

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Construction of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines

Mira Bozzini^a, Nira Dyn^b, Milvia Rossini^{a,*}

^a University of Milano-Bicocca, Italy ^b Tel-Aviv University, Israel

ARTICLE INFO

Keywords: Polyharmonic splines Quasi-interpolation operators High degree polynomial reproduction Rate of decay at infinity Approximation order

ABSTRACT

The paper presents a simple procedure for the construction of quasi-interpolation operators in spaces of *m*-harmonic splines in \mathbb{R}^d , which reproduce polynomials of high degree. The procedure starts from a generator ϕ_0 , which is easy to derive but with corresponding quasi-interpolation operator reproducing only linear polynomials, and recursively defines generators $\phi_1, \phi_2, \ldots, \phi_{m-1}$ with corresponding quasi-interpolation operators reproducing only linear polynomials, and recursively defines generators $\phi_1, \phi_2, \ldots, \phi_{m-1}$ with corresponding quasi-interpolation operators reproducing polynomials of degree up to $3, 5, \ldots, 2m - 1$ respectively. The construction of ϕ_j from ϕ_{j-1} is explicit, simple and independent of *m*. The special case d = 1 and the special cases d = 2, m = 2, 3, 4 are discussed in details.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The space of *m*-harmonic splines V_{2m} , 2m > d is defined as the subspace of $S'(\mathbb{R}^d)$ (the space of *d*-dimensional tempered distributions)

$$V_{2m} = \left\{ g \in S'(\mathbb{R}^d) \bigcap C^{2m-d-1}(\mathbb{R}^d) : \Delta^m g = 0, \text{ on } \mathbb{R}^d \setminus \mathbb{Z}^d \right\},\tag{1}$$

where Δ is the Laplacian operator. It is well known (see e.g. [1]) that V_{2m} contains Π_{2m-1} (the space of polynomials defined on \mathbb{R}^d of degree not exceeding 2m - 1), and that for any $n \leq 2m - 1$, it is possible to construct quasi-interpolation (QI) operators reproducing Π_n (see e.g. [2,3]). For that, the generator $\phi \in V_{2m}$ of the QI operator

$$Q_{\phi}(x,h,f) = \sum_{l \in \mathbb{Z}^d} f(hl)\phi(x/h-l)$$

is required to decay fast enough at infinity, so that $Q_{\phi}(x, h, f)$ is well defined for f growing at infinity not faster than a polynomial of degree n. Such a QI operator approximates smooth enough functions with L^{∞} error of order h^{n+1} [2].

The known constructions of generators defining QI operators which reproduce Π_n for *n* large, are quite involved, and are different for different *m* (see e.g. [2,4]), while simple generators, like the elementary polyharmonic *B*-splines [5], are easy to construct, but generates QI operators reproducing only Π_1 .

In this paper, we present a simple procedure which starts from a simple generator ϕ_0 and recursively defines generators $\phi_1, \phi_2, \ldots, \phi_{m-1}$ with corresponding QI operators reproducing $\Pi_3, \Pi_5, \ldots, \Pi_{2m-1}$ respectively. Our procedure defines ϕ_j as a linear combination of $\phi(\cdot)_{j-1}$ and $\phi_{j-1}(\cdot/2)$ with explicitly known simple coefficients which are independent of m.

* Corresponding author. *E-mail addresses:* mira.bozzini@unimib.it (M. Bozzini), niradyn@post.tau.ac.il (N. Dyn), milvia.rossini@unimib.it (M. Rossini).

^{0377-0427/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2011.07.002

The general procedure is presented in Section 2, while in Section 3, the special case d = 1 with ϕ_0 an odd degree symmetric *B*-spline with integer knots, and the special cases d = 2, m = 2, 3, 4 with two different ϕ_0 , are discussed.

We use in this paper the multi-index notation. In particular for $\alpha \in \mathbb{Z}^d$, $|\alpha| = \sum_{i=1}^d |\alpha_i|$. The approximation error is measured in the L^{∞} norm over \mathbb{R}^d .

It should be noted that our procedure can be extended to spaces defined by more general elliptic operators instead of just Δ^m .

2. The construction

We start from a polyharmonic *B*-spline which is easy to construct. Known examples of polyharmonic *B*-splines are given in Section 3.

