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1. Introduction

The space of m-harmonic splines V,,,, 2m > d is defined as the subspace of S’ (RY) (the space of d-dimensional tempered
distributions)

Vo = !g e S'®H ()2 (®Y : A"g = 0, on R\ Zd] , 1)

where A is the Laplacian operator. It is well known (see e.g. [1]) that V,,,, contains IT,,,— (the space of polynomials defined
on R? of degree not exceeding 2m — 1), and that for any n < 2m — 1, it is possible to construct quasi-interpolation (QI)
operators reproducing IT, (see e.g. [2,3]). For that, the generator ¢p € V5, of the QI operator

Qp(x, h,f) =Y f(hp(x/h — 1)

lezd

is required to decay fast enough at infinity, so that Q4 (x, h, f) is well defined for f growing at infinity not faster than a
polynomial of degree n. Such a QI operator approximates smooth enough functions with L error of order h"**1 [2].

The known constructions of generators defining QI operators which reproduce /T, for n large, are quite involved, and are
different for different m (see e.g. [2,4]), while simple generators, like the elementary polyharmonic B-splines [5], are easy to
construct, but generates QI operators reproducing only I7;.

In this paper, we present a simple procedure which starts from a simple generator ¢ and recursively defines generators
1, P2, ..., dm—1 with corresponding QI operators reproducing T3, ITs, ..., [Ty respectively. Our procedure defines ¢;
as a linear combination of ¢ (-);—1 and ¢;_1(-/2) with explicitly known simple coefficients which are independent of m.
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The general procedure is presented in Section 2, while in Section 3, the special case d = 1 with ¢y an odd degree
symmetric B-spline with integer knots, and the special cases d = 2, m = 2, 3, 4 with two different ¢,, are discussed.

We use in this paper the multi-index notation. In particular for @ € 29, |a| = Z?:l |ei|. The approximation error is
measured in the L norm over R¢.

It should be noted that our procedure can be extended to spaces defined by more general elliptic operators instead of
just A™,

2. The construction

We start from a polyharmonic B-spline which is easy to construct. Known examples of polyharmonic B-splines are given
in Section 3.
A function

o : R > R
is called m-harmonic B-spline for 2m > d, if its Fourier transform has the form

Po(®) = e3m(®) I (@) (2)
where

Um(@) = (=)o 7" 3)
and ey, is a real, even trigonometric polynomial satisfying

em(@) = (=) [w]*™ + 0(Jw[*"*?), (4)

for w in a neighborhood of the origin. Conditions (2)-(4) guarantee, as is shown in Lemma 1, that ¢, is decaying sufficiently
fast and generates quasi-interpolation operator reproducing linear polynomials as do symmetric univariate B-splines.
In the sequel we assume that 2m > d.

Lemma 1. Under conditions (2)-(4)

C
190001 < g Il = oo, (5)
and the sum
D Fhgox—1) (6)
lezd

is well defined for any f growing at infinity not faster than a linear polynomial. Moreover if f is a polynomial of degree not
exceeding one, the sum (6) equals f.

Proof. Leto € Zi and consider D*¢,. Under the assumptions on ¢y, we obtain for [|e|| large enough

ID%Go(w)| < Cllo]| ™. 7)

Since 2m > d, D“(i&o is summable in a neighborhood of infinity.

A

Now we check the behavior of D*¢q in the neighborhood of the origin, U(0). We know from (2)-(4) that

Po(@) =1+ Y W) =1+ (@) +0(lo]*). o e U(©), (8)

i=1
where hg?] is a rational homogeneous function of degree 2i of the form

[0]
Pomg2i(@)

[0] _
M (@) == o

i )

with pg:,], 42i @ homogeneous polynomial of degree 2m + 2i. Observe that D* hg?] is a homogeneous function of degree 2i — |«|.

