x)) = π1f1π1(π2(x)) = π1f1(0) = 0, for allx ∈ A, and
so ϕ = 0.

Let

�(L)ij = πi�(L)πj , i, j = 1, 2.

We now prove

�(L)11 ∼= �(L1), �(L)22 ∼= �(L2), �(L)12 ∼= C2, �(L)21 ∼= C1.

Sinceϕ(L2) = 0 forϕ ∈ �(L)11, we haveϕ|L1 ∈ �(L1). On the other hand, one can regard �(L1)

as a subalgebra of �(L) by extending any ϕ0 ∈ �(L1) on L2 being equal to zero, that is

ϕ0(x1) = ϕ0(x1), ϕ0(x2) = 0 for all x1 ∈ L1, x2 ∈ L2.

Then ϕ0 ∈ �(L) and ϕ0 ∈ �(L)11. Therefore �(L)11 ∼= �(L1) with isomorphism

σ : �(L)11 → �(L1), σ (ϕ) = ϕ|L1 for all ϕ ∈ �(L)11.

Similarly, we have �(L)22 ∼= �(L2).
Next, we prove �(L)12 ∼= C2. If ϕ ∈ �(L)12 there exists ϕ0 in �(L) such that ϕ = π1ϕ0π2.

For xk = x1
k + x2

k ∈ L where xik ∈ Li, i = 1, 2 and k = 1, . . . , n we have

ϕ([x1, x2, . . . , xn])= π1ϕ0π2([x1, x2, . . . , xn])
= π1ϕ0([x2

1 , x
2
2 , . . . , x

2
n])

= π1([ϕ0(x
2
1 ), x

2
2 , . . . , x

2
n])

= 0
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and

[ϕ(x1), x2, . . . , xn] = ϕ([x1, x2, . . . , xn]) = 0.

Then ϕ(L) ⊆ Z(L) and ϕ(L1) = 0. It follows that ϕ|L2(L2) ⊆ Z(L1) and ϕ|L2(L
1
2) = 0 and so

ϕ|L2 ∈ C2.
Conversely forϕ ∈ C2, expandingϕ onL (also denoted byϕ) byϕ(L1) = 0, we haveπ1ϕπ2 =

ϕ and ϕ ∈ �(L)12. This proves that �(L)12 is isomorphic to C2 with the following isomorphism
τ : �(L)12 → C2,

τ(ϕ) = ϕ|L2 for all ϕ ∈ �(L)21.

Similarly, we can prove �(L)21 ∼= C1. Summarizing the above discussion we get

�(L) ∼= �(L1)⊕ �(L2)⊕ C1 ⊕ C2.

The proof is completed. �

A generalized version of the above theorem is stated below without proof.

Theorem 3.9. Suppose L is an n-Lie algebra over F with a decomposition of ideals

L = L1 ⊕ · · · ⊕ Lm.

Then we have

�(L) ∼= �(L1)⊕ · · · ⊕ �(Lm)⊕ (⊕1�i /=j�mCij ) as vector spaces,

where

Cij = {ϕ ∈ Hom(Li, Lj )|ϕ(Li) ⊆ Z(Lj ) and ϕ(L1
i ) = 0 for 1 � i /= j � m}.

In the following we study the centroid of n-Lie algebras over a field F of characteristic zero.
Let {ck} be a basis of the central derivations C(L) and {ϕj } a maximal subset of �(L) such that
{ϕj |[L,...,L]} is linear independent. Then we have the following result.

Theorem 3.10. Let � denote the subspace of �(L) spanned by {ϕj }. Then {ck, ϕj } is a basis of
�(L) and �(L) = � ⊕ C(L) as vector spaces.

Proof. Since {ϕj |[L,...,L]} is linear independent, {ϕj } is linear independent in �(L). By definition
of {ck, ϕj }, the {ck, ϕj } is independent in �(L).

For ϕ ∈ �(L) since {ϕj |[L,...,L]} is a basis of vector space {ϕ|[L,...,L]|ϕ ∈ �(L)}, there exist
ls ∈ F, s ∈ J (a finite set of positive integers) such that

ϕ|[L,...,L] =
∑
s∈J

lsϕs |[L,...,L].

We then have(
ϕ −

∑
s∈J

lsϕs

)
|[L,...,L] = 0.

If y1, . . . , yn ∈ L then

0 =
(
ϕ −

∑
s∈J

lsϕs

)
([y1, . . . , yn]) =

[(
ϕ −

∑
s∈J

lsϕs

)
(y1), y2, . . . , yn

]
.
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It follows that
(
ϕ −∑

s∈J lsϕs
)
(L) ⊆ Z(L) and ϕ −∑

s∈J lsϕs is a central derivation. So there
exist ri ∈ F, i ∈ I (a finite set of positive integers) such that

ϕ −
∑
s∈J

lsϕs =
∑
i∈I

rici .

Therefore ϕ = ∑
s∈J lsϕs +∑

i∈I rici . The proof is completed. �

Lemma 3.11 [4, Theorem 2.5]. Let L be an indecomposable n-Lie algebra over an algebraically
closed field F of characteristic zero and N the nilradical of �(L). Then

�(L) = FidL ⊕N.

