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Abstract

For a positive integer m, let !(m) denote the number of distinct prime factors of m. Let
h(n) be a function de4ned on the set of positive integers such that h(n) → ∞ as n →
∞ and let En(h) = {d: d is a positive integer; d6 n; !(d)¿ h(n)}. Writing �n = {(x; y) : x; y
are integers; 16 x; y6 n}, in the present paper we show that one can give explicit description
of a set Xn ⊂ �n such that �n is visible from Xn with at most 100|En(h)|2 exceptional points
and for all su9ciently large n, one has

|Xn|6 800h(n)log log h(n):

As a corollary it follows that one can give explicit description of a set Yn ⊂ �n such that for
large n’s, �n is visible except for at most 100 n2=(log log n)2 exceptional points from Yn where
Yn satis4es

|Yn|= O((log logn)(log log log log n)):
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let �n= {(x; y) : x; y are integers; 16x; y6n} be the set of integer lattice points in
a particular square area in R2. If �=(a1; a2) and �=(b1; b2) are two points in �n, we
say that � is visible from � if either �= � or there is no other lattice point in �n on
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the line segment joining � and �. It is easy to observe that if � �= �, then �=(a1; a2)
is visible from �=(b1; b2) if and only if (a1−b1; a2−b2)= 1, where (a1−b1; a2−b2)
denotes the greatest common divisor of a1 − b1 and a2 − b2.
If A and B are subsets of �n, one says that A is visible from B if each point of A

is visible from some point of B.
Let f(n) be de4ned by

f(n)=min{|S|: S ⊂�n; �n is visible from S}:

Here and in what follows, for a 4nite set S; |S| will denote the number of elements
in S. Therefore, in other words, f(n) is the least number of points that can be selected
from �n such that every point of �n is visible from at least one of the selected points.
It was proved in [1] that

Theorem 1∗. For all su7ciently large n

log n
2 log log n

¡f(n)¡4 log n: (1)

The following result was also proved in [1].

Theorem 2∗. One can explicitly describe a set Sn⊂�n such that �n is visible from
Sn and |Sn|=O((log n)�) where � has the property that the Jacobsthal function g(n)
satis:es g(n)=O((log n)�).

Here, the Jacobsthal function g(n) is de4ned to be the least integer with the property
that among any g(n) consecutive integers a+1; : : : ; a+g(n), there is at least one which is
relatively prime to n. ErdLos et al. [4] had asked for a replacement of Sn in Theorem 2∗

by a set S ′n which would satisfy |S ′n|=O(log n) as is expected from Theorem 1∗ and it
should be mentioned (see [2] or [3] for information regarding the order of g(n)) that
even if the expected order of g(n) is established, Abbot’s explicit construction falls
short of that target.
In [2], Adhikari and Balasubramanian gave an explicit construction of a set S ′n⊂�n

from which �n is visible, where S ′n satis4es

|S ′n|=O
(
log n log log log n

log log n

)
:

In [3], the corresponding problem for higher dimensions was solved up to a constant
factor. For the case of dimension two, it remains an open question as to whether the
order of f(n) obtained in [2] can be improved or not.
In the present paper, we consider a slightly diMerent question in the case of dimension

two.
For a positive integer m, let !(m) denote the number of distinct prime factors of m.

Let h(n) be a function de4ned on the set of positive integers such that h(n)→∞ as
n→∞ and let En(h)= {d: d is a positive integer; d6n; !(d)¿h(n)}.
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We prove the following theorem.

Theorem 3. One can give explicit description of a set Xn⊂�n such that �n is visible
from Xn with at most 100|En(h)|2 exceptional points and for all su7ciently large n,
one has

|Xn|6 800h(n) log log h(n):

2. Proof of Theorem 3

Let n be su9ciently large and

s= [10h(n)]; t= [10 log log h(n)]; t0 =
[
1
10
t
]
+ 1:

Let

Ai= {m: m is an integer; (i − 1)t + 1¡m6it}; for i=1; 2; : : : ;

I = {i: |Ai ∩En(h)|¿t0}
and

Bi= {it − a : a∈Ai ∩En(h)}:
Suppose that 16i6n=t; i =∈ I and 16j6n=s. Then |Bi|¡t0 and !(it − a)¡h(n) if

