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Infectious diseases are the second leading cause of death worldwide. Noninvasive small-animal imaging
has become an important research tool for preclinical studies of infectious diseases. Imaging studies
permit enhanced information through longitudinal studies of the same animal during the infection.
Herein, we briefly review recent studies of animal models of infectious disease that have used imaging
modalities. (Am J Pathol 2013, 182: 296e304; http://dx.doi.org/10.1016/j.ajpath.2012.09.026)
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Small-animal imaging has become an important research
tool in studies of infectious diseases and has significantly
contributed to both our understanding of pathogenesis and
preclinical investigations on drug development. Nonin-
vasive imaging research permits enhanced information
through longitudinal studies of animal models of human
diseases. Infectious diseases are important causes of
morbidity and mortality in humans worldwide. During the
past decade, several different small-animal imaging
modalities have been applied to studies of infectious
disease, including magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomog-
raphy (PET), bioluminescence imaging (BLI), and intra-
vital imaging. Multiple-modality imaging has become
even more attractive because it permits evaluation of the
same animals by different imaging technologies, thus
reporting on alterations in anatomical characteristics,
metabolism, function, and the location of infectious
agents. The development of imaging applications in
animal models of infectious diseases using these modal-
ities can quickly move from basic research to the clinic.
Herein, we review some recent applications of small-
animal imaging technologies to the study of infectious
diseases.
stigative Pathology.
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Overview of Imaging Technologies

MRI is a noninvasive imaging modality with high resolution
(approximately 50 to 100 mm for small-animal studies) and
excellent intrinsic soft tissue contrast.MRI canbe used to image
anatomical structures, bloodflow, anddiffusion in the clinic and
in experimental animals. Contrast agents (gadolinium or iron-
based agents) can be used to specifically label cells or tissues for
diagnostic applications. Although micro-CT is the gold stan-
dard for imaging bone in mice, contrast agents are required
to enhance soft tissues. CT permits longitudinal studies of
anatomical characteristics like MRI. It is a high-resolution
(>50 mmol/L), fast (minutes) X-rayebased technique. A
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Imaging Infection in Animal Models
concern with CT, particularly with longitudinal studies, is the
radiation dose, whichmay be high enough to induce changes in
the biological pathways being studied, and the need for contrast
agents for soft tissue imaging.

PET is a highly sensitive (pmol/L) molecular imaging
technique that can be used to visualize a variety of in vivo
biological processes. Although the resolution of micro-PET
(1 to 2 mm) is not as high as that of CT or MRI, it is
adequate for small-animal imaging. The molecule 2-deoxy-
2-[18F] fluoro-D-glucose (FDG) is routinely used in the
clinical setting for the detection of cancer, based on increased
uptake of glucose by malignant cells. In addition to 18F-FDG,
many other radiotracers can be used in micro-PET studies.

Single-photon emission CT (SPECT) uses radiotracers that
permit visualization of specific physiological information,
such as bloodflowandperfusion, or tomeasure biodistribution
of a radiolabeled molecule or cell. The radioisotopes used are
typically longer lived than those used for PET [eg, technetium-
99m (half-life of 6 hours) or indium-111 (half-life of
67 hours)]. SPECT is performed in combination with CT to
provide anatomical detail; however, the additional exposure to
radiation has to be considered in planning longitudinal studies.

Ultrasonographic (US) imaging has high spatial resolu-
tion (approximately 50 mm) and contrast in soft tissue. In
addition to being portable, US is a fast and economical
technique. US has been extensively used for echocardio-
graphic studies of small animals. Recent advances in tech-
nology and in contrast agent development have improved
resolution such that US studies of many organ systems of
small animals are possible.

In vivo BLI has been applied in many studies of small
animals and cells. It can be used to monitor gene expression
and to track cells. Bioluminescent and fluorescent probes
have been engineered to monitor enzymes and the activity
of other biologically important molecules. These probes can
be used to follow disease progression or response to treat-
ment. Tumor cell lines and microbial pathogens that express
luciferase or fluorescent proteins are commonly used for
preclinical studies, as are transgenic animals that stably
express bioluminescent or fluorescent proteins.

Noninvasive imaging of animals using these technologies
reduces animal numbers by permitting the use of animals as
their own controls. In addition, therapeutic agents can be
developed and tested using imaging technologies that are
directly translatable to the clinic. Longitudinal imaging of
chronic diseases permits continuous monitoring of disease
progression and response to treatment. Table 1 summarizes the
advantages and limitations of imaging technologies commonly
used in studies of small-animal models of infectious diseases.

