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Abstract

In this paper we will apply the method of rotating planes (MRP) to investigate the radial
and axial symmetry of the /least-energy solutions for semilinear elliptic equations on the
Dirichlet and Neumann problems, respectively. MRP is a variant of the famous method of
moving planes. One of our main results is to consider the least-energy solutions of the
following equation:

(*)

Au+ K(x)w?» =0, xeB,
u>0in By, ulyp =0,

where 1 <p<22and B, is the unit ball of R" with n>3. Here K(x) = K(|x|) is not assumed to
be decreasing in |x|. In this paper, we prove that any least-energy solution of () is axially
symmetric with respect to some direction. Furthermore, when p is close to Z%%, under some
reasonable condition of K, radial symmetry is shown for least-energy solutions. This is the
example of the general phenomenon of the symmetry induced by point-condensation. A fine
estimate for least-energy solution is required for the proof of symmetry of solutions. This
estimate generalizes the result of Han (Ann. Inst. H. Poincaré Anal. Nonlinéaire 8 (1991) 159)
to the case when K(x) is nonconstant. In contrast to previous works for this kinds of
estimates, we only assume that K(x) is continuous.
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1. Introduction

Recently in the research area of nonlinear elliptic PDEs, there have been many
works devoted to studying problems where solutions exhibit the “phenomenon of
point-condensation”. Two well-known examples are semilinear elliptic equations
involving the Sobolev critical exponent and nonlinear elliptic equations with small
diffusion coefficient. These works show that the concentration often induces the
asymptotic symmetry. For example, spherical Harnack inequalities have been
proved for blowup solutions to either mean field equations on compact Riemann
surfaces or the scalar curvature equation. These spherical Harnack inequalities
implies that blowup solutions usually are asymptotically symmetric. Similar results
were proved for spike-layer solutions of singularly elliptic Neumann problem. See
[CL1,CL2,L1,L2,NT1,NT2] for more precise statements. Naturally, when the
underlying equation is invariant under a group of transformations, we would like
to know whether solutions with point-condensation actually possess certain
symmetry which is invariant under the action of some elements of the group. In
[Lnl,Ln2], for the mean field equation on S?, the second author first succeeded to
prove the axial symmetry for solutions with two blowup points. In this article, we
continue to study this problem.

In this paper, we first consider positive solutions of the following equation:

{Au+f(|x|7u):0 in By, (1.1)

u|aBl = 0’

where B) is the unit ball in R”, n>2, A is the Laplace operator and f(r,?) is a C'
function of both variables r and ¢. The typical examples of f are K(|x|)u” where
1 <p<”Jr2 ifn=3, 1<pifn=2. When K(r) is decreasing in r, the famous theorem by
Gidas et al. [GNN1,GNN2] says that any positive solution u(x) of (1.1) is radially
symmetric. However, the radial symmetry of solutions generally fails if K(r) does not
decrease with respect to r for all r<1. In this paper, we want to show that certain
symmetry still holds for least-energy solutions. The definition of the least-energy
solutions of (1.1) is stated as follows. Consider the variational functional

1 .
J(u) :/ [ZVu|2—F(x|,u+) dx in H)(By), (1.2)
B
where F(r,u) = [i f(r,s) ds and u"(x) = max(0, u(x)). For the nonlinear functional

J, we set

¢, = inf max J(h(z)), (1.3)

hel 0<t<1
where

I = {heC([0,1], Hy(B1)) | h(0) = 0,h(1) = ¢}



242 J.-L. Chern, C.-S. Lin | J. Differential Equations 187 (2003) 240-268

and ee H}(By), e#0 in By with J(e) = 0. To guarantee the ¢, of (1.3) to be a critical

value of J by the mountain pass lemma, the nonlinear term f is usually assumed to
satisfy the following condition.

(fa) f(r,t) =o0(]t]) near t =0 and 0<r<1;

(fy) there exist constants 0e(0,}) and Up>0 such that O0<F(x,u) =
Jo f(r,s) ds<Ouf (x,u) for all u= Up;

(fe) |f(x,1)|<Ct for some 1 <g<" for large 7 if n>3 and 1<g< + o0 if n=2.

Using the above conditions (f,)—(f.) and by the well-known mountain-pass lemma due
to Ambrosetti and Rabinowitz (see [AR]), we can obtain that (1.2) possesses a positive
critical point u, with its critical value J(u*) to be equal to ¢, of (1.3). Moreover, under

the additional assumption that f(r,7)/¢ is increasing in ¢, from the Lemma 3.1 in
[NT1,NT2], ¢, does not depend on the choice of ¢ and is the least-positive critical

value of J. Therefore, We call such u, to be a least-energy solution of Eq. (1.1). We
remark that solutions of least energy can also be obtained by minimization of

2
[ K@)

where f(x,u) = K(x)u” with maxq K >0.
Our first result is concerned with the axial symmetry of the least-energy solution of
Eq. (L.1).

Theorem 1.1. Suppose f satisfies conditions (f,)—(f.) and

(fa) %(n t)>0 for t>0 and for 0<r<1.

Let u be a least-energy solution of Eq. (1.1) and Py be a maximum point of u. Then the
following conclusions hold.
(1) If Py = O is the origin, then u is radially symmetric.
(i) If Py+# O, then u is axially symmetric with respect to OPy and on each sphere
S, = {x: |x| =r} for O<r<1,u(x) is increasing as the angle ofEc> and OP,
decreases. In particular, u satisfies

ou ou
5 g (09— (920 for x>0, (1.4)

where Py is assumed to locate on the positive x,-axis.

We note that, by condition (fq), it is easy to see that 2(: 2L — f(r,1)) =

1%20 Vt>0 YO<r<1 and hence f(r, )/t is increasing in ¢. So, by (f,), we have
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f(r;t)=0 V=0 YO<r<1. In this paper, we will use the method of rotating planes to
prove Theorem 1.1. The method of rotating planes is a variant of the famous method
of moving planes (MMP). MMP was first invented by Alexandroff and later was
used by Gidas—Ni—Nirenberg to prove the radial symmetry of positive solutions. See
[BN,CGS,GNNI1,GNN2] and the references therein. Recently, MMP was applied to
prove spherical Harnack inequality for blowup solutions to either scalar curvature
equation or mean field-type equations. See [CL1,CL2,L1,L2]. We note that MMP
cannot be applied to the Neumann problem for semilinear elliptic equations. As far
as the authors know, the result concerning the radial symmetry for the Neumann
problem is very rare. Nevertheless, our next result shows that the method of rotating
planes can be employed for the Neumann problem and the axial symmetry can be
established by this method.