A function

$$\phi_0:\mathbb{R}^d\to\mathbb{R}$$

is called *m*-harmonic *B*-spline for 2m > d, if its Fourier transform has the form

$$\phi_0(\omega) = e_{2m}(\omega)\hat{v}_m(\omega) \tag{2}$$

where

$$\hat{v}_m(\omega) = (-1)^m \|\omega\|^{-2m} \tag{3}$$

and e_{2m} is a real, even trigonometric polynomial satisfying

$$e_{2m}(\omega) = (-1)^m \|\omega\|^{2m} + O(\|\omega\|^{2m+2}), \tag{4}$$

for ω in a neighborhood of the origin. Conditions (2)–(4) guarantee, as is shown in Lemma 1, that ϕ_0 is decaying sufficiently fast and generates quasi-interpolation operator reproducing linear polynomials as do symmetric univariate *B*-splines. In the sequel we assume that 2m > d.

Lemma 1. Under conditions (2)–(4)

$$|\phi_0(x)| \le \frac{C}{\|x\|^{d+2}}, \quad \|x\| \to \infty,$$
(5)

and the sum

$$\sum_{k \in \mathbb{Z}^d} f(l)\phi_0(x-l) \tag{6}$$

is well defined for any f growing at infinity not faster than a linear polynomial. Moreover if f is a polynomial of degree not exceeding one, the sum (6) equals f.

Proof. Let $\alpha \in \mathbb{Z}_{+}^{d}$ and consider $D^{\alpha} \hat{\phi}_{0}$. Under the assumptions on $\hat{\phi}_{0}$, we obtain for $\|\omega\|$ large enough

$$|D^{\alpha}\hat{\phi}_{0}(\omega)| \leq C \|\omega\|^{-2m}.$$
(7)

Since 2m > d, $D^{\alpha} \hat{\phi}_0$ is summable in a neighborhood of infinity.

Now we check the behavior of $D^{\alpha} \hat{\phi}_0$ in the neighborhood of the origin, U(0). We know from (2)-(4) that

$$\hat{\phi}_0(\omega) = 1 + \sum_{i=1}^{\infty} h_{2i}^{[0]}(\omega) = 1 + h_2^{[0]}(\omega) + O(\|\omega\|^4), \quad \omega \in U(0),$$
(8)

where $h_{2i}^{[0]}$ is a rational homogeneous function of degree 2*i* of the form

$$h_{2i}^{[0]}(\omega) = \frac{p_{2m+2i}^{[0]}(\omega)}{\|\omega\|^{2m}}$$

with $p_{2m+2i}^{[0]}$ a homogeneous polynomial of degree 2m + 2i. Observe that $D^{\alpha}h_{2i}^{[0]}$ is a homogeneous function of degree $2i - |\alpha|$. Thus $D^{\alpha}\hat{\phi}_0$ is integrable in U(0) whenever $2 - |\alpha| + d - 1 > -1$. Since $|\alpha|$ and d are integers, we can conclude that $D^{\alpha}\hat{\phi}_0 \in L^1(\mathbb{R}^d)$ for $|\alpha| \le d + 1$. From this, it follows that $\phi_0(x) = o(||x||^{-d-1})$, $||x|| \to \infty$ (see e.g [6, p. 26]), and since ϕ_0 admits a series expansion away from U(0), we have

$$\phi_0(x) = O(||x||^{-d-2}), \quad ||x|| \to \infty.$$

With this decay the sum (6) is well defined for f as above. To show that the sum equals f when $f \in \Pi_1$, we have to show that ϕ_0 satisfies the Strang–Fix conditions of order one (see e.g. [2]), namely that

$$\hat{\phi}_0(0) = 1, \qquad D^{\alpha} \hat{\phi}_0(0) = 0, \quad |\alpha| = 1,$$
(9)

$$D^{\alpha}\phi_0(2k\pi) = 0, \quad k \in \mathbb{Z}^a \setminus 0, \ |\alpha| = 0, \ 1.$$

$$\tag{10}$$

From (4) and (3) it is easy to see that (9) holds. Using (4) we conclude that $D^{\alpha}e_{2m}(0) = 0$ for $|\alpha| < 2m$. This together with the $2\pi \mathbb{Z}^d$ periodicity of e_{2m} leads to (10).

It follows directly from the last lemma and [2] that

Corollary 2. For f with bounded derivatives of order 1–3, the sum

$$Q_0(x, h, f) = \sum_{l \in \mathbb{Z}^d} f(hl)\phi_0(x/h - l),$$

approximates f in \mathbb{R}^d with L^{∞} error of order h^2 .