Parasitic Infections

Chagas Disease

Trypanosoma cruzi is the causative agent of Chagas disease,
a neglected tropical disease, endemic to Latin America, and is
The American Journal of Pathology - ajp.amjpathol.org
being diagnosed in nonendemic areas as a result of immigra-
tion.1 Cardiac manifestations of Chagas disease include acute
myocarditis and chronic dilated cardiomyopathy, accompanied
by congestive heart failure, arrhythmias, cardioembolism, and
stroke.2 Approximately 30% of infected individuals develop
chronic manifestations, including cardiomyopathy, mega-
syndromes of the gastrointestinal tract, or both. MRI and
echocardiography have been useful in the diagnosis of patients
infected with T. cruzi.3e5 An extensive review of advances in
imaging animals infected with T. cruzi has recently been
published.6 Herein, we will focus on the mouse model that has
been extensively studied using a variety of imagingmodalities,
including MRI, echocardiography, and PET imaging using
[18F]-FDG.7e14

MRI has been most useful for evaluating the right ventricle
of mice (Figure 1), which is difficult to visualize with standard
echocardiography,8,12,14 whereas echocardiography has been
effective for evaluating left ventricular function.7,13,15 SPECT
imaging has been applied in human studies16; however, it has
not been reported in animal studies. On the other hand, PET
studies have only been reported in the animalmodel of T. cruzi
infection (Figure 1). [18F]-FDG-PET has detected changes in
glucose metabolism, presumably due to inflammation, early
during the course of T. cruzi infection and before significant
changes in heart structure or function are detected.13 Infection
can also result in loss of smoothmuscle tone and destruction of
ganglia throughout the bowel and bladder, resulting in meg-
asyndromes of the esophagus, colon, intestines, and bladder,
accompanied by severe constipation, difficulty swallowing,
and malnutrition (Figure 1).17 MRI18e20 and X-ray meth-
ods21,22 have been useful for studying these organs inmice and
for evaluating therapeutic strategies. For example, by using
MRI, we demonstrated that the administration of the calcium
channel blocker, verapamil, early (but not late) in the murine
infection reduces the infection-associated increase in right
ventricular internal diameter.15,23 Treatment of infected mice
with an endothelin-converting enzyme inhibitor also reduced
right ventricular internal diameter, thus illustrating the role of
endothelin in the pathogenesis of T. cruzieinduced cardio-
myopathy.24 MRI of the mouse model has also demonstrated
a loss of adipose tissue, which is consistent with increased
expression of enzymes associated with lipolysis.25

African Trypanosomiasis

Another neglected tropical disease (World Health Organiza-
tion classification) is human African trypanosomiasis (HAT) or
sleeping sickness. HAT is a parasitic disease transmitted by the
tsetse fly that continues to be an important cause of human
morbidity and mortality in sub-Saharan Africa due, in part, to
armed conflicts resulting in population shifts. HAT is caused by
infection with Trypanosoma brucei rhodesiense (East Africa)
or T. brucei gambiense (West Africa). East African disease is
actually a zoonosis among game animals, and humans become
the accidental host. Disease progression is rapid, with early
invasion of the central nervous system (CNS), and, if untreated,
297
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Table 1 Small-Animal Imaging Modalities

Modality Optimal use
Advantages: serial
studies (all) Limitations

CT Anatomical body imaging of
bone, lung, and heart

High resolution of anatomical
structures <50 mm

Not quantitative
Ionizing radiation dose
Cost
Contrast agents required for soft tissue
Contrast, tumors, and angiography

PET Metabolism, perfusion, cell
proliferation, apoptosis,
hypoxia, and functional
imaging

Quantitative function
Picomolar sensitivity
Molecular targeting
Dynamic imaging

Ionizing radiation (requires injection of a
radiotracer)

Low resolution
Improved anatomical resolution requires
hybrid devices (PET/CT or PET/MRI)

Cost

SPECT Functional imaging: metabolism,
perfusion, hypoxia, and
apoptosis

Qualitative function
Picomolar sensitivity
Molecular targeting

Ionizing radiation (requires injection of a
radiotracer)

Not quantitative
Low resolution (improved with hybrid CT)
Cost

MRI Soft tissues, angiography,
perfusion, functional imaging,
and tissue oxygenation

Qualitative function Medical contraindications
Quantitative function
High spatial and temporal
resolution with intrinsic
soft tissue contrast

Nonionizing radiation

Sensitivity limited for some functional
measures

Cost
Some applications require contrast agents
(gadolinium- and iron-based agents are
common)

US Whole body imaging and
echocardiography

Nonionizing radiation Air and bone produce artifacts
Anatomical features Not quantitative
Molecular targeting

Optical imaging
(bioluminescence
and fluorescence)

Single-cell and single-gene
imaging

Nonionizing Not for humans
Inexpensive
Molecular targeting

This table lists the modality, optimal use, advantages, and limitations of commonly used small-animal imaging modalities (CT, PET, SPECT, MRI, US, and
optical imaging).