Definition 3.12. Let L be an indecomposable n-Lie algebra over a field F . Then �(L) is small if
�(L) is generated by central derivations and the scalars.

The centroid of a decomposable n-Lie algebra is small if the centroid of every maximal inde-
composable ideal is small. The centroid of anm-dimensional abelian n-Lie algebra L is regarded
as small, in which case �(L) = gl(m, F ).

Theorem 3.13. If L is a Heisenberg n-Lie algebra over an algebraically closed field F of char-
acteristic 0, then �(L) is small and the central derivations C(L) = ad(L).

Proof. SinceL is indecomposable, it follows from Lemma 3.11 that �(L) = FidL ⊕N whereN
is the nilradical of �(L). If ϕ ∈ N then there exists a natural number k such that ϕk = 0. Because
L is a Heisenberg n-Lie algebra, we have

[L, . . . , L] = Fc,

where c is the center element of L. There exist x1, . . . , xn ∈ L such that [x1, . . . , xn] = c.
Thus

ϕ[x1, . . . , xn] = ϕ(c) = [ϕ(x1), x2, . . . , xn] = λc for some λ ∈ F.
By ϕk(c) = λkc = 0 we have λ = 0 and ϕ([L, . . . , L]) = 0. Since, for y1, . . . , yn ∈ L, [ϕ(y1),

y2, . . . , yn] = ϕ([y1, . . . , yn]) = 0, we see ϕ(L) ⊆ Z(L). It implies that ϕ is a central derivation.
This proves that �(L) is small.

Now suppose {e1, . . . , em, c} is a basis ofL and ϕ is a central derivation ofL. From Definition
3.2 we have

ϕ

⎛
⎜⎜⎜⎝
e1
...

em
c

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 · · · 0 a1
0 · · · 0 a2

· · · · · ·
0 · · · 0 am
0 · · · 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
e1
...

em
c

⎞
⎟⎟⎟⎠ . (3.6)

It implies that dimC(L) � m.
Thanks to the properties of Heisenberg n-Lie algebras, we know C(L) contains ad(L). On

the other hand ad(L) is in the space of linear transformations of L and has dimensionm since its
annihilator in L has dimension 1. Hence ad(L) = C(L). �
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4. Centroid of tensor product n-Lie algebras

Let A be a commutative associative algebra over F . The centroid �(A) of A is by definition

�(A) = {f ∈ End(A)|f (ab) = f (a)b = af (b) for all a, b ∈ A}.
Then �(A) is an associative subalgebra of End(A). If L is an n-Lie algebra over F , let A⊗ L

be the tensor product over F of the underlying vector spaces A and L. Then A⊗ L is an n-Lie
algebra over F with respect to the following n-ary multilinear operation

[a1 ⊗ x1, . . . , an ⊗ xn] = (a1 · · · an)⊗ [x1, . . . , xn], (4.1)

where ai ∈ A, xi ∈ L, and i = 1, . . . , n. This n-Lie algebra A⊗ L is called the tensor product
n-Lie algebra of A and L. For f ∈ End(A), ϕ ∈ End(L), let

f ⊗ ϕ : A⊗ L → A⊗ L

be given by

f ⊗ ϕ(a ⊗ x) = f (a)⊗ ϕ(x), for a ∈ A, x ∈ L.
Then f ⊗ ϕ ∈ End(A⊗ L). By the above notation we have following result.

Lemma 4.1. �(A⊗ L) ⊇ �(A)⊗ �(L).

Proof. For every f ⊗ ϕ ∈ �(A)⊗ �(L), ai ⊗ xi ∈ A⊗ L, i = 1, . . . , n, we have

(f ⊗ ϕ)([a1 ⊗ x1, . . . , an ⊗ xn])= (f ⊗ ϕ)((a1 · · · an)⊗ [x1, . . . , xn])
= f (a1 · · · an)⊗ ϕ([x1, . . . , xn])
= (f (a1)a2 · · · an)⊗ [ϕ(x1), x2, . . . , xn],
= [(f (a1)⊗ ϕ(x1), a2 ⊗ x2, . . . , an ⊗ xn]
= [f ⊗ ϕ(a1 ⊗ x1), a2 ⊗ x2, . . . , an ⊗ xn].

Therefore f ⊗ ϕ ∈ �(A⊗ L). �

If A is a commutative associative algebra with the unit element 1, then �(A) ∼= A with the
map σ : �(A) → A given by

σ(f ) = f (1) for all f ∈ �(A).

In the rest of the paper we suppose L is an n-Lie algebra over an algebraically closed field F of
characteristic zero and A is a unital commutative associative algebra over F .

Proposition 4.2. Using the notation of Theorem 3.10, we get

�(A⊗ L) ⊇ A⊗ � + End(A)⊗ C(L).