To obtain higher approximation order than in Corollary 2 the function ϕ_0 should be replaced by a function, with a stronger decay rate as $||x|| \to \infty$, generating a QI operator with higher degree of polynomial reproduction. Here, we provide quasiinterpolation operators with approximation error of order h^{2j} , $j = 1, \ldots, m$ by a simple procedure based on ϕ_0 . Starting from ϕ_0 we construct new generators

 $\phi_1, \phi_2, \ldots, \phi_{m-1}$

of QI operators reproducing polynomials up to degree 3, 5, ..., 2m - 1 respectively. The construction is done recursively. For i = 1, 2, ..., m - 1, we define

 $\phi_i(x) = a_i \phi_{i-1}(x) + b_i \phi_{i-1}(x/2), \quad x \in \mathbb{R}^d,$ (11)

and choose the coefficients a_i , b_i so that

$$\hat{\phi}_{j}(\omega) = 1 + \sum_{i=j+1}^{\infty} h_{2i}^{[j]}(\omega), \quad \omega \in U(0),$$
(12)

with $h_{2i}^{[j]}$ a homogeneous function of order 2*i*. This is possible since

$$\hat{\phi}_{j}(\omega) = a_{j}\hat{\phi}_{j-1}(\omega) + 2^{d}b_{j}\hat{\phi}_{j-1}(2\omega), \tag{13}$$

and by our inductive hypothesis

$$\hat{\phi}_{j-1}(\omega) = 1 + \sum_{i=j}^{\infty} h_{2i}^{[j-1]}(\omega), \quad \omega \in U(0).$$
(14)

Note that by (8) ϕ_0 satisfies (14).

It is easy to see that the coefficients a_i , b_i in (13) are the solution of the system

$$\begin{cases} a_j + 2^d b_j = 1\\ a_j + 2^{d+2j} b_j = 0, \end{cases}$$
(15)

that is

$$a_j = \frac{2^{2j}}{2^{2j} - 1}, \qquad b_j = -\frac{1}{2^d (2^{2j} - 1)}, \quad j = 1, \dots, m - 1.$$
 (16)

Note that the coefficients a_i , b_i do not depend on ϕ_0 and on m.

By construction $\hat{\phi}_i(\omega)$ has the form

$$\hat{\phi}_j(\omega) = e_{2m}^{[j]}(\omega)\hat{v}_m(\omega),\tag{17}$$

where

$$e_{2m}^{[j]}(\omega) = a_j e_{2m}^{[j-1]}(\omega) + 2^{d-2m} b_j e_{2m}^{[j-1]}(2\omega), \quad j = 1, \dots, m-1,$$
(18)

and $e_{2m}^{[0]}(\omega) = \hat{e}_{2m}(\omega)$. Note also that $e_{2m}^{[j]}$ is a symmetric trigonometric polynomial. Hence it follows from (14) and (17) that

$$e_{2m}^{[j]}(\omega) = \|\omega\|^{2m} + \sum_{i=j+1}^{\infty} p_{2m+2i}^{[j]}(\omega), \quad \omega \in U(0),$$
(19)

with $p_{2m+2i}^{[j]}$ a homogeneous polynomial of degree 2m + 2i. Next we prove that ϕ_j has a correct decay at infinity needed for the quasi-interpolation based on it to be well defined for polynomials of degree up to 2j + 1, and that these polynomials are reproduced by this quasi-interpolation.

Proposition 3. For j = 1, 2, ..., m - 1

$$\left|\phi_{j}(x)\right| \leq \frac{C}{\|x\|^{d+2j+2}}, \quad \|x\| \to \infty.$$

$$(20)$$

Here C is a generic constant.