Jelicks et al
death occurs within 9 months. The Gambian type is a chronic
disease, with invasion of the CNS occurring late, with a variety
of neuropsychiatric disorders. Rodent and primate models
mimic the CNS effects of the human disease. MRI has become
an important tool for diagnosis of parasitic diseases of the
CNS.26 MRI studies of human patients with African trypano-
somiasis report gadolinium enhancement, suggesting that the
blood-brain barrier (BBB) is compromised by infection.27e30

Recently, Rodgers et al31 used contrast agenteenhanced MRI
to evaluate changes in the BBB integrity associated with the
early CNS stage of the disease using a well-established murine
model of HAT (Figure 2). They found that T1- and T2-weighted
MRI with the administration of a gadolinium-based contrast
agent (Magnevist; Bayer HealthCare, Uxbridge, Middlesex,
UK) could detect significant dysfunction in the BBB of infected
mice early in the CNS stage of the disease, when only mild to
moderate histopathological changes are apparent. Additional
MRI studies designed to evaluate BBB integrity throughout the
course of trypanosome infection from the early acute stage,
when no histopathological changes are detected, to post-
treatment reactive encephalopathy, when the animals exhibit
298
severemeningoencephalitis, are needed to establish the value of
MRI for diagnosis and evaluation of therapeutic interventions
in humans.

Malaria

Infection with Plasmodium falciparum, a causative agent
of malaria in humans, accounts for almost one million
deaths per year, and cerebral malaria is one of the most
severe complications of this infection.33 The pathogenesis
of cerebral malaria is likely multifactorial and includes
a reduction in cerebral blood flow associated with vaso-
spasm, adherence of infected red blood cells to the
endothelium, up-regulation of inflammatory mediators to
the CNS and to the cerebral microvasculature,32,34e37 and
both systemic and cerebral metabolic disturbances.38,39

Neuroimaging, particularly T1- and T2-weighted MRI
and MR angiography, has become an important tool in
elucidating the underlying mechanisms of cerebral malaria
through longitudinal studies in animal models and humans
that do not rely on autopsy material.36,40e43
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 AeD: MRI scans generated after the administration of
contrast agent in an uninfected mouse (A and C) and an animal scanned
28 days after infection with T. brucei (B and D). Arrowheads indicate
the presence of clear meningeal enhancement in the infected mouse
compared with the uninfected animal imaging to assess BBB damage in
murine trypanosomiasis (reproduced from Rodgers et al31 with permis-
sion of the authors and The American Journal of Tropical Medicine and
Hygiene). E: Anatomical images from selected slices in control and
infected mice. Slices shown are at the level of the caudate/putamen
(CP), thalamus (TH), hippocampus (HC), and entorhinal cortex (ER)
(arrows). The corresponding anatomical regions are indicated on each
slice for the control animals. Con, control; Inf, infected. The images
in panel E were reproduced from Kennan et al,32 with permission of
Springer Publishing.

Figure 1 MRI and [18F]-FDG-PET images of control uninfected (A, C,
and E) and infected (B, D, and F) mice. MRI of the gastrointestinal (GI)
tract (A and B) and heart (C and D) and PET of the heart (E and F). Large
white arrow indicates enlarged GI tract and right ventricle of the infected
mice in B, D, and F. These figures are reproduced from Jelicks et al12 (C and
D), Prado et al13 (E and F), and Ny et al18 (A and B), with permission of The
American Journal of Tropical Medicine and Hygiene.

