A concise proof of Kruskal's theorem on tensor decomposition

John A. Rhodes
Department of Mathematics and Statistics, University of Alaska Fairbanks, P.O. Box 756660, Fairbanks, AK 99775, USA

ARTICLE INFO

Article history:

Received 17 January 2009
Accepted 25 November 2009
Available online 29 December 2009
Submitted by H. Schneider

AMS classification:

Primary: 15A69
Secondary: 15A72, 15A18

Keywords:

Tensor rank
Candecomp
Parafac

Abstract

A theorem of J. Kruskal from 1977, motivated by a latent-class statistical model, established that under certain explicit conditions the expression of a third-order tensor as the sum of rank- 1 tensors is essentially unique. We give a new proof of this fundamental result, which is substantially shorter than both the original one and recent versions along the original lines.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In [11], J. Kruskal proved that, under certain explicit conditions, the expression of a third-order tensor (i.e., a 3 -way array) of rank r as a sum of r tensors of rank 1 is unique, up to permutation of the summands. (See also [9,10].) This result contrasts sharply with the well-known non-uniqueness of expressions of matrices of rank at least 2 as sums of rank-1 matrices. The uniqueness of this tensor decomposition is moreover of fundamental interest for a number of applications, ranging from Kruskal's original motivation by latent-class models used in psychometrics, to chemistry and signal processing, as mentioned in [13] and its references. In these fields, the expression of a tensor as a sum of rank-1 tensors is often referred to as the Candecomp or Parafac decomposition. Recently, Kruskal's theorem has been used as a general tool for investigating the identifiability of a wide variety of statistical models with hidden variables [1,2].

[^0]As noted in [13], Kruskal's original proof was "rather inaccessible," leading a number of authors to work toward a shorter and more intuitive presentation. This thread, which continued to follow the basic outline of Kruskal's approach in which his 'Permutation Lemma' plays a key role, culminated in the proof given in [13]. Kruskal's original proof has undergone further streamlining in the manuscript [12]. In this paper, we present a new concise proof of Kruskal's theorem, Theorem 3 below, that follows a different approach. While the resulting theorem is identical, the alternative argument given here offers a new perspective on the role of Kruskal's explicit condition ensuring uniqueness.

While Kruskal's theorem gives a sufficient condition for uniqueness of a decomposition, the condition is in general not necessary. Of particular note are recent independent works of De Lathauwer [6] and Jiang and Sidiropoulos [8], which give a different criterion that can ensure uniqueness. These results require a stronger hypothesis than Kruskal's on one of the three sets of vectors used in the rank- 1 tensors, but allow weaker assumptions on the others. See also [14] for the connection between these works.

It would, of course, be highly desirable to obtain conditions - more involved than Kruskal's - that would ensure the essential uniqueness of the expression of a rank r tensor as a sum of rank- 1 tensors under a wider range of assumptions on the size and rank of the tensor. Note that both Kruskal's condition and that of $[6,8]$ can be phrased algebraically, in terms of the non-vanishing of certain polynomials in the variables of a natural parameterization of rank r tensors. This algebraic formulation allows one to conclude that generic rank r tensors of certain sizes have unique decompositions. (See [5] for more on generic aspects of tensor rank.) Having explicit understanding of these polynomial conditions is essential for certain applications, such as in [1]. The general problem of determining for which sizes and ranks of generic tensors the decomposition is essentially unique, and what explicit algebraic conditions can ensure uniqueness, remains open.

2. Notation

Throughout, we work over an arbitrary field.
For a matrix such as M_{k}, we use \mathbf{m}_{j}^{k} to denote the j th column, $\overline{\mathbf{m}}_{i}^{k}$ to denote the i th row, and $m_{i j}^{k}$ the (i, j) th entry. We use $\langle S\rangle$ to denote the span of a set of vectors S. With $[r]=\{1,2,3, \ldots, r\}$, we denote by \mathbb{G}_{r} the symmetric group on $[r]$.