Our second result is about the axial symmetry of the least-energy solutions of the
Neumann problem. We consider the following equation:

dAu—u+f(u)=0 in By,

u>0 1in B17 (1 5)
du
E:O on 0By,

where d is a positive parameter and f satisfies conditions (f,)—(f).

The typical examples of f are »’ where 1<p<(n+2)/(n—2) if n=3, and
l<p< 4+ oo if n=2. In this case, Eq.(1.5) is the steady-state problem for a
chemotactic aggregation model with logarithmic sensitivity by Keller and Segel [KS].
It can also be considered as the shadow system of some reaction—diffusion system in
chemotaxis, see e.g. [NT2].

Under conditions (f,)—(f.), Theorem 2 and Proposition 2.2 in [LNT] guarantee
that, for each d>0, (1.5) possesses a solution u; which is a critical point of the
variational functional

Jd(u):%/B(d\Vuf—i—uz)dx—/B F(u')dx YueH'(B)), (1.6)

where ut = max{u(x),0}, and its critical value ¢; = J;(uy) is proved to be equal to

c¢qg = inf max J(h(t)), (1.7)

hell 0<t<1

where I' is defined as before, and ¢, is independent of the choice of e by the Lemma
3.1 in [NTI,NT2]. Such a critical point u,; is called a least-energy solution of
Eq. (1.5).

Our second result is in the following.

Theorem 1.2. Suppose conditions (f,)—(fq) hold. Let u be a least-energy solution of
(1.5) and Py be a local maximum point of u on By. Then either u = constant in By, or
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Po#0 and u is axially symmetric with respect to OPy and (1.4) holds where Py is
assumed to locate on the positive x,-axis.

We give some remarks here. (I) If f satisfies conditions (f,)—(fq), then any
nonconstant least-energy solution u must be nonradial because the origin cannot be a
critical point of u. See the proof of Theorem 1.2. (II) Theorem 1.2 had been proved in
[NT1,NT2, Proposition 5.1] when Py is assumed to locate on the boundary of B; and
f () is an analytic function for 7> 0. After the paper is finished, a stronger version of
Theorem 1.2, that is, Py must be on the boundary dB;, has been proved in [Ln2].

Before stating our third result, we let S,, be the best Sobolev constant, i.e., for any
bounded domain Q of R" and for n>3,

Vol? dx
S, = mlf fQ'—|2 (1.8)
UEH f |l)|” 2dx) 7
It is well known that the best Sobolev constant is independent of 2 and is never
achieved by an element in H}(Q). For a C! function K with maxp, K >0, we consider
a least-energy solution u of

(1.9)

Au+ K(x)v> =0, xeBy,
u>0in By, ulyp =0,

where 1 <p <. Suppose u; is a least-energy solution of (1.9) with p = p; 1253, It is
easy to see that u; achieves the infinimum of the variational problem,

fB] |Vu,<|2 dx B inf fB] Vol dx
L B 2
(f3 K L+1 dx)piiT veHy( [(f, K(x)(0%) PrEL ) Fpit
1
= S, | (1+0(1)) (1.10)

(maxB] K)pi+l

for 7 sufficiently large. Let P; be the global maximum point of ;. Since (1.8) is never
achieved by some function in H}(B;), we have

lim u;(P;)) =+0c and lim K(P;) = max K(x). (1.11)

1— 00 11— 0 B

Obviously, by (1.11), the necessary condition for u; to be radially symmetric is that
K(x) = K(|x|) and the origin is the maximum point of K. For the final result, we
want to prove what is the sufficient condition of K such that for any least-energy
solution is radially symmetric. Suppose K(x) = K(|x|) satisfies the following
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condition.
There exists roe (0, 1] such that K'(r)<0 YO<r<ry

and max(0,K(r))<K(0) Vro<r<lI. (K,)

Note that (K,) could allow K(r) = K(0) for all small »>0. In this case, it is not
evident that the maximum point P; of #; would tend to the origin. However, we have
the following.

Theorem 1.3. Suppose condition (K,) holds. Then there exists a small ¢>0 such that

for any least-energy solution u of (1.9) with 0<"2 — p<e, u is radially symmetric.

n—2
Furthermore, if (’ﬁf,?)’go YO<r<r, for some ri<ry, then (1.9) possesses a unique

least-energy solution when 0<"3 — p<e.

The proof of Theorem 1.3 is more complicated than previous theorems. Here, the
concentration actually occurs for least-energy solutions as p tends to % In order to
start the process of the method of rotating planes, we have to require some fine
estimates for least-energy solutions, that is, we have to show that least-energy
solutions always behaves “simply”” near its blowup point. When K(x) = a positive
constant, this was proved by Han [H]. However, for a nonconstant function K(x),
there is additional difficulty even by using Han’s method. In the appendix, we give a
proof which is simpler in conception even for the case when K is a constant. Since the
Pohozaev identity is not employed in our proof, we do not require any smoothness
assumption on K.

We organize this paper as follows. In Section 2, we prove Theorem 1.1 by using
the method of rotating planes. By the same method, the axial symmetry of the
Neumann problem is established in Section 3. Here we emphasize that any
nonconstant least-energy solution must be nonradially symmetric. Finally, we
complete the proof of Theorem 1.3 in Section 4.

2. Maximum principle via the method of rotating planes
In this paper we will give the detail of the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u be a least-energy solution of Eq. (1.1). We divide the
proof into the following steps.

Step 1: Let T be any hyperplane which passes the origin O. We claim that one of
the following conclusions holds:

(A) u(x) = u(x*) VxeBy,
(B) u(x)>u(x*) VxeBy,
u(x) <u(x xe B, where By i1s one of half-balls of B)\T and x* is the
© )V T, wh T f half-balls of B\ d x* is th
reflection point of x with respect to the hyperplane 7.
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First, we will prove that

{either u(x)>u(x*) VxeBy (2.1)

or u(x)<u(x*) VxeBj.

