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Abstract

In this paper we will apply the method of rotating planes (MRP) to investigate the radial

and axial symmetry of the least-energy solutions for semilinear elliptic equations on the

Dirichlet and Neumann problems, respectively. MRP is a variant of the famous method of

moving planes. One of our main results is to consider the least-energy solutions of the

following equation:

Du þ KðxÞup ¼ 0; xAB1;

u40 in B1; uj@B1
¼ 0;

(
ð*Þ

where 1oponþ2
n�2

and B1 is the unit ball of Rn with nX3: Here KðxÞ ¼ KðjxjÞ is not assumed to

be decreasing in jxj: In this paper, we prove that any least-energy solution of ð*Þ is axially

symmetric with respect to some direction. Furthermore, when p is close to nþ2
n�2

; under some

reasonable condition of K ; radial symmetry is shown for least-energy solutions. This is the

example of the general phenomenon of the symmetry induced by point-condensation. A fine

estimate for least-energy solution is required for the proof of symmetry of solutions. This

estimate generalizes the result of Han (Ann. Inst. H. Poincaré Anal. Nonlinéaire 8 (1991) 159)

to the case when KðxÞ is nonconstant. In contrast to previous works for this kinds of

estimates, we only assume that KðxÞ is continuous.
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1. Introduction

Recently in the research area of nonlinear elliptic PDEs, there have been many
works devoted to studying problems where solutions exhibit the ‘‘phenomenon of
point-condensation’’. Two well-known examples are semilinear elliptic equations
involving the Sobolev critical exponent and nonlinear elliptic equations with small
diffusion coefficient. These works show that the concentration often induces the
asymptotic symmetry. For example, spherical Harnack inequalities have been
proved for blowup solutions to either mean field equations on compact Riemann
surfaces or the scalar curvature equation. These spherical Harnack inequalities
implies that blowup solutions usually are asymptotically symmetric. Similar results
were proved for spike-layer solutions of singularly elliptic Neumann problem. See
[CL1,CL2,L1,L2,NT1,NT2] for more precise statements. Naturally, when the
underlying equation is invariant under a group of transformations, we would like
to know whether solutions with point-condensation actually possess certain
symmetry which is invariant under the action of some elements of the group. In

[Ln1,Ln2], for the mean field equation on S2; the second author first succeeded to
prove the axial symmetry for solutions with two blowup points. In this article, we
continue to study this problem.

In this paper, we first consider positive solutions of the following equation:

Du þ f ðjxj; uÞ ¼ 0 in B1;

uj@B1
¼ 0;

(
ð1:1Þ

where B1 is the unit ball in Rn; nX2; D is the Laplace operator and f ðr; tÞ is a C1

function of both variables r and t: The typical examples of f are KðjxjÞup where

1oponþ2
n�2

if nX3; 1op if n ¼ 2: When KðrÞ is decreasing in r; the famous theorem by

Gidas et al. [GNN1,GNN2] says that any positive solution uðxÞ of (1.1) is radially
symmetric. However, the radial symmetry of solutions generally fails if KðrÞ does not
decrease with respect to r for all rp1: In this paper, we want to show that certain
symmetry still holds for least-energy solutions. The definition of the least-energy

solutions of (1.1) is stated as follows. Consider the variational functional

JðuÞ ¼
Z

B1

1

2
jruj2 � Fðjxj; uþÞ

� �
dx in H1

0 ðB1Þ; ð1:2Þ

where Fðr; uÞ ¼
R u

0 f ðr; sÞ ds and uþðxÞ ¼ maxð0; uðxÞÞ: For the nonlinear functional

J; we set

c
*
¼ inf

hAG
max

0ptp1
JðhðtÞÞ; ð1:3Þ

where

G ¼ fhACð½0; 1
;H1
0 ðB1ÞÞ j hð0Þ ¼ 0; hð1Þ ¼ eg
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and eAH1
0 ðB1Þ; ea0 in B1 with JðeÞ ¼ 0: To guarantee the c

*
of (1.3) to be a critical

value of J by the mountain pass lemma, the nonlinear term f is usually assumed to
satisfy the following condition.

ðfaÞ f ðr; tÞ ¼ oðjtjÞ near t ¼ 0 and 0prp1;
ðfbÞ there exist constants yAð0; 1

2
Þ and U040 such that 0oFðx; uÞ �R u

0 f ðr; sÞ dspyuf ðx; uÞ for all uXU0;

ðfcÞ jf ðx; tÞjpCtq for some 1oqonþ2
n�2

for large t if nX3 and 1oqoþN if n ¼ 2:

Using the above conditions ðfaÞ–ðfcÞ and by the well-known mountain-pass lemma due
to Ambrosetti and Rabinowitz (see [AR]), we can obtain that (1.2) possesses a positive

critical point u
*

with its critical value JðunÞ to be equal to c
*

of (1.3). Moreover, under

the additional assumption that f ðr; tÞ=t is increasing in t; from the Lemma 3.1 in
[NT1,NT2], c

*
does not depend on the choice of e and is the least-positive critical

value of J: Therefore, We call such u
*

to be a least-energy solution of Eq. (1.1). We

remark that solutions of least energy can also be obtained by minimization of

inf
vAH1

0
ðOÞ

R
jrvj2

½ð
R

KðvþÞpþ1Þþ

2

pþ1

;

where f ðx; uÞ ¼ KðxÞup with maxO K40:
Our first result is concerned with the axial symmetry of the least-energy solution of

Eq. (1.1).

Theorem 1.1. Suppose f satisfies conditions ðfaÞ–ðfcÞ and

ðfdÞ @2f
@t2
ðr; tÞ40 for t40 and for 0prp1:

Let u be a least-energy solution of Eq. (1.1) and P0 be a maximum point of u: Then the

following conclusions hold.

(i) If P0 ¼ O is the origin, then u is radially symmetric.
(ii) If P0aO; then u is axially symmetric with respect to OP0

��!
and on each sphere

Sr ¼ fx: jxj ¼ rg for 0oro1; uðxÞ is increasing as the angle of Ox
�!

and OP0
��!

decreases. In particular, u satisfies

xj

@u

@xn

ðxÞ � xn

@u

@xj

ðxÞ40 for xj40; ð1:4Þ

where P0 is assumed to locate on the positive xn-axis.

We note that, by condition ðfdÞ; it is easy to see that @
@t
ðt@f ðr;tÞ

@t
� f ðr; tÞÞ ¼

t
@2f ðr;tÞ
@t2

X0 8t40 80prp1 and hence f ðr; tÞ=t is increasing in t: So, by ðfaÞ; we have
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f ðr; tÞX0 8tX0 80prp1: In this paper, we will use the method of rotating planes to
prove Theorem 1.1. The method of rotating planes is a variant of the famous method
of moving planes (MMP). MMP was first invented by Alexandroff and later was
used by Gidas–Ni–Nirenberg to prove the radial symmetry of positive solutions. See
[BN,CGS,GNN1,GNN2] and the references therein. Recently, MMP was applied to
prove spherical Harnack inequality for blowup solutions to either scalar curvature
equation or mean field-type equations. See [CL1,CL2,L1,L2]. We note that MMP
cannot be applied to the Neumann problem for semilinear elliptic equations. As far
as the authors know, the result concerning the radial symmetry for the Neumann
problem is very rare. Nevertheless, our next result shows that the method of rotating
planes can be employed for the Neumann problem and the axial symmetry can be
established by this method.

Our second result is about the axial symmetry of the least-energy solutions of the
Neumann problem. We consider the following equation:

dDu � u þ f ðuÞ ¼ 0 in B1;

u40 in B1;

@u

@n
¼ 0 on @B1;

8>>><
>>>: ð1:5Þ

where d is a positive parameter and f satisfies conditions ðfaÞ–ðfcÞ:
The typical examples of f are up where 1opoðn þ 2Þ=ðn � 2Þ if nX3; and

1opoþN if n ¼ 2: In this case, Eq. (1.5) is the steady-state problem for a
chemotactic aggregation model with logarithmic sensitivity by Keller and Segel [KS].
It can also be considered as the shadow system of some reaction–diffusion system in
chemotaxis, see e.g. [NT2].

