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a b s t r a c t

The paper presents a simple procedure for the construction of quasi-interpolation
operators in spaces of m-harmonic splines in Rd, which reproduce polynomials of high
degree. The procedure starts from a generator φ0, which is easy to derive but with
corresponding quasi-interpolation operator reproducing only linear polynomials, and
recursively defines generators φ1, φ2, . . . , φm−1 with corresponding quasi-interpolation
operators reproducing polynomials of degree up to 3, 5, . . . , 2m − 1 respectively. The
construction ofφj fromφj−1 is explicit, simple and independent ofm. The special case d = 1
and the special cases d = 2,m = 2, 3, 4 are discussed in details.
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1. Introduction

The space ofm-harmonic splines V2m, 2m > d is defined as the subspace of S ′(Rd) (the space of d-dimensional tempered
distributions)

V2m =


g ∈ S ′(Rd)


C2m−d−1(Rd) : ∆mg = 0, on Rd

\ Zd


, (1)

where ∆ is the Laplacian operator. It is well known (see e.g. [1]) that V2m contains Π2m−1 (the space of polynomials defined
on Rd of degree not exceeding 2m − 1), and that for any n ≤ 2m − 1, it is possible to construct quasi-interpolation (QI)
operators reproducing Πn (see e.g. [2,3]). For that, the generator φ ∈ V2m of the QI operator

Qφ(x, h, f ) =

−
l∈Zd

f (hl)φ(x/h − l)

is required to decay fast enough at infinity, so that Qφ(x, h, f ) is well defined for f growing at infinity not faster than a
polynomial of degree n. Such a QI operator approximates smooth enough functions with L∞ error of order hn+1 [2].

The known constructions of generators defining QI operators which reproduce Πn for n large, are quite involved, and are
different for differentm (see e.g. [2,4]), while simple generators, like the elementary polyharmonic B-splines [5], are easy to
construct, but generates QI operators reproducing only Π1.

In this paper, we present a simple procedure which starts from a simple generator φ0 and recursively defines generators
φ1, φ2, . . . , φm−1 with corresponding QI operators reproducing Π3, Π5, . . . , Π2m−1 respectively. Our procedure defines φj
as a linear combination of φ(·)j−1 and φj−1(·/2) with explicitly known simple coefficients which are independent ofm.
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The general procedure is presented in Section 2, while in Section 3, the special case d = 1 with φ0 an odd degree
symmetric B-spline with integer knots, and the special cases d = 2,m = 2, 3, 4 with two different φ0, are discussed.

We use in this paper the multi-index notation. In particular for α ∈ Zd, |α| =
∑d

i=1 |αi|. The approximation error is
measured in the L∞ norm over Rd.

It should be noted that our procedure can be extended to spaces defined by more general elliptic operators instead of
just ∆m.

2. The construction

We start from a polyharmonic B-spline which is easy to construct. Known examples of polyharmonic B-splines are given
in Section 3.
A function

φ0 : Rd
→ R

is calledm-harmonic B-spline for 2m > d, if its Fourier transform has the form

φ̂0(ω) = e2m(ω)v̂m(ω) (2)

where

v̂m(ω) = (−1)m‖ω‖
−2m (3)

and e2m is a real, even trigonometric polynomial satisfying

e2m(ω) = (−1)m‖ω‖
2m

+ O(‖ω‖
2m+2), (4)

for ω in a neighborhood of the origin. Conditions (2)–(4) guarantee, as is shown in Lemma 1, that φ0 is decaying sufficiently
fast and generates quasi-interpolation operator reproducing linear polynomials as do symmetric univariate B-splines.
In the sequel we assume that 2m > d.

Lemma 1. Under conditions (2)–(4)

|φ0(x)| ≤
C

‖x‖d+2
, ‖x‖ → ∞, (5)

and the sum−
l∈Zd

f (l)φ0(x − l) (6)

is well defined for any f growing at infinity not faster than a linear polynomial. Moreover if f is a polynomial of degree not
exceeding one, the sum (6) equals f .