Suppose the conclusions of (2.1) are not true. Then the following two sets are all
nonempty:

Q. = {xeB/ |u(x)>u(x*)},
Q_ = {xeB/ |u(x)<u(x*)}. (2.2)
Let
w(x) = u(x) — u(x*) VXEBT. (2-3)

Then w satisfies

Aw + £ (Ix], z(x))w =0, xeB,
Full,20) : -
w|831+ =0,
where z(x) is between u(x) and u(x*). Let
QF ={x*|xeQ_}. (2.5)
Set
w(x) if xeQ,,
v(x) =< dw(x*) if xeQ*, (2.6)
0 otherwise.
Choose the constant d >0 such that
/ b(x), (x) dx = 0, (2.7)
By
where ¢, is the first eigenfunction of the following eigenvalue problem:
A + , = —¢, By,
¢+ fullx], u) ¢, xeb (2.8)
¢|8B} = 0’
Let /, be the second eigenvalue of (2.8). By condition (fq), we easily have %(tafg;”) —

f(r1) = t%}O Vt>0 YO<r<1 and hence f(r, #)/¢ is nondecreasing in ¢. Since u

is a least-energy solution of (1.1), by using the same method of the proof of Theorem
2.11 in [LN], we have

J2>0. (2.9)
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By condition (f4) and (2.2)—(2.6), it is easy to see that

20 VXEQ_H
Av + £, (x|, u(x))v{ <0 VxeQ*, #0in By, (2.10)
=0 otherwise.

From (2.6), (2.7), (2.9), (2.10) and v#0, we obtain
0> / (—v(x)) - [Av(x) + fu(lx], u(x))v(x)] dx
By
= [ Do = £l o)) e, 211)

B,

a contradiction. This proves (2.1). By (2.1), we may assume w(x) >0 for xe B} . Since
w(x) satisfies Eq. (2.4), by using the strong maximum principle, we have either
w(x) =0 for xe Bf or w(x)>0 for xeB/. Similarly, if w(x)<0, we have either
w(x) =0 on B or w(x)<0 on B This finishes step 1.

Step 2: If Py = O, then we want to prove that u is symmetric with respect to any
linear hyperplane and then u is radially symmetric. Without loss of generality, we
assume that the hyperplane is {x; = 0}, that is, we want to prove w(x) = u(x) —
u(x~) =0 for x; >0, where x = (x;,x’) and x~ = (—x;,x'). Suppose w(x)#0 for
xe B = {xeB;|x;>0}. Then, by step 1, we may assume that w(x)>0 VxeB".
Then, from (2.4) and applying the Hopf lemma, we have

ow ou
A=) (0) = _28_x1 (0)<0. (2.12)

However, since O is the maximal point of u in B;, we have %’l (0) = 0, which yields a
contradiction to (2.12). Thus, w(x) = 0 and the radial symmetry of u follows readily.
We prove part (i) in Theorem 1.1.

Step 3: If Py# O, then we will prove that part (ii) in Theorem 1.1 hold. Without
loss of generality, we may assume O—P(; is the positive x,-axis. Let Py = (0, ...,0, )
and T be the hyperplane {x, = 0}. Then u(Py) >u(P; ), and from step 1, we obtain
that:

either u(x) = u(x~) VxeBf
or u(x)>u(x") VxeB, (2.13)

where x = (X, x,,), x~ = (X', —x,), B = {xeB;|x,>0}. If the former case holds,
then u(Py) = u(Qo) = maxp u(x), where Qp = (0, ...,0,—7). Let T be any hyper-
plane passing through the origin such that Py¢ T and B (T) be the half-ball of B{\T
such that PyeB™(T). Because OF = Qo¢B"(T) and u(Py)>u(Pj) and
u(0F) <u(QF*), where x* is the reflection point of x w.r.t. T, by step 1, we must
have u(x) = u(x*) Vxe BT(T). Since T is any hyperplane, we conclude that u is
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radially symmetric in this case. If the latter case is true, then we will prove that u is

axially symmetric with respect to O—Po) and the second conclusion of part (ii) in
Theorem 1.1 holds. Consider any two-dimensional plane which contains Py. For the
simplicity, let us assume that the plane is spanned by ¢; = (1,0,...,0) and ¢, =
(0,...,0,1). Let /y be the line having the angle 0 with x;-axis, and vy, with vy = ¢, be
the normal vector to the line in this plane. Set T} to be the (n — 1)-dimensional linear
hyperplane which passes the origin and has vy as the normal vector. Obviously,
To={(ricosl,xz,...,xp—1,715in0) | x;eR for 2<j<n —1 and r; >0}. Let By be
one of the half-balls of B;\Ty which contains Py for 0<0<3. Let x” be the reflection
point of xe By w.r.t. Ty.
Set

wo(x) = u(x) —u(x”) VxeBy. (2.14)

Then wy satisfies

Awp + cp(x)wg =0 in By, (2.15)
wp(x) =0 on OBy,
where
_ f(xl u(x)) —f (x| u(x"))
R e
For 0 = 0, we have wy(x)>0 Vxe By. Set
~ n
0y = sup{0|w0(x)>O VxeB; v0<0<9<5}. (2.16)

We claim that 0y = Z. Suppose this is not true. Then, from step 1 and the definition of
0y, we have for 0<0<0,,

wo(x)>0 for xe By and gTu(x)<0 for xe Ty,
0

wg, =0 1in By,. (2.17)

Let Pj be the reflection point of Py w.r.t. Tj,. Then P is also a global maximum
point. Since wy(x)>0 in By, we have P§e Ty, for some 0;€(0,0y) and Vu(P§) =0,
which yields a contradictions to (2.17). Hence, we have

W%?O in B%. (2.18)

Similarly, using the above arguments, we can also obtain

w z=0 in B_%. (2.19)

_r
2
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From (2.18) and (2.19) we deduce that

wz =0 in Bz. (2.20)
2 2
The axial symmetry follows readily from (2.20).
Let x = (r; cos 0, x5, ..., x,_1,r1 sin 0), r; = (|x]* = x3 — - — xﬁ_l)l/z. Then, from
ou —1 0wy -7 T

where vy is the outnormal of Xy on the boundary T7j, the monotonicity follows
clearly. From (2.20) and (2.21), we easily obtain (1.4). This proves step 3 and
completes the proof of Theorem 1.1. [

3. Axial symmetry for the Neumann problem
In this section, we will complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into the following steps.
Step 1: Let u be the least-energy solution of (1.5). Consider the following
eigenvalue problem:

dA¢ — ¢ + fu(lx|,u)p + Ap =0, xeBy,
3.1
384) 0 on 0B;. (3.1

From conditions (f,)—(fq) and Theorem 2.11 in [LN], we obtain that the second
eigenvalue of (3.1) is nonnegative, i.e.,