Under conditions ðfaÞ–ðfcÞ; Theorem 2 and Proposition 2.2 in [LNT] guarantee
that, for each d40; (1.5) possesses a solution ud which is a critical point of the
variational functional

JdðuÞ ¼
1

2

Z
B1

ðdjruj2 þ u2Þ dx �
Z

B1

FðuþÞ dx 8uAH1ðB1Þ; ð1:6Þ

where uþ ¼ maxfuðxÞ; 0g; and its critical value cd ¼ JdðudÞ is proved to be equal to

cd ¼ inf
hAG

max
0ptp1

JðhðtÞÞ; ð1:7Þ

where G is defined as before, and cd is independent of the choice of e by the Lemma
3.1 in [NT1,NT2]. Such a critical point ud is called a least-energy solution of
Eq. (1.5).

Our second result is in the following.

Theorem 1.2. Suppose conditions ðfaÞ–ðfdÞ hold. Let u be a least-energy solution of

(1.5) and P0 be a local maximum point of u on B1: Then either u � constant in B1; or
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P0a0 and u is axially symmetric with respect to OP0
��!

and (1.4) holds where P0 is

assumed to locate on the positive xn-axis.

We give some remarks here. (I) If f satisfies conditions ðfaÞ–ðfdÞ; then any

nonconstant least-energy solution u must be nonradial because the origin cannot be a
critical point of u: See the proof of Theorem 1.2. (II) Theorem 1.2 had been proved in

[NT1,NT2, Proposition 5.1] when P0 is assumed to locate on the boundary of %B1 and
f ðtÞ is an analytic function for t40: After the paper is finished, a stronger version of
Theorem 1.2, that is, P0 must be on the boundary @B1; has been proved in [Ln2].

Before stating our third result, we let Sn be the best Sobolev constant, i.e., for any
bounded domain O of Rn and for nX3;

Sn ¼ inf
vAH1

0
ðOÞ

R
O jrvj2 dx

ð
R
O jvj

2n
n�2 dxÞ

n�2
n

: ð1:8Þ

It is well known that the best Sobolev constant is independent of O and is never

achieved by an element in H1
0 ðOÞ: For a C1 function K with maxB1

K40; we consider

a least-energy solution u of

Du þ KðxÞup ¼ 0; xAB1;

u40 in B1; uj@B1
¼ 0;

(
ð1:9Þ

where 1oponþ2
n�2

: Suppose ui is a least-energy solution of (1.9) with p ¼ pim
nþ2
n�2

: It is

easy to see that ui achieves the infinimum of the variational problem,

R
B1
jruij2 dx

ð
R

B1
KðxÞupiþ1

i dxÞ
2

piþ1

¼ inf
vAH1

0
ðB1Þ

R
B1
jrvj2 dx

½ð
R

B1
KðxÞðvþÞpiþ1

dxÞþ

2

piþ1

¼ 1

ðmax %B1
KÞ

2
piþ1

Sn

0
@

1
A ð1 þ oð1ÞÞ ð1:10Þ

for i sufficiently large. Let Pi be the global maximum point of ui: Since (1.8) is never

achieved by some function in H1
0 ðB1Þ; we have

lim
i-N

uiðPiÞ ¼ þN and lim
i-N

KðPiÞ ¼ max
%B1

KðxÞ: ð1:11Þ

Obviously, by (1.11), the necessary condition for ui to be radially symmetric is that
KðxÞ ¼ KðjxjÞ and the origin is the maximum point of K : For the final result, we
want to prove what is the sufficient condition of K such that for any least-energy

solution is radially symmetric. Suppose KðxÞ ¼ KðjxjÞ satisfies the following
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condition.

There exists r0Að0; 1
 such that K 0ðrÞp0 80prpr0

and maxð0;KðrÞÞoKð0Þ 8r0prp1: ðKaÞ

Note that ðKaÞ could allow KðrÞ � Kð0Þ for all small r40: In this case, it is not
evident that the maximum point Pi of ui would tend to the origin. However, we have
the following.

Theorem 1.3. Suppose condition ðKaÞ holds. Then there exists a small e40 such that

for any least-energy solution u of (1.9) with 0onþ2
n�2

� ppe; u is radially symmetric.

Furthermore, if ðrK 0ðrÞ
KðrÞ Þ

0p0 80prpr1 for some r1pr0; then (1.9) possesses a unique

least-energy solution when 0onþ2
n�2

� ppe:

The proof of Theorem 1.3 is more complicated than previous theorems. Here, the

concentration actually occurs for least-energy solutions as p tends to nþ2
n�2

: In order to

start the process of the method of rotating planes, we have to require some fine
estimates for least-energy solutions, that is, we have to show that least-energy
solutions always behaves ‘‘simply’’ near its blowup point. When KðxÞ � a positive
constant, this was proved by Han [H]. However, for a nonconstant function KðxÞ;
there is additional difficulty even by using Han’s method. In the appendix, we give a
proof which is simpler in conception even for the case when K is a constant. Since the
Pohozaev identity is not employed in our proof, we do not require any smoothness
assumption on K :

We organize this paper as follows. In Section 2, we prove Theorem 1.1 by using
the method of rotating planes. By the same method, the axial symmetry of the
Neumann problem is established in Section 3. Here we emphasize that any
nonconstant least-energy solution must be nonradially symmetric. Finally, we
complete the proof of Theorem 1.3 in Section 4.

2. Maximum principle via the method of rotating planes

In this paper we will give the detail of the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u be a least-energy solution of Eq. (1.1). We divide the
proof into the following steps.

Step 1: Let T be any hyperplane which passes the origin O: We claim that one of
the following conclusions holds:

(A) uðxÞ ¼ uðxnÞ 8xABþ
1 ;

(B) uðxÞ4uðxnÞ 8xABþ
1 ;

(C) uðxÞouðxnÞ 8xABþ
1 ; where Bþ

1 is one of half-balls of B1\T and xn is the

reflection point of x with respect to the hyperplane T :
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First, we will prove that

either uðxÞXuðxnÞ 8xABþ
1

or uðxÞpuðxnÞ 8xABþ
1 :

(
ð2:1Þ

Suppose the conclusions of (2.1) are not true. Then the following two sets are all
nonempty:

Oþ ¼ fxABþ
1 j uðxÞ4uðxnÞg;

O� ¼ fxABþ
1 j uðxÞouðxnÞg: ð2:2Þ

Let

wðxÞ ¼ uðxÞ � uðxnÞ 8xABþ
1 : ð2:3Þ

Then w satisfies

Dw þ fuðjxj; zðxÞÞw ¼ 0; xABþ
1 ;

wj@Bþ
1
¼ 0;

(
ð2:4Þ

where zðxÞ is between uðxÞ and uðxnÞ: Let

On

� ¼ fxn j xAO�g: ð2:5Þ

Set

vðxÞ ¼
wðxÞ if xAOþ;

dwðxnÞ if xAOn

�;

0 otherwise:

8><
>: ð2:6Þ

Choose the constant d40 such thatZ
B1

vðxÞf1ðxÞ dx ¼ 0; ð2:7Þ

where f1 is the first eigenfunction of the following eigenvalue problem:

Dfþ fuðjxj; uÞf ¼ �lf; xAB1;

fj@B1
¼ 0:

(
ð2:8Þ

Let l2 be the second eigenvalue of (2.8). By condition ðfdÞ; we easily have @
@t
ðt@f ðr;tÞ

@t
�

f ðr; tÞÞ ¼ t
@2f ðr;tÞ
@t2

X0 8t40 80prp1 and hence f ðr; tÞ=t is nondecreasing in t: Since u

is a least-energy solution of (1.1), by using the same method of the proof of Theorem
2.11 in [LN], we have

l2X0: ð2:9Þ
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By condition ðfdÞ and (2.2)–(2.6), it is easy to see that

Dv þ fuðjxj; uðxÞÞv
X0 8xAOþ;

p0 8xAOn

�;