Proof. Let α ∈ Zd
+
and consider Dαφ̂0. Under the assumptions on φ̂0, we obtain for ‖ω‖ large enough

|Dαφ̂0(ω)| ≤ C‖ω‖
−2m. (7)

Since 2m > d,Dαφ̂0 is summable in a neighborhood of infinity.
Now we check the behavior of Dαφ̂0 in the neighborhood of the origin, U(0). We know from (2)–(4) that

φ̂0(ω) = 1 +

∞−
i=1

h[0]
2i (ω) = 1 + h[0]

2 (ω) + O(‖ω‖
4), ω ∈ U(0), (8)

where h[0]
2i is a rational homogeneous function of degree 2i of the form

h[0]
2i (ω) =

p[0]
2m+2i(ω)

‖ω‖2m
,

with p[0]
2m+2i a homogeneous polynomial of degree 2m+2i. Observe that Dαh[0]

2i is a homogeneous function of degree 2i−|α|.
Thus Dαφ̂0 is integrable in U(0) whenever 2 − |α| + d − 1 > −1. Since |α| and d are integers, we can conclude that
Dαφ̂0 ∈ L1(Rd) for |α| ≤ d + 1. From this, it follows that φ0(x) = o(‖x‖−d−1), ‖x‖ → ∞ (see e.g [6, p. 26]), and since φ0
admits a series expansion away from U(0), we have

φ0(x) = O(‖x‖−d−2), ‖x‖ → ∞.
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With this decay the sum (6) is well defined for f as above. To show that the sum equals f when f ∈ Π1, we have to show
that φ0 satisfies the Strang–Fix conditions of order one (see e.g. [2]), namely that

φ̂0(0) = 1, Dαφ̂0(0) = 0, |α| = 1, (9)

Dαφ̂0(2kπ) = 0, k ∈ Zd
\ 0, |α| = 0, 1. (10)

From (4) and (3) it is easy to see that (9) holds. Using (4) we conclude that Dαe2m(0) = 0 for |α| < 2m. This together with
the 2πZd periodicity of e2m leads to (10). �

It follows directly from the last lemma and [2] that

Corollary 2. For f with bounded derivatives of order 1–3, the sum

Q0(x, h, f ) =

−
l∈Zd

f (hl)φ0(x/h − l),

approximates f in Rd with L∞ error of order h2.

To obtain higher approximation order than in Corollary 2 the functionφ0 should be replaced by a function,with a stronger
decay rate as ‖x‖ → ∞, generating a QI operator with higher degree of polynomial reproduction. Here, we provide quasi-
interpolation operators with approximation error of order h2j, j = 1, . . . ,m by a simple procedure based on φ0.

Starting from φ0 we construct new generators

φ1, φ2, . . . , φm−1

of QI operators reproducing polynomials up to degree 3, 5, . . . , 2m − 1 respectively.
The construction is done recursively.
For j = 1, 2, . . . ,m − 1, we define

φj(x) = ajφj−1(x) + bjφj−1(x/2), x ∈ Rd, (11)

and choose the coefficients aj, bj so that

φ̂j(ω) = 1 +

∞−
i=j+1

h[j]
2i (ω), ω ∈ U(0), (12)

with h[j]
2i a homogeneous function of order 2i. This is possible since

φ̂j(ω) = ajφ̂j−1(ω) + 2dbjφ̂j−1(2ω), (13)

and by our inductive hypothesis

φ̂j−1(ω) = 1 +

∞−
i=j

h[j−1]
2i (ω), ω ∈ U(0). (14)

Note that by (8) φ0 satisfies (14).
It is easy to see that the coefficients aj, bj in (13) are the solution of the system

aj + 2dbj = 1
aj + 2d+2jbj = 0,

(15)

that is

aj =
22j

22j − 1
, bj = −

1
2d(22j − 1)

, j = 1, . . . ,m − 1. (16)