Ja(u) =0. (3.2)

Let T be any hyperplane which contains the origin. Then, using the same
arguments in step 1, we also obtain that one of the following conclusion holds.

u(x) = u(x*)
u(x)>u(x*) for all xe B* (3.3)
u(x) <u(x*)
and
owy
the outnormal derivative 8—( x)<0 for xe T\0By, (3.4)
v

where wo(x) = u(x) — u(x*) and B" is one of half-balls of B; which is divided by T
such that the maximum point Pye B".
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Step 2: We want to prove u = constant if u(x) is radially symmetric. Let x =
(x1, ..., xy) and r = |x|. If u is radial symmetry, then u satisfies

-1
dlu | —u+fu)=0, r>0,
( )-ursw (35)
u(0) =a>0, u'(0)=0
and we have
ou S XT ) ou B
B—XI =u (r) 7 m B] and a_xl =0 on 831 (36)

Suppose uzconstant, then g—é‘lio. Let w(r) be the first eigenfunction of (3.1).
From (3.6), we easily have

/ (D (b = 0. (3.7)
B

By (1.5) we obtain

Ou ou .. Ou
dA(a)Cl) *a—xl‘Ff(u)a—XI—O,

0 (3.8)
u
o =0 on 0B;.
Now using (3.2), (3.7) and (3.8), we obtain that
<y = inf 2 2 2
0 2 vJ_w’J}ng(Bl)/ [d|Vv| tv f (M)U ]dx
= [ 1 (5 (2 (29
N B axy dx; 0x;
- (3.9)
Since 3” archives the infinimum of (3.9), we obtain that
0 [ Ou
= H' (B 1w, 1
/aBI 8v(3x1)¢da 0 VoeH'(Bi)and ¢ Lw (3.10)

Set ¢ = x13‘21(8“) + x2ai(an) Since ¢ is odd in x;, we have ¢ L w. Then we obtain

On
that 2 (5);‘) =0 on 9By and 2“ is a solution of the Neumann problem (1.5). Hence we

have #”(1) =0 and, from Eq. (1.5), u(l) =f(u(l)). From Eq.(3.5) and the
uniqueness of ODE, we finally obtain that # = u(1). This contradiction proves that
u = constant if u(x) is radially symmetric.

Now suppose u#constant. Let Py be a maximum point of u on By. If Py = O,
then, from the above step 1 and using the same arguments in step 1 of the proof of
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Theorem 1.1, we obtain that u is radially symmetric. By the above step 2, u =
constant in this case, a contradiction. Hence Py# O if u is nonconstant.

Step 3: We claim that u is axially symmetric w.r.t. 0—>Po and (1.4) holds.

Without loss of generality, we may assume O—P(; is the positive x,-axis and Ty is the
hyperplane x, = 0. Consider any two-dimensional plane where Py is contained. For
the simplicity, we assume the plane is spanned by e; = (1,0,...,0) and e, =
(0,...,0,1). Let Iy be the line having the angle 6 with x;-axis, and vy be the normal
vector to the line in this plane. Set T} to be the (n — 1)-dimensional linear hyperplane
which passes the origin and has vy as the normal vector. Let By be one of the half-
balls of By which is divided by T and P = (0, ...,0,¢) e By VO<0<73. Let 2y denote
the component of By\Ty and x’ be the reflection point of x w.r.t. Tp.

Set

wo(x) = u(x) —u(x’) VxeZy. (3.11)
Clearly, wy satisfies

dAwg + (co(x) — I)wg = 0,
8W(; (312)

wo(x) =0 on Ty and 5 = 0 on OB U Xy,

where

colx) = u(x) — u(x*)
We want to prove
wo(x)>0 for xeXy and 0<9<g (3.13)
and
wr = 0. (3.14)

After (3.13) and (3.14) are established, the axial symmetry and the monotonicity
follow readily. For 0 =0, from step 1 we obtain that: either wy =0 in B} or
wo(x)>0 Vxe B, where By = {xeB; | x,>0}. If the former case holds, then using
the above step 2 and first part of step 3 in the proof of Theorem 1.1, we can conclude
that u is constant. This contradicts with u is a least-energy solution of (1.5). If the
second case is true, then we set

0 = sup{0|wé(x)>0 VxeX; V0<5<9<g}. (3.15)
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Following the standard argument of the method of moving planes, we can prove
o = 3. Since the present case is the Neumann problem and the boundary of 92y is
not smooth, we should briefly scatch the proof for the sake of completeness.

Suppose 0y <7/2. Then, by the continuity, wy, (x) =0 for xe Xy,. By the above step
1, we have wy,(x)>0 for xe Xy, /0B;. By the definition of 6y, there is a sequence of
(9_,'>9() with lim,‘_,@ 9_/ = 0y such that

wy, (x;) = inf wy,(x) <0.
20,

By passing to a subsequence, xo = lim;_, . x; satisfies wg,(xo) = 0 and Vg, (x9) = 0.
Hence we have xo e Ty, " 0B;. Since wy, = 0 on Tj,, D, D, wy, (x0) <0 for any tangent

. dwy Owy, A
vector e;,e; on Ty,. Since —%(xo) = 0, Dy, —,%(x0) = 0 for any tangent vector ¢; of

OBy at xg. Let {ey, ..., e,_1} be the base of the normal to the plane Ty, such that e,
is the normal of 9B, at x, and e, be the normal to Tj,. Then we have D, wy, (x0) =
0 V1<i<n, 1<j<n. Thus, the Hessian of wy, at x¢ is completely zero, which yields a
contradiction to Lemma S in [GNN2]. Therefore, 0y = 7, the axial symmetry follows
readily.

The monotonicity and (1.4) follow from %< 0 for xe Ty where v is the outnormal
of Xy on the boundary Ty. This proves the results of the case Py# O of Theorem 1.2.
The proof of Theorem 1.2 is complete. [

4. Radial symmetry near the critical exponent

Proof of Theorem 1.3. Suppose that the conclusion of the first part of Theorem 1.3
does not hold. Then there exists a sequence of least-energy solution u; of (1.9) with
p=pi T% such that u;(x) is not radially symmetric. Let P; be a maximum point of
u;. If P; is the origin, then we can prove that u;(x) is radially symmetric. For the
detail of the argument, see the end of the proof of Lemma 4.1. Under the assumption
that u;(x) is nonradial, we have P;# O. We first want to prove ; is axially symmetric

with respect to ﬁ: Note that by (1.10), u; satisfies

b Tule S o) @)
(s, K(x)u ! dx)piT - (maxp, K) n

In the following, the axial symmetry is established for solution u; satisfying (4.1).
Note that even for least-energy solutions, Theorem 1.1 cannot be applied for our
present situation, because K(|x|) in not assumed to be positive in the whole ball B.