Proof. First let us consider the decay of $\hat{\phi}_i$ and its derivatives near infinity. By (11) it is the same as that of $\hat{\phi}_{i-1}$, and therefore by recursion, as that of $\hat{\phi}_0$. Thus in view of (7), we obtain

$$|D^{\alpha}\dot{\phi}_{j}(\omega)| \leq C \|\omega\|^{-2m}, \quad \alpha \in \mathbb{Z}^{d}, \; \omega \notin U(0).$$

$$\tag{21}$$

Since 2m > d, $D^{lpha} \hat{\phi}_j$ is always summable in a neighborhood of infinity. Next we consider $\hat{\phi}_i(\omega), \omega \in U(0)$. By (12)

$$\hat{\phi}_{j}(\omega) = 1 + h_{2i+2}^{[j]}(\omega) + O(\|\omega\|^{2j+4}), \quad \omega \in U(0)$$
(22)

and by (19)

$$h_{2j+2}^{[j]}(\omega) = \frac{p_{2m+2j+2}^{[j]}(\omega)}{\|\omega\|^{2m}},$$

with $p_{2m+2j+2}^{[j]}$ a homogeneous polynomial of degree 2m+2j+2. Thus by arguments similar to those in the proof of Lemma 1, we obtain the claim of the proposition. \Box

Proposition 4. For i = 1, ..., m - 1, the sum

$$\sum_{l\in\mathbb{Z}^d} f(l)\phi_j(x-l),\tag{23}$$

is well defined for any f growing at infinity not faster than a polynomial of degree 2j + 1. Moreover if $f \in \Pi_{2i+1}$, the sum (23) equals f.

Proof. Since ϕ_i satisfies (20), the sum (23) is well defined. To show that the sum equals f when $f \in \Pi_{2i+1}$, we have to show that ϕ_i satisfies the Strang–Fix conditions of order 2j + 1, (see e.g. [2]), namely

$$\phi_j(0) = 1, \qquad D^{\alpha}\phi_j(0) = 0, \quad 1 \le |\alpha| \le 2j+1, \tag{24}$$

$$D^{\alpha}\hat{\phi}_{j}(2k\pi) = 0, \quad k \in \mathbb{Z}^{d} \setminus 0, \ |\alpha| \le 2j+1.$$

$$\tag{25}$$

By (22) we obtain $\hat{\phi}_j(0) = 1$. Since $D^{\alpha} h_{2i}^{[j]}$ is a homogeneous function of degree $2i - |\alpha|$, we get from (22)

$$D^{\alpha}\hat{\phi}_{j}(0) = 0, \quad \forall \alpha \in \mathbb{Z}^{d}_{+}, \ 1 \le |\alpha| \le 2j+1.$$

$$(26)$$

Now, by (19)

$$D^{\alpha} e_{2m}^{[j]}(0) = 0, \quad \forall \alpha \in \mathbb{Z}_{+}^{d}, \ |\alpha| \le 2m - 1,$$
(27)

and since $e_{2m}^{[j]}$ is $2\pi \mathbb{Z}^d$ -periodic and $\hat{v}_m(\omega)$ is finite for $\omega \notin U(0)$, we obtain

$$D^{\alpha}\hat{\phi}_{i}(2k\pi) = 0, \quad \forall \alpha \in \mathbb{Z}^{d}_{+}, \ |\alpha| \le 2m - 1, \ k \in \mathbb{Z}^{d} \setminus 0. \quad \Box$$

$$(28)$$

It follows directly from Propositions 3 and 4 and [2], that

Corollary 5. For j = 1, ..., m - 1, the quasi-interpolant

$$Q_j(x, h, f) = \sum_{l \in \mathbb{Z}^d} f(hl)\phi_j(x/h - l)$$

approximates f having bounded derivatives of order 2i + 1, 2i + 2, 2i + 3, with error of order h^{2j+2} .

Fig. 1. Left: m = 2, the cubic symmetric *B*-spline ϕ_0 (dashed line), ϕ_1 (solid line), the cubic cardinal Lagrange spline (dotted line). Right: m = 3, the quintic symmetric *B*-spline ϕ_0 (dashed line), ϕ_1 (solid line), the quintic cardinal Lagrange spline (dotted line).

3. Examples

In this section we investigate some special cases of our construction.

3.1. The case d = 1: starting from symmetric odd degree uniform B-splines

First we illustrate in Fig. 1, ϕ_0 , the generators ϕ_j , and the cardinal Lagrange interpolant in the space of splines of degree 3, 5 with integer knots. Here ϕ_0 is the symmetric *B*-spline in these spaces.