Proof. By Lemma 4.1 we have A⊗ � ⊆ �(A⊗ L). For every f ∈ End(A), c ∈ C(L),
(f ⊗ c)([a1 ⊗ x1, a2 ⊗ x2, . . . , an ⊗ xn])

= (f ⊗ c)((a1a2 · · · an)⊗ [x1, x2, . . . , xn])
= f (a1a2 · · · an)⊗ c([x1, x2, . . . , xn]) = f (a1a2 · · · an)⊗ 0 = 0;
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[(f ⊗ c)(a1 ⊗ x1), a2 ⊗ x2, . . . , an ⊗ xn]
= [f (a1)⊗ c(x1), a2 ⊗ x2, . . . , an ⊗ xn]
= (f (a1)a2 · · · an)⊗ [c(x1), x2, . . . , xn] = (f (a1)a2 · · · an)⊗ 0

= (f ⊗ c)([a1 ⊗ x1, a2 ⊗ x2, . . . , an ⊗ xn]).
Therefore, f ⊗ c ∈ �(A⊗ L). �

Theorem 4.3. If dimL � 2 and �(L) = Fid, then �(A⊗ L) = �(A)⊗ �(L) ∼= A.

Proof. By Lemma 4.1 it suffices to prove

�(A⊗ L) ⊆ �(A)⊗ �(L) ∼= A.

Suppose {mi} is a basis of A. Then for every ϕ ∈ �(A⊗ L), a ∈ A, there exists a set of
transformations {ηi(a,−)} in End(L) such that for x ∈ L,

ϕ(a ⊗ x) =
∑
i

mi ⊗ ηi(a, x), (4.2)

where in the summation only finite number of summands are not equal to zero, that is for every
x ∈ L there exist at most finite ηi(a,−), such that ηi(a, x) /= 0. Now we prove ηi(a,−) ∈ �(L).
Notice that

ϕ([a ⊗ x1, 1 ⊗ x2, . . . , 1 ⊗ xn])= [ϕ(a ⊗ x1), 1 ⊗ x2, . . . , 1 ⊗ xn]

=
[∑

i

mi ⊗ ηi(a, x1), 1 ⊗ x2, . . . , 1 ⊗ xn

]

=
∑
i

mi ⊗ [ηi(a, x1), x2, . . . , xn]

and

ϕ([a ⊗ x1, 1 ⊗ x2, . . . , 1 ⊗ xn])= ϕ(a ⊗ [x1, x2, . . . , xn])
=
∑
i

mi ⊗ ηi(a, [x1, x2, . . . , xn])

for any x1, x2, . . . , xn ∈ L. Therefore [ηi(a, x1), x2, . . . , xn] = ηi(a, [x1, x2, . . . , xn]) and
ηi(a,−) ∈ �(L). It follows from �(L) = Fid that ηi(a, x) = λi(a)x. By (4.2), for ϕ ∈ �(A⊗
L), a ∈ A there exists a finite set J of positive integers such that if i /∈ J then ηi(a,−) = 0. Then
we have

ϕ(a ⊗ x) =
∑
i∈J

λi(a)mi ⊗ x for all x ∈ A.

Let ρ : A → A given by ρ(a) = ∑
λi(a)mi for all a ∈ A. Then ϕ(a ⊗ x) = ρ(a)⊗ x. Since

ϕ([a ⊗ x1, 1 ⊗ x2, . . . , 1 ⊗ xn])= ϕ(a ⊗ [x1, x2, . . . , xn])
= ρ(a)⊗ [x1, x2, . . . , xn]

and

ϕ([a ⊗ x1, 1 ⊗ x2, . . . , 1 ⊗ xn])= [a ⊗ x1, ϕ(1 ⊗ x2), . . . , 1 ⊗ xn]
= [a ⊗ x1, ρ(1)⊗ x2, . . . , 1 ⊗ xn]
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= ρ(1)a ⊗ [x1, x2, . . . , xn]
for x1, x2, . . . , xn ∈ L, a ∈ A, we get

ρ(a)⊗ [x1, x2, . . . , xn] = ρ(1)a ⊗ [x1, x2, . . . , xn].
As L is not an abelian n-Lie algebra, we see ρ(a) = aρ(1) for a ∈ A. Therefore

ϕ(a ⊗ x) = (ρ(1)⊗ idL)(a ⊗ x), for all a ∈ A, x ∈ L.
This shows

�(A⊗ L) = �(A)⊗ �(L) ∼= A. �

Remark 4.4. Theorem 4.3 does not hold if A is not unital.

Example 4.5. Let F [t] = {f (t) = ∑m
i=0 ait

i |ai ∈ F, 0 � i � m, 0 � m < ∞} be the polyno-
mial ring over an algebraically closed field F of characteristic zero. Then

B = tmF [t], m > 0

is a subalgebra of F [t] not containing the unit element. Let

L = Fe1 + · · · + Fen+1

be an n+ 1 dimensional simple n-Lie algebra over F . Thanks to Theorem 2.6 in [4] we have
�(L) = FidL. A direct computation yields that f (t)idB ⊗ idL ∈ �(B ⊗ L) for f (t) ∈ F [t].
Therefore

�(B ⊗ L) ∼= F [t] /= B.
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