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a b s t r a c t

Approximate periodic solutions for the Helmholtz–Duffing oscillator are obtained in this
paper. He’s Energy Balance Method (HEBM) and He’s Frequency Amplitude Formulation
(HFAF) are adopted as the solutionmethods. Oscillation natural frequencies are analytically
analyzed. Error analysis is carried out and accuracy of the solution methods is evaluated.

© 2011 Elsevier Ltd. All rights reserved.

0. Introduction

The nonlinear Helmholtz equation has received lots of attention especially in the last decade. The interest arises from
large number of applications in the mathematical interpretation of the engineering problems such as ship dynamics,
oscillation of the human eardrum, dynamics of a particle moving in a cubic potential and oscillations of one dimensional
structural system with an initial curvature. Surveying the literature shows that there are varieties of approximate and
numerical solution methods have been already proposed to solve the Helmholtz equation. The Harmonic balance method
was employed by Thywle [1] to analyze the forced oscillation of a Helmholtz–Duffing oscillator. Based on the Jacobi elliptic
function, an analytical solution was obtained by Cveticanin for a hardening and softening Helmholtz oscillator [2]. The
symmetry breaking phenomenon for a general forced Helmholtz–Duffing oscillator was studied by Cao et al. [3]. More
recently, the Homotopy perturbation method was employed by Guo and Leung [4,5] to obtain approximate solutions of
a Helmholtz–Duffing oscillator. Varieties of variational and perturbative methods have been recently extended mostly by
He for instance, one can refer to the He’s Variational Approach (HVA) [6], He’s Energy Balance Method (HEBM) [7–11],
He’s Frequency Amplitude Formulation (HFAF) [12–15] and other classical perturbative and non-perturbative techniques
[16–37]. The approximate periodic solutions for the Helmholtz–Duffing oscillator are studied employing HEBM and HFAF
in this paper. The collocation technique and also Galerkin–Petrov method are combined with the classical HEBM to achieve
more accurate approximations. Recently, the Combined-Galerkin–Petrovmethodwas used for the solving of the generalized
nonlinear equation with fractional power [34]. Öziş and Yıldırım [34]at the first time have employed it for solving the
nonlinear oscillators and found which this approach has better solutions than the classical EBM for the analyzing of the
nonlinear oscillator with integer odd power.

The asymmetric nonlinear equation is separated into two auxiliary equations applicable in positive and negative
directions. Analytical expressions are then shown for the natural frequency of the oscillation. Dynamic responses are
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compared in time domain and also in phase-plane and accuracy of the approximate solutions is evaluated. Error analysis is
then carried out and performances of the different solution techniques are compared.

1. Solution procedure

The Helmholtz–Duffing oscillator is considered in this section with the governing equation given by

ü + u + (1 − α) u2
+ αu3

= 0, (1)
u(0) = A, u̇(0) = 0. (2)

Since the behavior of an asymmetric nonlinear oscillator is different in positive and negative directions, the equation can
be conveniently studied in two parts [4,5]

ü + u + (1 − α) u2sgn(u) + αu3
= 0, for u ≥ 0, (3)

ü + u − (1 − α) u2sgn(u) + αu3
= 0, for u ≤ 0, (4)

α is an asymmetric parameter representing the extend of asymmetry. Forα = 0 the equation governsmotion of a Helmholtz
oscillator and forα = 1 it denotes a Duffing differential equation. The system is assumed to oscillate between an asymmetric
limit zone [−b, a], for positive and b. Both u = a and u = −b represent the turning points in which u̇ = 0, a and b are an
unknown amplitude to be determined. Bymultiplying u̇ on both sides of Eq. (1) and subsequently integration one can reach:

1
2
u̇2

+
1
2
u2

+
1
3

(1 − α) u3
+

1
4
αu4

= C . (5)

Substituting the kinematic conditions of the turning points one can reach to the following algebraic equation [4,5]:

1
2
a2 +

1
3

(1 − α) a3 +
1
4
αa4 =

1
2
b2 −

1
3

(1 − α) b3 +
1
4
αb4. (6)

Solving for b yields

b =
1
9a

(3aα + 4 − 4a) +
1
9a

∆1/3
−

2
9a


9a2α2

+ 6aα − 6aα2
+ 43α − 8 − 8α2 ∆−1/3. (7)

Where

∆ = 270a2α2 (1 + aα − α) − 72aα

1 + α2

− 516α (1 − α) + 64

1 − α3

+ 630aα2

+ 54α

−12


1 + α2

+ 16a

a + 1 + aα4

− α3
+ 78a


1 + a3a − a3α2

− 8a3α

1 − α3

− 172a2α

1 + α2

− 120aα (1 − α) + 9a4α2 
1 + 5aα + 10α + 3a2α2

− 5aα2
+ α2

+ 447a2α2 1
2 . (8)

1.1. Energy balance method

Since the nonlinear differential equation is asymmetric, it should be solved separately for two different parts of the sign
axis i.e. initially for u = a and afterward for u = b.

(A)

u = a and u̇ = 0.

