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a b s t r a c t

Let G be a finitely generated group, A a finite set of generators and
K a subgroup of G. We define what it means for (G, K) to be a
context-free pair; when K is trivial, this specializes to the standard
definition of G to be a context-free group.

We derive some basic properties of such group pairs. Context-
freeness is independent of the choice of the generating set. It is
preserved under finite index modifications of G and finite index
enlargements of K . If G is virtually free and K is finitely generated
then (G, K) is context-free. A basic tool is the following: (G, K) is
context-free if and only if the Schreier graph of (G, K)with respect
to A is a context-free graph.

© 2012 Elsevier Ltd.

1. Introduction

Let G be a finitely generated group and K a (not necessarily finitely generated) subgroup of G. We
can choose a finite set A ⊂ G of generators such that every element of G is of the form g = g1 · · · gn,
where n ≥ 0 and g1, . . . , gn ∈ A. Thus, A generates G as a semigroup. We shall say that (G, K) is
context-free, if – loosely spoken – the language of all words over A that represent an element of K is
context-free.

The precise definition needs some preparation. Let Σ be a finite alphabet andψ : Σ → G be a (not
necessarily injective) mapping such that A = ψ(Σ) satisfies the above finite generation property for
G. Then ψ has a unique extension, also denoted ψ , as a monoid homomorphism ψ : Σ∗

→ G. Recall
that Σ∗ consists of all words w = a1 · · · an, where n ≥ 0 and a1, . . . , an ∈ Σ (repetitions allowed).
The number n is the length |w| of w. If n = 0 this means that w = ϵ, the empty word. This is the
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neutral element of Σ∗, and Σ∗ is a free monoid with the binary operation of concatenation of words.
The extension of ψ is of course given by

ψ(a1 · · · an) = ψ(a1) · · ·ψ(an),

where the product on the right hand side is taken in G. Given these ingredients, we shall say that
ψ : Σ → G is a semigroup presentation of G, referring to the fact that A generates G as a semigroup. A
language over Σ is a non-empty subset of Σ∗.

Definition 1.1. The word problem of (G, K)with respect to ψ is the language

L(G, K , ψ) = {w ∈ Σ∗
: ψ(w) ∈ K}.

We say that the triple (G, K , ψ) is context-free, if L(G, K , ψ) is a context-free language.

A context-free grammar is a quadruple C = (V,Σ, P, S), where V is a finite set of variables, disjoint
from the finite alphabetΣ (the terminal symbols), the variable S is the start symbol, andP ⊂ V×(V∪Σ)∗

is a finite set of production rules. We write T ⊢ u or (T ⊢ u) ∈ P if (T , u) ∈ P. For v,w ∈ (V ∪ Σ)∗,
we write v H⇒ w if v = v1Tv2 and w = v1uv2, where u, v1, v2 ∈ (V ∪ Σ)∗ and T ⊢ u.
This is a single derivation step, and it is called rightmost, if v2 ∈ Σ∗. A derivation is a sequence
v = w0, w1, . . . , wk = w ∈ (V ∪ Σ)∗ such that wi−1 H⇒ wi; we then write v ∗

H⇒w. A rightmost
derivation is onewhere each step is rightmost. The succession of steps of any derivation T ∗

H⇒w ∈ Σ∗

can be reordered so that it becomes a rightmost derivation. For T ∈ V, we consider the language
LT = {w ∈ Σ∗

: T ∗
H⇒w}. The language generated by C is L(C) = LS .

A context-free language is a language generated by a context-free grammar. As a basic reference for
Language and Automata Theory, we refer to the magnificent monograph of Harrison [6].

The above definition of a context-free pair, or rather triple, (G, K , ψ) makes sense when G is
a finitely generated monoid and K is a sub-monoid, but here we are interested in groups. When
in addition K = {1G}, this leads to the notion of G being a context-free group. In two celebrated
papers, Muller and Schupp [11,12] have carried out a detailed study of context-free groups and
more generally, context-free graphs. In particular, context-freeness of a group is independent of
the particular choice of the generating set A of G. The main result of [11], in combination with a
fundamental theorem of Dunwoody [4], is that a finitely generated group is context-free if and only
if it is virtually free, that is, it contains a free subgroup of finite index. (In [11], it is assumed that
A = A−1 and that ψ : Σ → A = ψ(Σ) is one-to-one, but the results carry over immediately to the
more general setting where those two properties are not required.)

Previously, Anisimov [1] had shown that the groups whose word problem L(G, {1G}, ψ) is regular
(see Section 2 for the definition) are precisely the finite groups.

The above mentioned context-free graphs are labelled, rooted graphs with finitely many
isomorphism classes of cones. The latter are the connected components of the graph that remain after
removing a ball around the root with arbitrary radius. See Section 4 formore precise details. As shown
in [12], there is a natural correspondence between such graphs and pushdown automata, which are
another tool for generating context-free languages; see Section 3.

Among subsequent work, we mention Pélecq [13] and Sénizergues [16], who studied actions on,
resp. quotients of context-free graphs. Group-related examples occur also in Ceccherini-Silberstein
and Woess [3].

More recently, Holt et al. [7] have introduced and studied co-context-free groups, which are
such that the complement of L(G, {1G}, ψ) is context-free, see also Lehnert and Schweitzer [9].
This concept has an obvious extension to co-context-free pairs of groups, resp. graphs, on whose
examination we do not (yet) embark.

In the present notes, we collect properties and examples of context-free pairs of groups (G, K).

• The language L(G, K , ψ) is regular if and only if the index [G : K ] of K inG is finite (Proposition 2.4).
• The property that L(G, K , ψ) is context-free does not depend on the specific choice of the

semigroup presentation ψ , so that context-freeness is just a property of the pair (G, K), a
consequence of Lemma 3.1.
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• If (G, K) is context-free then L(G, K , ψ) is a deterministic context-free language (see Section 3 for
the definition) for any semigroup presentation ψ : Σ → G (Corollary 4.8.a).

• If (G, K) is context-free and H is a finitely generated subgroup of G, then the pair (H, K ∩ H) is
context-free (Lemma 3.1).

• If [G : H] < ∞ then (G, K) is context-free if and only if (H, K ∩ H) is context-free (Proposition 3.3
& Lemma 4.9).

• If (G, K) is context-free and H is a subgroup of G with K ≤ H and [H : K ] < ∞ then (G,H) is
context-free (Lemma 4.9).

• If K is finite then G is context-free if and only if (G, K) is context-free (Lemma 4.11).
• If (G, K) is context-free then (G, g−1Kg) is context-free for every g ∈ G (Corollary 4.8.b).
• If G is virtually free and K is a finitely generated subgroup of G then (G, K) is context-free

(Corollary 5.3).

Several of these properties rely on the following.

• A fully deterministic, symmetric labelled graph (see Section 2 for definitions) is context-free in the
sense of Muller and Schupp if and only if the language of all words which are labels of a path that
starts and ends at a given root vertex is context-free (Theorems 4.2 and 4.6).

The (harder) ‘‘if’’ part is not contained in previous work. It implies the following.
• The pair (G, K) is context-free if and only if for some (⇐⇒ any) symmetric semigroup presentation
ψ : Σ → G, the Schreier graph of (G, K) with respect to ψ is a context-free graph. (See again
Section 2 for precise definitions).

In a second paper [20], a slightly more general approach to context-freeness of graphs via cuts and
tree-sets is given. It allows to show that certain structural properties (‘‘irreducibility’’) are preserved
under finite-index-modifications of the underlying pair of groups. This is then applied to random
walks, leading in particular to results on the asymptotic behaviour of transition probabilities.

In concluding the Introduction, we remark that with the exception of some ‘‘elementary’’ cases,
context-free pairs of groups are always pairs with more than one end. Ends of pairs of groups were
studied, e.g., by Scott [15], Swarup [18] and Sageev [14]. This leads directly to asking about the
interplay between context-freeness of pairs and decomposition as amalgamated products or HNN-
extensions. An example at the end of Section 5 shows that there is no immediate answer.