Note that the coefficients aj, bj do not depend on φ0 and onm.
By construction φ̂j(ω) has the form

φ̂j(ω) = e[j]
2m(ω)v̂m(ω), (17)

where

e[j]
2m(ω) = aje

[j−1]
2m (ω) + 2d−2mbje

[j−1]
2m (2ω), j = 1, . . . ,m − 1, (18)
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and e[0]
2m(ω) = ê2m(ω). Note also that e[j]

2m is a symmetric trigonometric polynomial. Hence it follows from (14) and (17) that

e[j]
2m(ω) = ‖ω‖

2m
+

∞−
i=j+1

p[j]
2m+2i(ω), ω ∈ U(0), (19)

with p[j]
2m+2i a homogeneous polynomial of degree 2m + 2i.

Next we prove that φj has a correct decay at infinity needed for the quasi-interpolation based on it to be well defined for
polynomials of degree up to 2j + 1, and that these polynomials are reproduced by this quasi-interpolation.

Proposition 3. For j = 1, 2, . . . ,m − 1φj(x)
 ≤

C
‖x‖d+2j+2

, ‖x‖ → ∞. (20)

Here C is a generic constant.

Proof. First let us consider the decay of φ̂j and its derivatives near infinity. By (11) it is the same as that of φ̂j−1, and therefore
by recursion, as that of φ̂0. Thus in view of (7), we obtain

|Dαφ̂j(ω)| ≤ C‖ω‖
−2m, α ∈ Zd, ω ∉ U(0). (21)

Since 2m > d,Dαφ̂j is always summable in a neighborhood of infinity.
Next we consider φ̂j(ω), ω ∈ U(0). By (12)

φ̂j(ω) = 1 + h[j]
2j+2(ω) + O(‖ω‖

2j+4), ω ∈ U(0) (22)

and by (19)

h[j]
2j+2(ω) =

p[j]
2m+2j+2(ω)

‖ω‖2m
,

with p[j]
2m+2j+2 a homogeneous polynomial of degree 2m+2j+2. Thus by arguments similar to those in the proof of Lemma 1,

we obtain the claim of the proposition. �

Proposition 4. For j = 1, . . . ,m − 1, the sum−
l∈Zd

f (l)φj(x − l), (23)

is well defined for any f growing at infinity not faster than a polynomial of degree 2j + 1. Moreover if f ∈ Π2j+1, the sum (23)
equals f .
Proof. Since φj satisfies (20), the sum (23) is well defined. To show that the sum equals f when f ∈ Π2j+1, we have to show
that φj satisfies the Strang–Fix conditions of order 2j + 1, (see e.g. [2]), namely

φ̂j(0) = 1, Dαφ̂j(0) = 0, 1 ≤ |α| ≤ 2j + 1, (24)

Dαφ̂j(2kπ) = 0, k ∈ Zd
\ 0, |α| ≤ 2j + 1. (25)

By (22) we obtain φ̂j(0) = 1. Since Dαh[j]
2i is a homogeneous function of degree 2i − |α|, we get from (22)

Dαφ̂j(0) = 0, ∀α ∈ Zd
+
, 1 ≤ |α| ≤ 2j + 1. (26)

Now, by (19)

Dαe[j]
2m(0) = 0, ∀α ∈ Zd

+
, |α| ≤ 2m − 1, (27)

and since e[j]
2m is 2πZd-periodic and v̂m(ω) is finite for ω ∉ U(0), we obtain

Dαφ̂j(2kπ) = 0, ∀α ∈ Zd
+
, |α| ≤ 2m − 1, k ∈ Zd

\ 0. � (28)

It follows directly from Propositions 3 and 4 and [2], that

Corollary 5. For j = 1, . . . ,m − 1, the quasi-interpolant

Qj(x, h, f ) =

−
l∈Zd

f (hl)φj(x/h − l),

approximates f having bounded derivatives of order 2j + 1, 2j + 2, 2j + 3, with error of order h2j+2.
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Fig. 1. Left:m = 2, the cubic symmetric B-spline φ0 (dashed line), φ1 (solid line), the cubic cardinal Lagrange spline (dotted line). Right:m = 3, the quintic
symmetric B-spline φ0 (dashed line), φ1 (dashdot line), φ2 (solid line), the quintic cardinal Lagrange spline (dotted line).