Thus D“$0 is integrable in U(0) whenever 2 — |@| +d — 1 > —1. Since |¢| and d are integers, we can conclude that
D¢y € LY(RY) for || < d + 1. From this, it follows that ¢g(x) = o(||x]| =9~ "), ||x|| = oo (see e.g [6, p. 26]), and since ¢y
admits a series expansion away from U(0), we have

Po(x) = O(lIx[~*"%),  Ilxll — oo.
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With this decay the sum (6) is well defined for f as above. To show that the sum equals f when f € IT;, we have to show
that ¢, satisfies the Strang-Fix conditions of order one (see e.g. [2]), namely that

$o(0) =1,  Dp(0) =0, |a|=1, 9)
Dpo(2kn) =0, kez?\O0, [a|=0,1. (10)

From (4) and (3) it is easy to see that (9) holds. Using (4) we conclude that D“e,,;(0) = O for |o| < 2m. This together with
the 27724 periodicity of e, leads to (10). O

It follows directly from the last lemma and [2] that

Corollary 2. For f with bounded derivatives of order 1-3, the sum

Qo(x, h,f) = f(hDo(x/h 1),

lezd
approximates f in RY with L error of order h?.

To obtain higher approximation order than in Corollary 2 the function ¢, should be replaced by a function, with a stronger
decay rate as ||x|| — oo, generating a QI operator with higher degree of polynomial reproduction. Here, we provide quasi-

interpolation operators with approximation error of order h%, j = 1, ..., m by a simple procedure based on ¢y.
Starting from ¢ we construct new generators
¢1a ¢2a B ¢m—1
of QI operators reproducing polynomials up to degree 3, 5, ..., 2m — 1 respectively.
The construction is done recursively.
Forj=1,2,...,m— 1, we define
¢i(X) = ajj_1(X) + bjj_1(x/2), x € R, (11)

and choose the coefficients a;, b; so that

A 0 s

$i@) =1+ Y hl(w), oeU(), (12)

i=j+1

with hg’l] a homogeneous function of order 2i. This is possible since

B(@) = g1 () + 21 w), (13)
and by our inductive hypothesis

~ ) .

$1(@) =1+ W w), oecu). (14)

i=j

Note that by (8) ¢g satisfies (14).
It is easy to see that the coefficients g;, b; in (13) are the solution of the system

a; + Zdbj =1

{aj + 242, = 0, (15)

that is
22 1 _
Note that the coefficients g;, b; do not depend on ¢ and on m.
By construction q?)j (w) has the form

$i(©) = eh (@) in(®), (17)
where

el () = giel N (w) + 272 biel V2w), j=1,....m—1, (18)
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and eg:n (w) = eym(w). Note also that egln is a symmetric trigonometric polynomial. Hence it follows from (14) and (17) that
o0

(@) = llol™™+ Y ph (@), © € U(), (19)
i=j+1

with szjn i @ homogeneous polynomial of degree 2m + 2i.
Next we prove that ¢; has a correct decay at infinity needed for the quasi-interpolation based on it to be well defined for
polynomials of degree up to 2j + 1, and that these polynomials are reproduced by this quasi-interpolation.

Proposition 3. Forj=1,2,...,m—1

C
[4i0] < g Il = oo (20)

Here C is a generic constant.

Proof. Firstlet us consider the decay of $j and its derivatives near infinity. By (11) it is the same as that of ¢A>j_1, and therefore
by recursion, as that of @0. Thus in view of (7), we obtain

ID*¢j(w)| < Cllw| ™", « €%, w ¢ U(0). (21)

Since 2m > d, D"(f)j is always summable in a neighborhood of infinity.
Next we consider ¢;(w), w € U(0). By (12)

$i(@) =1+ hJ, (@) + 0(|w]¥™), e U©O) (22)
and by (19)
[j1
' Pomiajia(@)
h[]-] — J ,
2j+2 (a)) ” w ” 2m

with pggn 2j+2 @ homogeneous polynomial of degree 2m+2j+ 2. Thus by arguments similar to those in the proof of Lemma 1,
we obtain the claim of the proposition. O

Proposition 4. For j=1,..., m — 1, the sum

> Fhdx—D, (23)

lezd

is well defined for any f growing at infinity not faster than a polynomial of degree 2j + 1. Moreover if f € Iy, the sum (23)
equals f.