2. Schreier graphs and the regular case

Let Σ be a finite alphabet. A directed graph labelled by Σ is a triple (X, E, ℓ), where X is the (finite
or countable) set of vertices, E ⊂ X ×Σ×X is the set of oriented, labelled edges and ℓ : E ∋ (x, a, y) →

a ∈ Σ is the labelling map.
For an edge e = (x, a, y) ∈ E, its initial vertex is e−

= x and its terminal vertex is e+
= y, and we

say that e is outgoing from x and ingoing into y. If y = x then e is a loop, which is considered both as
an outgoing and as an ingoing edge. We allowmultiple edges, i.e., edges of the form e1 = (x, a1, y) and
e2 = (x, a2, y) with a1 ≠ a2, but here we exclude multiple edges where also the labels coincide. The
graph is always assumed to be locally finite, that is, every vertex is an initial or terminal vertex of only
finitely many edges. We also choose a fixed vertex o ∈ X , the root or origin.We shall often just speak
of the graph X , keeping in mind the presence of E and ℓ.

We call X fully labelled if at every vertex, each a ∈ Σ occurs as the label of at least one outgoing
edge. We say that X is deterministic if at every vertex all outgoing edges have distinct labels, and fully
deterministic if it is fully labelled and deterministic. Finally, we say that X is symmetric or undirected
if there is a fixed point free involution a → a−1 of Σ (i.e., (a−1)−1

= a, excluding the possibility that
a−1

= a) such that for each edge e = (x, a, y) ∈ E, also the reversed edge e−1
= (y, a−1, x) belongs to E.

A path in X is a sequence π = e1e2 . . . en of edges such that e+

i = e−

i+1 for i = 1, . . . , n − 1. The
vertices π−

= e−

1 and π+
= e+

n are the initial and the terminal vertex of π . The number |π | = n is the
length of the path. The label of π is ℓ(π) = ℓ(e1)ℓ(e2) · · · ℓ(en) ∈ Σ∗. We also admit the empty path
starting and ending at a vertex x, whose label is ϵ. Denote byΠx,y = Πx,y(X) the set of all paths π in
X with initial vertex π−

= x and terminal vertex π+
= y. The following needs no proof.
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Lemma/Definition 2.1. Let (X, E, ℓ) be a labelled graph, x ∈ X andw ∈ Σ∗. We defineΠx(w) = {π :

π−
= x, ℓ(π) = w}, the set of all paths that start at x and have labelw. The set of all terminal vertices

of those paths is denoted xw = {π+
: π ∈ Πx(w)}.

Analogously, we defineΠ x(w) = {π : π+
= x, ℓ(π) = w}, the set of all paths that terminate at

x and have labelw, and write x−w
= {π−

: π ∈ Π x(w)}.
If X is fully labelled, thenΠx(w) is always non-empty.
If X is deterministic, thenΠx(w) has at most one element, and if that element exists, it is denoted

πx(w), while xw just denotes its endpoint.
If X is fully deterministic, then xw is a unique vertex of X for every x ∈ X ,w ∈ Σ∗.
Finally, if X is symmetric (not necessarily deterministic), then Π x(w) = Πx(w

−1), where for
w = a1 · · · an, one definesw−1

= a−1
n · · · a−1

1 .

With a labelled, directed graph as above, we can associate various languages.We can, e.g., consider
the language

Lx,y = Lx,y(X) = {ℓ(π) : π ∈ Πx,y(X)}, where x, y ∈ X . (1)

Definition 2.2. Let G be a finitely generated group, K a subgroup and ψ : Σ → G a semigroup pre-
sentation of G. The Schreier graph X = X(G, K , ψ) has vertex set

X = K \ G = {Kg : g ∈ G}

(the set of all right K -cosets in G), and the set of labelled, directed edges

E = {e = (x, a, y) : x = Kg, y = Kgψ(a), where g ∈ G, a ∈ Σ}.

X is a rooted graph with origin o = K , the right coset corresponding to the neutral element 1G
of the group G. The Schreier graph is fully deterministic. It is also strongly connected: for every pair
x, y ∈ X , there is a path from x to y. (This follows from the fact thatψ(Σ) generates G as a semigroup.)
When K = {1G} thenwewrite X(G, ψ). This is the Cayley graph of Gwith respect toψ , ormore loosely
speaking, with respect to the set ψ(Σ) of generators.

Note that X can have the loop e = (x, a, x) ∈ E with x = Kg . This holds if and only ifψ(a) ∈ g−1Kg .
It can also have the multiple edges e1 = (x, a1, y) and e2 = (x, a2, y) with x = Kg and a1 ≠ a2. This
occurs if andonly ifψ(a2)ψ(a1)−1

∈ g−1Kg . In particular, theremight bemultiple loops. The following
is obvious.

Lemma 2.3. Let K be a subgroup of G and ψ : Σ → G be a semigroup presentation of G. Then

L(G, K , ψ) = Lo,o(X)

is the language of all labels of closed paths starting and ending at o = K in the Schreier graph X(G, K , ψ).

A context-free grammar C = (V,Σ, P, S) and the language L(C) are called linear, if every
production rule in P is of the form T ⊢ v1Uv2 or T ⊢ v, where v, v1, v2 ∈ Σ∗ and T ,U ∈ V. If
furthermore in this situation one always has v2 = ϵ (the empty word), then grammar and language
are called right linear or regular.

A finite automaton A consists of a finite directed graph X = (X, E, ℓ)with label set Σ and labelling
map ℓ, togetherwith a root vertex o and anon-empty set F ⊂ X . The vertices ofX are called the statesof
A, the root o is the initial state, and the elements of F are the final states. The automaton is called (fully)
deterministic provided the labelled graph X is (fully) deterministic. The language accepted by A is

L(A) =


x∈F

Lo,x(X).

If A is deterministic, then for each w ∈ L(A) there is a unique path π ∈


x∈F Πo,x(X) such that
ℓ(π) = w. A state y ∈ X is called useful if there is some word w ∈ L such that the vertex y lies on a
path in


x∈F Πo,x(X) with label w. It is clear that we can remove all useless states and their ingoing

and outgoing edges to obtain an automaton which accepts the same language and is reduced: it has
only useful states.
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It is well known [6, Chapter 2] that a language L ⊆ Σ∗ is regular if and only if L is accepted by some
deterministic finite automaton.

The following, which corresponds to Theorem 1 in [5], generalizes Anisimov’s [1] characterization
of groups with regular word problem, and also simplifies its proof, as well as the simpler one of
[11, Lemma 1].

Proposition 2.4. Let G be a finitely generated group, K a subgroup and ψ : Σ → G a semigroup
presentation of G. Then (G, K) has regular word problem with respect to ψ if and only if K has finite
index in G.

Proof. Suppose first that the index of K in G is finite. Consider the finite automaton A = (X, o, {o})
where X is the Schreier graph X(G, K , ψ), and the initial and unique final state is o = K (as a vertex
of X). Then L(G, K , ψ) = L(A): indeed, w ∈ Σ∗ belongs to L(G, K , ψ), i.e. ψ(w) ∈ K , if and only if
K = Kψ(w). This shows that L(G, K , ψ) is regular.

Conversely, suppose that L = L(G, K , ψ) is regular and accepted by the reduced, deterministic
finite automaton A = (X, o, F). For y ∈ X there is some wordw ∈ L such that the vertex y lies on the
unique path from o to F with labelw. We choose one suchw and letwy be the label of the final piece
of the path, starting at y and ending at F . We set gy = ψ(wy)

−1
∈ G.

Let g ∈ G. There are w,w ∈ Σ∗ with ψ(w) = g and ψ(w) = g−1. Thus, ww ∈ L = L(G, K , ψ),
and there is a (unique) path π with labelww from o to some final state. Now consider the initial piece
πw ofπ , that is, the path starting at owhose label is ourw that we startedwith. [Thus, we have proved
that such a path πw must exist in X !] Let y be the final state (vertex) of πw . Then clearlywwy ∈ L(A),
which means that gg−1

y = ψ(wwy) ∈ K . Since ψ(Σ∗) = G, it follows that

G =


y∈X

Kgy,

and K has finitely many cosets in G. �

Corollary 2.5. Let G be finitely generated and K a subgroup. Then the property of the pair (G, K) to have
a regular word problem is independent of the semigroup presentation of G.

We shall see that the same also holds in the context-free case. Another corollary that we see from
the proof of Proposition 2.4 is the following.

Corollary 2.6. Let G be finitely generated and K a subgroup of finite index. Then for any semigroup
presentation ψ : Σ → G, any reduced deterministic automaton A = (X, o, F) that accepts L(G, K , ψ)
has a surjective homomorphism (as a labelled oriented graph with root o) onto the Schreier graph
X(G, K , ψ). Also, the labelled graph X is fully deterministic.

Proof. Let A = (X, o, F) be deterministic and reduced, as in part 2 of the proof of Proposition 2.4.
Let y ∈ X , and recall the construction of the labelwy of a path from y to F , and gy = ψ(wy)

−1
∈ G.