Imaging Infection in Animal Models
Although mouse models do not perfectly recapitulate
human cerebral malaria, mice infected with P. berghei-
ANKA (Antwerpen-Kasapa) are an excellent model for
imaging. ANKA is a strain of P. berghei which confers
experimental cerebral malaria in certain rodent strains.
These rodents have been invaluable in helping to uncover
early markers of the disease that are apparent even before
any evidence of swelling in the brain, using T1- and T2-
weighted MRI and MR angiography.41,43 Flow-alternating
arterial inversion spin-labeling MRI studies and single-
voxel proton spectroscopy demonstrated decreased cere-
bral blood flow, as well as neuronal and axonal injury in
mice infected with P. berghei-ANKA.36,43 Saggu et al41

recently reported the first detection of damage to the optic
and trigeminal nerves using T2-weighted MRI. They previ-
ously characterized the disease in mice and observed several
characteristic features, including BBB breakdown, hemor-
rhage, reduced brain perfusion, ischemia, hemodynamic
dysfunction, and brain edema.42,43 In the more recent report,
The American Journal of Pathology - ajp.amjpathol.org
using high-field (11.75-T) MRI, they identified damage to
the cranial nerves as the earliest hallmark of the disease
before any detectable brain swelling.41 They observed
a hypointense signal in the trigeminal nerves, with signifi-
cantly reduced dimensions. In addition, they demonstrated
that the optic nerves were either hypointense or not visible in
images of infected mice.41 These markers may be clinically
relevant and could assist in the early detection of cerebral
malaria.

By using MRI and MR angiography to study infected mice
deficient in IL-12 receptor b2, Fauconnier et al44 demon-
strated that this molecule is essential for the development of
cerebral malaria. Although wild-type mice developed the
microvascular pathological characteristics associated with
cerebral malaria, the mice deficient in IL-12 receptor b2
developed no neurological signs of the disease.44
299

http://ajp.amjpathol.org


Jelicks et al
Findings of the mouse studies demonstrating the diagnostic
value of MRI and the potential for therapeutic applications
have been an important basis for the increased use of MRI in
patients with cerebral malaria in endemic areas.40

[18F]-FDG-PET imaging has been applied in studies of
cerebral malaria in a nonhuman primate model and
demonstrated decreased cerebral metabolic activity.38 A
diffuse and heterogeneous reduction of metabolic activity in
the frontal and temporal lobes before any evidence of
neuropathological findings was observed, suggesting that
cerebral metabolic changes occur before parenchymal
damage in primate cerebral malaria models.38 A diffuse
reduction in activity was postulated to result from decreased
blood flow due to sequestration of parasitized red blood
cells to the cerebral microcirculation.38

Intravital microscopy can examine the living brain
through a cranial window. This technique allows for long-
term imaging of a single area in the brain for comparison
of histopathological alterations and behavioral perfor-
mances with microvascular changes.45 Intravital micros-
copy has emerged as an important tool in determining
the underlying pathological features contributing to cere-
bral malaria. Cabrales and coworkers37,45,46 have taken
advantage of this useful tool to explore the cerebral
microvasculature during disease progression. Intravital
microcopy was used to visualize the microvasculature after
administration of a calcium channel blocker, nimodipine,
to mice infected with P. berghei-ANKA and demonstrated
reversal of the cerebral vascular disturbances during
infection associated with improved survival and motor
coordination.37 In other studies, the benefits of treating
cerebral malaria in a mouse model with exogenous nitric
oxide were demonstrated.46,47 Intravital imaging will
contribute to a greater understanding of microcirculatory
hemodynamics and vascular pathological characteristics
during the pathogenesis of cerebral malaria in the mouse
and will allow researchers to visually assess the function of
specific vascular genes by infecting mice deficient in
various genes to determine the efficacy of various thera-
peutic treatments.

Schistosomiasis

Schistosomiasis is a disease caused by several species of
the trematode, Schistosoma, most notably S. mansoni,
S. japonicum, and S. hematobium. The adults are intra-
vascular. The first two species predominantly cause
diseases of the liver and mesentery, whereas the latter one
causes diseases of the urogenital tract. All three species
have invaded the CNS as well. The major lesion is the
formation of a granuloma surrounding the egg. This disease
is diagnosed by the detection of ova in the feces and urine
of infected individuals and by biopsy material. Salem et al48

used fluorescence molecular tomography, MRI, and [18F]-
FDG-PET imaging to evaluate the worm burden in mice
infected with S. mansoni. [18F]-FDG uptake was correlated
300
with worm burden and was useful for monitoring response
to praziquantel treatment. Their results demonstrate the
potential for using PET imaging in evaluation of thera-
peutics for this infection.