Proof. Since ¢; satisfies (20), the sum (23) is well defined. To show that the sum equals f when f € IT;, 1, we have to show
that ¢; satisfies the Strang-Fix conditions of order 2j 4 1, (see e.g. [2]), namely

G0 =1, D'¢0) =0, 1=<laf<2j+1, (24)
D*¢;(2kn) =0, kez?\O0, || <2j+1. (25)

By (22) we obtain (2)1(0) = 1. Since D"‘hgi] is a homogeneous function of degree 2i — ||, we get from (22)

D¢j(0) =0, YaeZ!, 1<|a|<2j+1. (26)
Now, by (19)
DY (0)=0, Vaezl, |a| <2m—1, (27)

and since eg,]ﬂ is 2w Z4-periodic and 9, (w) is finite for w & U(0), we obtain
D*¢;(2kn) =0, Va eZ?, || <2m—1, kez?\0. O (28)

It follows directly from Propositions 3 and 4 and [2], that

Corollary 5. Forj =1, ..., m — 1, the quasi-interpolant
Q. h,f) =Y f(hD)g;(x/h —1),
lezd

approximates f having bounded derivatives of order 2j + 1, 2j + 2, 2j + 3, with error of order h%+2.
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Fig. 1. Left: m = 2, the cubic symmetric B-spline ¢, (dashed line), ¢; (solid line), the cubic cardinal Lagrange spline (dotted line). Right: m = 3, the quintic
symmetric B-spline ¢, (dashed line), ¢; (dashdot line), ¢, (solid line), the quintic cardinal Lagrange spline (dotted line).

3. Examples

In this section we investigate some special cases of our construction.

3.1. The case d = 1: starting from symmetric odd degree uniform B-splines

First we illustrate in Fig. 1, ¢, the generators ¢;, and the cardinal Lagrange interpolant in the space of splines of degree
3, 5 with integer knots. Here ¢ is the symmetric B-spline in these spaces.

It is easy to observe that ¢; for general m, is a spline of degree 2m — 1 with integer knots and support [—2m, 22m]. We
show it by induction. For j = 0, ¢ is the symmetric B-spline of degree 2m — 1 with integer knots and support [—m, m].
If ¢;_1 is a spline of degree 2m — 1, has integer knots and support [—2~'m, 27"'m], then ¢;(-) = ajj_1(-) + bjpj—1 (3)
is also a spline of degree 2m — 1 with support determined by that of ¢;_; (5) which is double the support of ¢;_,

namely [—2'm, 27m]. Since the knots of ¢;—1 are integers and those of ¢;_; (5) are even integers, the knots of ¢; are
integers.

3.2, The case d = 2: starting from the m-harmonic B-splines

In this subsection we discuss in details some examples of new generators arising from known two-dimensional
polyharmonic B-splines of order m, the elementary and the isotropic polyharmonic B-splines [7]. For the latter we give also
the errors in approximating two well-known test functions by the different quasi-interpolation operators in case m = 3.

3.2.1. Starting from the elementary polyharmonic B-spline
For the elementary polyharmonic B-spline of order m > 1, the trigonometric polynomial of (2) is (see [5])

m
eam (01, @) = (—4 sin? % — 4sin? %) . (29)

In this case, we have forany m > 1

b (@) = 14+ () + 0(lw]*), € U(0), (30)
6 o) < ﬁ x & U(0), (31)

and the generated quasi-interpolation operators satisfy for all m > 1

o', h,p)=p, pem. (32)

Thus QgE] (x, h, p) forallm > 1 provide approximation error of order h?. Here and after Qj[E] stands for the quasi-interpolation
operator based on d)}E ], where {qﬁj[E]} are the new generators obtained from ¢([)E].
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Table 1
The new generator based on d)}f', m=2.
i $leeu© g < clxi~#.x¢Uu© Q¥ hp) =p
0 1+h +o(lwl B=4 pel
1 1+8" oo B=6 pell
Table 2
The new generators based on ¢([,E], m=4.
i ¢ ewecu© g < clixl~#, xgu@© Q' hp)=p
0 1+ hgfl” +0(lolH  p=4 pell
1 1+h +0(el®  p=6 p et
2 1+ 4ol B=8 pells
3 1+ 40w B=10 pell

For m = 3 the construction of Section 2 yields

$(@) =1+ 1@ +0(l]), ©eU©),
C

= —,
Il

QP (x,h,p) =p, pe s,

FARres] X ¢ U(0),

and

P (@) = 14+ 1 () + 0(Joll®), © € U(0),
wﬁansﬁ#,x¢umx

Q' (x, h,p) =p, pels.

In Tables 1 and 2 we summarize the casesm = 2 and m = 4.