If v is another path from y to F , and h = ψ(v)−1, then we can take w ∈ Lo,y (which we know to be
non-empty) and find thatwwy, wv ∈ L(G, K , ψ), so thatψ(w) ∈ Kgy ∩Kh. Thus Kgy = Kψ(w) = Kh,
and the map κ : X → K \ G, y → Kgy is well defined. It has the property that when w ∈ Lo,y, then
Kψ(w) = Kgy. The map κ is clearly surjective, and κ(o) = K by construction.

Now let y ∈ X and a ∈ Σ. Take w ∈ Lo,y and consider the word wa. Again by part 2 of the proof
of Proposition 2.4, there is a unique path πwa in X starting at o with label wa. If y is its final vertex,
then there is the edge e = (y, a, z) in X . In this situation, κ(z) = Kψ(wa) = Kgyψ(a) = κ(y)ψ(a).
This means that in the Schreier graph, there is the edge with label a from κ(y) to κ(z). Therefore κ is
a homomorphism of labelled graphs. �

The following simple example shows that, in general, the map κ constructed in the proof of the
previous corollary is not injective.
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Fig. 1. (From left to right) the Schreier graph X(G, K , ψ) described in Example 2.7 and two automata A1 and A2 such that
L(A1) = L(A1) = L(G, K , ψ).

Example 2.7. LetG = Z2 = {1, t} be the group of order two andK = {1} the trivial subgroup. LetΣ =

{a} and consider the presentation ψ:Σ → G such that ψ(a) = t . Then L(G, K , ψ) = {a2n : n ≥ 0}.
In Fig. 1wehave represented, from left to right, the Schreier graphX(G, K , ψ) (which is nothing but

the Cayley graph ofGw.r. toψ), and two automataA1 andA2. As usual, o denotes the origin, while the
sets of final states are F1 = {o} and F2 = {o, f }, respectively. We have L(A1) = L(A2) = L(G, K , ψ).

3. Pushdown automata

Besides grammars, we shall need another instrument for generating context-free languages. A
pushdown automaton is a 7-tuple A = (Q,Σ, Z, δ, q0,Qf , z0), where Q is a finite set of states, Σ the
input alphabet as above, Z a finite set of stack symbols, q0 ∈ Q the initial state, Qf ⊂ Q the set of final
states, and z0 ∈ Z ∪ {ϵ} is the start symbol. Finally, the function δ : Q × (Σ ∪ {ϵ}) × (Z ∪ {ϵ}) →

Pfin(Q × Z∗) is the transition function. Here, Pfin(Q × Z∗) stands for the collection of all finite subsets
of Q × Z∗.

The automaton works in the following way. At any time, it is in some state p ∈ Q, and the stack
contains a word ζ ∈ Z∗. The automaton reads a word w ∈ Σ∗ from the ‘‘input tape’’ letter by letter
from left to right. If the current letter of w is a, the state is p and the top (=rightmost) symbol of the
stack word ζ is z, then it performs one of the following transitions.

(i) A selects some (q, ζ ′) ∈ δ(p, a, z), changes into state q, moves to the next position on the input
tape (it may be empty if awas the last letter ofw), and replaces the rightmost symbol z of ζ by ζ ′,
or

(ii) A selects some (q, ζ ′) ∈ δ(p, ϵ, z), changes into state q, remains at the current position on the
input tape (so that a has to be treated later), and replaces the rightmost symbol z of ζ by ζ ′.

If both δ(p, a, z) and δ(p, ϵ, z) are empty then A halts.
The automaton is also allowed to continue to work when the stack is empty, i.e., when ζ = ϵ. Then

the automaton acts in the sameway, by putting ζ ′ on the stackwhen it has selected (q, ζ ′) ∈ δ(p, a, ϵ)
in case (i), resp. (q, ζ ′) ∈ δ(p, ϵ, ϵ) in case (ii).

We say that A accepts a wordw ∈ Σ∗ if starting in the state q0 with only z0 on the stack and with
w on the input tape, after finitely many transitions the automaton can reach a final state with empty
stack and empty input tape. The language accepted by A is denoted L(A).

The pushdown automaton is called deterministic if for any p ∈ Q, a ∈ Σ and z ∈ Z ∪ {ϵ}, it has at
most one option what to do next, that is,

|δ(p, a, z)| + |δ(p, ϵ, z)| ≤ 1.

(Here, | · | denotes cardinality.)
It is well known [6] that a language is context-free if and only if it is accepted by some pushdown

automaton. A context-free language is called deterministic if it is accepted by a deterministic
pushdown automaton. We also remark here that a deterministic context-free language L is un-
ambiguous, which means that it is generated by some context-free grammar in which every word
of L has precisely one rightmost derivation.

The following lemma is modelled after the indications of [11, Lemma 2]. For the sake of
completeness, we include the full proof.
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Lemma 3.1. Suppose that G, K ,Σ and ψ : Σ → G are as above. Let H be a finitely generated subgroup
of G, and let Σ′ be another alphabet and ψ ′

: Σ′
→ H be such that F ′

= ψ ′(Σ′) generates H as a
semigroup.

Then, if L(G, K , ψ) is context-free, also L(H, K ∩ H, ψ ′) is context-free, and if in addition L(G, K , ψ)
is deterministic, then so is L(H, K ∩ H, ψ ′).

Proof. We start with a pushdown automaton A = (Q,Σ, Z, δ, q0,Qf , z0) that accepts L(G, K , ψ).
For each b ∈ Σ′, there is u(b) ∈ Σ∗ such that ψ ′(b) = ψ(u(b)), and we may choose u(b) to have

length ≥ 1. Thus,

w′
= b1 · · · bn ∈ L(H, K ∩ H, ψ ′) ⇐⇒ u(b1) · · · u(bn) ∈ L(G, K , ψ).

With this in mind, we modify A in order to obtain a pushdown automaton A′ that accepts L(H, K ∩

H, ψ ′). Our A′ has to translate any w′
= b1 · · · bn ∈ (Σ′)∗ into w = u(b1) · · · u(bn) ∈ Σ∗ and to use

A in order to check whetherw ∈ L(G, K , ψ).
Let m + 1 = max{|u(b)| : b ∈ Σ′

}. If m = 0 then the only modification of A needed is to replace
Σ by its subset Σ′ and to use the resulting restriction of the transition function.

Otherwise, we set Σm = Σ ∪Σ2
∪ · · · ∪Σm. For v ∈ Σ+

= Σ∗
\ {ϵ}, we denote by v+ its subword

obtained by deleting the first letter. We define Q′
= Q∪ (Q× Σm) and A′

= (Q′,Σ′, Z, δ′, q0,Qf , z0)
with the transition function δ′ as follows. For each p ∈ Q and z ∈ Z,

δ′(p, ϵ, z) = δ(p, ϵ, z),
δ′(p, b, z) = δ(p, a, z), if u(b) = a ∈ Σ,

δ′(p, b, z) = {((q, u(b)+), ζ ) : (q, ζ ) ∈ δ(p, a, z)}, if u(b) ∈ aΣ+,

δ′((p, v), ϵ, z) = {((q, v), ζ ) : (q, ζ ) ∈ δ(p, ϵ, z)} ∪ {((q, v+), ζ ) : (q, ζ ) ∈ δ(p, a, z)}, if v ∈ aΣ+,

δ′((p, a), ϵ, z) = {((q, a), ζ ) : (q, ζ ) ∈ δ(p, ϵ, z)} ∪ δ(p, a, z), if a ∈ Σ.

Thus, the new states of the form (p, v) with 1 ≤ |v| < m serve to remember the terminal parts v
of the words u(b), b ∈ Σ′. This automaton accepts L(G, K , ψ ′), and it is deterministic, if A has this
property. �

Corollary 3.2. Being context-free is a property of the pair (G, K) that does not depend on the specific
choice of the alphabet Σ and the map ψ : Σ → G for which ψ(Σ) generates G as a semigroup.

Therefore, it is justified to refer to the context-free pair (G, K) rather than to the triple (G, K , ψ).
Furthermore,whenever this is useful, wemay restrict attention to the casewhen the graph X(G, K , ψ)
is symmetric: we say that ψ is symmetric, if there is a proper involution a → a−1 of Σ such that
ψ(a−1) = ψ(a)−1 in G. (Again, it is not necessary to assume that ψ is one-to-one, so that we have
that a−1

≠ a even when ψ(a)2 = 1G.)