¼ 0 otherwise:

8><
>: c0 in B1; ð2:10Þ

From (2.6), (2.7), (2.9), (2.10) and vc0; we obtain

04
Z

B1

ð�vðxÞÞ � ½DvðxÞ þ fuðjxj; uðxÞÞvðxÞ
 dx

¼
Z

B1

½jDvðxÞj2 � fuðjxj; uðxÞÞv2ðxÞ
 dxX0; ð2:11Þ

a contradiction. This proves (2.1). By (2.1), we may assume wðxÞX0 for xABþ
1 : Since

wðxÞ satisfies Eq. (2.4), by using the strong maximum principle, we have either

wðxÞ � 0 for xABþ
1 or wðxÞ40 for xABþ

1 : Similarly, if wðxÞp0; we have either

wðxÞ � 0 on Bþ
1 or wðxÞo0 on Bþ

1 This finishes step 1.

Step 2: If P0 ¼ O; then we want to prove that u is symmetric with respect to any
linear hyperplane and then u is radially symmetric. Without loss of generality, we
assume that the hyperplane is fx1 ¼ 0g; that is, we want to prove wðxÞ ¼ uðxÞ �
uðx�Þ � 0 for x140; where x ¼ ðx1; x0Þ and x� ¼ ð�x1; x0Þ: Suppose wðxÞc0 for

xABþ
1 ¼ fxAB1 j x140g: Then, by step 1, we may assume that wðxÞ40 8xABþ:

Then, from (2.4) and applying the Hopf lemma, we have

@w

@ð�x1Þ
ðOÞ ¼ �2

@u

@x1
ðOÞo0: ð2:12Þ

However, since O is the maximal point of u in B1; we have @u
@x1

ðOÞ ¼ 0; which yields a

contradiction to (2.12). Thus, wðxÞ � 0 and the radial symmetry of u follows readily.
We prove part (i) in Theorem 1.1.

Step 3: If P0aO; then we will prove that part (ii) in Theorem 1.1 hold. Without

loss of generality, we may assume OP0
��!

is the positive xn-axis. Let P0 ¼ ð0;y; 0; tÞ
and T0 be the hyperplane fxn ¼ 0g: Then uðP0ÞXuðP�

0 Þ; and from step 1, we obtain

that:

either uðxÞ ¼ uðx�Þ 8xABþ
1

or uðxÞ4uðx�Þ 8xABþ
1 ; ð2:13Þ

where x ¼ ðx0; xnÞ; x� ¼ ðx0;�xnÞ; Bþ
1 ¼ fxAB1 j xn40g: If the former case holds,

then uðP0Þ ¼ uðQ0Þ ¼ max %B1
uðxÞ; where Q0 ¼ ð0;y; 0;�tÞ: Let T be any hyper-

plane passing through the origin such that P0eT and BþðTÞ be the half-ball of B1\T

such that P0ABþðTÞ: Because Qnn
0 ¼ Q0eBþðTÞ and uðP0ÞXuðPn

0Þ and

uðQn
0ÞpuðQnn

0 Þ; where xn is the reflection point of x w.r.t. T ; by step 1, we must

have uðxÞ ¼ uðxnÞ 8xABþðTÞ: Since T is any hyperplane, we conclude that u is
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radially symmetric in this case. If the latter case is true, then we will prove that u is

axially symmetric with respect to OP0
��!

and the second conclusion of part (ii) in
Theorem 1.1 holds. Consider any two-dimensional plane which contains P0: For the
simplicity, let us assume that the plane is spanned by e1 ¼ ð1; 0;y; 0Þ and en ¼
ð0;y; 0; 1Þ: Let ly be the line having the angle y with x1-axis, and ny; with n0 ¼ en; be
the normal vector to the line in this plane. Set Ty to be the ðn � 1Þ-dimensional linear
hyperplane which passes the origin and has ny as the normal vector. Obviously,
Ty ¼ fðr1 cos y; x2;y; xn�1; r1 sin yÞ j xjAR for 2pjpn � 1 and r140g: Let By be

one of the half-balls of B1\Ty which contains P0 for 0pyop
2
: Let xy be the reflection

point of xABy w.r.t. Ty:
Set

wyðxÞ ¼ uðxÞ � uðxyÞ 8xABy: ð2:14Þ

Then wy satisfies

Dwy þ cyðxÞwy ¼ 0 in By;

wyðxÞ ¼ 0 on @By;

(
ð2:15Þ

where

cyðxÞ ¼
f ðjxj; uðxÞÞ � f ðjxj; uðxyÞÞ

uðxÞ � uðxnÞ :

For y ¼ 0; we have w0ðxÞ40 8xAB0: Set

y0 ¼ sup yjw*yðxÞX0 8xAB*y 80p*ypyp
p
2

n o
: ð2:16Þ

We claim that y0 ¼ p
2
: Suppose this is not true. Then, from step 1 and the definition of

y0; we have for 0pyoy0;

wyðxÞ40 for xABy and
@u

@ny
ðxÞo0 for xATy;

wy0
� 0 in By0

: ð2:17Þ

Let Pn
0 be the reflection point of P0 w.r.t. Ty0

: Then Pn
0 is also a global maximum

point. Since w0ðxÞ40 in B0; we have Pn
0ATy1

for some y1Að0; y0Þ and ruðPn
0Þ ¼ 0;

which yields a contradictions to (2.17). Hence, we have

wp
2
X0 in Bp

2
: ð2:18Þ

Similarly, using the above arguments, we can also obtain

w�p
2
X0 in B�p

2
: ð2:19Þ
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From (2.18) and (2.19) we deduce that

wp
2
� 0 in Bp

2
: ð2:20Þ

The axial symmetry follows readily from (2.20).

Let x ¼ ðr1 cos y; x2;y; xn�1; r1 sin yÞ; r1 ¼ ðjxj2 � x2
2 �?� x2

n�1Þ
1=2: Then, from

@u

@y
ðxÞ ¼ �1

2

@wy

@ny
ðxÞ40 8xAðB1-TyÞ 8�p

2
oyo

p
2
; ð2:21Þ

where ny is the outnormal of Sy on the boundary Ty; the monotonicity follows
clearly. From (2.20) and (2.21), we easily obtain (1.4). This proves step 3 and
completes the proof of Theorem 1.1. &

3. Axial symmetry for the Neumann problem

In this section, we will complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into the following steps.
Step 1: Let u be the least-energy solution of (1.5). Consider the following

eigenvalue problem:

dDf� fþ fuðjxj; uÞfþ lf ¼ 0; xAB1;

@f
@n

¼ 0 on @B1:

8<
: ð3:1Þ

From conditions ðfaÞ–ðfdÞ and Theorem 2.11 in [LN], we obtain that the second
eigenvalue of (3.1) is nonnegative, i.e.,

l2ðuÞX0: ð3:2Þ

Let T be any hyperplane which contains the origin. Then, using the same
arguments in step 1, we also obtain that one of the following conclusion holds.

uðxÞ ¼ uðxnÞ
uðxÞ4uðxnÞ for all xABþ

uðxÞouðxnÞ

8><
>: ð3:3Þ

and

the outnormal derivative
@w0

@n
ðxÞo0 for xAT\@B1; ð3:4Þ

where w0ðxÞ ¼ uðxÞ � uðxnÞ and Bþ is one of half-balls of B1 which is divided by T

such that the maximum point P0ABþ:
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Step 2: We want to prove u � constant if uðxÞ is radially symmetric. Let x ¼
ðx1;y; xnÞ and r ¼ jxj: If u is radial symmetry, then u satisfies

d u00 þ n � 1

r
u0

� �
� u þ f ðuÞ ¼ 0; r40;

uð0Þ ¼ a40; u0ð0Þ ¼ 0

8><
>: ð3:5Þ

and we have

@u

@x1
¼ u0ðrÞ x1

r
in B1 and

@u

@x1
¼ 0 on @B1: ð3:6Þ

Suppose ucconstant; then @u
@x1

c0: Let wðrÞ be the first eigenfunction of (3.1).