It is easy to observe that ϕ_j for general *m*, is a spline of degree 2m - 1 with integer knots and support $[-2^j m, 2^j m]$. We show it by induction. For j = 0, ϕ_0 is the symmetric *B*-spline of degree 2m - 1 with integer knots and support [-m, m]. If ϕ_{j-1} is a spline of degree 2m - 1, has integer knots and support $[-2^{j-1}m, 2^{j-1}m]$, then $\phi_j(\cdot) = a_j\phi_{j-1}(\cdot) + b_j\phi_{j-1}(\frac{1}{2})$ is also a spline of degree 2m - 1 with support determined by that of $\phi_{j-1}(\frac{1}{2})$, which is double the support of ϕ_{j-1} , namely $[-2^j m, 2^j m]$. Since the knots of ϕ_{j-1} are integers and those of $\phi_{j-1}(\frac{1}{2})$ are even integers, the knots of ϕ_j are integers.

3.2. The case d = 2: starting from the m-harmonic B-splines

In this subsection we discuss in details some examples of new generators arising from known two-dimensional polyharmonic *B*-splines of order *m*, the elementary and the isotropic polyharmonic *B*-splines [7]. For the latter we give also the errors in approximating two well-known test functions by the different quasi-interpolation operators in case m = 3.

3.2.1. Starting from the elementary polyharmonic B-spline

For the elementary polyharmonic *B*-spline of order m > 1, the trigonometric polynomial of (2) is (see [5])

$$e_{2m}(\omega_1,\omega_2) = \left(-4\sin^2\frac{\omega_1}{2} - 4\sin^2\frac{\omega_2}{2}\right)^m.$$
(29)

In this case, we have for any m > 1

[[]]

$$\hat{\phi}_{0}^{[E]}(\omega) = 1 + h_{2}^{[0]}(\omega) + O(\|\omega\|^{4}), \quad \omega \in U(0),$$

$$|\phi_{0}^{[E]}(x)| \leq \frac{C}{\|x\|^{4}}, \quad x \notin U(0),$$
(30)
(31)

and the generated quasi-interpolation operators satisfy for all m > 1

$$Q_0^{[L]}(x,h,p) = p, \quad p \in \Pi_1.$$
(32)

Thus $Q_0^{[E]}(x, h, p)$ for all m > 1 provide approximation error of order h^2 . Here and after $Q_j^{[E]}$ stands for the quasi-interpolation operator based on $\phi_i^{[E]}$, where $\{\phi_i^{[E]}\}$ are the new generators obtained from $\phi_0^{[E]}$.

M. Bozzini et al. / Journal of Computational and Applied Mathematics 236 (2011) 557-564

Table 1

The new generator based on $\phi_0^{[E]}$, m = 2.

j	$\hat{\phi}_j^{[E]}, \omega \in U(0)$	$ \phi_j^{[E]} \le C \ x\ ^{-\beta}, x \notin U(0)$	$Q_j^{[E]}(x,h,p) = p$
0 1	$\begin{array}{l} 1+h_2^{[0]}+O(\ \omega\ ^4)\\ 1+h_4^{[1]}+O(\ \omega\ ^6) \end{array}$	$eta=4\ eta=6$	$p \in \Pi_1 \\ p \in \Pi_3$

Table 2

The new generators based on $\phi_0^{[E]}$, m = 4.

j	$\hat{\phi}_j^{[E]}, \omega \in U(0)$	$ \phi_j^{[E]} \le C x ^{-\beta}, x \notin U(0)$	$Q_j^{[E]}(x,h,p) = p$
0	$1 + h_2^{[0]} + O(\ \omega\ ^4)$	$\beta = 4$	$p \in \Pi_1$
1	$1 + h_4^{[1]} + O(\ \omega\ ^6)$	$\beta = 6$	$p \in \Pi_3$
2	$1 + h_6^{[2]} + O(\ \omega\ ^8)$	$\beta = 8$	$p \in \Pi_5$
3	$1 + h_8^{[3]} + O(\ \omega\ ^{10})$	$\beta = 10$	$p \in \Pi_7$

For m = 3 the construction of Section 2 yields

$$\hat{\phi}_1^{[E]}(\omega) = 1 + h_4^{[1]}(\omega) + O(\|\omega\|^6), \quad \omega \in U(0),$$
(33)

$$|\phi_1^{[E]}(x)| \le \frac{C}{\|x\|^6}, \quad x \notin U(0),$$
(34)

$$Q_1^{[E]}(x, h, p) = p, \quad p \in \Pi_3,$$
(35)

and

$$\hat{\phi}_{2}^{[E]}(\omega) = 1 + h_{6}^{[2]}(\omega) + O(\|\omega\|^{8}), \quad \omega \in U(0),$$
(36)

$$|\phi_2^{[E]}(x)| \le \frac{C}{\|x\|^8}, \quad x \notin U(0),$$
(37)

$$Q_2^{[E]}(x, h, p) = p, \quad p \in \Pi_5.$$
 (38)

In Tables 1 and 2 we summarize the cases m = 2 and m = 4.