Proposition 3.3. Let G be finitely generated, H be a subgroup with [G : H] < ∞. If K is a subgroup of H
then (G, K) is context-free if and only if (H, K) is context-free.

Proof. The ‘‘only if’’ is contained in Lemma3.1. (Observe thatH inherits finite generation fromG, since
[G : H] < ∞.)

For the converse, we assume that (H, K) is context-free and let ψ : Σ → H and ψ ′
: Σ′

→ G be semigroup presentations of H and G, respectively. There is a pushdown automaton A =

(Q,Σ, Z, δ, q0,Qf , z0) that accepts L(H, K , ψ).
Let F be a set of representatives of the right cosets of H in G, with 1G ∈ F . Thus, |F | < ∞, and

G =


g∈F

Hg,

For every g ∈ F and b ∈ Σ′ there is a unique ḡ = ḡ(g, b) ∈ F such that gψ ′(b) ∈ Hḡ . Therefore there
is a word u = u(g, b) ∈ Σ∗ such that

gψ ′(b) = ψ(u(g, b))ḡ(g, b).
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An input word w = b1 · · · bn is transformed recursively into u1 · · · un, along with the sequence
g0, g1, . . . , gn of elements of F that indicate the current H-coset at each step:

g0 = 1G; uk = u(gk−1, bk) and gk = ḡ(gk−1, bk).

Then ψ ′(w) ∈ K if and only if gn = 1G and ψ(u1 · · · un) ∈ K .
Thus, our new automatonA′ recalls at each step the current cosetHgk−1, which ismultiplied on the

right byψ(bk), where bk is the next input letter. Then the new coset is Hḡ(gk−1, bk), and A′ simulates
what A does next upon reading u(gk−1, bk). Thenw is accepted when at the end the coset is H = H1G
and A is in a final state.

The simple task to write down this automaton in detail is left to the reader. �

4. Context-free graphs

In this section, we assume that (X, E, ℓ) is symmetric. We may think of each pair of oppositely
oriented edges (x, a, y) and (y, a−1, x) as one non-oriented edge, so that X becomes an ordinary graph
with symmetric neighbourhood relation, but possiblymultiple edges and loops. If it is in addition fully
deterministic, then X is a regular graph, that is, the number of outgoing edges (which coincides with
the number of ingoing edges) at each vertex is |Σ|. Attention: if we consider non-oriented edges, then
each loop at x has to be counted twice, since it corresponds to two oriented edges of the form (x, a, x)
and (x, a−1, x). For all our purposes it is natural to require that X is connected: for any pair of vertices
x, y there is a path from x to y. The distance d(x, y) is the minimum length (number of edges) of a path
from x to y, which defines the integer-valued graph metric. A geodesic path is one whose length is the
distance between its endpoints.

We select a finite, non-empty subset F of X and consider the balls B(F , n) = {x : d(x, F) ≤ n}
(where d(x, F) = min{d(x, y) : y ∈ F}). If we delete B(F , n) then the induced graph X \ B(F , n) will
fall apart into a finite number of connected components, called coneswith respect to F . Each cone is a
labelled, symmetric graph C with the boundary ∂C consisting of all vertices x in C having a neighbour
outside C (i.e., in B(F , n)).

The following notion was introduced in [12] for symmetric, labelled graphs and F = {o}.

Definition 4.1. The graph X is called context-free with respect to F if there is only a finite number of
isomorphism types of the cones with respect to F as labelled graphs with boundary.

This means that there are finitely many cones C1, . . . , Cr (generally with respect to different radii
n) such that for each cone C , we can fix a bijection φC from (the vertex set of) C to precisely one of
the Ci, this bijection sends ∂C to ∂Ci, and (x, a, y) is an edge with both endpoints in C if and only if its
image (φC (x), a, φC (y)) is an edge of Ci. In this case, we say that C is a cone of type i.

Generally, as in [12], we are interested in the case when F = {o} (or any other singleton), but there
is at least one point where it will be useful to admit arbitrary finite, non-empty F .

Another natural notion of context-freeness of X with respect to o is to require that the language
Lo,o(X) is context-free. We shall see that for deterministic, symmetric graphs this is equivalent with
context-freeness with respect to o in the sense of Definition 4.1. One direction of this equivalence is
practically contained in [12], but not stated explicitly except for the case of Cayley graphs of groups.
The other direction (that context-freeness of Lo,o implies that of the graph) is shown in [12] only
for Cayley graphs of groups, which is substantially simpler than the general case treated below in
Theorem 4.6.

Theorem 4.2. If the symmetric, labelled graph (X, E, ℓ)with label alphabet Σ is context-free with respect
to the finite, non-empty set F ⊂ X, then Lx,y is a context-free language for all x, y ∈ X. Furthermore, if the
graph X is deterministic, then so is the context-free language Lx,y.

Proof. Just for the purpose of this proof, we write x0, y0 instead of x, y for the vertices for which
Lx0,y0 will be shown to be context-free. We may assume without loss of generality that x0, y0 in F .
Indeed, if this is not the case, then we can replace F by F ′

= B(F , n), which contains x0 and y0 when
n is sufficiently large. The cones with respect to F ′ are also cones with respect to F , so that X is also
context-free with respect to F ′.
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Similarly to [12, Lemma2.3], we construct a deterministic pushdown automaton that accepts Lx0,y0 .
We consider also the whole graph X as a cone C0 with boundary F , which we keep apart from the

other representatives C1, . . . , Cr of cones.
If C is a cone, then as a component of X \ B(F , n) for some n ≥ 0 it must be a successor of another

cone C−. The latter is the unique component of X \ B(F , n − 1) that contains C , when n ≥ 1, while it
is C0 = X when n = 0. We also call C− the predecessor of C .

Different cones of type j ∈ {1, . . . , r} may have predecessors of different types. Conversely, a cone
C of type i ∈ {0, . . . , r} may have none, one or more than one successors of type j, and the number
di,j of those successors depends only on i and j. In the representative cone Ci, we choose and fix a
numbering of the distinct successors of type j as Ck

i,j, k = 1, . . . , di,j. If C is any cone with type i then
we use the isomorphism φC : C → Ci to transport this numbering to the successors of C that have
type j, which allows us to identify the k-th successor of C with type j.

One can visualize the cone structure by a finite, oriented graph Γ with multiple edges and root 0:
the vertex set is the set of cone types i ∈ {0, . . . , r}, and there are di,j oriented edges, whichwe denote
by tki,j (k = 1, . . . , di,j) from vertex i to vertex j (i ≥ 0, j ≥ 1).

Every vertex x of X belongs to the boundary of precisely one cone C = C(x)with respect to F . We
define the type i of x as the type of C(x). Under the mapping φC , our x corresponds to precisely one
element of ∂Ci. We write φ(x) for that element, without subscript C , so that φ maps X onto


i ∂Ci. In

particular, φ(x) = x for every x ∈ F .
Let y ∈ X \ F with type j. Then there is i (depending on y) such that every neighbour x of y with

d(x, F) = d(y, F) − 1 has type i, and there is precisely one successor cone Ck
i,j of Ci that contains

φC(x)(y). In this case, we write τ(y) = tki,j, the second order type of y. Compare with [12]. If y′ is such
that C(y′) = C(y) then τ(y′) = τ(y).

We now finally construct the required pushdown automaton A. (Comparing with [12], we use
more states and stack symbols, which facilitates the description.) The set of states and stack symbols
are

Q =

r
i=0

∂Ci and Z = F ∪ {tki,j : i = 1, . . . , r, j = 0, . . . , r, k = 1, . . . , di,j}.

(When di,j = 0 then there is no tki,j.) Note that both sets contain F . In order to generate the language
Lx0,y0 , where x0, y0 ∈ F , then we use x0 as the initial state and y0 as the (only) final state. We describe
the transition function, which – like Q and Z – does not depend on x0, y0.

We want to read an input word, which has to correspond to the label starting in x0. Inside the
subgraph of X induced by F , our A behaves just like that subgraph, seen as a finite automaton.

