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The purpose of this paper is to give a characterization of the nonnegative MIN- 
QUE estimate for variance components. A similar characterization has been given 
by Pukelsheim but only in some special cases. The proof presented here uses results 
from convex programming and emphasizes certain geometrical aspects of the non- 
negative MINQUE estimate problem. ‘(‘i 1985 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is to illustrate the use of some primal convex 
programming techniques in the field of variance estimation. Let us consider 
the variance component model 

y=xp+e, fiE.Bk, 

var(e) = V, = jJ ri Vi, 
(1.1) 

E(e) = 0, ZEeC9m. 
i=l 

Here X is a known n x k matrix and Vi are known symmetric positive semi- 
definite n x n matrices, while /I E Wk and r = (tr,..., r,,,)’ is a vector of 
unknown nonnegative parameters, the latter belonging to some subset 8 
of SY. 
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Quadratic unbiased estimators of a parametric function q’z (q E L%?) are 
quadratic forms y’Ay, where A is a symmetric matrix satisfying the con- 
ditions of unbiasedness: 

XAX=O and (4 V,) = 4’t for ZE 8. (1.2) 

Here (A, B) stands for trace(AB). Following Rao [8 or 91, y’A*y is called 
a MINQUE (minimum norm quadratic unbiased estimator) if it minimizes 
some norm [IAIl among all translation invariant unbiased estimators y’Ay 
of q’r. However, the MINQUE estimate of a nonnegative 4’2 might be 
negative. Therefore, special attention has to be directed to nonnegative 
estimation, for example, if one is interested in estimating a single variance 
component. For a thorough review on this subject the reader is referred to 
Pukelsheim (7). In (7), Pukelsheim derived a sufficient-and in special 
cases also necessary--condition for nonnegative MINQUE estimators. 
While his approach rests on duality in convex programming, he asked how 
results from primal theory relate to nonnegative variance estimation. 

The present paper answers this question and arrives at a similar con- 
dition which is now necessary and sufficient. Moreover, looking at the con- 
vex program from a different point of view yields a condition of 
Lehmann-ScheffC: type. To begin with, we outline the necessary tools from 
convex programming theory. 

2. A CHARACTERIZATION OF OPTIMALITY FOR A 

CONVEX PROGRAMMING PROBLEM 

We shall define a convex programming problem and give necessary and 
sufficient conditions for a point to be’ optimal. But, before we do so, we 
need to define some concepts used in convex analysis. In the following, 3 
denotes a Hilbert space with inner product ( , ). 

DEFINITION 1. The subset Y of 55 is a convex cone if given any x in 9, 
,?xEY for all Iz>O and if given any x1, x2 in 9, x,+x,~Y. 

DEFINITION 2. Given a nonempty closed convex cone Y in X, a 
function g from 55 to X is said to be Y-convex if for any x, , x2 in X, and 1 
in (0, 1) 

It is clear that if a function is linear, then it is convex with respect to any 
cone Y. 
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DEFINITION 3. The dual of a cone 9 is the set 

The annihilator of a cone 9’ is the set .Yl= {x’ E %‘: (x’, x) = 0 for all x 
in 9). 

DEFINITION 4. A subset 9 of a convex cone Y is a face of 9’ if for any 
x,,xz in 9, x,+x?E~ implies X,E~ and x,E~. 

Let us now consider the following problem 

Minimize p(a) (C) 

such that g(u) E Y and a E Q, where p is a convex function from % to 92, Y 
is a closed convex cone in %“, g is an Y-convex function from X to X and 
$2 is a convex set in 3. For this convex programming problem (C), one can 
define the minimal face and the generalized cone of constancy at a given 
point a. 