3.2.2. Starting from the isotropic polyharmonic B-splines

The trigonometric polynomial e_{2m} associated with the isotropic polyharmonic *B*-spline of order m > 1 is (see e.g.[8])

$$e_{2m}(\omega_1, \omega_2) = \left[-\frac{2}{3} \left(1 + 4\sin^2 \frac{\omega_1}{2} + 4\sin^2 \frac{\omega_2}{2} + \cos \omega_1 \cos \omega_2 \right) \right]^m.$$
(39)

In this case, for any m > 1, we have a closer to radial behavior of $\hat{\phi}_0^{[I]}(\omega)$ for ω near zero, in fact

$$\hat{\phi}_0^{[I]}(\omega) = 1 - \frac{m}{12} \|\omega\|^2 + O(\|\omega\|^4), \quad \omega \in U(0)$$
(40)

implying a faster decay with respect to the elementary polyharmonic B-spline,

$$|\phi_0^{[I]}(x)| \le \frac{C}{\|x\|^6}, \quad x \notin U(0).$$
(41)

Yet the polynomial reproduction is as in the case of the elementary polyharmonic B-splines, namely

$$Q_0^{[I]}(x, h, p) = p, \quad p \in \Pi_1,$$
(42)

for all m > 1. Here, similarly to the previous case we denote by $Q_j^{[l]}$ the quasi-interpolation operator based on $\phi_j^{[l]}$. In case m = 3 the construction of Section 2 yields

$$\hat{\phi}_1^{[1]}(\omega) = 1 + p_4^{[1]}(\omega) + O(\|\omega\|^6), \quad \omega \in U(0),$$
(43)

$$|\phi_1^{[l]}(x)| \le \frac{C}{\|x\|^8}, \quad x \notin U(0), \tag{44}$$

$$Q_1^{[I]}(x,h,p) = p, \quad p \in \Pi_3,$$
(45)

Fig. 2. The isotropic polyharmonic *B*-spline $\phi_0^{[I]}$ (left) and the generator $\phi_2^{[I]}$ (right) for m = 3.

Table 3

The new generator based on $\phi_0^{[I]}$, m = 2.

j	$\hat{\phi}_j^{[l]}, \omega \in U(0)$	$ \phi_j^{[I]} \le C \ x\ ^{-\beta}, \ x \not\in U(0)$	$Q_j^{[I]}(x,h,p) = p$
0	$1 - \frac{1}{6} \ \omega\ ^2 + O(\ \omega\ ^4)$	$\beta = 6$	$p \in \Pi_1$
1	$1 + p_4^{[1]} + h_6^{[1]} + O(\ \omega\ ^8)$	$\beta = 8$	$p \in \Pi_3$

Table 4

The new generators based on $\phi_0^{[I]}$, m = 4.

j	$\hat{\phi}_j^{[l]}, \omega \in U(0)$	$ \phi_j^{[I]} \le C x ^{-\beta}, x \notin U(0)$	$Q_j^{[l]}(x,h,p) = p$
0	$1 - \frac{3}{4} \ \omega\ ^2 + O(\ \omega\ ^4)$	$\beta = 6$	$p \in \Pi_1$
1	$1 + p_4^{[1]} + h_6^{[1]} + O(\ \omega\ ^8) + O(\ \omega\ ^8)$	$\beta = 8$	$p \in \Pi_3$
2	$1 + h_{6_{1}}^{[2]} + p_{8_{1}}^{[2]} + O(\ \omega\ ^{10})$	$\beta = 8$	$p \in \Pi_5$
3	$1 + p_8^{[3]} + h_{10}^{[3]} + O(\ \omega\ ^{12})$	$\beta = 12$	$p \in \Pi_7$

and

$$\hat{p}_{2}^{[1]}(\omega) = 1 + h_{6}^{[2]}(\omega) + O(\|\omega\|^{8}), \quad \omega \in U(0),$$
(46)

$$|\phi_2^{[I]}(x)| \le \frac{C}{\|x\|^8}, \quad x \notin U(0), \tag{47}$$

$$Q_2^{[I]}(x,h,p) = p, \quad p \in \Pi_5.$$
(48)

In Fig. 2 we show $\phi_0^{[I]}$ and the new generator $\phi_2^{[I]}$. It is easy to observe from Fig. 2 that the new generator $\phi_2^{[I]}(x)$, when compared with $\phi_0^{[I]}$, is more concentrated near the origin and has a higher maximum at the origin.