Outside of F , it works as follows. At them-th step, the automatonwill be in a state that describes the
m-th vertex, say x, of that path, by identifying x as abovewith the elementφ(x) of Cj, where j is the type
of x. The current stack symbol is of the form tki,j and serves to recall that x lies in the k-th successor cone
of type j of a conewith type i. If the next vertex along the path, say y, satisfies d(y, F) = d(x, F)+1, and
y has type j′ then the state is changed to φ(y) ∈ Cj′ , and the symbol tk

′

j,j′ = τ(y) is added to the stack.
If d(y, F) = d(x, F), then only the state is changed from φ(x) to φ(y). Finally, if d(y, F) = d(x, F)− 1
then the new state is again φ(y), while the top symbol on the stack is deleted. Formally, we get the
following list of transition rules. If x ∈ F = Q ∩ Z:

δ(x, a, x) = {(y, y) : (x, a, y) ∈ E, y ∈ F} ∪ {(φ(y), xτ(y)) : (x, a, y) ∈ E, d(y, F) = 1}.

If x ∈ X \ F :

δ(φ(x), a, τ (x)) = {(φ(y), a, τ (x)τ (y)) : (x, a, y) ∈ E, d(y, F) = d(x, F)+ 1}
∪ {(φ(y), τ (y) = τ(x)) : (x, a, y) ∈ E, d(y, F) = d(x, F)}
∪ {(φ(y), ϵ) : (x, a, y) ∈ E, d(y, F) = d(x, F)− 1}.

This is a finite collection of transitions, since φ(·) and τ(·) can take only finitelymany different values.
In view of the above explanations, A accepts Lx0,y0 . Also, when the graph X is deterministic, then

so is A. �
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Before proving a converse of Theorem 4.2, we first need some preliminaries, and start by recalling
a fact proved in [11,12], see alsoWoess [21] and Berstel and Boasson [2].

Lemma 4.3. If Lo,o is context-free then there is a constant M such that for each cone C with respect to o,
one has diam(∂C) ≤ M.

(The diameter is of course taken with respect to the graph metric.) We shall see below how to
deduce this, but it is good to know it in advance.

A context-free grammar C = (V,Σ, P, S) is said to have Chomsky normal form (CNF), if (i) every
production rule is of the form T ⊢ UÛ or T ⊢ a, whereU, Û ∈ V (not necessarily distinct), resp. a ∈ Σ,
and (ii) if ϵ ∈ L(C), then there is the rule S ⊢ ϵ, and S is not contained in the right hand side of any
production rule.

With a slight deviation from [11], we associate with each w = a1 · · · an ∈ L(C), n ≥ 2 a labelled
(closed) polygon P(w)with length n + 1. As a directed graph, it has distinct vertices t0, t1, . . . , tn and
labelled edges (ti−1, ai, ti), i = 1, . . . , n, plus the edge (t0, S, tn). A (diagonal) triangulation of P(w) is
a plane triangulation of P(w) obtained by inserting only diagonals. Here, we specify those diagonals
as oriented, labelled edges (ti, T , tj), where ti, tj are not neighbours in P(w) and T ∈ V. Furthermore,
we will never have two diagonals between the same pair of vertices of P(w). (If |w| ≤ 2 we consider
P(w) itself triangulated.) The proof of the following Lemmamay help tomake the construction of [11]
(used for Cayley graphs of groups) more transparent.

Lemma 4.4. If C = (V,Σ, P, S) is in CNF andw = a1 · · · an ∈ L(C)with n ≥ 2 then there is a diagonal
triangulation of P(w) with the property that whenever (ti, T , tj) is a diagonal edge, then T occurs in a
derivation S ∗

H⇒w, j − i ≥ 2 and T ∗
H⇒ ai+1 · · · aj.

Proof. We start with a fixed derivation S ∗
H⇒w, and explain how to build up the triangles step

by step. Suppose that T ∈ V occurs in our derivation, and that we have a ‘‘sub-derivation’’ T ⊢

UÛ ∗
H⇒ ai+1 · · · ak, where U, Û ∈ V. Then there is j ∈ {i + 1, . . . , k − 1} such that U ∗

H⇒ ai+1 · · · aj
and Û ∗

H⇒ aj+1 · · · ak. In this case, we draw a triangle with three oriented, labelled edges, namely the
‘old’ edge (ti, T , tk) and the two ‘new’ edges (ti,U, tj) and (tj, Û, tk).

If we have the derivation S ∗
H⇒ a1 · · · an, then it uses successive steps of the form T ⊢ UÛ with

UÛ ∗
H⇒ ai+1 · · · ak as above. We work through these steps one after the other, starting with S ⊢ T1T̂1,

where T1
∗

H⇒ a1 . . . ak and T̂1
∗

H⇒ ak+1 · · · an. The first triangle has the ‘old’ edge (t0, S, tn) and the
‘new’ edges (t0, T1, tk) and (tk, T̂1, tn).

At any successive step, we take one of the ‘new’ edges (ti, T , tk), where k − i ≥ 2 and proceed
as explained at the beginning, so that we add two ‘new’ edges that make up a triangle together with
(ti, T , tk), which is then declared ‘old’.We continue until all derivation steps of the form T ⊢ UÛ in our
derivation S ∗

H⇒w are exhausted. At this point, we have obtained a tiling of triangles that constitute
a diagonal triangulation of its outer polygon, whose edges have the form (t0, S, tn) and (ti−1,Ui, ti)
with Ui ∈ V, i = 1, . . . , n. The only steps of our derivation that we have not yet considered are the
terminal ones Ui ⊢ ai. Thus, we conclude by replacing the label Ui of (ti−1,Ui, ti) by ai. �

The construction is best understood by considering an example: suppose our rightmost deriva-
tion is

S ⊢ T1T̂1 H⇒ T1(T2T̂2) H⇒ T1(T2(T3T̂3))

H⇒ T1(T2(T3a6)) H⇒ T1(T2((T4T̂4)a6))
H⇒ T1(T2((T4a5)a6)) H⇒ T1(T2((a4a5)a6))
H⇒ T1(a3((a4a5)a6)) H⇒ T1(a3((a4a5)a6))

H⇒ (T5T̂5)(a3((a4a5)a6)) H⇒ (T5a2)(a3((a4a5)a6))
H⇒ (a1a2)(a3((a4a5)a6)).

(We have inserted the parentheses to make the rules that we used in each step more visible.) The
associated triangulation is as in Fig. 2.
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Fig. 2. The polygon P(w), with w = a1a2a3a4a5a6 , and its (diagonal) triangulation associated with the rightmost derivation
S ⊢ (a1a2)(a3((a4a5)a6)).

The variables of the terminal rules T5 ⊢ a1, T̂5 ⊢ a2, T2 ⊢ a3, T4 ⊢ a4, T̂4 ⊢ a5 and T̂3 ⊢ a6 are not
visible in this figure (but we might add them to the boundary edges). Apart from this, one can read
the derivation S ∗

H⇒w from the diagonalization in a similar way as it can be read from the so-called
derivation tree (see e.g. [6, Section 1.6] for the latter).

The following goes back to [11] in the case of (Cayley graphs of) finitely generated groups (recall
from Lemma/Definition 2.1 that in case X is deterministic and symmetric, if x ∈ X and w =

a1a2 . . . an ∈ Σ∗, then x−w
= xa

−1
n ···a−1

2 a−1
1 ∈ X denotes the initial vertex of the pathπ in X terminating

at xwith label ℓ(π) = w).

Lemma 4.5. Let C = (V,Σ, P, S) be in CNF and L(C) = Lx,y(X), where X is a deterministic, symmetric
graph. If w = a1 · · · an ∈ Lx,y(X) and (ti, T , tj) is a diagonal edge in a triangulation of P(w) as
in Lemma 4.4, then the vertices x̄ = xa1···ai and ȳ = xa1···aj of X satisfy d(x̄, ȳ) ≤ m(T ), where

m(T ) = min{|w| : w ∈ LT }. (2)

Proof. Since X is deterministic, Lemma 2.3 implies that πx(w) exists as the unique path with initial
vertex x and labelw. In particular, x̄ and ȳ lie on that path. Furthermore, we have ȳ = y−aj+1···an .

Now let v ∈ LT with |v| = m(T ). Then by Lemma 4.4, T arises in a derivation
S ∗
H⇒ a1 · · · aiTaj+1 · · · an

∗
H⇒w. But then we also have S ∗

H⇒ a1 · · · aivaj+1 · · · an, a word in Lx,y. By
Lemma 2.3, again using that X is symmetric and deterministic, x̄v = y−aj+1···an = ȳ. Therefore, x̄ and ȳ
are connected by a path with label v. Its length ism(T ). �

Theorem 4.6. Let (X, E, ℓ) be a fully deterministic, symmetric graph with label alphabet Σ and root o.
If Lo,o is a context-free language, then X is a context-free graph with respect to o, and in particular, Lo,o is
deterministic.