DEFINITION 5. The minimal face for a given program (C) is the smallest 
face of Y containing the image g(&‘) of the feasible set cr8 = g .- ‘(9) n Q of 
(C). This minimal face is denoted by 94pf 

DEFINITION 6. Let g be the constraint function defined in (C), then the 
generalized cone of constancy for (C) at a is defined by 

o;(a)= {dg:X: El@(d)>0 with g(u+td)EYf-9”‘for TV [0, a(d)]). 

Using these concepts, Borwein and Wolkowicz in [3, Corollary 4.31 (see 
also Massam [6], in the case where Q = 9Y) gave the following conditions 
for a point u* to be optimal. 

Suppose that Y + + (Yf)’ is closed, then a* is optimal for (C) if and 
only if there exists an b in Y + such that 

Vp(a*) E Ng(a*) + (D;(u*) n cone(S2 - a*)) + 

and 

(6, da*)) = 0, 

where cone (52 -a*) denotes the convex cone generated by 52 - a*. 
In the special case where g is a linear function, bVg(a*) becomes 

g(b) and D;(a*) = {d~%:g(d)~Y~-9~) = g-r(Yf-Yf). Then 
(D;(a*))+ = (D;(u*))‘= (gP1(Yf- sPf))’ =g(YY’) (for a proof of this 
last result, see Drygas [4, p. 331, and so (D;(a*)ncone(Q --a*))+ = 
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g(Yri) + cone(S2-a*)+. It then follows from Corollary 4.3 in (3) that 
a* E A is optimal for (C) if and only if 

wa*) = ‘Y(s) + g(c) + u (2.1) 

for some u E (cone(8 - a*))+, c E (@)I, and s E Y + with (s, a*) = 0. 

3. THE NONNEGATIVE MINQUE 

The space % = sym W” of all real symmetric n x n matrices forms a 
Hilbert space with the inner product (A, B) = trace(AB). We write A > 0 to 
indicate that A belongs to the cone of nonnegative semi-definite matrices. 
As follows from (1.2) a nonnegative unbiased estimator y’Ay of some 
parametric function q’z is characterized by 

A 20, AX=O, (A, v,) = 47 for z~tf. (3.1) 

Such an estimator is always translation invariant and the condition AX= 0 
can be written MAM = A, where M = I - XX+ is the projection onto the 
null space of X’. Thus (3.1) is equivalent to 

A 20, MAM=A, (A, MV,M) = q’r (t E 0). (3.2) 

The quadratic form y’A*y is called nonnegative MINQUE if it minimizes 
the norm jlA]l = (A, A)‘/* among all A satisfying (3.2). Let Y denote the 
pointed closed convex cone of all matrices A 2 0 and let Sz be the linear 
manifold of all matrices A meeting (A, MY,M) = q’z (r E 0). We then have 
the convex program 

min f ((A((’ such that A = MAM E 9, AEQ. (3.3) 

Instead of this we consider 

min 4 IIAII* such that MAM E 9, AEl2. (3.4) 

Denoting the set of all feasible A of this program by d the feasible set of 
(3.3) reads M&M. The following lemma ensures that the solutions of both 
problems coincide. 

LEMMA. Let d c X be such that M&MC d. A* minimizes IJAIl such 
that A E ~4 if and only if A* equals MA *M and minimizes I( A (( such that 
A E M&M. 

The proof of the lemma follows immediately from the inequality 
llMAMl[ < lIAl/ which in turn is valid since the mapping A -+ MAM is an 
orthogonal procjection in sym 9”. 
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In order to utilize the result of the previous section for our problem (3.4) 
we have to determine Y +, Yf, and (cone(Q - A*)) +. Obviously Y + 
equals 9’. Further, writing 9?(A) for the image of a linear mapping A, any 
face Y0 of Y must be of the form 

Y?,=NYN= {AE~:w(A)c~(N)) 

for some projection N in Y (cf. Bellisard, Iochum, and Lima (1)). Now 9’f 
is the smallest face containing M&M, and M&M represents the set of all 
nonnegative unbiased estimators of q’r. Thus 

where A = MAM is a nonnegative unbiased estimator of q’T with maximum 
image. It alsways exists, for if there is some A E M&M whose image is not 
contained in that of A replace A by f(A + A). This procedure stops not 
later than the nth step. Denoting the projection onto 9?(A) by N we obtain 

9” = NcYN, where 9(N) c 9(M), 

since 9” is included in MYM. 
The cone Yf generates the subspace Yf - Yf = N(Y - 9) N = 

N(sym 9”) N. Its orthogonal complement is 

(.9’)‘= (C: NCN=O}. 

