On some cubic or quartic algebraic units

Stéphane Louboutin

Institut de Mathématiques de Luminy, Marseille Cedex 9, France

A R T I C L E I N F O

Article history:
Received 15 June 2009
Revised 25 September 2009
Available online 29 October 2009
Communicated by David Goss

MSC:
primary 11R27
secondary 11R16, 11R09

Keywords:
Unit
Polynomial
Discriminant
Cubic or quartic number field

A B S T R A C T

Let \(\epsilon \) be an algebraic unit such that rank of the unit group of the order \(\mathbb{Z}[\epsilon] \) is equal to one. It is natural to ask whether \(\epsilon \) is a fundamental unit of this order. To prove this result, we showed that it suffices to find explicit positive constants \(c_1, c_2 \) and \(c_3 \) such that for any such \(\epsilon \) it holds that \(c_1 |\epsilon|^2 \leq d_\epsilon \leq c_2 |\epsilon|^2 \), where \(d_\epsilon \) denotes the absolute value of the discriminant of \(\epsilon \), i.e., of the discriminant of its minimal polynomial. We give a proof of this result, simpler than the original ones.

© 2009 Elsevier Inc. All rights reserved.

Let \(\epsilon \) be an algebraic unit such that rank of the unit group of the order \(\mathbb{Z}[\epsilon] \) is equal to one. It is natural to ask whether \(\epsilon \) is a fundamental unit of this order. To prove this result, we showed that it suffices to find explicit positive constants \(c_1, c_2 \) and \(c_3 \) such that for any such \(\epsilon \) it holds that \(c_1 |\epsilon|^2 \leq d_\epsilon \leq c_2 |\epsilon|^2 \), where \(d_\epsilon \) denotes the absolute value of the discriminant of \(\epsilon \), i.e., of the discriminant of its minimal polynomial. We give a proof of this result, simpler than the original ones.

© 2009 Elsevier Inc. All rights reserved.

Let \(\epsilon \) be an algebraic unit such that rank of the unit group of the order \(\mathbb{Z}[\epsilon] \) is equal to one. It is natural to ask whether \(\epsilon \) is a fundamental unit of this order. To prove this result, we showed that it suffices to find explicit positive constants \(c_1, c_2 \) and \(c_3 \) such that for any such \(\epsilon \) it holds that \(c_1 |\epsilon|^2 \leq d_\epsilon \leq c_2 |\epsilon|^2 \), where \(d_\epsilon \) denotes the absolute value of the discriminant of \(\epsilon \), i.e., of the discriminant of its minimal polynomial. We give a proof of this result, simpler than the original ones.

© 2009 Elsevier Inc. All rights reserved.

Let \(\epsilon \) be an algebraic unit such that rank of the unit group of the order \(\mathbb{Z}[\epsilon] \) is equal to one. It is natural to ask whether \(\epsilon \) is a fundamental unit of this order. To prove this result, we showed that it suffices to find explicit positive constants \(c_1, c_2 \) and \(c_3 \) such that for any such \(\epsilon \) it holds that \(c_1 |\epsilon|^2 \leq d_\epsilon \leq c_2 |\epsilon|^2 \), where \(d_\epsilon \) denotes the absolute value of the discriminant of \(\epsilon \), i.e., of the discriminant of its minimal polynomial. We give a proof of this result, simpler than the original ones.

© 2009 Elsevier Inc. All rights reserved.

Let \(\epsilon \) be an algebraic unit such that rank of the unit group of the order \(\mathbb{Z}[\epsilon] \) is equal to one. It is natural to ask whether \(\epsilon \) is a fundamental unit of this order. To prove this result, we showed that it suffices to find explicit positive constants \(c_1, c_2 \) and \(c_3 \) such that for any such \(\epsilon \) it holds that \(c_1 |\epsilon|^2 \leq d_\epsilon \leq c_2 |\epsilon|^2 \), where \(d_\epsilon \) denotes the absolute value of the discriminant of \(\epsilon \), i.e., of the discriminant of its minimal polynomial. We give a proof of this result, simpler than the original ones.

© 2009 Elsevier Inc. All rights reserved.

Let \(\epsilon \) be an algebraic unit such that rank of the unit group of the order \(\mathbb{Z}[\epsilon] \) is equal to one. It is natural to ask whether \(\epsilon \) is a fundamental unit of this order. To prove this result, we showed that it suffices to find explicit positive constants \(c_1, c_2 \) and \(c_3 \) such that for any such \(\epsilon \) it holds that \(c_1 |\epsilon|^2 \leq d_\epsilon \leq c_2 |\epsilon|^2 \), where \(d_\epsilon \) denotes the absolute value of the discriminant of \(\epsilon \), i.e., of the discriminant of its minimal polynomial. We give a proof of this result, simpler than the original ones.