3. Examples

In this section we investigate some special cases of our construction.

3.1. The case d = 1: starting from symmetric odd degree uniform B-splines

First we illustrate in Fig. 1, φ0, the generators φj, and the cardinal Lagrange interpolant in the space of splines of degree
3, 5 with integer knots. Here φ0 is the symmetric B-spline in these spaces.

It is easy to observe that φj for general m, is a spline of degree 2m − 1 with integer knots and support [−2jm, 2jm]. We
show it by induction. For j = 0, φ0 is the symmetric B-spline of degree 2m − 1 with integer knots and support [−m,m].
If φj−1 is a spline of degree 2m − 1, has integer knots and support [−2j−1m, 2j−1m], then φj(·) = ajφj−1(·) + bjφj−1


·

2


is also a spline of degree 2m − 1 with support determined by that of φj−1


·

2


, which is double the support of φj−1,

namely [−2jm, 2jm]. Since the knots of φj−1 are integers and those of φj−1


·

2


are even integers, the knots of φj are

integers.

3.2. The case d = 2: starting from the m-harmonic B-splines

In this subsection we discuss in details some examples of new generators arising from known two-dimensional
polyharmonic B-splines of orderm, the elementary and the isotropic polyharmonic B-splines [7]. For the latter we give also
the errors in approximating two well-known test functions by the different quasi-interpolation operators in casem = 3.

3.2.1. Starting from the elementary polyharmonic B-spline
For the elementary polyharmonic B-spline of orderm > 1, the trigonometric polynomial of (2) is (see [5])

e2m (ω1, ω2) =


−4 sin2 ω1

2
− 4 sin2 ω2

2

m
. (29)

In this case, we have for anym > 1

φ̂
[E]

0 (ω) = 1 + h[0]
2 (ω) + O(‖ω‖

4), ω ∈ U(0), (30)

|φ
[E]

0 (x)| ≤
C

‖x‖4
, x ∉ U(0), (31)

and the generated quasi-interpolation operators satisfy for allm > 1

Q [E]

0 (x, h, p) = p, p ∈ Π1. (32)

ThusQ [E]

0 (x, h, p) for allm > 1provide approximation error of order h2. Here and afterQ [E]

j stands for the quasi-interpolation
operator based on φ

[E]

j , where {φ
[E]

j } are the new generators obtained from φ
[E]

0 .
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Table 1
The new generator based on φ

[E]

0 ,m = 2.

j φ̂
[E]

j , ω ∈ U(0) |φ
[E]

j | ≤ C‖x‖−β , x ∉ U(0) Q [E]

j (x, h, p) = p

0 1 + h[0]
2 + O(‖ω‖

4) β = 4 p ∈ Π1

1 1 + h[1]
4 + O(‖ω‖

6) β = 6 p ∈ Π3

Table 2
The new generators based on φ

[E]

0 ,m = 4.

j φ̂
[E]

j , ω ∈ U(0) |φ
[E]

j | ≤ C‖x‖−β , x ∉ U(0) Q [E]

j (x, h, p) = p

0 1 + h[0]
2 + O(‖ω‖

4) β = 4 p ∈ Π1

1 1 + h[1]
4 + O(‖ω‖

6) β = 6 p ∈ Π3

2 1 + h[2]
6 + O(‖ω‖

8) β = 8 p ∈ Π5

3 1 + h[3]
8 + O(‖ω‖

10) β = 10 p ∈ Π7

Form = 3 the construction of Section 2 yields

φ̂
[E]

1 (ω) = 1 + h[1]
4 (ω) + O(‖ω‖

6), ω ∈ U(0), (33)

|φ
[E]