Bacterial Infections

Mycobacteria

Tuberculosis is a major public health problem worldwide.
The mouse model of Mycobacterium tuberculosis has been
extensively investigated. Infected mice have been used in
a study of superparamagnetic iron oxide nanoparticles
conjugated with a surface antibody, developed to improve
diagnosis of extrapulmonary M. tuberculosis.49 These
M. tuberculosis nanoparticles resulted in a 14-fold increase
in signal intensity of granulomas on T2-weighted MRI
images and provided a novel noninvasive method for
diagnosing extrapulmonary M. tuberculosis infections.
Although promising, more basic research must be per-
formed to evaluate biodistribution and binding/endocytosis
of the particles. In a PET study, Harper et al50 used copper-
64(II)-diacetyl-bis(N4-methyl-thiosemicarbazone), a tracer
used to detect hypoxia, to evaluate hypoxia in tuberculosis
lesions in mice. During acute infection or in control mice,
there was no accumulation of copper-64(II)-diacetyl-
bis(N4-methyl-thiosemicarbazone), whereas in chronically
infected mice, the tracer accumulated in the lesions in
a progressive, time-dependent manner. The accumulated
copper-64(II)-diacetyl-bis(N4-methyl-thiosemicarbazone)
colocalized with the lesion by CT imaging. [18F]-FDG-PET
has been used to evaluate bactericidal activity of drug
therapy in mice that were aerosol infected with M. tuber-
culosis.51 Lesion-specific [18F]-FDG-PET activity corre-
lated with treatment in mice that develop caseating lesions.
In another study, Davis et al52 used SPECT imaging of
exogenously labeled M. tuberculosis. Mice were infected
with wild-type M. tuberculosis or M. tuberculosis Phsp60
thymidine kinase (TK) strains. The M. tuberculosis Phsp60
TK strain was engineered to express TK using Phsp60,
a highly active constitutive mycobacterial promoter.
At specific time points, the mice were injected with
1-(20deoxy-20-fluoro-b-D-arabinofuranosyl)-5-[125I]-iodouracil
([125I]-FIAU), a nucleoside analog substrate for bacterial
TK, and SPECT and CT imaging studies were per-
formed at 3 and 24 hours after injection with the mice in
a biocontainment device. SPECT imaging detected and
localized the M. tuberculosis Phsp60 TK strain, but not the
wild-type M. tuberculosis. Their data suggest that as few
as 5 to 10 million M. tuberculosis Phsp60 TKs inside a granul
oma could be detected using SPECT. These studies demon-
strate the application of noninvasive imaging to monitor
treatment response in small-animal models. The methods can
be used to test therapeutics and develop regimens that can be
extended tohumans,who can thenbemonitored using the same
type of imaging procedures.
ajp.amjpathol.org - The American Journal of Pathology
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Other Bacteria

Listeria monocytogenes is a Gram-positive bacillus that
causes a variety of human and animal infections, including
gastroenteritis, sepsis, miscarriage, stillbirth, and neonatal
meningitis. Hardy et al53 used US (for viability), MRI (for
morphological characteristics), and BLI (for tracking
L. monocytogenes) to study Listeria-induced miscarriage,
using a pregnant mouse model. Ultrasonography revealed
sustained bradycardia in the infected fetuses, although MRI
detected no malformations of the fetuses, even when BLI
indicated a high degree of infection. The study demonstrates
the potential of using the multimodality approach to study
the causes of miscarriage.

Bettegowda et al54 used SPECT and CT imaging to
localize bacterial infections with [125I]-FIAU in mice.
Escherichia coli, Staphylococcus aureus, Streptococcus
pneumonia, Enterococcus faecalis, and Staphylococcus
epidermidis were used to generate localized experimental
infections in the thigh of mice; these mice were subse-
quently injected via the tail vein with [125I]-FIAU imaged
by SPECT at specific time points. All five strains of bacteria
could be imaged with robust uptake at 4 hours after injec-
tion, and a high signal/noise ratio was observed 48 hours
after injection. The authors speculate that [124I]-FIAU,
a positron emitter, or other positron-emitting nucleosides
would be even more sensitive and that novel diagnostics and
therapeutics could be developed based on the widespread
presence and substrate specificities of bacterial TKs.