© 2009 Elsevier Inc. All rights reserved.
to solve this problem for totally imaginary quartic units. Here, in Theorem 2, we give a simpler proof of their key result [PL, Theorem 2]. But first, we show in Theorem 1 that their method can also be used to give a simpler proof of [Lou06, Theorem 2], the key result for solving the case of a not totally real cubic algebraic unit. Finally, we mention the recent result [BHMMMS] which is an approach for generalizing these results to the case that the unit rank of the order \(\mathbb{Z}[\epsilon] \) is greater than 1.

Theorem 1. (See [Lou06, Lemma 2 and Theorem 2].) Let \(\epsilon > 1 \) be a real cubic algebraic unit which is not totally real. I.e., let \(\epsilon \) be the real root of \(\Pi_\epsilon(X) = X^3 - aX^2 + bX - 1 \in \mathbb{Z}[X] \) with \(b \neq a \) and \(b \neq -a - 2 \) (\(\heartsuit \Pi_\epsilon(X) \) is \(\mathbb{Q} \)-irreducible), of negative discriminant \(-d_\epsilon < 0 \) (\(\heartsuit \Pi_\epsilon(X) \) has only one real root), and with \(b \leq a - 1 \) (\(\heartsuit \) the real root of \(\Pi_\epsilon(X) \) is greater than 1). Then,

\[
e^{3/2}/2 \leq d_\epsilon \leq 4(e^{3/4} + e^{-3/4})^4 \leq 64e^3.
\]

More precisely, it holds that \(d_\epsilon \geq 4e^{3/2} \), except for the following four cases:

<table>
<thead>
<tr>
<th>(\Pi_\epsilon(X))</th>
<th>(d_\epsilon)</th>
<th>(e)</th>
<th>(d_\epsilon/e^{3/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^3 - 5X^2 + 4X - 1)</td>
<td>23</td>
<td>4.07959...</td>
<td>2.791...</td>
</tr>
<tr>
<td>(X^3 - 6X^2 - 5X - 1)</td>
<td>31</td>
<td>6.76136...</td>
<td>1.763...</td>
</tr>
<tr>
<td>(X^3 - 7X^2 + 5X - 1)</td>
<td>44</td>
<td>6.22226...</td>
<td>2.834...</td>
</tr>
<tr>
<td>(X^3 - 12X^2 - 7X - 1)</td>
<td>23</td>
<td>12.56350...</td>
<td>0.516...</td>
</tr>
</tbody>
</table>

Proof. Let \(\epsilon' = e^{-1/2}e^{ix} \) and \(\epsilon'' = e^{-1/2}e^{-ix} \) be the non-real complex roots of \(\Pi_\epsilon(X) \) (use \(1 = \epsilon |\epsilon'|^2 \)). Then, \(a = \epsilon + 2e^{-1/2} \cos \alpha, b = 2e^{1/2} \cos \alpha + e^{-1} \).

\[
d_\epsilon = - (\epsilon - \epsilon')^2 (\epsilon - \epsilon'')^2 (\epsilon' - \epsilon'')^2 \leq (\epsilon + e^{-1/2})^4 (2e^{-1/2})^2 = 4(e^{3/4} + e^{-3/4})^4
\]

and

\[
d_\epsilon = 4e^3 |1 - \epsilon'/\epsilon|^4 \sin^2 \alpha \geq 4e^3 (1 - e^{-3/2})^4 \sin^2 \alpha.
\]

Assume that \(\epsilon > 16.2 \). First, if \(\sin^2 \alpha \geq 2e^{-3/2} \), then \(d_\epsilon \geq 8(1 - e^{-3/2})^4e^{3/2} \), hence, \(d_\epsilon \geq 7e^{3/2} \). Second, assume that \(\sin^2 \alpha < 2e^{-3/2} \). Then,

\[-1 < -4e^{-1/2} - e^{-2} \leq 4a - b^2 = 4e \sin^2 \alpha + 4e^{-1/2} \cos \alpha - e^{-2} - 12e^{-1/2} \leq 3.
\]