As is readily verified Y + (.Yf)’ is the subset of all A such that NAN is 
nonnegative. So 9’ + (.Z@)’ must be closed for it is the inverse image of the 
closed set Y under the continuous mapping A + NAN. 

Finally we need (cone(Q - A * )) + . Because A * belongs to Q we have 

52-A*={~-A*:(~,kfv,h4)=(A*,kw,hf), 7~0) 

= (D: (II, MV,M) = 0 for z E 0) 

= (i14P”A4)~ = cone(Q - A*), 

where Y = { I’,: z E t9} is the set of all covariance matrices of the model 
(1.1). Therefore Q - A* is a subspace and its dual equals its orthogonal 
complement. 

We now can apply the result of Section 2. Since Vi 11 AlI * = A we obtain 
from (2.1), A* E d is a solution of the convex program in (3.4) if and only 
if 
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forsomeAEspan8, CwithNCN=O,andSEYwith(S,A*)=O. AsA*is 
an element of Yf = NYN we have NA *N = A*. Moreover, W(N) is con- 
tained in B(M) and so NM = N = MN. Thus 

A*=NA*N=NSN+NV,N. (3.5) 

Here NSNaO and (NSN, A*)=(S, NA*N)=(S, A*)=O. 
Le’t us look now at the minimization problem from a different point of 

view. Instead of considering the program (3.4) we can as well deal with 

mint 11 A (I*, AEY, AEO. (3.6) 

Again the above lemma ensures that the solution A* of this problem coin- 
cides with that of the original program. Let 2 = 0 and apply the results of 
Section 2 to 

minf I/ A 1) 2, AeS?i=YnB. 

It then yields the condition 

A*E@-A*)+ 

which is equivalent to 

(A*, D)>O for all D E (MP’M)’ (3.7) 

such that A*+DBO. 
We summarize our results (3.5) and (3.7) in a proposition. 

PROPOSITION. A nonnegative unbiased estimator y’A*y of 4’2 in the 
model (1.1) is a nonnegative MINQUE if and only if one of the two 
equivalent conditions holds true: 

(i) (A*,D)ZOforallDE(MYM)‘suchthatA*+D>O. 

(ii) A* = S+ NV,N for some /Z~span tl and S>O such that 
(S, A*)=O. 

Here +‘“= {V,:TE~), M=Z-XX+, and N is the projection onto w(A), 
where y’Jy is a nonnegative unbiased estimator of q’z with maximum image. 

Condition (i) above was already derived in Pukelsheim’s (7) by the aid 
of another theorem of convex analysis. It can be easily seen. One just has to 
look at A=A*+lD and 

[IAIl”= IIA*J12+;12 llDllZ+24A*, D)> IIA*112 
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for 0 <A < 1. Because this is analogous to the method Lehmann and 
Scheffe [S] used for unrestricted estimation one might call (i) the 
Lehmann-Scheffe condition for nonnegative MINQUE. Moreover, (i) is 
easily deduced from (ii) observing that D = NDN= MDM when 
D E (MVMF and A* + D 2 0. Then 

(A*,D)=(A*-NV,N,D)=(S,D)=(S,A*+D)>,O. 

In this way the sufficiency of condition (ii) is a simple consequence of (i). 
Conversely, in order to prove the necessity of (ii) some convex analysis 
technique seems to be inevitable. 
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