3.2.2. Starting from the isotropic polyharmonic B-splines

(33)
(34)

(35)

(36)
(37)

(38)

The trigonometric polynomial e, associated with the isotropic polyharmonic B-spline of order m > 1 is (see e.g [8])

2 . g W1 . g W2 m
em(wy, wy) = ~3 (1+451n 7+451n 7+cosw1 coswz) .
In this case, for any m > 1, we have a closer to radial behavior of (ig] (w) for w near zero, in fact

A0 _ m. 2 4
o (W) =1-— 12IIwII +0(JlollI®), @€ U0)

implying a faster decay with respect to the elementary polyharmonic B-spline,

C
E 76’
[l

Iy (%) X ¢ U(0).

Yet the polynomial reproduction is as in the case of the elementary polyharmonic B-splines, namely

Q"(x,h,p) =p, pem,

for all m > 1. Here, similarly to the previous case we denote by Qj[” the quasi-interpolation operator based on qu[”.

In case m = 3 the construction of Section 2 yields
p1' (@) = 14 p (@) + 0(|l0]®), @ e U(),

C
<—,
Il

19! ()l

1
1

x ¢ U(0),

(x,h,p) =p, pell,

(39)

(40)

(41)

(42)

(43)
(44)

(45)
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Fig. 2. The isotropic polyharmonic B-spline ¢(l)” (left) and the generator ¢£” (right) form = 3.

Table 3
The new generator based on 4)([,”, m=2.
i M wecuo " < CllxI . x¢Uu© Q" hp)=p
0 1-1lel?+0(elYy B=6 p el
1 1+p M ro(lel®) p=8 pell
Table 4
The new generators based on ¢(l)' I m=4.
i ¢ ocuO ¢ < Clxl . x ¢ U© Q" x.h.p)=p
01— 2|l +0(Jwl*) B=6 p el
1 1+l ro(lwl®+olwl®) =8 pes
2 14+h2 4+ pl +o(lw)™) p=8 pells
3 14+ pd 4+ hY 4+ o(lol™) B =12 pell
and
5 (@) =1+ hg (0) +0(Jlo®), € U(0), (46)
n ¢
|y ()| < E x € U(0), (47)
1
M(x,h,p)=p, pells. (48)

In Fig. 2 we show ¢([)” and the new generator q’)y]. It is easy to observe from Fig. 2 that the new generator ¢£” (x), when

compared with d)([)' ! is more concentrated near the origin and has a higher maximum at the origin.

In Tables 3 and 4, we summarize the cases m = 2 and m = 4 which show together with the case m = 3 that, in
general, the isotropic polyharmonic B-splines provide generators decaying faster than those generated from the elementary
polyharmonic ones.

We conclude by showing the errors in approximating two smooth test functions defined on [0, 1]2, by the different quasi-
interpolation operators Q).[”, j = 0,1, 2, corresponding to the case m = 3. We have considered the well-known Franke’s
function (F1) and the functions F5 [9],

F5(x,y) = % exp (—20.25((x — 0.5)* + (y — 0.5)%)), «x,y € [0, 1]°.

Both test functions are depicted in Fig. 3.
In Table 5 we show the maximum absolute approximation errors for F1 and F5. The errors were computed using a 33 x 33
uniform grid of evaluation pointsin [0.1, 0.9]%. We have also computed the approximation errors obtained by the interpolant

In(, b, f) =) f(ADLn(x/h = 1), (49)

lez?

where L,, is the cardinal Lagrange polyharmonic spline of order m, and by the QI operator Q,fﬂf], generated by the high-
[HL]
,m—

level m-harmonic B-spline of level m — 1 [4]. Note that both L, and , reproduces [Ty, 1 [1,4]. All errors were computed
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Fig. 3. The test functions F1 (left) and F5 (right).

Table 5
Maximum approximation errors by quasi-interpolation and interpolation
operators.
m=3h=001 Q. Q" Q" Iy oy
F1 1.6e—3 45e—5 16e—5 12e—5 18e—4
F5 6.7e—4 54e—6 43e—7 3.1le—7 4.9e—6

for h = 0.01. We can see from Table 5 that, as expected, when going from QO[” to Qz[”, the error is reduced and reaches the

same order as that of the interpolation error, which in this specific example is smaller than the error by 3[HzL].
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