Given matrices M_{l} of size $s_{l} \times r$, the matrix triple product $\left[M_{1}, M_{2}, M_{3}\right.$] is an $s_{1} \times s_{2} \times s_{3}$ tensor defined as a sum of r rank- 1 tensors by

$$
\left[M_{1}, M_{2}, M_{3}\right]=\sum_{i=1}^{r} \mathbf{m}_{i}^{1} \otimes \mathbf{m}_{i}^{2} \otimes \mathbf{m}_{i}^{3}
$$

so

$$
\left[M_{1}, M_{2}, M_{3}\right](j, k, l)=\sum_{i=1}^{r} m_{j i}^{1} m_{k i}^{2} m_{l i}^{3}
$$

A matrix A of size $t \times s_{l}$ acts on an $s_{1} \times s_{2} \times s_{3}$ tensor T 'in the lth coordinate.' For example, with $l=1$

$$
\left(A *_{1} T\right)(i, j, k)=\sum_{n=1}^{s_{1}} a_{i n} T(n, j, k)
$$

so that $A *_{1} T$ is of size $t \times s_{2} \times s_{3}$. One then easily checks that

$$
A *_{1}\left[M_{1}, M_{2}, M_{3}\right]=\left[A M_{1}, M_{2}, M_{3}\right],
$$

with similar formulas applying for actions in other coordinates.
Definition. The Kruskal rank, or K-rank, of a matrix is the largest number j such that every set of j columns is independent.

Definition. We say a triple of matrices $\left(M_{1}, M_{2}, M_{3}\right)$ is of type $\left(r ; a_{1}, a_{2}, a_{3}\right)$ if each M_{i} has r columns and the K-rank of M_{i} is at least $r-a_{i}$.

In a slight abuse of notation, we will say a product $\left[M_{1}, M_{2}, M_{3}\right]$ is of type $\left(r ; a_{1}, a_{2}, a_{3}\right)$ when the triple (M_{1}, M_{2}, M_{3}) is of that type.

Note that with this definition, type ($r ; a_{1}, a_{2}, a_{3}$) implies type $\left(r ; b_{1}, b_{2}, b_{3}\right.$) as long as $a_{i} \leqslant b_{i}$ for each i. Thus a_{i} is a bound on the gap between the K-rank of the matrix M_{i} and the number r of its columns. Intuitively, when the a_{i} are small it should be easier to identify the M_{i} from the product [M_{1}, M_{2}, M_{3}].

3. The proof

We begin by establishing a lemma that generalizes a basic insight that has been rediscovered many times over the last half century, in which matrix diagonalizations arising from matrix slices of a thirdorder tensor are used to understand the tensor decomposition. A few such instances of the appearance of this idea include [3,4], and other such references are mentioned in [7] where the idea is exploited for computational purposes. Note that [3] attributes an earlier occurrence to unpublished notes of P.F. Lazarsfeld.

Lemma 1. Suppose $\left(M_{1}, M_{2}, M_{3}\right)$ is of type ($r ; 0,0, r-1$); N_{1}, N_{2}, N_{3} are matrices with r columns; and $\left[M_{1}, M_{2}, M_{3}\right]=\left[N_{1}, N_{2}, N_{3}\right]$. Then there is some permutation $\sigma \in \Theta_{r}$ such that the following holds:

Let $\mathcal{I} \subseteq[r]$ be any maximal subset (with respect to inclusion) of indices with the property that $\left\langle\left\{\mathbf{m}_{i}^{3}\right\}_{i \in \mathcal{I}}\right\rangle$ is one-dimensional. Then

1. $\left\langle\left\{\mathbf{m}_{i}^{j}\right\}_{i \in \mathcal{I}}\right\rangle=\left\langle\left\{\mathbf{n}_{\sigma(i)}^{j}\right\}_{i \in \mathcal{I}}\right\rangle$, for $j=1,2,3$ and
2. \mathcal{I} is also maximal for the property that $\left\langle\left\{\mathbf{n}_{\sigma(i)}^{3}\right\}_{i \in \mathcal{I}}\right\rangle$ is one-dimensional.

Proof. That $\left(M_{1}, M_{2}, M_{3}\right)$ is of type $(r ; 0,0, r-1)$ means M_{1}, M_{2} have full column rank, and M_{3} has no zero columns.