The variational principle can be obtained in this case as:

J(u) =

∫ t

0


−

1
2
u̇2

+
u2

2
+

(1 − α) u3

3
sgn(u) +

αu4

4


dt. (9)

The Hamiltonian of Eq. (3), can be consequently obtained in the form of:

H =
1
2
u̇2

+
u2

2
+

(1 − α) u3

3
sgn(u) +

αu4

4
=

1
2
a2 +

(1 − α) a3

3
+

αa4

4
. (10)

In which a is the initial amplitude in positive direction. Employing the trial function of ua(t) = a cosωt the following
residual can be accordingly obtained.

R(t) =
1
2
a2ω2 sin2 ωt +

1
2
a2 cos2 ωt +


(1 − α) a3

3
cos3 ωt


sgn (a cosωt) +

αa4

4
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−


1
2
a2 +
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3
+

αa4

4


. (11)
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Using the collocation method at ωt →
π
4 one can reach:

ω = Lim
ωt→ π

4

1
sinωt


1 − cos2 ωt


+

2
3

(1 − α) α

1 − (sgn (a cosωt)) cos3 ωt


+

1
2
αa2


1 − cos4 ωt

 1
2

(12)

and finally the natural frequency is obtained as:

ωa =


1 +


4 −

√
2


3
(1 − α) a +

3
4
αa2. (13)

Without repeating the solution process, the first approximate oscillation frequency for the trial function of ub(t) =

b cosωt can be obtained as:

ωb =


1 −


4 −

√
2


3
(1 − α) b +

3
4
αb2 (14)

effective in negative directions. In order to minimize the relative error in this section the approximate solution is obtained
again by the Galerkin–Petrov (GP) method as one of the weighted-residual techniques. The first power of the response is
taken into account to be the weighting function and the natural frequency can be accordingly obtained.∫ T

4

0
R(t) cosωtdt = 0. (15)

Substituting Eq. (11) into Eq. (15) gives:

ωa =


1 +


2 −

3π
8


(1 − α) a +

7
10

αa2. (16)

Similarly for negative directions one can reach:

ωb =


1 −


2 −

3π
8


(1 − α) b +

7
10

αb2. (17)

1.2. He’s frequency–amplitude formulation

According to the standard procedure of the HFAF, the trial functions of u1(t) = a cos t and u2(t) = a cosωt are assumed
in the positive direction. The frequency–amplitude formulation is consequently obtained:

ω2
=

ω2
1R̃2 − ω2

2R̃1

R̃2 − R̃1
. (18)

Substituting the trial functions into Eq. (3) results in the following residuals:

R1 (t1) = (1 − α) (sgn (a cos t)) α2 cos2 t + αa3 cos3 t (19)

R2 (t2) = a cosωt

1 − ω2

+ (1 − α) (sgn (a cosωt)) a2 cos2 ωt + αa3 cos3 ω. (20)

The above residuals can be represented in the form of the following weighted residuals:

R̃1 =
4
T1

∫ T1/4

0
R1 cos tdt =

4
3π

(1 − α) a2 +
3
8
αa3 (21)

R̃2 =
4
T2

∫ T2/4

0
R2 cosωtdt =

a
2


1 − ω2

+
4
3π

(1 − α) a2 +
3
8
αa3. (22)

Finally substituting Eqs. (21) and (22) into Eq. (18) yields:

ωa =


1 +

8
3π

(1 − α) a +
3
4
αa2. (23)

Similarly the same procedure for the negative directions gives:

ωb =


1 −

8
3π

(1 − α) b +
3
4
αb2. (24)
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Fig. 1. b versus a for different asymmetric parameters.
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Fig. 2. Phase-plane trajectories for a periodic and an unstable solution (α = 0).

2. Numerical results

The approximate oscillation periods found by three methods of HEBMC, HEBMGP and HFAF are compared with the exact
periods presented in elliptic integral forms [4,5]

Te =

∫ a

0

2dx
a2 − x2 +

2
3 (1 − α)


a3 − x3


+

1
2α


a4 − x4


+

∫ a

0

2dx
b2 − x2 −

2
3 (1 − α)


b3 − x3


+

1
2α


b4 − x4

 . (25)