Lemma 4.1. Suppose u; is a solution of (1.9) with p = p; and K € C(By), K(x) = K(|x])
and maxp, K>0. Assume (4.1) holds and P; is a global maximum point of u;. Then u; is
axially symmetric with respect to the axis OP; .
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Proof. Let P; be a maximum point of #; and assume P;# O first. Since the Sobolev
constant is never achieved in H}(B;), by (4.1), we have

K(P;)— max K and u(P;))— + 0.
1

Without loss of generality, we may assume P; = (0, ...,0,¢;) for some ¢;>0 and
maxg, K(x) = 1.
As in the proof of Theorem 1.1, we want to show

wi(x) = uj(x) —u;(x")>0 for x,>0, (4.2)

where x~ = (x1, ..., X,_1, —X,). To prove (4.2), instead of (2.9) for Theorem 1.1, we
claim that

There exists a constant ¢>0 such that

u(x)<c U (x— P;) for xeBy, (4.3)

L

A ) 2
where U, (x) = ( - ‘i'x‘z )nT and 47" = (u;(P;))n—2.
;“f+n(1172)

Recall that for any A>0, U,(x) satisfies

w2
AU (x) + U 2(x) =0 in R", and (4.4)

U;(O) = Mmaxp» Uz(x).
Eq. (4.3) was proved in [H] for the case K(x) = a positive constant. However, it is
unclear whether the argument in [H] can be applied to the present case where K(x) is
only assumed to be continuous. For the sake of completeness, an alternative proof

will be presented in the appendix of this paper. For the moment, let us assume that
(4.3) holds and we return to the proof of (4.2). Clearly, w;(x) satisfies

(4.5)

Aw;i(x) + bi(x)w; =0 for Bf = {xeB|x,>0},
wi(x) =0 on 0B,

where

Suppose Q; = {xe B/ | wi(x) <0} is a nonempty set. We want to prove

n—2
|x™ — Pi| 2 u;(P;)—> + oo for xeQ; (4.6)
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as i— + oo. If there is a sequence x; € Q; such that (4.6) fails. Since

n=2 n-2
|Pi| 2 ui(Py) <|x™ — Pi 2 ui(Py),
n=2 . .
|P;| 2 u;(P;) is bounded. By passing to a subsequence, we let ¢, =
2
lim;, o #;(u;(P;))n=2 and gy = (0, ...,0,&y). By rescaling u;, we set

=3
Vi(y) = M u(M22y),

1

where M; = u;(P;). By elliptic estimates, V;(y) is bounded in C2

loc

(R™), thus, by

passing to a subsequence, V; converges to U;(y — ¢o) in Cp (R"), where U;(y) =

)
(1+ n(‘;:fz))_nT. Note that U;(y) is the solution of (4.4) with U;(0) = 1.

Two cases are considered separately. If &,>0, then U,(y — qo) > U;(y~ — qo) for
-2
yeR" ={y|y,>0}. Set y; = M;"zxi, where x;€Q; is the sequence such that |P; —
-2
x;|n7ui(Pi)< + oo. Thus,

2 2 2
|xi|u} =2 (Py) < |xi — Pilu =2 (P;) + | Pilu;(P;)n=2

2 2
< |xi = Pilui(Pi)n=2 + | Piu;(P)n=2
<C

for some constant C. Then |y;| is bounded. Assume yo = lim;_, ;o ;. Since V;(y;) —
Vily7) = M 'wi(x;) <0, we have

Ui(vo — q0) — Ui(vg — q0) = lim  M; 'wi(x;) <0,

i—>+w

which implies yo,, = 0, here yy, is the y,-coordinate of y,. Since Vi(y) — Vi(y~) =0
on y, =0, there exists n; = (Vi1,...,Vin-1,M;,,) With 1n;,€(0,y;,) such that

%(V,—(ni) — Vi(n;7))<0 by the mean value theorem. By passing to the limit, it
yields
0 _
0= By (Ui(y = <o) = Uiy~ = &o))lyey,
U 2 ¢
:2ayl(y°75°):2 |y00—a,\2n>0
" (1 +55=57)

a contradiction. Hence, we have &, = 0.
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Now we assume &, = 0. To prove (4.6), as the previous step, it suffices to show
that

=2
Wwi(y) = N7 wi(MP2y)

1

converges to a positive function in CZ_(R" ), where

N; = max |w;(x)] = |wi(z;)]-
By

We first claim that

pi—1
|zi|M; 2 <c (4.7)

for some positive constant ¢>0. Assume (4.7) does not hold. First, we assume r; —0
as i— + oo. Set r; = |z;| and rescale w; by

Wi(y) = N wiriy)
and W; satisfies
1
AWwi(p) + ribi(rip)w; = 0, for |J’|<;,
SUpP|y|=1 hoi(v)| = 1.

By (4.3), for any compact set of R”\{0}, we have

|ribi(riy)| < earlus(riy) + wi(riy )
-2
<o()y[.
pil
Here, we have used the assumption lim;, o r;M; 2 — 4o and the fact that
n+2 n+2
lim;_, ;o M;’_z""’ = 1. For the proof of lim;_, ; o, MiN_z_”" =1, see step 1 in the proof

of A.2 in the appendix.

Hence, r7b;(r;y) converges to 0 uniformly in any compact set of R"\{0}. By elliptic
estimates and due to the assumption r;—0, ;(y) converges to a harmonic function
h(y) in C} (R"\{0}), where h satisfies.