Choose some vector \mathbf{c} that is not orthogonal to any of the columns of M_{3}, so that $\mathbf{c}^{T} M_{3}$ has no zero entries. (Such a vector may not exist with entries in a fixed finite field, but always does if we allow entries of \mathbf{c} to be in the algebraic closure, for instance.) Then

$$
A=\mathbf{c}^{T} *_{3}\left[M_{1}, M_{2}, M_{3}\right]=\left[M_{1}, M_{2}, \mathbf{c}^{T} M_{3}\right]=M_{1} \operatorname{diag}\left(\mathbf{c}^{T} M_{3}\right) M_{2}^{T}
$$

is a matrix of rank r. Since

$$
A=\mathbf{c}^{T} *_{3}\left[N_{1}, N_{2}, N_{3}\right]=\left[N_{1}, N_{2}, \mathbf{c}^{T} N_{3}\right]=N_{1} \operatorname{diag}\left(\mathbf{c}^{T} N_{3}\right) N_{2}^{T}
$$

N_{1} and N_{2} must also have rank r, and $\mathbf{c}^{T} N_{3}$ has no zero entries. These two expressions for A also show that the span of the columns of M_{j} is the same as that of the columns of N_{j} for $j=1,2$. Expressing the columns of M_{j} and N_{j} in terms of a basis given by the columns of M_{j}, we may henceforth assume $M_{1}=M_{2}=I_{r}$, the $r \times r$ identity, and N_{1}, N_{2} are invertible. Thus $A=\operatorname{diag}\left(\mathbf{c}^{T} M_{3}\right)$.

Now let S_{i} denote the slice of $\left[M_{1}, M_{2}, M_{3}\right]=\left[N_{1}, N_{2}, N_{3}\right]$ with fixed third coordinate i, so S_{i} is an $r \times r$ matrix. Recalling that $\overline{\mathbf{m}}_{i}^{j}$ and $\overline{\mathbf{n}}_{i}^{j}$ denote the i th rows of M_{j} and N_{j}, we have

$$
S_{i}=\operatorname{diag}\left(\overline{\mathbf{m}}_{i}^{3}\right)=N_{1} \operatorname{diag}\left(\overline{\mathbf{n}}_{i}^{3}\right) N_{2}^{T} .
$$

Note the matrices

$$
S_{i} A^{-1}=\operatorname{diag}\left(\overline{\mathbf{m}}_{i}^{3}\right) \operatorname{diag}\left(\mathbf{c}^{T} M_{3}\right)^{-1}=N_{1} \operatorname{diag}\left(\overline{\mathbf{n}}_{i}^{3}\right) \operatorname{diag}\left(\mathbf{c}^{T} N_{3}\right)^{-1} N_{1}^{-1}
$$

for various choices of i, commute. Thus their (right) simultaneous eigenspaces are determined. But from the two expressions for $S_{i} A^{-1}$ we see its α-eigenspace is spanned by the set

$$
\left\{\mathbf{e}_{j}=\mathbf{m}_{j}^{1} \mid m_{i, j}^{3} /\left(\mathbf{c}^{T} \mathbf{m}_{j}^{3}\right)=\alpha\right\}
$$

and also by the set

$$
\left\{\mathbf{n}_{j}^{1} \mid n_{i, j}^{3} /\left(\mathbf{c}^{T} \mathbf{n}_{j}^{3}\right)=\alpha\right\} .
$$

A simultaneous eigenspace for the $S_{i} A^{-1}$ is thus spanned by the set $\left\{\mathbf{e}_{j}\right\}_{j \in \mathcal{I}}$ where \mathcal{I} is a maximal set of indices with the property that if $j, k \in \mathcal{I}$, then

$$
m_{i, j}^{3} /\left(\mathbf{c}^{T} \mathbf{m}_{j}^{3}\right)=m_{i, k}^{3} /\left(\mathbf{c}^{T} \mathbf{m}_{k}^{3}\right), \quad \text { for all } i .
$$

This condition is equivalent to \mathbf{m}_{j}^{3} and \mathbf{m}_{k}^{3} being scalar multiples of one another. Such a set \mathcal{I} is therefore exactly of the sort described in the statement of the lemma. As the simultaneous eigenspaces are also spanned by similar sets defined in terms of the columns of N_{1}, one may choose a permutation σ so that claim 2 holds, as well as claim 1 for $j=1$.