In Tables 3 and 4, we summarize the cases m = 2 and m = 4 which show together with the case m = 3 that, in general, the isotropic polyharmonic *B*-splines provide generators decaying faster than those generated from the elementary polyharmonic ones.

We conclude by showing the errors in approximating two smooth test functions defined on $[0, 1]^2$, by the different quasiinterpolation operators $Q_j^{[I]}$, j = 0, 1, 2, corresponding to the case m = 3. We have considered the well-known Franke's function (F1) and the functions F5 [9],

$$F5(x, y) = \frac{1}{3} \exp\left(-20.25((x - 0.5)^2 + (y - 0.5)^2)\right), \quad x, y \in [0, 1]^2$$

Both test functions are depicted in Fig. 3.

In Table 5 we show the maximum absolute approximation errors for F1 and F5. The errors were computed using a 33×33 uniform grid of evaluation points in $[0.1, 0.9]^2$. We have also computed the approximation errors obtained by the interpolant

$$I_m(\mathbf{x}, \mathbf{h}, f) = \sum_{l \in \mathbb{Z}^2} f(hl) L_m(\mathbf{x}/h - l), \tag{49}$$

where L_m is the cardinal Lagrange polyharmonic spline of order m, and by the QI operator $Q_{m,m-1}^{[HL]}$, generated by the high-level m-harmonic B-spline of level m-1 [4]. Note that both L_m and $Q_{m,m-1}^{[HL]}$ reproduces Π_{2m-1} [1,4]. All errors were computed

Fig. 3. The test functions F1 (left) and F5 (right).

Table 5Maximum approximation errors by quasi-interpolation and interpolationoperators.

m = 3, h = 0.01	Q ₀ ^[I]	Q ₁ ^[1]	Q ₂ ^[I]	I ₃	Q _{3,2} ^[HL]
F1	1.6e-3	4.5e-5	1.6e—5	1.2e-5	1.8e-4
F5	6.7e-4	5.4e-6	4.3e—7	3.1e-7	4.9e-6

for h = 0.01. We can see from Table 5 that, as expected, when going from $Q_0^{[I]}$ to $Q_2^{[I]}$, the error is reduced and reaches the same order as that of the interpolation error, which in this specific example is smaller than the error by $Q_{3,2}^{[HL]}$.

References

- [1] W.R. Madych, S.A. Nelson, Polyharmonic cardinal splines, Journal of Approximation Theory 60 (1990) 141-156.
- [2] N. Dyn, I.R.H. Jackson, D. Levin, A. Ron, On multivariate approximation by integer translates of basis function, Israel Journal of Mathematics 74 (1992) 95–130.
- [3] N. Dyn, Approximation by translates of a radial function, in: J.R. Higgins, R.L. Sten (Eds.), Sampling Theory in Fourier and Signal Analysis: Advanced Topics, Oxford University Press, 1999, pp. 187–208.
- [4] C. Rabut, High level *m*-harmonic cardinal B-splines, Numerical Algorithms 2 (1992) 63–84.
- [5] C. Rabut, Elementary polyharmonic cardinal B-splines, Numerical Algorithms 2 (1992) 39–62.
- [6] K. Vo-Khac, Distribution, Analyse de Fourier, Opérateurs aux Dériveés Partielles, in: Tome, vol. 2, Vuibert, Paris, 1972.
- [7] C. Rabut, M. Rossini, Polyharmonic multiresolution analysis: an overview and some new results, Numerical Algorithms 48 (1-3) (2008) 135-160.
- [8] M. Rossini, On the construction of polyharmonic B-splines, Journal of Computational and Applied Mathematics 221 (2008) 437-446.
- R.J. Renka, R. Brown, Algorithm 792: accuracy tests of ACM algoritm for interpolation of scattered data in the plane, ACM Transactions on Mathematical Software 25 (1999) 78–94.