The above elliptic integrals are numerically computed to reach the appropriate reference basis for any error analysis.
Series of numerical simulations are then carried out and accuracy and performance of the three methods are evaluated
for varieties of asymmetric parameter α and different initial amplitudes. At the first stage, different roots of Eq. (6) are
numerically obtained for a range of the asymmetric parameters and the results are illustrated in Fig. 1. As it is seen, for a
nonzero asymmetric parameter, the harmonic response is globally stable for any initial amplitude. Furthermore, it is found
that in case of a vanishing asymmetric parameter (α = 0) a critical value of ac = 0.499 is obtained to be the margin of the
stability region. In other words, for any initial amplitude larger than ac , no real value for b can be found and accordingly no
harmonic response exists. This fact can be recognized by the phase-plane trajectories numerically obtained for two initial
amplitudes in vicinity of ac . As it is seen in Fig. 2, for any initial amplitude smaller than ac , periodic solutions do exist but
the trajectories are monotonically approaching infinity for any initial amplitude larger than ac . Figs. 3–5 illustrate the time
histories of oscillation for different α and initial amplitudes. It is seen that the approximate solutions are well correlated
with the exact ones even for large amplitudes. The natural period of the oscillatory system is illustrated in Fig. 6 for different
amplitudes and asymmetric parameters. The relative error and accuracy of the four different methods are compared in
Tables 1 and 2. It is seen that for a pure Helmholtz equation the HEBM-Collocation method is more accurate than others.
When the coefficient of quadratic term is vanishing and accordingly the equation approaches the Duffing equation, the
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Fig. 3. A comparison between the HEBMC, HEBMGP and HFAM solutions (a = 0.4, α = 0).
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HEBM-Galerkin–Petrov combinationalmethod has a better performance. The phase-plane trajectories of the time responses
are plotted in Figs. 7 and 8 for two different cases. It is found that the drift in trajectories is enhanced when the governing
equation approaches further to the Helmholtz equation.

3. Conclusion

Approximate periodic solutions for the Helmholtz–Duffing oscillator were analytically obtained using HEBM and HFAF.
As a combinational method, the Galerkin–Petrov technique was combined with the classical HEBM. Periodic solutions
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Fig. 6. Natural periods for different values of nonlinearity and oscillation amplitudes.
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Fig. 7. Phase-plane trajectories of a periodic solution (a = 10, α = 0.9).

Exact

HEBMC
HEBMGP

HFAF

–0.6
–0.8 –0.6 –0.4 –0.2

u
0 0.2 0.4

–0.4

–0.2

0
u–

0.2

0.4

0.6

Fig. 8. Phase-plane trajectories of a periodic solution (a = 0.49, α = 0).

and natural frequencies were analytically studied. Effects of the asymmetric parameters and the initial amplitude on the
natural frequencies were investigated in a parametric study. In a fully asymmetric equation, it was found that for any initial
amplitude larger than a critical value, no harmonic response can be predictable. This fact was numerically proved and the
value of 0.499 was adopted as the critical amplitude. A series of numerical simulations were carried out and the accuracy
and performance of the proposedmethods were found to be quite satisfactory even for large amplitudes of oscillation. Error
analysis was also carried out and it was found that the combinational methods based on the HEBM-Galerkin–Petrov and the
HEBM-Collocation lead to more accurate solutions respectively in large and small asymmetric parameters.
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Table 1
A comparison between the approximate natural frequencies for α = 0.

a ωe (exact) ωEBM(Collocation)

(relative error %)
ωHFAFand HPM [4,5]
(relative error %)

ωEBM(Galerkin–Petrov)
(relative error %)

0.1 0.995498178382306 0.995439596570945 0.995554489461756 0.995786107091698
(0.005884672883732) (0.005656572826770) (0.028923077474613)

0.2 0.980003298375702 0.979772648320943 0.980290441237757 0.981332911455861
(0.023535640659672) (0.029300193431155) (0.135674347460222)

0.3 0.947782010710780 0.947361797968418 0.948755903642522 0.951554411027461
(0.044336433653922) (0.102754950055583) (0.398024047096155)

0.4 0.881904164446708 0.882071200882383 0.885431191029714 0.892129132672090
(0.018940429403708) (0.399933090827289) (1.159419428730933)

0.49 0.682361789125212 0.702288882401665 0.713040991802438 0.733841706350206
(2.920312009557213) (4.496031748283573) (7.544372801265886)

Table 2
A comparison between the approximate natural frequencies for α = 0.9.

a ωe (exact) ωEBM(Collocation)

(relative error %)
ωHFAFand HPM [4,5]
(relative error %)

ωEBM(Galerkin–Petrov)
(relative error %)

0.01 1.000033361131667 1.000033350555938 1.000033350555938 1.000031131040324
(1.0575376374 e−006) (6.0755263445 e−007) (2.2300169472 e−004)

0.1 1.003349649755321 1.003350010889308 1.003351061321545 1.003127380145567
(3.5992835235 e−005) (1.4068537563 e−004) (0.022152756998387)

0.5 1.082091820228084 1.082564049913178 1.082583415822174 1.077255647678826
(0.043640444948038) (0.045430118304276) (0.446928112647411)

1.0 1.297822417600536 1.302410575147559 1.302447856718409 1.284442991939774
(0.353527376688801) (0.356400001660069) (1.030913434636009)

5.0 4.173610227906132 4.255776250029260 4.255793877545816 4.119545701194236
(1.968703775300775) (1.969126131860062) (1.295389932447535)

10 8.131090204531180 8.306126340078357 8.306135462265289 8.028620448485054
(2.152677330398275) (2.152789519375420) (1.260221611968139)

50 40.229559160163646 41.121720273229229 41.121722121299847 39.728192483385911
(2.217675589020683) (2.217680182833432) (1.246264406680850)

100 80.409950769772820 82.194867079860416 82.194868004528885 79.408204157824315
(2.219770430152495) (2.219771580095333) (1.245799310108613)
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