The case $j=2$ of claim 1 is similarly proved using the transposes of A and the S_{i}. As the needed permutation of the columns of the N_{j} in the two cases of $j=1,2$ is dependent only on the maximal sets \mathcal{I}, a common σ may be chosen. Finally, the case $j=3$ follows from equating eigenvalues in the two expressions giving diagonalizations for $S_{i} A^{-1}$, to see that for all i

$$
m_{i, j}^{3} / \mathbf{c}^{T} \mathbf{m}_{j}^{3}=n_{i, \sigma(j)}^{3} / \mathbf{c}^{T} \mathbf{n}_{\sigma(j)}^{3},
$$

so \mathbf{m}_{j}^{3} and $\mathbf{n}_{\sigma(j)}^{3}$ are scalar multiples of one another.
Since the diagonalizations used in this argument were obtained using only matrix inversion and multiplication, we emphasize that no assumption that the field be algebraically closed is needed.

This lemma quickly yields a special case of Kruskal's theorem, when two of the matrices in the product are assumed to have full column rank.

Corollary 2. Suppose (M_{1}, M_{2}, M_{3}) is of type ($r ; 0,0, r-2$); N_{1}, N_{2}, N_{3} are matrices with r columns; and $\left[M_{1}, M_{2}, M_{3}\right]=\left[N_{1}, N_{2}, N_{3}\right]$. Then there exists some permutation matrix P and invertible diagonal matrices D_{i} with $D_{1} D_{2} D_{3}=I_{r}$ such that $N_{i}=M_{i} D_{i} P$.

Proof. Since (M_{1}, M_{2}, M_{3}) is also of type ($r ; 0,0, r-1$), we may apply Lemma 1 . As in the proof of that lemma, we may also assume $M_{1}=M_{2}=I_{r}$. But M_{3} has K-rank at least 2, so every pair of columns is independent. Therefore, the maximal sets of indices in Lemma 1 are all singletons. Thus with P acting to permute columns by σ, the one-dimensionality of all eigenspaces shows there is a permutation P and invertible diagonal matrices D_{1}, D_{2} with $N_{i}=M_{i} D_{i} P=D_{i} P$ for $j=1,2$.

Thus $\left[M_{1}, M_{2}, M_{3}\right]=\left[N_{1}, N_{2}, N_{3}\right]$ implies

$$
\left[I_{r}, I_{r}, M_{3}\right]=\left[D_{1} P, D_{2} P, N_{3}\right]=\left[D_{1}, D_{2}, N_{3} P^{T}\right]=\left[I_{r}, I_{r}, N_{3} P^{T} D_{1} D_{2}\right],
$$

which shows $M_{3}=N_{3} P^{T} D_{1} D_{2}$. Setting $D_{3}=\left(D_{1} D_{2}\right)^{-1}$, we find $N_{3}=M_{3} D_{3} P$.
We now use the lemma to give a new proof of Kruskal's Theorem 4a of [11] in its full generality. Note that the condition on the a_{i} stated in the following theorem is equivalent to Kruskal's condition that $\left(r-a_{1}\right)+\left(r-a_{2}\right)+\left(r-a_{3}\right) \geqslant 2 r+2$. Kruskal's work also presents several variants of the theorem that are slightly stronger but with more complicated assumptions, which are not considered here.

Theorem 3 [11]. Suppose (M_{1}, M_{2}, M_{3}) is of type ($r ; a_{1}, a_{2}, a_{3}$) with $a_{1}+a_{2}+a_{3} \leqslant r-2 ; N_{1}, N_{2}, N_{3}$ are matrices with r columns, and $\left[M_{1}, M_{2}, M_{3}\right]=\left[N_{1}, N_{2}, N_{3}\right]$. Then there exists some permutation matrix P and invertible diagonal matrices D_{i} with $D_{1} D_{2} D_{3}=I_{r}$ such that $N_{i}=M_{i} D_{i} P$.

Proof. We need only consider $a_{1}+a_{2}+a_{3}=r-2$. We proceed by induction on r, with the case $r=$ 2 (and 3) already established by Corollary 2 . We may also assume $a_{1} \leqslant a_{2} \leqslant a_{3}$, We may furthermore restrict to $a_{2} \geqslant 1$, since the case $a_{1}=a_{2}=0$ is established by Corollary 2 .