16a6t and a =∈Bi.
Thus, using p to denote prime numbers, we estimate the following sum which counts

the number of pairs (a; b); 16a6t; 16b6s; a =∈Bi for which the gcd ((it − a);
(js− b))¿1. We have

t∑
a=1
a =∈Bi

s∑
b=1

∑
((it−a);(js−b))¿1

1

6
t∑
a=1
a =∈Bi

s∑
b=1

∑
p

∑
p|(it−a)
p|(js−b)

1

6



∑
p6s

t∑
a=1; a =∈Bi
p|(it−a)

s∑
b=1

p|(js−b)

1


+



∑
p¿s

t∑
a=1; a =∈Bi
p|(it−a)

1




6
∑
p6s

(
t
p

+ 1
)(
s
p

+ 1
)
+

∑
p¿s

t∑
a=1; a =∈Bi
p|(it−a)

1
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6
∑
p6s

(
t
p

+ 1
)(
s
p

+ 1
)
+

t∑
a=1; a =∈Bi

∑
p|(it−a)

1

(removing the restriction p¿s on p in the last term)

6ts
∑
p

1
p2

+ (t + s)
∑
p6s

1
p

+ s+ (t − |Bi|)h(n)

¡
7
10
ts+ (t + s)(log log s+ O(1)) + (t − |Bi|)h(n)

¡(t − |Bi|)s for all su9ciently large n: (2)

(It should be noted that we have used the trivial estimate
∑
p 1=p2¡(

∑∞
n=1 1=n2) −

1= (!2=6)− 1¡ 7
10 . However, it is known [6] that

∑
p 1=p2 = 0:452247 : : : :)

Since the number of pairs (a; b); 16a6t; 16b6s; a =∈Bi for which ((it − a);
(js−b))¿1 is seen to be strictly less than (t−|Bi|)s, there exist integers aij; bij; 16aij6
t; 16bij6s; aij =∈Bi such that (it − aij; js− bij)= 1.
Now, let a lattice point (x; y)∈�n be given. Then there are non-negative integers u

and v such that

ut¡x6(u+ 1)t; vt¡y6(v+ 1)t:

We consider the following two cases.
Case I. u =∈ I .
Let j be the integer such that js¡y6(j+1)s. If u=0 or j=0, then observing that

a lattice point is visible from any lattice point on an adjacent line, we get that (x; y) is
visible from {(a; b) | 16a62t; 16b62s}. If u¿1 and j¿1, then by our observation
following (2), we have (x; y) is visible from the point (x−ut+auj; y− js+buj), where

16x − ut + auj6t + auj62t and 16y − js+ buj6s+ buj62s

remembering that the condition (a1 − b1; a2 − b2)= 1 implies that (a1; a2) is visible
from (b1; b2).
Case II. v =∈ I .
By symmetry, employing an argument similar to that in Case I, in this case we get

(x; y) is visible from {(a; b) | 16a62s; 16b62t}.
Thus, the exceptional points not visible from {(a; b) | 16a62t; 16b62s}∪ {(a; b) |

16a62s; 16b62t} are among those points for which both u∈ I and v∈ I and since
for a particular (u; v), there correspond t2 points, the total number of such points is at
most t2|I |2.
Since t0|I |6|En(h)|, the number of exceptional points is at most

(
t
t0

)2
|En(h)|2¡100|En(h)|2:

This completes the proof of the theorem.
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Corollary. One can give explicit description of a set Yn⊂�n such that for large n’s,
�n is visible except for at most 100 n2=(log log n)2 exceptional points from Yn where
Yn satis:es

|Yn|=O((log log n)(log log log log n)):

Proof. We take h(n)= 2 log log n. A well known theorem of Hardy and Ramanujan
[5] (or see [7, p. 306]), says that

|En(h)|6 n
log log n

;

where En(h) is as de4ned in Section 1 before the statement of Theorem 3.

Therefore, the corollary follows from Theorem 3.

Remark. If we take h(n)= 2(log n)=(log log n), then En(h) is empty for su9ciently
large n. Therefore, our Theorem 3 gives an explicit description of a set Zn such that
�n is visible from Zn where

|Zn|61600
(log n)(log log log n)

log log n
:

Thus we have obtained the result of Adhikari and Balasubramanian [2], which was
stated in the introduction, with an explicit O-constant.
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