[h(y)[<1 and sup h(y)| = 1. (4.8)
=

By the regularity theorem for bounded harmonic functions, 4(y) is smooth at 0. Note
that (y) = 0 for y, = 0. By the Liouville theorem, 4(y) = 0 in R’ , which yields a
contradiction to the second identity of (4.8). Hence (4.7) is established, in the first
case.
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Secondly, we assume |z;| > dp >0. Then the argument of contradiction in the above
yields that there exists r; >0 such that

sup |wi(x)| = o(1)N;. (4.9)

Ix|<r

Let A>0 and (x)>0 be the eigenvalue and the eigenfunction of 4 in B, with the
Dirichlet problem and set

By a direct computation, w;(x) satisfies
Aw;i(x) 4+ 2V log ¥ (x) - Vin;(x) + (bi(x) — A)wi(x) =0

for xe B;. Let X; be the maximum of |w;(x)|. By (4.9), we have |x;|>r;. Clearly, (4.3)
;4
yields |b;(%;)| = O(1)M?~2. Applying the maximum principle at ¥;, we have

0= Aw;(%;) = (4 — bi(x))Wi(X;) >0,

a contradiction, where |w;(X;)| = w;(%;) is assumed. Thus, |z;| = dy is impossible. This
proves (4.7).
Rescale w; again by

=2
Wi(y) = Ni'wi(M} ).

It is easy to see that by passing to a subsequence, W; converges to w in C} (R"),
where w satisfies

2 4
Aw —1—% Ur?(y)w=0 yeR.,

w(y)=0 on y,=0.

(4.10)

Readily from (4.7), w(y) is a bounded nonzero function. Thus,

w(y) =c ag;iy)

for some constant ¢#0.
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From the explicit expression of U;(y), we have w(y) #0 for any ye R, and %(y) #0

2
for y, = 0. Let & = M 2P;. We have

o (&) 1 %22 ow; _
— =N M — | (P;
ayn 1 1 axn ( 1 )

:NAan__ZZ< 9 ui(P;) —%u,(P,))

! ! ox, ox,
0 0
=N A= Vil&) =5 Vilé
REACIERAZO)
oV,
=N S5 ) (=2¢:), 4.11
e (251, @)
where #;€ (¢, &;). Since ¢;—0 and
o*U, oV,
0>———(0)= 1 .
>z O = Him 5 n)
Eq. (4.10) yields
ow(0) . O Vi(m)
=1 N: L(=2&:,)=0.
yy Am N (=2¢in)
Hence, %(y)>0 for y, =0 and we conclude that w(y)>0 in R’. Now suppose

x; € ;. Because, w;, the scaling of w;, converges to a positive function in R, with the
negative outnormal derivative on OR',, we conclude (4.6) holds.
By (4.6), we have for xeQ;,

w2 (x7)<o(1)|x™ — P2 (4.12)

For xeQ;, we set

wi(x) = —wi(x)|x — Pi| 77,

where 0 <o <”52. By a straightforward computation, ;(x) satisfies
AW[(X) + 2(V IOg |X — P,‘|a : VW,‘(X))

+ (bi(x) — a(n — 2 — a)|x — Pi| *)wi(x) = 0. (4.13)

Note that w;(x) = 0 on 9Q; and P; ¢ Q;. Let w;(x) achieves its maximum in ; at X;.
Then by the maximum principle and (4.11), (4.12) yields

0 =AW (%) + (bi(%) — a(n — 2 — )| — Pi| 2)wi(%:)
< (bi(%) — aln — 2 — )| % — Py| ) Wi(%:) <0

when i is sufficiently large. Therefore, we have proved w;(x)>0 in B for i large.
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Once (4.2) is proved, we can apply the method of rotating planes and Alexandroff
Maximum Principle in [BN,HL] to conclude that u;(x) is axially symmetric with
respect to x,-axis and the monotonicity

Ou;(x) ou;

J axn " an

(x)>0 (4.14)

holds for x;>0 and 1<j<n — 1. This ends the proof of Lemma 4.1 for the case
P#0.

When P; = O, we want to prove w;(x) = 0 on Bf. Suppose not. Then let z; be the
maximum point of |w;(x)|, and as the same proof of (4.7), we have

pil1
|zi| M ? <c

__2
for some constant c. Set W;(y) = N7 'wi(x), where N; = w;(z;) and x = M!2y. It is

1
easy to see that W;(y) converges to a nonzero limit w(y) in CZ, (R), where w(y) is a

loc
i)

solution of (4.9). Thus, w(y) = c% for some ¢#0. However, Vii;(0) = 0 because

the origin is a maximum point of u;. Especially,

AU,
0)=c W(O)

ow
0 =
OV
yields ¢ =0, a contradiction. Therefore, we conclude w;(x) =0, that is, u;(x) is
symmetric with respect to x,. Of course, we can prove the symmetry of u; with

respect to any hyperplane passing the origin by the same argument. Hence u;(x) is
radially symmetric if P; = O. This completely proves Lemma 4.1. [

Now we return to the proof of Theorem 1.3. now suppose P;#0. Without loss of

generality, we may assume P; = (0, ...,0, ;) for some #;>0. Set
$:(x) = x1 g;’;(x) X %(x) >0. (4.15)

Then ¢;(x)>0 in B = {xeB; |x;>0}, and ¢, satisfies
Ag;+piK (X" ¢y =0 in Bf, (4.16)
$;=0 on OBf. .

Since uf"fl(x) uniformly converges to zero in any compact set of Bf\{P;}, by the
Harnack inequality, (maxjy—, $,(x))""¢.,(x) converges to a harmonic function / in
C}.(B\{P:}), where ry is the positive number in condition (K,). Since /(x) = 0 for
xe€dB\{Py} where Py = lim;_, ., P;, we have i(x) has a nonremovable singularity

at Py. Otherwise, h(x) = 0 on B}, which contradicts to the fact that maxy_,, 2(x) = 1.
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Thus, dh Mx) <0 for xe B \{x; = 0}. Hence we have

L9 (de 1,(x )|) (4.17)

av |\c|>r0

for xedB, x 2%‘ and for a positive constant c.
From (1.9), we have

Bu, i—1 81/{,' , 71 i . +
2(5) kg™ (5) = K™ i By,

8ui
Bxl

(4.18)
=0 onx; =0.

By the boundary condition of u;, —3—5;‘>0 for xedB/\{x; = 0}. Since by (4.3),
Mu;(x) converges to ¢ G(x, Py) for some ¢>0 where G(x, Py) is the Green function
with the singularity at Py, we have

~ Ouy(x)
(9)(1

1
>ciM;" for xedB] and X125 (4.19)

By (4.16), (4.18) and (K,), we obtain

Ou; O, / { <8ui> Ou; ]
s = — y ~Ming| d
/03+\{M —0y Ox1 Ov B Z 0x1 ox1 Pi| dx
[ K e) as
Bl n{lx|<ro} | |
+ K26 ds
Bl n{lx|=ro} | |

Lo K s
Brm{|x|>r0} | |

<C max  ¢;(x) / Wl dx.
Bf n{lx|=ro}

B n{|x[=ro}

N

By (4.17) and (4.19), we get
Cy M7'<C, M;”" for i sufficiently large,

a contradiction. This proves P; = O for i large.
For the uniqueness part of Theorem 1.3, we reduce (1.9) in an ODE. Here, K(r) is
continuously extended for all re[0, co). Following conventional notations, for any
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fixed p, we denote u(r;a) to be the unique radial solution of
-1
u'(r) + " u'(r)+ K(ru’ =0, r>0,

u(0;0) =o0>0, u'(0;0) =0.