We first claim that it will be enough to show that, for some $1 \leqslant i \leqslant 3$, there is some set of indices $\mathcal{J} \subset[r], 1 \leqslant|\mathcal{J}| \leqslant r-a_{i}-2$, and a permutation $\sigma \in \mathfrak{G}_{r}$ such that

To see this, if there is such a set \mathcal{J}, assume for convenience $i=1$ (the cases $i=2,3$ are similar), and the columns of M_{i}, N_{i} have been reordered so that $\sigma=i d$ and $\mathcal{J}=[s]$. Let Π be a matrix with nullspace the span described in Eq. (1). Then

$$
\left[\Pi M_{1}, M_{2}, M_{3}\right]=\Pi *_{1}\left[M_{1}, M_{2}, M_{3}\right]=\Pi *_{1}\left[N_{1}, N_{2}, N_{3}\right]=\left[\Pi N_{1}, N_{2}, N_{3}\right] .
$$

But since the first s columns of ΠM_{1} and ΠN_{1} are zero, these triple products can be expressed as triple products of matrices with only $r-s$ columns. That is, using the symbol ' \sim ' to denote deletion of the first s columns,

$$
\left[\Pi \widetilde{M}_{1}, \widetilde{M}_{2}, \widetilde{M}_{3}\right]=\left[\Pi \widetilde{N}_{1}, \widetilde{N}_{2}, \widetilde{N}_{3}\right]
$$

For $i=2,3$, since M_{i} has K-rank $\geqslant r-a_{i}$, the matrix \widetilde{M}_{i} has $K-r a n k \geqslant \min \left(r-a_{i}, r-s\right)$. Since the nullspace of Π is spanned by the first s columns of M_{1}, and M_{1} has K-rank $\geqslant r-a_{1}$, one sees that $\Pi \widetilde{M}_{1}$ has K-rank $\geqslant r-s-a_{1}$, as follows: For any set of $r-s-a_{1}$ columns of $\Pi \widetilde{M}_{1}$, consider the corresponding columns of M_{1}, together with the first s columns. This set of $r-a_{1}$ columns of M_{1} is therefore independent, so the span of its image under Π is of dimension $r-s-a_{1}$. This span must then have as a basis the chosen set of $r-s-a_{1}$ columns of $\Pi \widetilde{M}_{1}$, which are therefore independent. Thus $\left[\Pi \widetilde{M}_{1}, \widetilde{M}_{2}, \widetilde{M}_{3}\right]$ is of type $\left(r-s ; a_{1}, b_{2}, b_{3}\right)$, where $b_{i}=\max \left(0, a_{i}-s\right)$ for $i=2$, Note also that $s \leqslant r-a_{1}-2$ implies $a_{1}+b_{2}+b_{3} \leqslant r-s-2$.

We may thus apply the inductive hypothesis to $\left[\Pi \widetilde{M}_{1}, \widetilde{M}_{2}, \widetilde{M}_{3}\right]=\left[\Pi \widetilde{N}_{1}, \widetilde{N}_{2}, \widetilde{N}_{3}\right]$, and, after an allowed permutation and scalar multiplication of the columns of the N_{i}, conclude that $\widetilde{M}_{i}=\widetilde{N}_{i}$ for $i=2$, 3. But this means we can now take the set \mathcal{J} described in Eq. (1) to be a singleton set $\{j\}$, with $j>s$, and $i=2$. Again applying the argument developed thus far implies that, allowing for a possible permutation and rescaling, all but the j th columns of M_{3} and N_{3} are identical. As $\mathbf{m}_{j}^{3}=\mathbf{n}_{j}^{3}$, this shows $M_{3}=N_{3}$. Applying this argument yet again, with $i=3$, and varying choices of j, then shows $M_{1}=N_{1}$ and $M_{2}=N_{2}$, up to the allowed permutation and rescaling. The claim is thus established.

We next argue that some set of columns of some M_{i}, N_{i} meets the hypotheses of the above claim.
Let Π_{3} be any matrix with nullspace $\left\langle\left\{\mathbf{n}_{i}^{3}\right\}_{1 \leqslant i \leqslant a_{1}+a_{2}}\right\rangle$, spanned by the first $a_{1}+a_{2}$ columns of N_{3}. Let \mathcal{Z} be the set of indices of all zero columns of $\Pi_{3} M_{3}$. Since every set of $r-a_{3}=a_{1}+a_{2}+2$ columns of M_{3} is independent, $|\mathcal{Z}| \leqslant a_{1}+a_{2}$. Note also that at least 2 columns of $\Pi_{3} M_{3}$ are independent, since the span of any $a_{1}+a_{2}+2$ columns of $\Pi_{3} M_{3}$ is at least two-dimensional.