Hence, \(4a = b^2, \cos \alpha < 0 \) (for otherwise \(4a - b^2 \geq 4e^{-1/2} \cos \alpha - e^{-2} > 4e^{-1/2} \sqrt{1 - 2e^{-3/2} - e^{-2}} > 0 \), \(b = -2B \leq 0 \). \(\Pi_\epsilon(X) = X^3 - B^2X^2 - 2BX - 1 \) with \(B \geq 1 \) and \(d_\epsilon = 4B^3 + 27 \geq 4e^{3/2} \) (indeed, \((1 + 2x)^3 \leq (1 + 27x/4)^2 \) for \(x \in [0, 1] \), hence \((1 + 2/B^3)^3 \leq (1 + (27/4B^3)) \) and \((B^2 + 2/B)^2 \leq (d_\epsilon /4)^2 \) for \(B \geq 1 \). Now, \(\Pi_\epsilon(B^2 + 2/B) = 3 + 8/B^3 > 0 \). Hence, \(\epsilon < B^2 + 2/B \) and \(\epsilon^3 \leq (d_\epsilon /4)^2 \). Therefore, \(d_\epsilon \geq 4e^{3/2} \) for \(\epsilon \geq 16.2 \). Finally, if \(1 < \epsilon \leq 16.2 \), then \(0 \leq a < e + 2 < 19 \) and \(|b| < 1 + 2\sqrt{a + 2} \). By computing approximations to \(\epsilon \) for the 211 such cubic polynomials with \(0 \leq a \leq 18 \), we end up with the desired result. \(\square \)

Theorem 2. (See [PL, Theorem 2].) Let \(\epsilon \) be a totally imaginary quartic algebraic unit. Let \(\Pi_\epsilon(X) = X^4 - aX^3 + bX^2 - cX + 1 \in \mathbb{Z}[X] \) be its minimal \(\mathbb{Q} \)-irreducible polynomial, of positive discriminant \(d_\epsilon > 0 \). We may assume that \(|c| \leq a \) (by changing \(\epsilon \) into \(-\epsilon, 1/\epsilon \) or \(-1/\epsilon \)) and that \(|\epsilon| \geq 1 \). Then,

\[
7|\epsilon|^4/10 \leq d_\epsilon \leq 16(|\epsilon| + |\epsilon|^{-1})^8 \leq 4096|\epsilon|^8.
\]
More precisely, it holds that \(d_\epsilon \geq 4|\epsilon|^4 \), except for the following three cases:

| \(\pi_\epsilon(X) \) | \(d_\epsilon \) | \(|\epsilon| \) | \(d_\epsilon /|\epsilon|^4 \) |
|---|---|---|---|
| \(X^2 - 5X^2 + 5X^2 + 3X + 1 \) | 229 | 2.75146 \ldots | 3.99557 \ldots |
| \(X^2 - 7X^2 + 14X^2 - 6X + 1 \) | 229 | 3.25705 \ldots | 2.03487 \ldots |
| \(X^4 - 13X^2 + 43X^2 - 5X + 1 \) | 1229 | 6.44362 \ldots | 0.71290 \ldots |

Proof. The result holds true if \(|\epsilon| = 1 \) (by [Was, Lemma 1.6]). From now on we assume that \(\rho = |\epsilon| > 1 \). Let \(\epsilon = \rho e^{i\alpha}, \bar{\epsilon}, \bar{\epsilon}' = \rho^{-1}e^{i\beta} \) and \(\bar{\epsilon}' \) be the four complex roots of \(\pi_\epsilon(X) \) (use \(|\epsilon|^2|\epsilon'|^2 = 1 \)). Then, \(a = 2\rho \cos \alpha + 2\rho^{-1} \cos \beta, b = \rho^2 + \rho^{-2} + 4(\cos \alpha)(\cos \beta), c = 2\rho^{-1} \cos \alpha + 2\rho \cos \beta \) and

\[
d_\epsilon = ((\epsilon - \bar{\epsilon})(\epsilon - \bar{\epsilon}')(\bar{\epsilon} - \bar{\epsilon}')(\epsilon - \bar{\epsilon}'))^2 \leq 16(\rho + \rho^{-1})^8.
\]

Now, \(\rho > 1 \) and \(|\epsilon| \leq 1 \) imply \(\cos \alpha \geq |\cos \beta| \) and

\[
d_\epsilon = 16(\sin \alpha)^2(\sin \beta)^2 \rho^8 |1 - \rho^{-2}e^{i(\beta - \alpha)}|^2 |1 - \rho^{-2}e^{i(\beta + \alpha)}|^2 \geq (4(\sin \alpha)^2(\rho^2 - 1)^2)^2.
\]

First, if \(\sin^2 \alpha \geq \frac{2}{5} \rho^{-2} \), then \(d_\epsilon \geq (8(1 - \rho^{-2})\rho^2/3)^2 \geq 4\rho^4 \) for \(\rho \geq 2 \).