From (3.6), we easily have Z
B1

wðjxjÞ @u

@x1
ðjxjÞ dx ¼ 0: ð3:7Þ

By (1.5) we obtain

dD
@u

@x1

� �
� @u

@x1
þ f 0ðuÞ @u

@x1
¼ 0;

@u

@x1
¼ 0 on @B1:

8>><
>>: ð3:8Þ

Now using (3.2), (3.7) and (3.8), we obtain that

0pl2 ¼ inf
v>w;vAH1ðB1Þ

Z
B1

½djrvj2 þ v2 � f 0ðuÞv2
 dx

¼
Z

B1

d r @u

@x1

� �����
����2þ @u

@x1

� �2

�f 0ðuÞ @u

@x1

� �2
" #

dx

¼ 0: ð3:9Þ

Since @u
@x1

archives the infinimum of (3.9), we obtain thatZ
@B1

@

@n
@u

@x1

� �
f ds ¼ 0 8fAH1ðB1Þ and f>w: ð3:10Þ

Set f ¼ x1
@
@x1

ð @u
@x1

Þ þ x2
@
@x2

ð @u
@x1

Þ: Since f is odd in x1; we have f>w: Then we obtain

that @
@nð @u

@x1
Þ ¼ 0 on @B1 and @u

@x1
is a solution of the Neumann problem (1.5). Hence we

have u00ð1Þ ¼ 0 and, from Eq. (1.5), uð1Þ ¼ f ðuð1ÞÞ: From Eq. (3.5) and the
uniqueness of ODE, we finally obtain that u � uð1Þ: This contradiction proves that
u � constant if uðxÞ is radially symmetric.

Now suppose ucconstant: Let P0 be a maximum point of u on %B1: If P0 ¼ O;
then, from the above step 1 and using the same arguments in step 1 of the proof of
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Theorem 1.1, we obtain that u is radially symmetric. By the above step 2, u �
constant in this case, a contradiction. Hence P0aO if u is nonconstant.

Step 3: We claim that u is axially symmetric w.r.t. OP0
��!

and (1.4) holds.

Without loss of generality, we may assume OP0
��!

is the positive xn-axis and T0 is the
hyperplane xn ¼ 0: Consider any two-dimensional plane where P0 is contained. For
the simplicity, we assume the plane is spanned by e1 ¼ ð1; 0;y; 0Þ and en ¼
ð0;y; 0; 1Þ: Let ly be the line having the angle y with x1-axis, and ny be the normal
vector to the line in this plane. Set Ty to be the ðn � 1Þ-dimensional linear hyperplane
which passes the origin and has ny as the normal vector. Let By be one of the half-
balls of B1 which is divided by Ty and P ¼ ð0;y; 0; tÞABy 80pyop

2
: Let Sy denote

the component of By\Ty and xy be the reflection point of x w.r.t. Ty:
Set

wyðxÞ ¼ uðxÞ � uðxyÞ 8xASy: ð3:11Þ

Clearly, wy satisfies

dDwy þ ðcyðxÞ � 1Þwy ¼ 0;

wyðxÞ ¼ 0 on Ty and
@wy

@n
¼ 0 on @B1,Sy;

8<
: ð3:12Þ

where

cyðxÞ ¼
f ðuðxÞÞ � f ðuðxyÞÞ

uðxÞ � uðxnÞ :

We want to prove

wyðxÞ40 for xASy and 0pyo
p
2

ð3:13Þ

and

wp
2
� 0: ð3:14Þ

After (3.13) and (3.14) are established, the axial symmetry and the monotonicity

follow readily. For y ¼ 0; from step 1 we obtain that: either w0 � 0 in Bþ
1 or

w0ðxÞ40 8xABþ
1 ; where B1 ¼ fxAB1 j xn40g: If the former case holds, then using

the above step 2 and first part of step 3 in the proof of Theorem 1.1, we can conclude
that u is constant. This contradicts with u is a least-energy solution of (1.5). If the
second case is true, then we set

y0 ¼ sup yjw*yðxÞX0 8xAS*y 80p*ypyp
p
2

n o
: ð3:15Þ
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Following the standard argument of the method of moving planes, we can prove
y0 ¼ p

2
: Since the present case is the Neumann problem and the boundary of @Sy is

not smooth, we should briefly scatch the proof for the sake of completeness.
Suppose y0op=2: Then, by the continuity, wy0

ðxÞX0 for xASy0
: By the above step

1, we have wy0
ðxÞ40 for xA %Sy0

=@B1: By the definition of y0; there is a sequence of

yj4y0 with limj-N yj ¼ y0 such that

wyj
ðxjÞ ¼ inf

%Syj

wyj
ðxÞo0:

By passing to a subsequence, x0 ¼ limj-N xj satisfies wy0
ðx0Þ ¼ 0 and rwy0

ðx0Þ ¼ 0:

Hence we have x0ATy0
-@B1: Since wy0

� 0 on Ty0
;Dei

Dej
wy0

ðx0Þo0 for any tangent

vector ei; ej on Ty0
: Since

@wy0
@n ðx0Þ ¼ 0; Dêi

@wy0
@n ðx0Þ ¼ 0 for any tangent vector êi of

@B1 at x0: Let fe1;y; en�1g be the base of the normal to the plane Ty0
such that en�1

is the normal of @B1 at x0; and en be the normal to Ty0
: Then we have Deiej

wy0
ðx0Þ ¼

0 81pipn; 1pjpn: Thus, the Hessian of wy0
at x0 is completely zero, which yields a

contradiction to Lemma S in [GNN2]. Therefore, y0 ¼ p
2
; the axial symmetry follows

readily.

The monotonicity and (1.4) follow from @wy
@n o0 for xATy where n is the outnormal

of Sy on the boundary Ty: This proves the results of the case P0aO of Theorem 1.2.
The proof of Theorem 1.2 is complete. &

4. Radial symmetry near the critical exponent

Proof of Theorem 1.3. Suppose that the conclusion of the first part of Theorem 1.3
does not hold. Then there exists a sequence of least-energy solution ui of (1.9) with

p ¼ pim
nþ2
n�2

such that uiðxÞ is not radially symmetric. Let Pi be a maximum point of

ui: If Pi is the origin, then we can prove that uiðxÞ is radially symmetric. For the
detail of the argument, see the end of the proof of Lemma 4.1. Under the assumption
that uiðxÞ is nonradial, we have PiaO: We first want to prove ui is axially symmetric

with respect to OPi
��!

: Note that by (1.10), ui satisfies

R
B1
jruij2 dx

ð
R

B1
KðxÞupiþ1

i dxÞ
2

piþ1

¼ Sn

ðmaxB1
KÞ

n�2
n

ð1 þ oð1ÞÞ: ð4:1Þ

In the following, the axial symmetry is established for solution ui satisfying (4.1).
Note that even for least-energy solutions, Theorem 1.1 cannot be applied for our
present situation, because KðjxjÞ in not assumed to be positive in the whole ball B1:

Lemma 4.1. Suppose ui is a solution of (1.9) with p ¼ pi and KACð %B1Þ; KðxÞ ¼ KðjxjÞ
and maxB1

K40: Assume (4.1) holds and Pi is a global maximum point of ui: Then ui is

axially symmetric with respect to the axis OP2
i :
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Proof. Let Pi be a maximum point of ui and assume PiaO first. Since the Sobolev

constant is never achieved in H1
0 ðB1Þ; by (4.1), we have

KðPiÞ-max
B1

K and uiðPiÞ-þN:

Without loss of generality, we may assume Pi ¼ ð0;y; 0; tiÞ for some ti40 and
maxB1

KðxÞ ¼ 1:
As in the proof of Theorem 1.1, we want to show

wiðxÞ ¼ uiðxÞ � uiðx�Þ40 for xn40; ð4:2Þ

where x� ¼ ðx1;y; xn�1;�xnÞ: To prove (4.2), instead of (2.9) for Theorem 1.1, we
claim that