Let $\mathcal{S}_{1}, \mathcal{S}_{2}$ be any disjoint subsets of $[r]$ such that $\left|\mathcal{S}_{1}\right|=a_{2},\left|\mathcal{S}_{2}\right|=a_{1}, \mathcal{Z} \subseteq \mathcal{S}_{1} \cup \mathcal{S}_{2}=\mathcal{S}$, and \mathcal{S} excludes at least two indices of independent columns of $\Pi_{3} M_{3}$. Let $\Pi_{1}=\Pi_{1}\left(\mathcal{S}_{1}\right)$ be any matrix with nullspace $\left\langle\left\{\mathbf{m}_{i}^{1}\right\}_{i \in \mathcal{S}_{1}}\right\rangle$, and let $\Pi_{2}=\Pi_{2}\left(\mathcal{S}_{2}\right)$ be any matrix with nullspace $\left\langle\left\{\mathbf{m}_{i}^{2}\right\}_{i \in \mathcal{S}_{2}}\right\rangle$.

Now consider

$$
\begin{aligned}
{\left[\Pi_{1} M_{1}, \Pi_{2} M_{2}, \Pi_{3} M_{3}\right] } & =\Pi_{3} *_{3}\left(\Pi_{2} *_{2}\left(\Pi_{1} *_{1}\left[M_{1}, M_{2}, M_{3}\right]\right)\right) \\
& \left.=\Pi_{3} *_{3}\left(\Pi_{2} *_{2}\left(\Pi_{1} *_{1}\left[N_{1}, N_{2}, N_{3}\right]\right)\right)\right)=\left[\Pi_{1} N_{1}, \Pi_{2} N_{2}, \Pi_{3} N_{3}\right]
\end{aligned}
$$

By the specification of the nullspace of Π_{3}, the columns of all N_{i} with indices in $\left[a_{1}+a_{2}\right]$ can be deleted in this last product. In the first product, one can similarly delete the columns of the M_{i} with indices in \mathcal{S}, due to the specifications of the nullspaces of Π_{1} and Π_{2}. Using ' \sim ' to denote the deletion of these columns, we have

$$
\begin{equation*}
\left[\Pi_{1} \widetilde{M}_{1}, \Pi_{2} \widetilde{M}_{2}, \Pi_{3} \widetilde{M}_{3}\right]=\left[\Pi_{1} \widetilde{N}_{1}, \Pi_{2} \widetilde{N}_{2}, \Pi_{3} \widetilde{N}_{3}\right] \tag{2}
\end{equation*}
$$

where these products involve matrix factors with $r-a_{1}-a_{2}=a_{3}+2$ columns.
The matrix $\Pi_{1} \widetilde{M}_{1}$ in fact has full column rank. To see this, note that it can also be obtained from M_{1} by (a) first deleting columns with indices in \mathcal{S}_{2}, then (b) multiplying on the left by Π_{1}, and finally (c) deleting the columns arising from those in M_{1} with indices in \mathcal{S}_{1}. Since M_{1} has K-rank at least $r-a_{1}$, step (a) produces a matrix with $r-a_{1}$ columns, and full column rank. Since the nullspace of Π_{1} is spanned by certain of the columns of this matrix, step (b) produces a matrix whose non-zero columns are independent. Step (c) then deletes all zero columns to give a matrix of full column rank. Similarly, the matrix $\Pi_{2} \widetilde{M}_{2}$ has full column rank.

Noting that $\Pi_{3} \widetilde{M}_{3}$ has no zero columns since $\mathcal{Z} \subseteq \mathcal{S}$, we may thus apply Lemma 1 to the products of Eq. (2). In particular, we find that there is some $\sigma \in \mathbb{S}_{r}$ with $\sigma([r] \backslash \mathcal{S})=[r] \backslash\left[a_{1}+a_{2}\right]$ such that
if \mathcal{I} is a maximal subset of $[r] \backslash \mathcal{S}$ with respect to the property that $\left\langle\left\{\Pi_{3} \mathbf{m}_{i}^{3}\right\}_{i \in I}\right)$ is one-dimensional, then