Second, assume that \(\sin^2 \alpha < \frac{2}{5} \rho^{-2} \). Since \(\rho \geq 1 \), we have

\[
a = 2\rho \sqrt{1 - \sin^2 \alpha + 2\rho^{-1} \cos \beta} \geq 2\rho \sqrt{1 - 3\rho^{-2}/3 - 2\rho^{-1}} \geq 2\rho - 3\rho^{-1}
\]

and, for \(\rho \geq 2\sqrt{3} \), we have

\[-8 < 4b - a^2 = 4(\sin \alpha)^2 \rho^2 + 4(\sin \beta)^2 \rho^{-2} + 8(\cos \alpha)(\cos \beta) < \frac{8}{3} + 4\rho^{-2} + 8 \leq 11 \]

(\(\epsilon \) is totally imaginary, hence \(|\cos \alpha| \neq 1 \) and \(|\cos \beta| \neq 1 \)). Since \(4b - a^2 \equiv 0, 3 \) (mod 4), we obtain \(4b - a^2 \in \{-5, -4, -1, 0, 3, 4, 7, 8\} \). There are two cases.

First case, \(a = 2m \) is even, with \(m \geq 0 \), and \(b = m^2 + j \) with \(j \in \{-1, 0, 1, 2\} \). Since \(\pi_\epsilon(m) = jm^2 - cm + 1 \) is positive (for \(\pi_\epsilon(X) \) has no real root), it is greater than or equal to 1, and we have \(-2m \leq c \leq jm \) and \(m \geq 1 \). Since \(X^4 - 2mX^3 + (m^2 + 2)X^2 - 2mX + 1 = (X^2 - mX + 1)^2 \) is Q-reducible, we have \(-2m = A \leq c \leq B := \min jm, 2m - 1 \) for \(m \geq 1 \). We fix \(m \geq 1 \) and \(j \in \{-1, 0, 1, 2\} \), and let \(c \) vary. Numerical investigations suggest that \(d_\epsilon = d_\epsilon(c) \) as a function of \(c \) has four real roots close to \(-2m, jm, 2m \) and \(4m^2/27 + jm/3 \). Hence, we write \(d_\epsilon(c) = -27\Delta(m, j, c) + P(m, j, c) \), where

\[
\Delta(m, j, c) = (c + 2m)(c - jm)(c - (2m - 1))\left(c - \frac{4m^3}{27} - \frac{jm}{3} - 1\right),
\]

and \(P(m, j, c) = -\alpha(m, j)c^2 - \beta(m, j)c + \delta(m, j) \) with

\[
\alpha(m, j) = 4m^3 - (j^2 + 12)m^2 + 9(j - 6)m + 4j^3 - 144j + 27.
\]

We have \(\Delta(m, j, c) \leq 0 \) for \(A \leq c \leq B \) and \(m \geq 1 \), and \(\Delta(m, j, A) = \Delta(m, j, B) = 0 \). Hence \(d_\epsilon(c) \geq P(m, j, c) \) for \(A \leq c \leq B \), \(P(m, j, A) = d_\epsilon(A) \) and \(P(m, j, B) = d_\epsilon(B) \). Since \(\alpha(m, j) \) is positive for \(j \in \{-1, 0, 1, 2\} \) and \(m \geq 7 \) (note that in (4), we subtracted 1 to the third approximation of the roots of \(d_\epsilon(c) \) and added 1 to the fourth to ensure that \(\alpha(m, j) \) be positive), we obtain:

\[
d_\epsilon(c) \geq \min_{A \leq c \leq B} P(m, j, c) = \min\{P(m, j, A), P(m, j, B)\} = \min\{d_\epsilon(A), d_\epsilon(B)\}
\]
for $m \geq 7$. (This is the lower bound proved at the bottom of page 1341 and top of page 1342 of [PL]. However, our proof is easier to check than theirs. You just have to use any software for mathematics, e.g. Maple, to check that if $\Delta(m, j, c)$ is as in (4), then $P(m, j, c) := d_ε(c) + 27 \Delta(m, j, c)$, is a quadratic polynomial in c whose leading term is of the form $-\alpha(m, j)c^2$ with $\alpha(m, j) > 0$.)

Hence, for $m \geq 7$ and $ρ \geq 2\sqrt{3}$, we obtain

$$d_ε(c) \geq \min(d_ε(-2m), d_ε(\min(jm, 2m - 1)))$$

$$= \begin{cases} d_ε(-m) = 9(m^4 + 4m^2 + 16) & \text{if } j = -1, \\ d_ε(0) = 16(m^4 + 16) & \text{if } j = 0, \\ d_ε(m) = 9(m^4 - 4m^2 + 16) & \text{if } j = 1, \\ d_ε(2m - 1) = 16m^4 - 4m^3 - 128m^2 + 144m + 229 & \text{if } j = 2, \\ \geq 9(m^4 - 4m^2 + 16). \end{cases}$$

Using $ρ \leq ρ \leq 3ρ^{-1}/2 + 3/2 \leq a/2 + 3/2 = m + 3/2$, by (3), we obtain $d_ε \geq 9(m^4 - 4m^2 + 16) \geq 4ρ^4$ for $m \geq 8$.