(4.20)

For pe(1,2), we set

a(p) =inf{u(0) | u(r) is a least-energy solution of (4.19)
in the class of radial functions of Hj(B))}.

We claim that there exists a small ¢>0 such that for the solution u(r;a) with
a=>o(p) and 0<™3 — p<e, there is a R(x)€e (0, o) satisfying

u(r;o)>0 for rel0, R(«)) and
(%) 0. R() o
u(R(a), o) = 0.
Furthermore, R(a) decreases with respect to o whenever a>o(p). Since R(a(p)) = 1,
the uniqueness follows readily from the claim.
To prove the claim, we let

ou
o(r,o) = P (r; o). (4.22)
We claim
$(R(w),2)<0 for a>u(p) and k%—pge. (4.23)

Suppose (4.23) holds. By differentiating (4.20) with respect to o, we have

W (R(2), a)a’;g‘) + ¢(R(), ) = 0.

Since /' (R(x), o) <0, (4.23) yields 3{;&“) <0. Obviously, (4.21) and the decrease of R(x)

follows. Thus, it suffices for us to show (4.23).
Recall that ¢ satisfies the linearized equation

¢" +$d’, +pK(Nuw~'¢ =0, 0<r<R(a),
$(0;0) =1 and ¢'(0,0) = 0.

(4.24)

By the choice of a(p), we see that ¢(r;u(p)) changes sign only once and
d(R(a(p)),o(p))<0. Now suppose (4.23) fails for any small ¢>0. Then there is a
sequence of o;— + 00 as i— + oo such that ¢;(r) = @(r;o;) of (4.24) with p; 12+
and ¢,(r) changes sign only once and ¢;(R;) = 0, where R; = R(o;). Let r; be the first
zero of ¢;. Then ¢,(r)>0 for re(0,r;) and ¢;(r) <0 for re(r;, R;). Clearly,
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For the simplicity of notations, we let u;(r) = u(r;a;) denote the solution of (4.20)
with p = p;.
To yield a contradiction, we set

2

wi(r) = rui(r) +
=i+

u;(r). (4.26)
Then, from (4.20), w; satisfies

-1
Wit — Wi+ pK ()t = =K (r)u”,

(4.27)
wi(R;) = Ru(R;) <0.
By (4.24) and (4.27), we get
R;
[ em e s = [ ting, - g as
0 B
= R wi(R;)dj(R;) <0. (4.28)

Here (4.25) is used. Recall that r; is the first zero of ¢;. By scaling in (4.24), we easily
have r;—0 as i— + oo. Let

—Vl'K/(Vl')

- 4.29
c K(I’i) ( )
From the condition (’,’j,;))’so for 0<r<ry and (4.29), we have
=0 if 0<r<ri<r,
CK K' 4.30
(r)+r (r){ <0 if ri<r<r. ( )

Two cases are discussed separately.
Case 1: If R;<ry, then, from (4.30), we obtain

R;
0< / PN CK (r) + rK (r) i ¢ dr = R wi(R;)¢(R;) <O.
0

This proves (4.23) in this case.
Case 2: If R;>ry, then

Rr
0< — R 'wi(R;) / +rK'(r)) i ; dr
0

D)
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Since the first term (I) in (4.31) is negative, we obtain

R;
RIGRIGRIS [ 7 (CRO) + 1K ()i, dr. (432)
ro
By using the same arguments of (4.3), (4.17) and (4.19), we can easily obtain
[, (R))| ~ui(ro) ~a;",  Pi(R;)~p;(ro) and C; is small. (4.33)
Hence, (4.32) yields
o <o P

a contradiction. This ends the proof of the claim (4.23), and the uniqueness follows.
Hence we have finished the proof of Theorem 1.3. [
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Appendix

In this appendix, we consider a sequence of solutions u; of

{Aui + K =0 in By = {|x|<2},

ui=0 on 0B,
such that
u;(P;) = max u;(x)—> + oo, P;—>Py for some |Py|<1 and
By
g 2
K de = [ —2 ) (1+0(1)), (A1)
B K(Po) n

where K (x)e C(B,) and K(Py)>0 and p; 153. We want to prove that there exists a
constant ¢>0 such that

n—2
2

for |x|<1, (A.2)

ui(x)<c
i) K(P, 2
1 n(é_Og)Mﬂx — P

2
where M; = u/~2(P;).

i
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We note that when K(x) = a positive constant, (A.2) was proved by Han [H]. Here
we will present a proof of (A.2), which is simpler than [H] even for the case of
constant K. This proof does not employ the Pohozaev identity. Thus, the smooth
assumption of K is not required.

Proof of A.2. We divide the proof into several steps.
Step 1: lim;_, ;. M{" =1, where 0; =2 — p;.
Rescaling u; by

pi—l

Ui(y) = M; "uwi(Pi+ M; 2 y). (A3)
Then U; satisfies

pizl
AUi(y) + Ki(y) Ul (y) =0 for [y[<M; >,

1

_2
where K;(y) = K(P; + M; "“2y). By elliptic estimates, U;(y) converges to U(y) in
C2 (R"), where U(y) is the solution of

loc

nt2 .
{Amﬁ+K@@wzolnR, (Ad)

U(0) = maxg: U(y) = 1.

Then by a theorem of Caffarelli-Gidas—Spruck [CGS], we have U(y) = (1 +

K(Py) | 12,12
BT and

IS

B S,
K(Py)Un-2(y) dy = )
o K(Py)

Choose R;— + oo as i— + oo such that U;(y) converges to U(y) uniformly for

|y|<R;. Then

— | (T+o(1)= ot K(x)ud ™ (x) dx

1

=M 2" —5 | (1+0(1)),
K(Po) n
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n—2

Therefore, lim;_, ., M;? 7
Set

<1. Step 1 follows readily.

m; = inf wu;(x).
[x[<1

To Prove (A.2), we have to compare m; and M. First, we claim
Step 2: there exists a constant ¢ such that

—1
M. <cm;.