There exists a constant c40 such that

uiðxÞpc Uli
ðx � PiÞ for xAB1; ð4:3Þ

where Uli
ðxÞ ¼ ð li

l2
i þ

jxj2
nðn�2Þ

Þ
n�2
2 and l�1

i ¼ ðuiðPiÞÞ
2

n�2:

Recall that for any l40; UlðxÞ satisfies

DUlðxÞ þ U
nþ2
n�2
l ðxÞ ¼ 0 in Rn; and

Ulð0Þ ¼ maxRn UlðxÞ:

8<
: ð4:4Þ

Eq. (4.3) was proved in [H] for the case KðxÞ � a positive constant. However, it is
unclear whether the argument in [H] can be applied to the present case where KðxÞ is
only assumed to be continuous. For the sake of completeness, an alternative proof
will be presented in the appendix of this paper. For the moment, let us assume that
(4.3) holds and we return to the proof of (4.2). Clearly, wiðxÞ satisfies

DwiðxÞ þ biðxÞwi ¼ 0 for Bþ
1 ¼ fxAB1 j xn40g;

wiðxÞ ¼ 0 on @Bþ
1 ;

(
ð4:5Þ

where

biðxÞ ¼ KðxÞ u
pi

i ðxÞ � u
pi

i ðx�Þ
uiðxÞ � uiðx�Þ :

Suppose Oi ¼ fxABþ
1 j wiðxÞo0g is a nonempty set. We want to prove

jx� � Pij
n�2
2 uiðPiÞ-þN for xAOi ð4:6Þ
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as i-þN: If there is a sequence xiAOi such that (4.6) fails. Since

jPij
n�2
2 uiðPiÞojx� � Pij

n�2
2 uiðPiÞ;

jPij
n�2
2 uiðPiÞ is bounded. By passing to a subsequence, we let x0 ¼

limi-þN tiðuiðPiÞÞ
2

n�2 and q0 ¼ ð0;y; 0; x0Þ: By rescaling ui; we set

ViðyÞ ¼ M�1
i uiðM

�2
n�2
i yÞ;

where Mi ¼ uiðPiÞ: By elliptic estimates, ViðyÞ is bounded in C2
locðRnÞ; thus, by

passing to a subsequence, Vi converges to U1ðy � q0Þ in C2
locð %Rn

þÞ; where U1ðyÞ ¼

ð1 þ jyj2
nðn�2ÞÞ

�n�2
2 : Note that U1ðyÞ is the solution of (4.4) with U1ð0Þ ¼ 1:

Two cases are considered separately. If x040; then U1ðy � q0Þ4U1ðy� � q0Þ for

yARn
þ ¼ fy j yn40g: Set yi ¼ M

�2
n�2
i xi; where xiAOi is the sequence such that jPi �

x�
i j

n�2
2 uiðPiÞoþN: Thus,

jxiju
2

n�2
i ðPiÞp jxi � Piju

2
n�2
i ðPiÞ þ jPijuiðPiÞ

2
n�2

p jx�
i � PijuiðPiÞ

2
n�2 þ jPijuiðPiÞ

2
n�2

pC

for some constant C: Then jyij is bounded. Assume y0 ¼ limi-þN yi: Since ViðyiÞ �
Viðy�

i Þ ¼ M�1
i wiðxiÞo0; we have

U1ðy0 � q0Þ � U1ðy�
0 � q0Þ ¼ lim

i-þN

M�1
i wiðxiÞp0;

which implies y0;n ¼ 0; here y0;n is the yn-coordinate of y0: Since ViðyÞ � Viðy�Þ ¼ 0

on yn ¼ 0; there exists Zi ¼ ðyi;1;y; yi;n�1; Zi;nÞ with Zi;nAð0; yi;nÞ such that
@
@yn

ðViðZiÞ � ViðZ�i ÞÞp0 by the mean value theorem. By passing to the limit, it

yields

0X
@

@yn

ðU1ðy � x0Þ � U1ðy� � x0ÞÞjy¼y0

¼ 2
@U1

@yn

ðy0 � x0Þ ¼
2

n

x0

ð1 þ jy0�x0j2
nðn�2Þ Þ

n
40

a contradiction. Hence, we have x0 ¼ 0:
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Now we assume x0 ¼ 0: To prove (4.6), as the previous step, it suffices to show
that

w̃iðyÞ ¼ N�1
i wiðM

�2
n�2
i yÞ

converges to a positive function in C2
locð %Rn

þÞ; where

Ni ¼ max
Bþ

1

jwiðxÞj ¼ jwiðziÞj:

We first claim that

jzijM
pi�1

2
i pc ð4:7Þ

for some positive constant c40: Assume (4.7) does not hold. First, we assume ri-0
as i-þN: Set ri ¼ jzij and rescale wi by

w̃iðyÞ ¼ N�1
i wiðriyÞ

and w̃i satisfies

Dw̃iðyÞ þ r2
i biðriyÞw̃i ¼ 0; for jyjp1

ri

;

supjyj¼1 jw̃iðyÞj ¼ 1:

8<
:

By (4.3), for any compact set of %Rn
þ\f0g; we have

jr2
i biðriyÞjp c1r2

i juiðriyÞ þ uiðriy
�Þjpi�1

p oð1Þjyj�2:

Here, we have used the assumption limi-þN riM
pi�1

2
i ¼ þN and the fact that

limi-þN M

nþ2
n�2�pi

i ¼ 1: For the proof of limi-þN M

nþ2
N�2�pi

i ¼ 1; see step 1 in the proof

of A.2 in the appendix.

Hence, r2
i biðriyÞ converges to 0 uniformly in any compact set of %Rn

þ\f0g: By elliptic

estimates and due to the assumption ri-0; w̃iðyÞ converges to a harmonic function

hðyÞ in C2
locð %Rn

þ\f0gÞ; where h satisfies.

jhðyÞjp1 and sup
jyj¼1

jhðyÞj ¼ 1: ð4:8Þ

By the regularity theorem for bounded harmonic functions, hðyÞ is smooth at 0. Note
that hðyÞ � 0 for yn ¼ 0: By the Liouville theorem, hðyÞ � 0 in Rn

þ; which yields a

contradiction to the second identity of (4.8). Hence (4.7) is established, in the first
case.
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Secondly, we assume jzijXd040: Then the argument of contradiction in the above
yields that there exists r140 such that

sup
jxjpr1

jwiðxÞj ¼ oð1ÞNi: ð4:9Þ

Let l40 and cðxÞ40 be the eigenvalue and the eigenfunction of D in B2 with the
Dirichlet problem and set

%wiðxÞ ¼
wiðxÞ
cðxÞ for xAB1:

By a direct computation, %wiðxÞ satisfies

D %wiðxÞ þ 2r log cðxÞ � r %wiðxÞ þ ðbiðxÞ � lÞ %wiðxÞ ¼ 0

for xAB1: Let %xi be the maximum of j %wiðxÞj: By (4.9), we have j %xijXr1: Clearly, (4.3)

yields jbið %xiÞj ¼ Oð1ÞM
�4

n�2
i : Applying the maximum principle at %xi; we have

0XD %wið %xiÞ ¼ ðl� bið %xiÞÞ %wið %xiÞ40;

a contradiction, where j %wið %xiÞj ¼ %wið %xiÞ is assumed. Thus, jzijXd0 is impossible. This
proves (4.7).