Proof. There is a reduced grammar C = (V,Σ, P, S) in CNF that generates Lo,o. Each of the languages
LT , T ∈ V, is non-empty, only LS contains ϵ, and we define

m = max{m(T ) : T ∈ V}, (3)

where m(T ) is as in (2).
Let C be a cone with respect to o such that k = d(o, ∂C) > m.

Construction of D(C). We define D(C) as the subgraph of X induced by all vertices y ∈ X with

d(o, x) = d(o, y)+ d(x, y) and d(x, y) ≤ m for some x ∈ ∂C .

In particular, y lies on some geodesic path from o to ∂C .
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Now let x1, x2 ∈ ∂C , and consider some path π ∈ Πx1,x2(C) (i.e., it lies in C). Choose a geodesic
path π1 from o to x1 and a geodesic path π2 from x2 to o. Then we can concatenate the three paths to
a single path π1ππ2 ∈ Πo,o. Its label is the wordw = ℓ(π1)ℓ(π)ℓ(π2) ∈ Lo,o. Set n = |w| and write

w = (a1 · · · ak)(ak+1 · · · an−k)(an−k+1 · · · an)

where the 3 pieces in the parentheses are (in order) ℓ(π1), ℓ(π) and ℓ(π2). The words ℓ(π1), ℓ(π)
and ℓ(π2)S are the labels of three consecutive arcs that fill the boundary of the polygon P(w). (To be
precise, along the last edge of the 3rd arc, we are reading the label S in the reversed direction.) By
[11, Lemma 5], its triangulation has a triangle which meets each of those arcs. (It may also occur that
one corner of the triangle meets two arcs.) Thus, there are i ∈ {0, . . . , k} and i′ ∈ {k, . . . , n − k} such
that the vertices ti and ti′ of P(w) lie on that triangle. They correspond to the vertices y1 = oa1···ai and
y′

= oa1···ai′ of X . We either have i′ − i ≤ 1, or else a diagonal (ti,U, ti′) is a side of our triangle. By
Lemma 4.5, we get d(y1, y′) ≤ m(U) ≤ m. Thus k ≤ i′ ≤ d(o, y′) ≤ i + m, that is, i ≥ k − m > 0. In
particular, ti does not lie on the third arc. In the sameway, there is j ∈ {n−k, . . . , n−k+m} (and not
larger) such that tj is a corner of our triangle. This yields that there must be a ‘‘true’’ diagonal (ti, T , tj)
of P(w). We set v1 = ai+1 · · · ak and v2 = an−k+1 · · · aj, so that x1 = yv11 , and let y2 = x

an−k+1···aj
2 . The

points y1 and y2 are in D(C), and by Lemma 4.4, T ∗
H⇒ v1ℓ(π)v2.

[It is here that we can see Lemma 4.3, since we deduced that d(x1, x2) ≤ 3m for all x1, x2 ∈ ∂C .]
By Lemma 4.4, we also have

S ∗
H⇒ a1 · · · aiTaj+1 · · · an,

so that v ∈ LT implies a1 · · · aivaj+1 · · · an ∈ Lo,o and consequently v ∈ Ly1,y2 , that is, y
v
1 = y2.

We now insert into D(C) the additional labelled edge (y1, v1Tv2, y2), whose label is the word
v1Tv2 ∈ Σ∗VΣ∗. We insert all diagonals of the same type that can be obtained in the same way,
and writeD(C) for the resulting ‘‘edge-enrichment’’ of D(C).

Subsuming, we have an edge (y1, v1Tv2, y2) inD(C) if and only if the following properties hold.

• |vi| ≤ m (i = 1, 2) and T ∈ V,
• the path with label v1 starting at y1 and ending at x1 = yv11 ∈ ∂C is part of a geodesic from o to x1,
• the path with label v2 starting at x2 = y−v2

2 ∈ ∂C and ending at y2 is part of a geodesic from x2 to
o, and

• there is a path π in C from x1 to x2 such that T ∗
H⇒ v1ℓ(π)v2,

• if T ∗
H⇒ v ∈ Σ∗ then v is the label of a path inΠy1,y2 .

Now, there are only finitely many cones C with respect to owith d(∂C, o) ≤ m. On the other hand,
for all cones C with d(∂C, o) ≥ m, there is a bound on the number of vertices ofD(C), as well as on the
number of possible labels on its edges. In particular, there are only finitelymany possible isomorphism
types of the labelled graphs (D(C), ∂C)with ‘‘marked’’ boundary ∂C ⊂ D(C).

We now suppose that C and C ′ are two cones at distance ≥ m from o, such that (D(C), ∂C) and
(D(C ′), ∂C ′) are isomorphic. We claim that C and C ′ are isomorphic, and this will conclude the proof
that there are only finitely many isomorphism types of cones with respect to o.

Let φ : D(C) → D(C ′) be an isomorphism with φ(∂C) = ∂C ′, and φ′ its inverse mapping. We
extend φ to a mapping from C to C ′, also denoted φ.

Claim 1. Let x ∈ ∂C and v ∈ Σ+ such that the path πx(v) lies in C and meets ∂C only in its initial point
x. Then the path πx′(v) lies in C ′ and meets ∂C ′ only in its initial point x′

= φ(x) ∈ ∂C ′.

Proof. If a is the initial letter of v then (always using the notation of Definition 1.1) the first edge of
πx(v) is (x, a, xa). We now consider the path πx′(v) with label v starting at x′

∈ ∂C ′. We first claim
that the latter lies in C ′ and only its initial point x′ is in ∂C ′. Let (x′, a, (x′)a) be the first edge of the
path. Then (x′)a cannot lie inD(C ′), since otherwise (x, a, xa) = (φ′(x′), a, φ′(x′)a) would be an edge
inD(C), a contradiction. Thus, the path πx′(v) goes at least initially into C ′

\ ∂C .
So now suppose that πx′(v) ever returns to ∂C ′, and let π ′ be its initial part up to the first return.

Then v′
= ℓ(πx′(v)) is an initial part of v with |v′

| ≥ 2, and π ′ is a path within C ′ from x′

1 = x′ to
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x′

2 = (x′)v
′

∈ ∂C ′. But then, by construction, D(C ′) must contain an edge (y′

1, v1Tv2, y
′

2) such that
x′

1 = (y′

1)
v1 , y′

2 = (x′

2)
v2 , and T ∗

H⇒ v1v
′v2. Using the isomorphism φ′

: D(C ′) → D(C), we set
yi = φ′(y′

i), i = 1, 2, and x2 = φ′(x′

2) ∈ ∂C . We have of course x1 = φ′(x′

1). Now we must have the
edge (y1, v1Tv2, y2) inD(C). But then v1v′v2 ∈ Ly1,y2 , and consequently v′

∈ Lx1,x2 , that is, x
v′

1 ∈ ∂C .
But this contradicts the fact that πx(v) meets ∂C only in its initial point. We conclude that also the
path πx′(v) lies in C ′ and meets ∂C ′ only in its initial point, and Claim 1 is verified. �

Now let z ∈ C \ ∂C . Then there are x ∈ ∂C and v ∈ Σ+ such that z = xv and the path πx(v)
from x to z meets ∂C only in its initial point x. By Claim 1, the analogous statement holds for the path
πx′(v) in C ′, where x′

= φ(x). The only choice is to define φ(z) = z ′
= (x′)v , which lies in C ′

\ ∂C ′ as
required. We have to show that φ is well-defined. This will follow from the next claim.

Claim 2. Let x1, x2 ∈ ∂C, v,w ∈ Σ+ such that the paths πx1(v) and πx2(w) lie in C, meet ∂C only in
their initial points and end at the same point of C \ ∂C. Then, setting x′

i = φ(xi), also πx′1
(v) and πx′2

(w)

end at the same point of C ′
\ ∂C ′.

Proof. Let w−1 be the ‘‘inverse’’ of w, as defined in Definition 1.1. Then x−w−1

2 = xw2 , and vw
−1 is

the label of the path from x1 to x2 that we obtain by first following πx1(v) and then the ‘‘inverse’’
of πx2(w). It lies entirely in C , and only its endpoints are in ∂C . By construction, D(C) has an edge
(y1, v1Tv2, y2) such that yv11 = x1, x

v2
2 = y2 and T ∗

H⇒ v1vw
−1v2. We set y′

i = φ(yi), i = 1, 2. Then
(y′

1, v1Tv2, y
′

2) is an edge ofD(C ′). Therefore v1vw−1v2 ∈ Ly′1,y′2 . But this implies that vw−1 is the label
of a path from x′

1 to x′

2, and we know from Claim 1 that it lies in C and has only its endpoints in ∂C .
Thus (x′

1)
v

= (x′

2)
−w−1

= (x′

2)
w , and Claim 2 is true. �

Thus, φ is well defined, and the same works of course also for φ′ by exchanging the roles of C
and C ′.