$$
\begin{equation*}
\left\langle\left\{\Pi_{j} \mathbf{m}_{i}^{j}\right\}_{i \in \mathcal{I}}\right\rangle=\left\langle\left\{\Pi_{j} \mathbf{n}_{\sigma(i)}^{j}\right\}_{i \in \mathcal{I}}\right\rangle \tag{3}
\end{equation*}
$$

for $j=1,2,3$.
Since we chose \mathcal{S} to exclude indices of two independent columns of $\Pi_{3} M_{3}$, there will be such a maximal subset \mathcal{I} of $[r] \backslash \mathcal{S}$ that contains at most half the indices. We thus pick such an \mathcal{I} with $|\mathcal{I}| \leqslant\left\lfloor\left(r-a_{1}-a_{2}\right) / 2\right\rfloor=\left\lfloor a_{3} / 2\right\rfloor+1$, and consider two cases:
Case $a_{1}=0$. Then $\mathcal{S}_{2}=\emptyset$, and Π_{2} has trivial nullspace and thus may be taken to be the identity. Since $a_{3} \geqslant a_{2} \geqslant 1$, this implies $|\mathcal{I}| \leqslant a_{3}=r-a_{2}-2$. The sets $\left\{\mathbf{m}_{i}^{2}\right\}_{i \in \mathcal{I}}$ and $\left\{\mathbf{n}_{\sigma(i)}^{2}\right\}_{i \in \mathcal{I}}$ therefore satisfy the hypotheses of the claim.

Case $a_{1} \geqslant 1$. Note that $|\mathcal{I}|+a_{2}+1 \leqslant\left\lfloor a_{3} / 2\right\rfloor+a_{2}+2<a_{2}+a_{3}+2=r-a_{1}$, so for any index k, the columns of M_{1} indexed by $\mathcal{I} \cup \mathcal{S}_{1} \cup\{k\}$ are independent. This then implies that for $j=1$ the spanning set on the left of Eq. (3) is independent, so the spanning set on the right is as well. Thus the set $\left\{\mathbf{n}_{\sigma(i)}^{1}\right\}_{i \in \mathcal{I}}$ is also independent. Note next that Eq. (3) implies that, for $i \in \mathcal{I}$, there are scalars b_{j}^{i}, c_{k}^{i} such that

$$
\begin{equation*}
\mathbf{n}_{\sigma(i)}^{1}-\sum_{j \in \mathcal{I}} b_{j}^{i} \mathbf{m}_{j}^{1}=\sum_{k \in \mathcal{S}_{1}} c_{k}^{i} \mathbf{m}_{k}^{1} . \tag{4}
\end{equation*}
$$

Now for any $p \in \mathcal{S}_{1}, q \in \mathcal{S}_{2}$, let

$$
\mathcal{S}_{1}^{\prime}=\left(\mathcal{S}_{1} \backslash\{p\}\right) \cup\{q\}, \quad \mathcal{S}_{2}^{\prime}=\left(\mathcal{S}_{2} \backslash\{q\}\right) \cup\{p\} .
$$

Choosing Π_{1}^{\prime} and Π_{2}^{\prime} to have nullspaces determined as above by the index sets \mathcal{S}_{1}^{\prime} and \mathcal{S}_{2}^{\prime}, and applying Lemma 1 to $\left[\Pi_{1}^{\prime} M_{1}, \Pi_{2}^{\prime} M_{2}, \Pi_{3} M_{3}\right]=\left[\Pi_{1}^{\prime} N_{1}, \Pi_{2}^{\prime} N_{2}, \Pi_{3} N_{3}\right]$, similarly shows that for some permutation σ^{\prime} and any $i^{\prime} \in \mathcal{I}$ there are scalars $d_{k}^{i^{\prime}}, f_{k}^{j}$ such that

$$
\begin{equation*}
\mathbf{n}_{\sigma^{\prime}\left(i^{\prime}\right)}^{1}-\sum_{j \in \mathcal{I}} d_{j}^{i^{\prime}} \mathbf{m}_{j}^{1}=\sum_{l \in \mathcal{S}_{1}^{\prime}} f_{l}^{i^{\prime}} \mathbf{m}_{l}^{1} \tag{5}
\end{equation*}
$$