Rescale wi again by

w̃iðyÞ ¼ N�1
i wiðM

�2
n�2
i yÞ:

It is easy to see that by passing to a subsequence, w̃i converges to w in C2
locð %Rn

þÞ;
where w satisfies

Dw þ n þ 2

n � 2
U

4
n�2
1 ðyÞw ¼ 0 yARn

þ;

wðyÞ ¼ 0 on yn ¼ 0:

8<
: ð4:10Þ

Readily from (4.7), wðyÞ is a bounded nonzero function. Thus,

wðyÞ ¼ c
@U1ðyÞ
@yn

for some constant ca0:
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From the explicit expression of U1ðyÞ; we have wðyÞa0 for any yARn
þ and @w

@yn
ðyÞa0

for yn ¼ 0: Let xi ¼ M
2

n�2
i Pi: We have

@w̃iðx�i Þ
@yn

¼N�1
i M

�2
n�2
i

@wi

@xn

� �
ðP�

i Þ

¼N�1
i M

�2
n�2
i

@

@xn

uiðP�
i Þ �

@

@xn

uiðPiÞ
� �

¼N�1
i

@

@yn

Viðx�i Þ �
@

@yn

ViðxiÞ
� �

¼N�1
i

@2Vi

@y2
n

ðZiÞð�2xi;nÞ; ð4:11Þ

where ZiAðx�i ; xiÞ: Since xi-0 and

04
@2U1

@y2
n

ð0Þ ¼ lim
i-þN

@2Vi

@y2
n

ðZiÞ:

Eq. (4.10) yields

@wð0Þ
@yn

¼ lim
i-N

N�1
i

@2ViðZiÞ
@y2

n

ð�2xi;nÞX0:

Hence, @w
@yn

ðyÞ40 for yn ¼ 0 and we conclude that wðyÞ40 in Rn
þ: Now suppose

xiAOi: Because, %wi; the scaling of wi; converges to a positive function in Rn
þ; with the

negative outnormal derivative on @Rn
þ; we conclude (4.6) holds.

By (4.6), we have for xAOi;

biðxÞp
n þ 2

n � 2
u

4
n�2
i ðx�Þpoð1Þjx� � Pij�2: ð4:12Þ

For xAOi; we set

%wiðxÞ ¼ �wiðxÞjx � Pij�a;

where 0oaon�2
2
: By a straightforward computation, %wiðxÞ satisfies

D %wiðxÞ þ 2ðr log jx � Pija � r %wiðxÞÞ

þ ðbiðxÞ � aðn � 2 � aÞjx � Pij�2Þ %wiðxÞ ¼ 0: ð4:13Þ

Note that %wiðxÞ ¼ 0 on @Oi and PieOi: Let %wiðxÞ achieves its maximum in %Oi at %xi:
Then by the maximum principle and (4.11), (4.12) yields

0 ¼D %wið %xiÞ þ ðbið %xiÞ � aðn � 2 � aÞj %x � Pij�2Þ %wið %xiÞ

p ðbið %xiÞ � aðn � 2 � aÞj %x � Pij�2Þ %wið %xiÞo0

when i is sufficiently large. Therefore, we have proved wiðxÞ40 in Bþ
1 for i large.
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Once (4.2) is proved, we can apply the method of rotating planes and Alexandroff
Maximum Principle in [BN,HL] to conclude that uiðxÞ is axially symmetric with
respect to xn-axis and the monotonicity

xj

@uiðxÞ
@xn

� xn

@ui

@xj

ðxÞ40 ð4:14Þ

holds for xj40 and 1pjpn � 1: This ends the proof of Lemma 4.1 for the case

PiaO:

When Pi ¼ O; we want to prove wiðxÞ � 0 on Bþ
1 : Suppose not. Then let zi be the

maximum point of jwiðxÞj; and as the same proof of (4.7), we have

jzijM
pi�1

2
i pc

for some constant c: Set w̃iðyÞ ¼ N�1
i wiðxÞ; where Ni ¼ wiðziÞ and x ¼ M

�2
n�2
i y: It is

easy to see that w̃iðyÞ converges to a nonzero limit wðyÞ in C2
locð %Rn

þÞ; where wðyÞ is a

solution of (4.9). Thus, wðyÞ ¼ c @U1

@yn
for some ca0: However, rw̃ið0Þ ¼ 0 because

the origin is a maximum point of ui: Especially,

0 ¼ @w

@yn

ð0Þ ¼ c
@2U1

@y2
n

ð0Þ

yields c ¼ 0; a contradiction. Therefore, we conclude wiðxÞ � 0; that is, uiðxÞ is
symmetric with respect to xn: Of course, we can prove the symmetry of ui with
respect to any hyperplane passing the origin by the same argument. Hence uiðxÞ is
radially symmetric if Pi ¼ O: This completely proves Lemma 4.1. &

Now we return to the proof of Theorem 1.3. now suppose Pia0: Without loss of
generality, we may assume Pi ¼ ð0;y; 0; tiÞ for some ti40: Set

fiðxÞ ¼ x1
@ui

@xn

ðxÞ � xn
@ui

@x1
ðxÞ40: ð4:15Þ

Then fiðxÞ40 in Bþ
1 ¼ fxAB1 j x140g; and fi satisfies

Dfi þ piKðjxjÞupi�1
i fi ¼ 0 in Bþ

1 ;

fi ¼ 0 on @Bþ
1 :

(
ð4:16Þ

Since u
pi�1
i ðxÞ uniformly converges to zero in any compact set of %Bþ

1 \fPig; by the

Harnack inequality, ðmaxjxj¼r0
fiðxÞÞ

�1fiðxÞ converges to a harmonic function h in

C2
locð %Bþ

1 \fPigÞ; where r0 is the positive number in condition ðKaÞ: Since hðxÞ ¼ 0 for

xA@Bþ
1 \fP0g where P0 ¼ limi-þN Pi; we have hðxÞ has a nonremovable singularity

at P0: Otherwise, hðxÞ � 0 on Bþ
1 ; which contradicts to the fact that maxjxj¼r0

hðxÞ ¼ 1:
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Thus, @hðxÞ
@n o0 for xA@Bþ

1 \fx1 ¼ 0g: Hence we have

�@fiðxÞ
@n

Xc1 max
jxjXr0

jfiðxÞj
� �

ð4:17Þ

for xA@Bþ
1 ; x1X

1
2
: and for a positive constant c1:

From (1.9), we have

D
@ui

@x1

� �
þ piKðjxjÞupi�1

i

@ui

@x1

� �
¼ �K 0ðjxjÞx1

r
u

pi

i in Bþ
1 ;

@ui

@x1
¼ 0 on x1 ¼ 0:

8>><
>>: ð4:18Þ

By the boundary condition of ui;�@ui

@x1
40 for xA@Bþ

1 \fx1 ¼ 0g: Since by (4.3),

MiuiðxÞ converges to c Gðx;P0Þ for some c40 where Gðx;P0Þ is the Green function
with the singularity at P0; we have

�@uiðxÞ
@x1

Xc1M�1
i for xA@Bþ

1 and x1X
1

2
: ð4:19Þ

By (4.16), (4.18) and ðKaÞ; we obtain

Z
@Bþ

1
\fx1¼0g

@ui

@x1

@fi

@n
dS ¼ �

Z
Bþ

1

fiD
@ui

@x1

� �
� @ui

@x1
Dfi

� �
dx

¼
Z

Bþ
1
-fjxjpr0g

K 0ðjxjÞx1

jxj u
pi

i fi

� �
dx

þ
Z

Bþ
1
-fjxjXr0g

K 0ðjxjÞx1

jxj u
pi

i fi

� �
dx

p
Z

Bþ
1
-fjxjXr0g

K 0ðjxjÞx1

jxj u
pi

i fi

� �
dx

pC max
Bþ

1
-fjxjXr0g

fiðxÞ
Z

Bþ
1
-fjxjXr0g

u
pi

i dx:

By (4.17) and (4.19), we get

C1 M�1
i pC2 M

�pi

i for i sufficiently large;

a contradiction. This proves Pi ¼ O for i large.
For the uniqueness part of Theorem 1.3, we reduce (1.9) in an ODE. Here, KðrÞ is

continuously extended for all rA½0;NÞ: Following conventional notations, for any
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fixed p; we denote uðr; aÞ to be the unique radial solution of

u00ðrÞ þ n � 1

r
u0ðrÞ þ KðrÞup ¼ 0; r40;

uð0; aÞ ¼ a40; u0ð0; aÞ ¼ 0:

8<
: ð4:20Þ

For pAð1; nþ2
n�2

Þ; we set

aðpÞ ¼ inffuð0Þ j uðrÞ is a least-energy solution of ð4:19Þ

in the class of radial functions of H1
0 ðB1Þg:

We claim that there exists a small E40 such that for the solution uðr; aÞ with

aXaðpÞ and 0onþ2
n�2

� ppE; there is a RðaÞAð0;NÞ satisfying

uðr; aÞ40 for rA½0;RðaÞÞ and

uðRðaÞ; aÞ ¼ 0:

(
ð4:21Þ

Furthermore, RðaÞ decreases with respect to a whenever aXaðpÞ: Since RðaðpÞÞ ¼ 1;
the uniqueness follows readily from the claim.