In another study of S. aureus, an engineered analog of
prothrombin was used to study the bacteria in endocarditic
vegetations with noninvasive fluorescence or PET imaging.55

Fluorescent-labeled prothrombin (AF680-ProT) was injected
into amousemodel of endocarditis, and imagingwas performed
using fluorescence molecular tomography fused to X-ray CT.
High local concentrations of AF680-ProT were observed
in S. aureuseinduced vegetations 24 hours after injection
of the probe. For the PET-CT studies, 64Cu-diethylene-
triaminepentaacetic acid-ProT was used, along with a geneti-
cally engineered S. aureus strain that expressed luciferase at
sites of infection. The multimodality approach permitted
confirmation of the presence of the bacteria using BLI, which
was correlated with the PET imaging of 64Cu-diethylene-
triaminepentaacetic acid-ProT and demonstrated that PET
imaging could be used to evaluate bacterial load. 64Cu-PET has
also been used to study the dissemination of Francisella
tularensis, the cause of tularemia, when administered intrana-
sally, intratracheally, intragastrically, intradermally, i.p., or i.v.
in mice.56 The results demonstrated that Francisella rapidly
disseminates within hours to multiple tissues via most routes of
administration, although different trafficking patterns were
observed. Infection via the pulmonary routes resulted in rapid
spread to the lung and gastrointestinal tract.

67Gallium-citrate scintigraphy has been used in routine
diagnostics of infections in the clinical setting; however, it
has a long (3-day) half-life and is expensive, in addition to
The American Journal of Pathology - ajp.amjpathol.org
having safety concerns. 68Ga, a PET tracer, has a short (68-
minute) half-life, a lower cost, and fewer safety concerns.
Nanni et al57 tested 68Ga-chloride as a PET tracer in mice
infected with Chlamydia muridarum. Although the tracer
demonstrated some promise for assessing genital infection,
68Ga uptake was high in control mice with aseptic inflam-
mation caused by the sham procedure and in the infected
mice. In another study, Streptococcus pyrogenes infec-
tion and lipopolysaccharide inflammation in mice were
investigated using fluorescent and SPECT/CT imaging
with the tracer, 111In-labeled tetraazacyclododecanete
tetraacetic acid-biotin, linked to zinc-dipicolylamine-
biotin with streptavidin.58 There was significantly higher
accumulation of this tracer in the live bacterial infection
in one thigh compared with the sterile inflammation in the
other thigh, suggesting that zinc-dipicolylamine may be
useful for distinguishing between infection and inflam-
mation. MRI has also been used in longitudinal studies of
meningitis in mice.
Viral and Fungal Infections

BLI has been a powerful technique for tracking bacteria, fungi,
parasites, and viruses that cause infectious diseases.59,60 Kang
et al61 have used BLI to monitor virus progression after
CNS infection of mice with murine g-herpesvirus. Murine
g-herpesvirus is similar to human g-herpesvirus, Epstein-
Barr virus, and Kaposi’s sarcomaeassociated herpesvirus
and provides a mouse model for studying the involvement
in neurological diseases. After CNS infection, the virus
spreads to the spleen, and latent virus could be activated
from both the brain and the spleen. Their results suggest
a role for the brain as a site for viral persistency after CNS
infection. Rift Valley fever is another viral infection that
has been studied byBLI inmice.62 The infection is typically
asymptomatic or mild, although a few patients exhibit
complications and death is associatedwith high viral load in
blood. Real-time dissemination of the virus in immune-
deficient mice was tracked and demonstrated that the
thymus, spleen, and liver were infected first, with the liver
being themain location for viral replication. BLI can also be
used to track fungal infections. The fungus Aspergillus
terreus is a life-threatening complication in immune-
compromised patients. Slesiona et al63 have used biolu-
minescent A. terreus in mice and demonstrated long-term
persistence of the A. terreus conidia using BLI. Studies,
using the luminescent bacteria strain, S. aureus Xen 29,
have demonstrated the use of BLI to evaluate therapeutics
in mice.64,65 These studies represent a few recent examples
of the potential value of BLI for tracking infection.

MRI has also been valuable for studying viral infections.
Diffusion-tensor MRI has been applied to study neuronal
loss during HIV-1 infection in a humanized mouse
model.66 Structural changes in gray matter were revealed
by imaging and confirmed by immunohistochemistry. To
301
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our knowledge, this study was the first to demonstrate such
associations and underscored the potential of humanized
mouse models for research in infectious diseases.

Concluding Remarks

Much progress has been made in tracking parasites, bacteria,
fungi, and viruses using multimodality small-animal imaging
approaches.59,60 The future development of multimodality
molecular imaging studies for investigating the pathogenesis
of infection and for evaluating the therapeutics and translation
to the clinical setting for diagnostic and theranostic applica-
tions will provide researchers and clinicians the tools to have
a positive impact on patient care.
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