Claim 3. The map φ : C → C ′ is bijective.

Proof. We know that φ : ∂C → ∂C ′ is bijective and that φ(C \ ∂C) ⊂ C ′
\ ∂C . Let z ∈ C \ ∂C , and

let x ∈ ∂C , v ∈ Σ+ such that πx(v) is a path from x to z that intersects ∂C only at the initial point.
Setting x′

= φ(x), z ′
= φ(z), we know from the construction of φ and Claim 1 that πx′(v) is a path in

C ′ from x′ to z ′ that meets ∂C ′ only in its initial point. Now the way how φ′ is constructed yields that
φ′(z ′) = z. Therefore φ′ φ is the identity on C . Exchanging roles, we also get the φ φ′ is the identity
on C ′. This proves Claim 3. �

It is now immediate from the construction that φ also preserves the edges and their labels, so that
it is indeed an isomorphism between the labelled graphs C and C ′ that sends ∂C to ∂C ′. This concludes
the proof of Theorem 4.6. �

[12, Cor. 2.7] says that if a symmetric labelled graph is context-free with respect to one root o, then it
is context-free with respect to any other vertex chosen as the root x. In view of Theorems 4.2 and 4.6,
this is also obtained from the following, when the graph is fully deterministic.

Corollary 4.7. Let (X, E, ℓ) be a fully deterministic, strongly connected graph with label alphabet Σ. If
Lo,o is context-free then Lx,y is deterministic context-free for all x, y ∈ X.

Theorems 4.2 and 4.6, together with Lemma 3.1 also imply the following.

Corollary 4.8. Let G be a finitely generated group and K a subgroup.

(a) The pair (G, K) is context-free if and only if for any symmetric ψ : Σ → G, the Schreier graph
X(G, K , ψ) is a context-free graph. In this case, the language L(G, K , ψ) is deterministic for every (not
necessarily symmetric) semigroup presentation ψ : Σ → G.

(b) If (G, K) is context-free, then also (G, g−1Kg) is context-free for every g ∈ G.
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Proof. (a) is clear. Regarding (b), for the Schreier graph X(G, K , ψ), we have L(G, K , ψ) = Lo,o and
L(G, g−1Kg, ψ) = Lx,x with x = Kg , g ∈ G. Thus, the statement follows from Corollary 4.7. �

Lemma 4.9. Let G be a finitely generated group and K ,H be subgroups with K ≤ H and [H : K ] < ∞.
If (G, K) is context-free then also (G,H) is context-free.

Proof. In the context-free graph X(G, K , ψ), consider the finite set of vertices F = {Kh : h ∈ H},
containing the root vertex o = oK = K . Then L(G,H, ψ) =


x∈F Lo,x is a finite (disjoint) union of

context-free languages. Therefore it is context-free by standard facts. �

Remark 4.10. In terms of Schreier graphs, we have themapping Kg → Hg which is a homomorphism
of labelled graphs from X = X(G, K , ψ) onto Y = X(G,H, ψ)which is finite-to-one. The lemma says
that in this situation, if X is a context-free graph then so is Y . We do not see an easy direct proof of
this fact in terms of graphs, the main problem being how the homomorphism X → Y interacts with
the isomorphisms between the cones of X with respect to the set F . On the other hand, reformulating
this in terms of the associated ‘‘path languages’’ with the help of Theorems 4.2 and 4.6, it has become
straightforward.

The converse of Lemma 4.9 is not true, that is, when (G,H) is context-free and [H : K ] < ∞

then (G, K) is not necessarily context-free. See Example 5.6 in the last section. However, we have the
following.

Lemma 4.11. If K is a finite subgroup of G then (G, K) is context-free if and only if G is a context-free
(i.e. virtually free) group.

Proof. Fix Σ and ψ . Let X = X(G, ψ) be the associated Cayley graph of G, and Y = X(G, K , ψ).
We let o be the root of Y , that is, o = K1G as an element of Y (a coset). The group K acts on X by
automorphisms of that labelled graph. It leaves the set F = K (now as a set of vertices of X) invariant.
The factor graph of X by this action is Y . Write π for the factor mapping. It is |K |-to-one. Each cone of
X with respect to F is mapped onto a cone of Y with respect to o, and this mapping sends boundaries
of cones of X to boundaries of cones of Y . By assumption, Y is a context-free graph. By Lemma 4.3,
there is an upper bound on the number of elements in the latter boundaries. Therefore there also is
an upper bound on the number of elements of any of the boundaries of the cones of X with respect to
F .

Without going here into the details of the definition of the space of ends of X , we refer to the
terminology of Thomassen and Woess [19] and note that the above implies that all ends of X are
thin. But then, as proved in [19], Gmust be a virtually free group. �

One should not tend to believe that in the situation of the last lemma, the Cayley graphs of G are
quasi-isometricwith the Schreier graphs of (G, K). As a simple counter-example, take forG the infinite
dihedral group ⟨a, b | a2 = b2⟩ and for K the 2-element subgroup generated by a.

5. Covers and Schreier graphs

We assume again that (X, E, ℓ) is symmetric and fully deterministic. Recall the involution a →

a−1
≠ a of Σ. A word in Σ∗ is called reduced if it contains no subword of the form aa−1, where a ∈ Σ.

We write TΣ for the set of all reduced words in Σ∗. We can equip TΣ with the structure of a labelled
graph, whose edges are of the form

(v, a, w) and (w, a−1, v), where v,w ∈ TΣ, a ∈ Σ, va = w. (4)

Thus, the terminal letter of vmust be different from a−1. Then TΣ is fully deterministic, and it is a tree,
that is, it has no closed path whose label is a (non-empty) reduced word. As the root of TΣ , we choose
the empty word ϵ. Then TΣ is the universal cover of X . Namely, if we choose (and fix) any vertex o ∈ X
as the root, then the mapping

Φ : TΣ → X, Φ(w) = ow, (5)



T. Ceccherini-Silberstein, W. Woess / European Journal of Combinatorics 33 (2012) 1449–1466 1463

is a covering map: it is a surjective homomorphism between labelled graphs which is a local
isomorphism, that is, it is one-to-one between the sets of outgoing (resp. ingoing) edges of any element
w ∈ TΣ and its image Φ(w). (Note that this allows the image of an edge to be a loop.) ‘‘Universal’’
means that it covers every other cover of X , but this is not very important for us. The property of
w ∈ TΣ to be reduced is equivalent with the fact that the path πo(w) in X is non-backtracking, that is,
it does not contain two consecutive edges which are the reversal of each other.

We now realize that TΣ is the standard Cayley graph of the free group FΣ , where Σ is the set of
free generators together with their inverses. The group product is the following: if v,w ∈ TΣ ≡ FΣ ,
then v · w is obtained from the concatenated word vw by step after step deleting possible subwords
of the form aa−1 that can arise from that concatenation. The group identity is ϵ, and the inverse of w
isw−1 as at the end of Definition 1.1. WithΦ as in (5), let

K = K(X) = Φ−1(o) = {w ∈ TΣ : πo(w) is a closed path from o to o in X}. (6)

Then, under the indentification TΣ ≡ FΣ , we clearly have that K is a subgroup of FΣ . The following is
known, see e.g. Lyndon and Schupp [10, Ch. III] or (our personal source) Imrich [8].

Proposition 5.1. The graph X is the Schreier graph of the pair of groups (FΣ,K(X)) with respect to the
semigroup presentation ψ given by ψ(a) = a, a ∈ Σ.

Inψ(a) = a, we interpret a simultaneously as a letter from the alphabet and as a generator of the free
group.

Thus, in reality the study of context-free pairs of groups is the same as the study of fully
deterministic, symmetric context-free graphs under a different viewpoint.

The same is not true without assuming symmetry. Indeed, given a semigroup presentation ψ of
G, for every a ∈ Σ there must be wa ∈ Σ∗ such ψ(wa) = ψ(a)−1, the inverse in G. But then in
the Schreier Graph X(G, K , ψ), for any subgroup K of G, we have the following: if (x, a, y) ∈ E then
ywa = x, that is, there is the oriented path from y to x with label wa. In a general fully deterministic
graph this property does not necessarily hold, even if it has the additional property that for each a ∈ Σ ,
there is precisely one incoming edgewith label a at every vertex. As an example, considerX = {x, y, z},
Σ = {a, b} and labelled edges (x, a, y), (x, b, y), (y, a, z), (y, b, x), (z, a, x), (z, b, z).