1 (x)| ≤
C

‖x‖6
, x ∉ U(0), (34)

Q [E]

1 (x, h, p) = p, p ∈ Π3, (35)

and

φ̂
[E]

2 (ω) = 1 + h[2]
6 (ω) + O(‖ω‖

8), ω ∈ U(0), (36)

|φ
[E]

2 (x)| ≤
C

‖x‖8
, x ∉ U(0), (37)

Q [E]

2 (x, h, p) = p, p ∈ Π5. (38)

In Tables 1 and 2 we summarize the casesm = 2 andm = 4.

3.2.2. Starting from the isotropic polyharmonic B-splines
The trigonometric polynomial e2m associated with the isotropic polyharmonic B-spline of order m > 1 is (see e.g [8])

e2m(ω1, ω2) =

[
−

2
3


1 + 4 sin2 ω1

2
+ 4 sin2 ω2

2
+ cosω1 cosω2

]m

. (39)

In this case, for anym > 1, we have a closer to radial behavior of φ̂[I]
0 (ω) for ω near zero, in fact

φ̂
[I]
0 (ω) = 1 −

m
12

‖ω‖
2
+ O(‖ω‖

4), ω ∈ U(0) (40)

implying a faster decay with respect to the elementary polyharmonic B-spline,

|φ
[I]
0 (x)| ≤

C
‖x‖6

, x ∉ U(0). (41)

Yet the polynomial reproduction is as in the case of the elementary polyharmonic B-splines, namely

Q [I]
0 (x, h, p) = p, p ∈ Π1, (42)

for allm > 1. Here, similarly to the previous case we denote by Q [I]
j the quasi-interpolation operator based on φ

[I]
j .

In casem = 3 the construction of Section 2 yields

φ̂
[I]
1 (ω) = 1 + p[1]

4 (ω) + O(‖ω‖
6), ω ∈ U(0), (43)

|φ
[I]
1 (x)| ≤

C
‖x‖8

, x ∉ U(0), (44)

Q [I]
1 (x, h, p) = p, p ∈ Π3, (45)
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Fig. 2. The isotropic polyharmonic B-spline φ
[I]
0 (left) and the generator φ

[I]
2 (right) form = 3.

Table 3
The new generator based on φ

[I]
0 ,m = 2.

j φ̂
[I]
j , ω ∈ U(0) |φ

[I]
j | ≤ C‖x‖−β , x ∉ U(0) Q [I]

j (x, h, p) = p

0 1 −
1
6 ‖ω‖

2
+ O(‖ω‖

4) β = 6 p ∈ Π1

1 1+p[1]
4 +h[1]

6 +O(‖ω‖
8) β = 8 p ∈ Π3

Table 4
The new generators based on φ

[I]
0 ,m = 4.

j φ̂
[I]
j , ω ∈ U(0) |φ

[I]
j | ≤ C‖x‖−β , x ∉ U(0) Q [I]

j (x, h, p) = p

0 1 −
3
4 ‖ω‖

2
+ O(‖ω‖

4) β = 6 p ∈ Π1

1 1+p[1]
4 +h[1]

6 +O(‖ω‖
8)+O(‖ω‖

8) β = 8 p ∈ Π3

2 1 + h[2]
6 + p[2]

8 + O(‖ω‖
10) β = 8 p ∈ Π5

3 1 + p[3]
8 + h[3]

10 + O(‖ω‖
12) β = 12 p ∈ Π7

and

φ̂
[I]
2 (ω) = 1 + h[2]

6 (ω) + O(‖ω‖
8), ω ∈ U(0), (46)

|φ
[I]
2 (x)| ≤

C
‖x‖8

, x ∉ U(0), (47)

Q [I]
2 (x, h, p) = p, p ∈ Π5. (48)

In Fig. 2 we show φ
[I]
0 and the new generator φ

[I]
2 . It is easy to observe from Fig. 2 that the new generator φ

[I]
2 (x), when

compared with φ
[I]
0 , is more concentrated near the origin and has a higher maximum at the origin.