Consider G(x) = M;'(|P; — x> —1) for |P; —x|<1. Note that by rescaling
(A.3) and step 1, we have

2

ui(x)=cM; for |x — P;| = M, "2
Since u;(x) is superharmonic, by the maximum principle,
cG(x) <ui(x).
In particular,

ui(x)=cM;t for |x| =1,
where step 2 follows immediately.

The spherical Harnack inequality is very important in the study of the blowup
behavior of u;. Usually, this is a difficult step to prove. However, by the energy
assumption (A.1), we can prove

Step 3: There exists a constant ¢>0 such that

2
u;(x)|x — Pijpi-1<ce  for |x|<1. (A.5)

_n_
Because, if lim;, o, supp, (ui(x)|x — P;|Pi=!) = + o0, then there is a local maximum
point Q; of u;(x) such that the rescaling of u; with the center Q;,

il

Ui(y) = M;'ui(Q; + M; 2 y) with M; =u;(Q;)

converges to U(y) of (A.4), where |Q,~—P,-\%M,~—> + oo as i— + oo. Thus, y;
possesses at least two bubbles, a contradiction to (A.1). The existence of Q; can be
proved by employing the method of localizing blowup points by R. Schoen. Since the
method is well-known now, we refer the proof to [CL1,CL2].
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By (A.5), we have the spherical Harnack inequality,

u;(x)<#i;(x — P;) and
Vu(x)|<clx = Pil'a(|x — Pi),

where i;(r) is the average of u; over the sphere |x — P;| = r. Set
n—2 .
vi(t) =u;(r)r 2 with r=e¢".

By a straightforward computation, v;(¢) satisfies

- ("3 2)2v,~<r> £ Rl =0,

where

A

K1) = (fxp,.tmx)u;“fu;z ) da) (@53(r)!

n+2
-2

265

(A.7)

and (} denotes the average of integration over the sphere |x — P;| = r. By steps 1 and
2, we have u7'(x) uniformly converges to 1 for |x|<1. Therefore, 0<c; <K;(f)<ca
for 1<0. By rescaling (A.3), we see that v;(¢) has a first local maximum at ¢t = ¢; =

2
n—2

Step 4: If 5, <0, then v;(¢) is increasing for s; <t<0.

If not, then v;(¢) has a local maximum at some point §;e(s;,0].

log M; + ¢y for some constant ¢y. Let s;>¢; be the first local minimum point
unless v;() is decreasing for #; <r<0. In the latter case, we set s; = 0.

By (A.7),

v;(S;) = ¢>0 for some constant ¢>0. By the spherical Harnack inequality, |v;(f)|<c;.

Thus, there exists dp >0 such that

l),‘(l)? if |l—§,‘|<50.

¢
2

Therefore,
2
/ u=2(x) dx=c; >0,
T;

where T; = {x| "~ <|x — P;|<e%™®}. However,

IS

2 S
/ w2 (x)dx = | ——= | (1+o(1)).
|Pi=x| e K(Po) n

Together with (A.8), it yields a contradiction to (A.1).
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Step 5: There exists Ty <0 such that s;> T). Furthermore,

2
wi(xX) <M x — PP for M, "2<|x — Py <e™. (A.9)

To prove step 5, we recall an ODE result from [CL2,CL3]. See Lemma 5.1 in [CL2]
or Lemma 3.2 in [CL3]. Assume ¢, to be a fixed small positive number. By rescaling
as in (A.3), there is a unique 7; = t; + c(gy) >1; such that v;(¢) is decreasing for
t;<t<tyand v;(f;) = &. If & is small enough, then by (A.7), v;(¢) has no critical point
for re(f;,s;), where we recall that s; is the first minimum point after ¢;.

Lemma A. There exists a constant ¢ such that the following statements hold:

(1) For f;<ty<t) <s;, v; satisfies

2 vi(to)
H— 1< log = and
1=l n—ZOgvi(11)+cl an
2 U,'(l())
i —to=——1 .
Simhz Ty 08 vi(s;)
(2) For 5;<t<0,
v;(t
(t—s)—a< log Ui[((si)) <(t—s5).
From (2), we have for t>s;,
n=2 n2 ,
ai(e") = vi(t)e” 2 '=cae” 2 Vvi(si) = caiti(e). (A.10)

Since i;(r) is decreasing in r, by (A.10) together with the spherical Harnack
inequality, we have for some positive constant cj,

mi~u;(x)~ min u;(x) for |[x — P;|=s;. (A.11)

|x—P;|=e

From the first inequality of (1) of Lemma A, we have

n—2
u;(x) < caty(r7) (&) <caM ! x)F" (A.12)
for e = r;<|x — P;|<e where 1; = t; + ¢(¢), t; = —ﬁlog M;, and @;(r;) ~ M; are

used. The second inequality of (1) in Lemma A implies

0= esM; ()
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for t;<t<s;. Thus, together with (A.12) and (A.11), we have
mi~ M ()", (A.13)
Now suppose s;— — co. Then by (A.13),
miM;— + o0 as i— + . (A.14)
Since u;(x)/m; is uniformly bounded in C2_(B,\{Po}), by passing to a subsequence,

u;(x)/m; converges to a positive harmonic function 4(x) in C2.(B>\{Po}). For any
0>0,

_ / Oy do = — lim Aus(x) i) dx
|

v Py|=5 OV i=+0 Jjvpy|<s
1 .
=— K(x)u!" dx.
mi Jx—py|<é

To estimate the right-hand side, we decompose the domain into three parts: For any
large R>0,

! , ¢ =
— 2 K(x)uf'dx<—— U= (y) dy—0
MiJ |« pj<m "2R miMi Jyy| <R

by (A.14). By using (A.12), we have

i/ ) K(x)ul" dx

MiJ =2 R<|x—p<ei

_nt+2
<— Mi niz/ 2 |X — Pi|7(n+2) dx

—0 by (A.14) again. By (A.11), the last term can be estimated by

1 v _4
— Kl dx<eym; "2 0.
B ze

m

Thus,

/ @dJ:O for any >0,
‘X*P()Izé av
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which implies / is smooth at 0. Since /(x) vanishes on the boundary of B,, i(x) =0
on By, which contradicts to infz /(x) = 1. Hence step 5 is proved. Clearly, (A.2) is
equivalent to (A.9). Therefore, (A.2) is proved completely. [
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