To prove the claim, we let

fðr; aÞ :¼ @u

@a
ðr; aÞ: ð4:22Þ

We claim

fðRðaÞ; aÞo0 for aXaðpÞ and 0o
n þ 2

n � 2
� ppE: ð4:23Þ

Suppose (4.23) holds. By differentiating (4.20) with respect to a; we have

u0ðRðaÞ; aÞ@RðaÞ
@a

þ fðRðaÞ; aÞ ¼ 0:

Since u0ðRðaÞ; aÞo0; (4.23) yields @RðaÞ
@a o0: Obviously, (4.21) and the decrease of RðaÞ

follows. Thus, it suffices for us to show (4.23).
Recall that f satisfies the linearized equation

f00 þ n � 1

r
f0 þ pKðrÞup�1f ¼ 0; 0oroRðaÞ;

fð0; aÞ ¼ 1 and f0ð0; aÞ ¼ 0:

8<
: ð4:24Þ

By the choice of aðpÞ; we see that fðr; aðpÞÞ changes sign only once and
fðRðaðpÞÞ; aðpÞÞp0: Now suppose (4.23) fails for any small E40: Then there is a

sequence of ai-þN as i-þN such that fiðrÞ :¼ fðr; aiÞ of (4.24) with pim
nþ2
n�2

and fiðrÞ changes sign only once and fiðRiÞ ¼ 0; where Ri ¼ RðaiÞ: Let ri be the first
zero of fi: Then fiðrÞ40 for rAð0; riÞ and fiðrÞo0 for rAðri;RiÞ: Clearly,

Rip1 and f0
iðRiÞ40: ð4:25Þ
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For the simplicity of notations, we let uiðrÞ � uðr; aiÞ denote the solution of (4.20)
with p ¼ pi:

To yield a contradiction, we set

wiðrÞ ¼ ru0
iðrÞ þ

2

pi � 1
uiðrÞ: ð4:26Þ

Then, from (4.20), wi satisfies

w00
i þ

n � 1

r
w0

i þ piKðrÞupi�1w ¼ �rK 0ðrÞupi ;

wiðRiÞ ¼ Riu
0
iðRiÞo0:

8<
: ð4:27Þ

By (4.24) and (4.27), we get

Z Ri

0

rn�1ðrK 0ðrÞÞupi

i fi dr ¼
Z

B1

½wiDfi � fiDwi
 dx

¼Rn�1
i wiðRiÞf0

iðRiÞo0: ð4:28Þ

Here (4.25) is used. Recall that ri is the first zero of fi: By scaling in (4.24), we easily
have ri-0 as i-þN: Let

Ci ¼
�riK

0ðriÞ
KðriÞ

: ð4:29Þ

From the condition ðrK 0ðrÞ
KðrÞ Þ

0p0 for 0prpr0 and (4.29), we have

CiKðrÞ þ rK 0ðrÞ
X0 if 0proripr0;

p0 if riprpr0:

(
ð4:30Þ

Two cases are discussed separately.
Case 1: If Ripr0; then, from (4.30), we obtain

0p
Z Ri

0

rn�1ðCiKðrÞ þ rK 0ðrÞÞupi

i fi dr ¼ Rn�1
i wiðRiÞf0

iðRiÞo0:

This proves (4.23) in this case.
Case 2: If Ri4r0; then

0o� Rn�1
i wiðRiÞf0

iðRiÞ ¼ �
Z Ri

0

rn�1ðCiKðrÞ þ rK 0ðrÞÞupi

i fi dr

¼ �
Z r0

0

� �
þ �

Z Ri

r0

� �
¼ ðIÞ þ ðIIÞ: ð4:31Þ
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Since the first term (I) in (4.31) is negative, we obtain

Rn
i ju0

iðRiÞjf0
iðRiÞp

Z Ri

r0

rn�1ðCiKðrÞ þ rK 0ðrÞÞupi

i fi dr: ð4:32Þ

By using the same arguments of (4.3), (4.17) and (4.19), we can easily obtain

ju0
iðRiÞjBuiðr0ÞBa�1

i ; f0
iðRiÞBfiðr0Þ and Ci is small: ð4:33Þ

Hence, (4.32) yields

a�1
i pca�pi

i ;

a contradiction. This ends the proof of the claim (4.23), and the uniqueness follows.
Hence we have finished the proof of Theorem 1.3. &
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Appendix

In this appendix, we consider a sequence of solutions ui of

Dui þ KðxÞupi

i ¼ 0 in B2 ¼ fjxjo2g;
ui ¼ 0 on @B2;

(

such that

uiðPiÞ ¼ max
%B1

uiðxÞ-þN; Pi-P0 for some jP0jo1 and

Z
B2

KðxÞupiþ1
i dx ¼ Sn

KðP0Þ
n�2

n

0
@

1
A

n
2

ð1 þ oð1ÞÞ; ðA:1Þ

where KðxÞACð %B2Þ and KðP0Þ40 and pim
nþ2
n�2

: We want to prove that there exists a

constant c40 such that

uiðxÞpc
Mi

1 þ KðP0Þ
nðn�2ÞM

2
i jx � Pij2

0
@

1
A

n�2
2

for jxjp1; ðA:2Þ

where Mi ¼ u
2

n�2
i ðPiÞ:
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We note that when KðxÞ � a positive constant, (A.2) was proved by Han [H]. Here
we will present a proof of (A.2), which is simpler than [H] even for the case of
constant K : This proof does not employ the Pohozaev identity. Thus, the smooth
assumption of K is not required.

Proof of A.2. We divide the proof into several steps.

Step 1: limi-þN Msi

i ¼ 1; where si ¼ nþ2
n�2

� pi:

Rescaling ui by

UiðyÞ ¼ M�1
i uiðPi þ M

�pi�1
2

i yÞ: ðA:3Þ

Then Ui satisfies

DUiðyÞ þ KiðyÞUpi

i ðyÞ ¼ 0 for jyjpM
pi�1

2
i ;

where KiðyÞ ¼ KðPi þ M
� 2

n�2
i yÞ: By elliptic estimates, UiðyÞ converges to UðyÞ in

C2
locðRnÞ; where UðyÞ is the solution of

DUðyÞ þ KðP0ÞU
nþ2
n�2 ¼ 0 in Rn;

Uð0Þ ¼ maxRn UðyÞ ¼ 1:

(
ðA:4Þ

Then by a theorem of Caffarelli–Gidas–Spruck [CGS], we have UðyÞ ¼ ð1 þ
KðP0Þ
nðn�2Þjyj

2Þ�
n�2
2 and

Z
Rn

KðP0ÞU
2n

n�2ðyÞ dy ¼ Sn

KðP0Þ
n�2

n

0
@

1
A

n
2

:

Choose Ri-þN as i-þN such that UiðyÞ converges to UðyÞ uniformly for
jyjpRi: Then

Sn

KðP0Þ
n�2

n

0
@

1
A

n
2

ð1 þ oð1ÞÞX
Z
jPi�xjpRiM

�
pi�1

2
i

KðxÞupiþ1
i ðxÞ dx

¼M
n�2
2

si

i

Z
jyjpRi

KiðyÞUpiþ1
i ðyÞ dy

¼M
n�2
2

si

i

Sn

KðP0Þ
n�2

n

0
@

1
A

n
2

ð1 þ oð1ÞÞ:
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Therefore, limi-þN M
n�2
2 si

i p1: Step 1 follows readily.