In Tables 3 and 4, we summarize the cases m = 2 and m = 4 which show together with the case m = 3 that, in
general, the isotropic polyharmonic B-splines provide generators decaying faster than those generated from the elementary
polyharmonic ones.

We conclude by showing the errors in approximating two smooth test functions defined on [0, 1]2, by the different quasi-
interpolation operators Q [I]

j , j = 0, 1, 2, corresponding to the case m = 3. We have considered the well-known Franke’s
function (F1) and the functions F5 [9],

F5(x, y) =
1
3
exp


−20.25((x − 0.5)2 + (y − 0.5)2)


, x, y ∈ [0, 1]2.

Both test functions are depicted in Fig. 3.
In Table 5we show themaximumabsolute approximation errors for F1 and F5. The errorswere computed using a 33×33

uniformgrid of evaluationpoints in [0.1, 0.9]2.Wehave also computed the approximation errors obtainedby the interpolant

Im(x, h, f ) =

−
l∈Z2

f (hl)Lm(x/h − l), (49)

where Lm is the cardinal Lagrange polyharmonic spline of order m, and by the QI operator Q [HL]
m,m−1, generated by the high-

levelm-harmonic B-spline of levelm−1 [4]. Note that both Lm andQ [HL]
m,m−1 reproducesΠ2m−1 [1,4]. All errorswere computed
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Table 5
Maximum approximation errors by quasi-interpolation and interpolation
operators.

m = 3, h = 0.01 Q [I]
0 Q [I]

1 Q [I]
2 I3 Q [HL]

3,2

F1 1.6e−3 4.5e−5 1.6e−5 1.2e−5 1.8e−4
F5 6.7e−4 5.4e−6 4.3e−7 3.1e−7 4.9e−6

for h = 0.01. We can see from Table 5 that, as expected, when going from Q [I]
0 to Q [I]

2 , the error is reduced and reaches the
same order as that of the interpolation error, which in this specific example is smaller than the error by Q [HL]

3,2 .

References

[1] W.R. Madych, S.A. Nelson, Polyharmonic cardinal splines, Journal of Approximation Theory 60 (1990) 141–156.
[2] N. Dyn, I.R.H. Jackson, D. Levin, A. Ron, On multivariate approximation by integer translates of basis function, Israel Journal of Mathematics 74 (1992)

95–130.
[3] N. Dyn, Approximation by translates of a radial function, in: J.R. Higgins, R.L. Sten (Eds.), Sampling Theory in Fourier and Signal Analysis: Advanced

Topics, Oxford University Press, 1999, pp. 187–208.
[4] C. Rabut, High levelm-harmonic cardinal B-splines, Numerical Algorithms 2 (1992) 63–84.
[5] C. Rabut, Elementary polyharmonic cardinal B-splines, Numerical Algorithms 2 (1992) 39–62.
[6] K. Vo-Khac, Distribution, Analyse de Fourier, Opérateurs aux Dériveés Partielles, in: Tome, vol. 2, Vuibert, Paris, 1972.
[7] C. Rabut, M. Rossini, Polyharmonic multiresolution analysis: an overview and some new results, Numerical Algorithms 48 (1–3) (2008) 135–160.
[8] M. Rossini, On the construction of polyharmonic B-splines, Journal of Computational and Applied Mathematics 221 (2008) 437–446.
[9] R.J. Renka, R. Brown, Algorithm 792: accuracy tests of ACM algoritm for interpolation of scattered data in the plane, ACM Transactions onMathematical

Software 25 (1999) 78–94.


	Construction of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines
	Introduction
	The construction
	Examples
	The case  d = 1 : starting from symmetric odd degree uniform  B -splines
	The case  d = 2 : starting from the  m -harmonic  B -splines
	Starting from the elementary polyharmonic  B -spline
	Starting from the isotropic polyharmonic  B -splines


	References