Second case, $a = 2m + 1$ is odd, with $m \geq 0$, and $b = m^2 + m + j$ with $j \in \{-1, 0, 1, 2\}$. Since $Π_ε(m + 1/2) = (m + 1/2)^2(j - 1/4) - c(m + 1/2) + 1$ is positive, we have $8c < (2m + 1)(4j - 1) + 16/(2m + 1)$. Hence, $8c \leq (2m + 1)(4j - 1)$ for $m \geq 8$, hence $8c \leq (2m + 1)(4j - 1) - 1$ and $-2m + 1 = A ≤ c \leq B := (j - 1/4)(m + 1/2) - 1/8 \leq 2m$ for $-1 \leq j \leq 2$ and $m \geq 8$. Now, as in the proof of the first case, we write $d_ε(c) = -27A(m, j, c) + P(m, j, c)$, where

$$Δ(m, j, c) = (c - A)(c - B)(c - (2m + 1/8)) \left(c - \frac{4m + \frac{1}{2}^3}{27} - \frac{(j - \frac{1}{4})(m + \frac{1}{2})}{3} - 1 \right)$$

which yields $d_ε(c) \geq P(m, j, c)$ for $A \leq c \leq B$, $d_ε(A) = P(m, j, A)$ and $d_ε(B) = P(m, j, B)$, and where $P(m, j, c) = -\alpha(m, j)c^2 - β(m, j)c + δ(m, j)$ with

$$\alpha(m, j) = 4m^3 - \left(j^2 - \frac{j}{2} + \frac{97}{16} \right)m^2 - \left(j^2 - \frac{49j}{8} + \frac{1847}{32} \right)m + 4j^3 - \frac{13j^2}{4} - \frac{2245j}{16} + \frac{2121}{64}.$$

Since $\alpha(m, j)$ is positive for $j \in \{-1, 0, 1, 2\}$ and $m \geq 6$, we obtain

$$d_ε(c) \geq \min_{A \leq c \leq B} P(m, j, c) = \min(P(m, j, A), P(m, j, B)) = \min(d_ε(A), d_ε(B))$$

for $m \geq 8$, and

$$d_ε(c) \geq \min(d_ε(-2m - 1), d_ε\left(\left(j - \frac{1}{4}\right)(m + \frac{1}{2}) - \frac{1}{8}\right)) \geq 9(m^4 + 2m^3 + 11m^2 + 10m + 13)$$

for $m \geq 18$. (Look at the four cases $j \in \{-1, 0, 1, 2\}$. In these four cases, $d_ε(B)$ is a quintic polynomial in m.) Using $ρ \leq ρ - 3ρ^{-1}/2 + 3/2 \leq a/2 + 3/2 = m + 2$, by (3), we obtain $d_ε \geq 9(m^4 + 2m^3 + 11m^2 + 10m + 13) \geq 4ρ^4$ for $m \geq 18$.

Finally, since $|c| \leq a < \sqrt{4b + 24}$ and $-1 \leq b \leq ρ^2 + ρ^{-2} + 4$, it is easy to list all the possible polynomials $Π_ε(X)$ for which $ρ \leq 2\sqrt{3}$ and to check that Theorem 2 holds true for these polynomials. Since $1/ρ^2 < 1$ is the only real root in $(0, 1)$ of the sextic polynomial

$$Q_ε(X) = X^6 - bX^5 + (ac - 1)X^4 - (a^2 - 2b + c^2)X^2 + (ac - 1)X^2 - bX + 1$$
(see [Lou08, Proof of Lemma 13]) (and since $Q_ε(0) = 1 > 0$, but $Q_ε(1) = -(a - c)^2 < 0$ for $c \neq a$), using the dichotomy method, it is easy to compute numerical approximations to ρ and to check that Theorem 2 holds true for all the polynomials $Π_ε(X)$ with either (i) $a = 2m$, $b = m^2 + j$, $0 \leq m \leq 7$ and $-1 \leq j \leq 2$, or (ii) $a = 2m + 1$, $b = m^2 + m + j$, $0 \leq m < 18$ and $-1 \leq j \leq 2$. □

References