We return to the situation of Proposition 5.1. As a subgroup of the free group, the group K(X) is
itself free. There is amethod for finding a set of free generators. First recall the notion of a spanning tree
of X . This is a tree T , which as subgraph of X is obtained by deleting edges (but no vertices) of X . Every
connected (non-oriented) graph has a spanning tree, for locally finite graphs it can be constructed
inductively. Now let T be a spanning tree of X , and consider all edges of X that are not edges of T . They
must come in pairs (e, e−1). For each pair, we choose one of the two partner edges, and we write E0
for the chosen (oriented) edges. For each e ∈ E0, we choose non-backtracking paths in T from o to e−

and from e+ to o. Together with e (in the middle), they give rise to a non-backtracking path in X that
starts and ends at o. Letw(e) be the label on that path. Then the following holds [10,8].

Proposition 5.2. As elements of FΣ , thew(e), e ∈ E0, are free generators of K(X).

Corollary 5.3. Let G be a virtually free group and K a finitely generated subgroup. Then (G, K) is
context-free.

Proof. Let F = FΣ be a free subgroup of G of finite index. Then K = K ∩ F is a free subgroup of K
with [K : K] < ∞. Since K is finitely generated, also K is finitely generated. In the Schreier graph
X of (F,K) with respect to the standard labelling by Σ, choose a spanning tree and remaining set E0
of edges, as described above. Since all sets of free generators of K must have the same cardinality,
E0 is finite. Thus, X is obtained by adding finitely many edges to a tree. If o is the root vertex of X
and n is the largest distance between o and an endpoint of some edge in E0, then every cone C of X
with d(∂C, o) > n is a rooted, labelled tree that is isomorphic to one of the cones of TΣ . Thus, the
Schreier graph, resp. (F,K) are context-free. It now follows from Proposition 3.3 and Lemma 4.9 that
also (G, K) is context-free. �
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Fig. 3. The comb lattice described in Example 5.4.

We remark here that one can always reduce the study of context-free pairs to free groups and their
subgroups. Given (G, K), let F be a finitely generated free group that maps by a homomorphism onto
G. Let K be the preimage of K under that homomorphism. Then clearly (G, K) is context-free if and
only (F,K) has this property. (This reduction, however, is not very instructive.)

Of course, there are context-free pairs with G free beyond the situation of Corollary 5.3.

Example 5.4. Consider the free group F = ⟨a, b | ⟩ and the subgroup K with the infinite set of free
generators {akblab−la−k

: k, l ∈ Z, l ≠ 0}. The associated Schreier graph with respect to {a±1, b±1
} is

the comb lattice.
Its vertex set is the set of integer points in the plane. The edges labelled by a are along the x-axis,

from (k, 0) to (k + 1, 0), and there is a loop with label a at each point (k, l) with l ≠ 0. The edges
labelled by b are all the upward edges of the grid, that is, all edges from (k, l) to (k, l + 1), where
(k, l) ∈ Z2. To these, we have to add the oppositely oriented edges whose labels are the respective
inverses (in Fig. 3, the oppositely oriented edges together with the corresponding labels are omitted
for simplicity). The comb lattice is clearly a context-free graph (tree).

We proceed giving some simple examples. It is very easy to see that context-freeness is not
‘‘transitive’’ in the following sense: if (G,H) and (H, K) are context-free (with G,H finitely generated
and K ≤ H ≤ G) then in general (G, K)will not be context-free.

Example 5.5. Let G = Z2, H = Z × {0} ∼= Z and K = {(0, 0)}. Then H (i.e., (H, K)) is context-free.
Of course, this also holds for (G,H), whose Schreier graphs are just the Cayley graphs of Z. But Z2

(i.e., (G, K)) is not context-free.

This also shows that the converse of Lemma 3.1 does not hold in general (while we know that it
does hold when [G : H] < ∞). Finally, we construct examples of three groups K ≤ H ≤ G, where
(G,H) is context-free, [H : K ] < ∞, and (G, K) is not context-free.
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Fig. 4. The fully deterministic, symmetric labelled graph XW , withW ⊂ Z described in Example 5.6 (hereW = {0, 1,−3, . . .}).
The reverse edges, together with the corresponding labels, are omitted for simplicity.

Fig. 5. The factor graph Y of the graph XW from Fig. 4 (cf. Example 5.6). The reverse edges, together with the corresponding
labels, are omitted for simplicity.

Example 5.6. We construct a family of fully deterministic, symmetric labelled graphs XW , W ⊂ Z
(non-empty), and one such graph Y , so that Y is the factor graph with respect to the action of a
2-element group of automorphisms of each of the labelled graphs XW . While Y will be a context-free
graph, many of the graphs XW in our family are not context-free. We then translate this back into the
setting of pairs of groups.

The vertex set of XW is Z×{0, 1}. The set of labels isΣ = {a, b, a−1, b−1
}. The edges are as follows:

((k, 0), a, (k + 1, 0)) and ((k, 1), a, (k + 1, 1)) for all k ∈ Z,
((k, 0), b, (k + 1, 0)) and ((k, 1), b, (k + 1, 1)) for all k ∈ Z \ W , and
((k, 0), b, (k + 1, 1)) and ((k, 1), b, (k + 1, 0)) for all k ∈ W .

The reversed edges carry the respective inverse labels (in Fig. 4, these reversed edges together with
the corresponding labels are omitted for simplicity). SinceW ≠ ∅, there is at least one of the ‘‘crosses’’
(pair of the third type of edges). Therefore XW is connected. In general, it does not have finitely many
cone types, i.e., it is not context-free. For example, it is not context-freewhenW = {k(|k|+1) : k ∈ Z}

For arbitraryW , the two-element group that exchanges each (k, 0)with (k, 1) acts on XW by label
preserving graph automorphisms. The factor graph Y (see Fig. 5) has vertex set Z and edges

(k, a, k + 1) and (k, b, k + 1) for all k ∈ Z,

plus the associated reversed edges (in Fig. 5, these edges together with the corresponding labels are
omitted for simplicity). It is clearly a context-free graph.

Now let F = FΣ be the free group (universal cover of XW and Y ), and for given W , let KW be the
fundamental group of XW at the vertex (0, 0). Furthermore, let K be the fundamental group of Y at
the vertex 0. Then it is straightforward that KW has index 2 in K. The mappingψ is the embedding of
Σ into FΣ , as above. We then have Y = X(F,K, ψ) and XW = X(F,KW , ψ), providing the required
example.

Example 5.7. At the end of the Introduction, we mentioned the possible interplay with ends. The
number of ends e(X) of a symmetric, connected graph is the supremum of the number of connected
components of the complement of any finite subgraph. Via Stallings’ [17] celebrated structure
theorem, ends of groups (i.e., ends of Cayley graphs) are closely related with amalgamated free
products and HNN-extensions. Thus, it is natural to ask the following question.

Let (G1, K) and (G2, K) be two context-free pairs of groups sharing the same subgroup K . Let
G = G1 ∗K G2 be the amalgamated free product of G1 and G2 over the group K . Is it then true that
(G, K) is context-free ? When K is finite, the answer is of course ‘‘yes’’, because then G1,G2 and G are
virtually free. When K is infinite, we have a counter-example. Here is a brief outline.

Let G = ⟨a1, a2, b1, b2 | [a1, b1][a2, b2]⟩ be the fundamental group of an orientable surface of
genus 2. Let K be the infinite cyclic subgroup generated by the commutator [a1, b1] = [a2, b2]−1, and
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for i = 1, 2, let Gi be the free group with free generators ai and bi. Then G is the amalgamated free
product of G1 and G2 over K .

By Corollary 5.3, the pairs (G1, K) and (G2, K) are context-free. But (G, K) is not context-free.
Indeed, let X be the Schreier graph of (G, K) with respect to the above generators and their inverses.
It has two ends, see e.g. the outline in the Introduction of [14]. Thus, there is a finite subgraph F of X
such that X \ B(F , n) has exactly two infinite cones for any n. If X were context-free, then the finite
upper bound on the number of boundary elements of any cone would yield that X has linear growth,
that is |B(F , n)| ≤ C · n for all n. This contradicts the fact that G, as well as the Schreier graphs of
(G1, K) and (G2, K), have exponential growth.
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