Set

mi ¼ inf
jxjp1

uiðxÞ:

To Prove (A.2), we have to compare mi and M�1
i : First, we claim

Step 2: there exists a constant c such that

M�1
i pcmi:

Consider GðxÞ ¼ M�1
i ðjPi � xj2�n � 1Þ for jPi � xjp1: Note that by rescaling

(A.3) and step 1, we have

uiðxÞXcMi for jx � Pij ¼ M
� 2

n�2
i :

Since uiðxÞ is superharmonic, by the maximum principle,

cGðxÞpuiðxÞ:

In particular,

uiðxÞXcM�1
i for jxj ¼ 1

2
;

where step 2 follows immediately.
The spherical Harnack inequality is very important in the study of the blowup

behavior of ui: Usually, this is a difficult step to prove. However, by the energy
assumption (A.1), we can prove

Step 3: There exists a constant c40 such that

uiðxÞjx � Pij
2

pi�1pc for jxjp1: ðA:5Þ

Because, if limi-þN sup %B1
ðuiðxÞjx � Pij

n
pi�1Þ ¼ þN; then there is a local maximum

point Qi of uiðxÞ such that the rescaling of ui with the center Qi;

ŨiðyÞ ¼ M̃�1
i uiðQi þ M̃

�pi�1
2

i yÞ with M̃i ¼ uiðQiÞ

converges to UðyÞ of (A.4), where jQi � Pij
n�2
2 Mi-þN as i-þN: Thus, ui

possesses at least two bubbles, a contradiction to (A.1). The existence of Qi can be
proved by employing the method of localizing blowup points by R. Schoen. Since the
method is well-known now, we refer the proof to [CL1,CL2].
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By (A.5), we have the spherical Harnack inequality,

uiðxÞp %uiðx � PiÞ and

jruðxÞjpcjx � Pij�1
%uiðjx � PijÞ;

(
ðA:6Þ

where %uiðrÞ is the average of ui over the sphere jx � Pij ¼ r: Set

viðtÞ ¼ %uiðrÞr
n�2
2 with r ¼ et:

By a straightforward computation, viðtÞ satisfies

v00i ðtÞ �
n � 2

2

� �2

viðtÞ þ K̂iðtÞv
nþ2
n�2
i ¼ 0; ðA:7Þ

where

K̂iðtÞ ¼ _jx�Pi j¼tKðxÞu�si

i u
nþ2
n�2
i ðxÞ ds

� �
ð %u

nþ2
n�2ðrÞÞ�1

and (_ denotes the average of integration over the sphere jx � Pij ¼ r: By steps 1 and

2, we have usi

i ðxÞ uniformly converges to 1 for jxjp1: Therefore, 0oc1pK̂iðtÞpc2

for tp0: By rescaling (A.3), we see that viðtÞ has a first local maximum at t ¼ ti ¼
� 2

n�2
log Mi þ c0 for some constant c0: Let si4ti be the first local minimum point

unless viðtÞ is decreasing for tiptp0: In the latter case, we set si ¼ 0:
Step 4: If sio0; then viðtÞ is increasing for siotp0:
If not, then viðtÞ has a local maximum at some point ŝiAðsi; 0
: By (A.7),

viðŝiÞXc40 for some constant c40: By the spherical Harnack inequality, jv0iðtÞjpc1:
Thus, there exists d040 such that

viðtÞX
c

2
if jt � ŝijpd0:

Therefore,

Z
Ti

u
2n

n�2
i ðxÞ dxXc140; ðA:8Þ

where Ti ¼ fx j eŝi�d0pjx � Pijpeŝiþd0g: However,

Z
jPi�xjpesi

u
2n

n�2
i ðxÞ dx ¼ Sn

KðP0Þ
n�2

n

0
@

1
A

n
2

ð1 þ oð1ÞÞ:

Together with (A.8), it yields a contradiction to (A.1).

J.-L. Chern, C.-S. Lin / J. Differential Equations 187 (2003) 240–268 265



Step 5: There exists T0p0 such that siXT0: Furthermore,

uiðxÞpcM�1
i jx � Pij2�n for M

� 2
n�2

i pjx � PijpeT0 : ðA:9Þ

To prove step 5, we recall an ODE result from [CL2,CL3]. See Lemma 5.1 in [CL2]
or Lemma 3.2 in [CL3]. Assume e0 to be a fixed small positive number. By rescaling

as in (A.3), there is a unique t̂i ¼ ti þ cðe0Þ4ti such that viðtÞ is decreasing for

tiptpt̂i and viðt̂iÞ ¼ e0: If e0 is small enough, then by (A.7), viðtÞ has no critical point

for tAðt̂i; siÞ; where we recall that si is the first minimum point after ti:

Lemma A. There exists a constant c such that the following statements hold:

(1) For t̂ipt0pt1psi; vi satisfies

t1 � t0p
2

n � 2
log

viðt0Þ
viðt1Þ

þ c1 and

si � t0X
2

n � 2
log

viðt0Þ
viðsiÞ

:

(2) For siptp0;

ðt � siÞ � c1p
2

n � 2
log

viðtÞ
viðsiÞ

pðt � siÞ:

From (2), we have for tXsi;

%uiðetÞ ¼ viðtÞe�
n�2
2

t
Xc2e�

n�2
2

si viðsiÞ ¼ c2 %uiðesiÞ: ðA:10Þ

Since %uiðrÞ is decreasing in r; by (A.10) together with the spherical Harnack
inequality, we have for some positive constant c3;

miBuiðxÞB min
jx�Pi j¼esi

uiðxÞ for jx � PijXsi: ðA:11Þ

From the first inequality of (1) of Lemma A, we have

uiðxÞpc4 %uiðriÞ
ri

jxj

� �n�2

pc4M�1
i jxj2�n ðA:12Þ

for eti ¼ ripjx � Pijpesi where t̂i ¼ ti þ cðE0Þ; ti ¼ � 2
n�2

log Mi; and %uiðriÞBMi are

used. The second inequality of (1) in Lemma A implies

%uiðetÞXc5M�1
i ðesiÞ2�n

J.-L. Chern, C.-S. Lin / J. Differential Equations 187 (2003) 240–268266



for tiptpsi: Thus, together with (A.12) and (A.11), we have

miBM�1
i ðesiÞ2�n: ðA:13Þ

Now suppose si-�N: Then by (A.13),

miMi-þN as i-þN: ðA:14Þ

Since uiðxÞ=mi is uniformly bounded in C2
locðB2\fP0gÞ; by passing to a subsequence,

uiðxÞ=mi converges to a positive harmonic function hðxÞ in C2
locðB2\fP0gÞ: For any

d40;

�
Z
jx�P0j¼d

@h

@n
ðxÞ ds ¼ � lim

i-þN

Z
jx�P0jpd

DðuiðxÞ=miÞ dx

¼ 1

mi

Z
jx�P0jpd

KðxÞupi

i dx:

To estimate the right-hand side, we decompose the domain into three parts: For any
large R40;

1

mi

Z
jx�Pi jpM

�
2

n�2
i

R

KðxÞupi

i dxp
c

miMi

Z
jyjpR

U
nþ2
n�2
i ðyÞ dy-0

by (A.14). By using (A.12), we have

1

mi

Z
M

�2
n�2
i

Rpjx�Pi jpesi

KðxÞupi

i dx

p
c

mi

M
�nþ2

n�2
i

Z
jx�Pi jXM

�
2

n�2
i

R

jx � Pij�ðnþ2Þ
dx

p
c

mi

M
�nþ2

n�2
i ðM� 2

n�2
i RÞ�2

¼ c1

miMi

R�2

-0 by (A.14) again. By (A.11), the last term can be estimated by

1

mi

Z
jx�Pi jXesi

Ku
pi

i dxpc1m
� 4

n�2
i -0:

Thus, Z
jx�P0j¼d

@h

@n
ds ¼ 0 for any d40;
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which implies h is smooth at 0. Since hðxÞ vanishes on the boundary of B2; hðxÞ � 0
on B2; which contradicts to inf %B1

hðxÞ ¼ 1: Hence step 5 is proved. Clearly, (A.2) is

equivalent to (A.9). Therefore, (A.2) is proved completely. &
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