Note that since the same Π_{3} was used, the set \mathcal{I} is unchanged here, and σ and σ^{\prime} must have the same image on \mathcal{I}. Picking $i^{\prime} \in \mathcal{I}$ so that $\sigma^{\prime}\left(i^{\prime}\right)=\sigma(i)$, and subtracting Eq. (4) from (5) shows

$$
\sum_{j \in \mathcal{I}}\left(b_{j}^{i}-d_{j}^{i^{\prime}}\right) \mathbf{m}_{j}^{1}=\sum_{k \in \mathcal{S}_{1} \backslash\{p\}}\left(f_{k}^{i^{\prime}}-c_{k}^{i}\right) \mathbf{m}_{k}^{1}+f_{q}^{i^{\prime}} \mathbf{m}_{q}^{1}-c_{p}^{i} \mathbf{m}_{p}^{1}
$$

But since the columns of M_{1} appearing in this equation are independent, we see that $f_{q}^{i}=c_{p}^{i}=$ 0 . By varying p, we conclude that $\mathbf{n}_{\sigma(i)}^{1} \in\left\langle\left\{\mathbf{m}_{i}^{1}\right\}_{i \in \mathcal{I}}\right\rangle$. Thus $\left\langle\left\{\mathbf{n}_{\sigma(i)}^{1}\right\}_{i \in \mathcal{I}}\right\rangle \subseteq\left\langle\left\{\mathbf{m}_{i}^{1}\right\}_{i \in \mathcal{I}}\right\rangle$. Since both of these spanning sets are independent, and of the same cardinality, their spans must be equal. Since $|\mathcal{I}| \leqslant r-a_{1}-2$, the set \mathcal{I} satisfies the hypotheses of the claim.

Acknowledgements

The author thanks the National Science Foundation, for support from NSF grant DMS 0714830, and the Statistical and Applied Mathematical Sciences Institute, for support during a residency in which this work had its origins.

References

[1] Elizabeth S. Allman, Catherine Matias, John A. Rhodes, Identifiability of parameters in latent structure models with many observed variables, Ann. Statist. 37 (6A) (2009) 3099-3132.
[2] Elizabeth S. Allman, John A. Rhodes, The identifiability of covarion models in phylogenetics, IEEE/ACM Trans. Comput. Biol. Bioinformatics 6 (2009) 76-88.
[3] T.W. Anderson, On estimation of parameters in latent structure analysis, Psychometrika 19 (1954), 1-10 (MR MR0075492 (17,756e)).
[4] Joseph T. Chang, Full reconstruction of Markov models on evolutionary trees: identifiability and consistency, Math. Biosci. 137 (1) (1996), 51-73 (MR 97k:92011).
[5] P. Comon, Jos M.F. ten Berge, L. De Lathauwer, J. Castaing, Generic and typical ranks of multi-way arrays, Linear Algebra Appl. 430 (11-12) (2009), 2997-3007 (MR MR2517853).
[6] Lieven De Lathauwer, A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalizations, SIAM J. Matrix Anal. Appl. 28 (3) (2006) 642-666.
[7] Lieven De Lathauwer, Bart De Moor, Joos Vandewalle, Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition, SIAM J. Matrix Anal. Appl. 26 (2) (2004) 295-327.
[8] Tao Jiang, Nicholas D. Sidiropoulos, Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints, IEEE Trans. Signal Process. 52 (9) (2004) 2625-2636.
[9] Joseph B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays, Multiway Data Analysis (Rome, 1988), North-Holland, Amsterdam, 1989. Multiway Data Analysis (Rome, 1988), pp. 7-18 (MR MR1088949).
[10] Joseph B. Kruskal, More factors than subjects, tests and treatments: an indeterminacy theorem for canonical decomposition and individual differences scaling, Psychometrika 41 (3) (1976), 281-293 (MR MR0488592 (58 \#8119)).
[11] Joseph B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions with application to arithmetic complexity and statistics, Linear Algebra Appl. 18 (2) (1977), 95-138 (MR MR0444690 (56 \#3040)).
[12] J.M. Landsberg, Kruskal's theorem, 2009, preprint, arXiv:0902.0543.
[13] Alwin Stegeman, Nicholas D. Sidiropoulos, On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition, Linear Algebra Appl. 420 (2007) 540-552.
[14] Alwin Stegeman, Jos M.F. ten Berge, Lieven De Lathauwer, Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices, Psychometrika 71 (2006) 219-229.

[^0]: E-mail address: j.rhodes@uaf.edu

