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Abstract

In this paper a fourth order equation involving critical growth is considered under the N
boundary condition:�2u = Kup, u > 0 in Ω, u = �u = 0 on∂Ω, whereK is a positive function,Ω
is a bounded smooth domain inRn, n � 5 andp + 1 = 2n/(n − 4), is the critical Sobolev exponen
We give some topological conditions onK to ensure the existence of solution. Our methods invo
the study of the critical points at infinity and their contribution to the topology of the level sets o
associated Euler–Lagrange functional.
 2004 Elsevier SAS. All rights reserved.

Résumé

Dans cet article, nous considérons une équation d’ordre quatre ayant une croissance critique a
conditions de Navier au bord :�2u = Kup, u > 0 dansΩ, u = �u = 0 sur∂Ω, oùK est une fonc-
tion strictement positive,Ω est un domaine borné régulier deRn, n � 5 etp + 1 = 2n/(n − 4), est
l’exposant critique de Sobolev. Nous donnons certaines conditions topologiques surK pour assurer
l’existence de solution. Notre approche est fondée sur l’étude des points critiques à l’infini et de le
contribution à la topologie des ensembles de niveau de la fonctionnelle d’Euler–Lagrange as
 2004 Elsevier SAS. All rights reserved.
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1. Introduction and main results

In this paper we prove some existence results for the following nonlinear problem
the Navier boundary condition:{

�2u = Kup, u > 0 in Ω,

�u = u = 0 on∂Ω,
(P )

whereΩ is a bounded smooth domain ofRn, n � 5, p + 1 = 2n/(n − 4), is the critical
exponent of the embeddingH 2 ∩ H 1

0 (Ω) into Lp+1(Ω) andK is aC3-positive function
in Ω .

This type of equation naturally arises from the study of conformal geometry. A
known example is the problem of prescribing the Paneitz curvature: given a functK

defined in compact Riemannian manifold(M,g) of dimensionn � 5, we ask whethe
there exists a metric̃g conformal tog such thatK is the Paneitz curvature of the ne
metric g̃ (for details one can see [9,10,14,17–20] and the references therein).

We observe that one of the main features of problem(P ) is the lack of compactness, th
is, the Euler–Lagrange functionalJ associated to(P ) does not satisfy the Palais–Sma
condition. This means that there exist noncompact sequences along which the fun
is bounded and its gradient goes to zero. Such a fact follows from the noncompact
the embedding ofH 2 ∩ H 1

0 (Ω) into Lp+1(Ω). However, it is easy to see that a necess
condition for solving the problem(P ) is thatK has to be positive somewhere. Moreov
it turns out that there is at least another obstruction to solve the problem(P ), based on
Kazdan–Warner type conditions, see [17]. Hence it is not expectable to solve proble(P )

for all the functionsK, thus a natural question arises: under which conditions onK, (P )

has a solution. Our aim in this paper is to give sufficient conditions onK such that(P )

possesses a solution.
In the last years, several researches have been developed on the existence of s

of fourth order elliptic equations with critical exponent on a domain ofRn, see [11,12
15,16,21–23,26–28,31,32]. However, at the authors’ knowledge, problem(P ) has been
considered forK ≡ 1 only.

As we mentioned before,(P ) is delicate from a variational viewpoint because of th
failure of the Palais–Smale condition, more precisely because of the existence of
points at infinity, that is orbits of the gradient flow ofJ along whichJ is bounded, its
gradient goes to zero, and which do not converge [3]. In this article, we give a con
tion in the same direction as in the papers [1,4,8] concerning the problem of presc
the scalar curvature on closed manifolds. Precisely, we extend some topological a
namical methods of theTheory of critical points at infinity(see [3]) to the framework o
such higher order equations. To do such an extension, we perform a careful exp
of J , and its gradient near a neighborhood of highly concentrated functions. The
construct a special pseudogradient for the associated variational problem for whi
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of such “singularities”. As a by product of theconstruction of our pseudogradient, we a
able to characterize the critical points at infinity of our problem. Such a fine analy
these critical points at infinity, which has its own interest, is highly nontrivial and p
a crucial role in the derivation of existence results. In our proofs, the main idea is to t
advantage of the precise computation of the contribution of these critical points at in
to the topology of the level sets ofJ ; the main argument being that, under our conditi
on K, there remains some difference of topologywhich is not due to the critical points a
infinity and therefore the existence of a critical point ofJ .

Our proofs go along the methods of Aubin and Bahri [1], Bahri [4] and Ben A
Chtioui and Hammami [8]. However, in our case the presence of the boundary mak
analysis more involved: it turns out that the interaction of “bubbles” and the boun
creates a phenomenon of new type which is not present in the closed manifolds’ c
addition, we have to prove the positivity of the critical point obtained by our proce
is known that in the framework of higher order equations such a proof is quite diffic
general (see [19], for example), and the way we handle it here is very simple com
with the literature, see Proposition 4.1 below.

In order to state our main results, we need to introduce some notation and the a
tions that we are using in our results. We denote byG the Green’s function and byH its
regular part, that is for eachx ∈ Ω ,G(x,y) = |x − y|−(n−4) − H(x,y) in Ω,

�2H(x, .) = 0 in Ω,

�G(x, .) = G(x, .) = 0 on∂Ω.

Now, we state our assumptions.

(A0) Assume that, for eachx ∈ ∂Ω ,

∂K(x)

∂ν
< 0,

whereν is the outward normal toΩ .
(A1) We assume thatK has only nondegenerate critical pointsy0, y1, . . . , ys such that

K(y0) � K(y1) � · · · � K(yl) > K(yl+1) � · · · � K(ys).

(A2) We assume that

− �K(yi)

60K(yi)
+ H(yi, yi) > 0 for i � l and

− �K(yi)

60K(yi)
+ H(yi, yi) < 0 for i > l (if n = 6),

and
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−�K(yi) > 0 for i � l and − �K(yi) < 0 for i > l (if n � 7).

ns

t

-

e

(A′
2) We assume that

− 1

60

�K(yi)

K(yi)
+ H(yi, yi) < 0 for i > l (if n = 6) and

−�K(yi) < 0 for i > l (if n � 7).

In addition, for everyi ∈ {1, . . . , l} such that

− 1

60

�K(yi)

K(yi)
+ H(yi, yi) � 0 (if n = 6) and − �K(yi) � 0 (if n � 7),

we assume thatn − m + 3 � index(K,yi) � n − 2, where index(K,yi) is the Morse
index ofK at yi andm is an integer defined in assumption(A3).

Now, let ZK be a pseudogradient ofK of Morse–Smale type (that is, the intersectio
of the stable and unstable manifolds of the critical points ofK are transverse). Set:

X =
⋃

0�i�l

Ws(yi),

whereWs(y) is the stable manifold ofy for ZK .

(A3) We assume thatX is not contractible and denote bym the dimension of the firs
nontrivial reduced homological group ofX.

(A4) We assume that there exists a positive constantc < K(yl) such thatX is contractible
in Kc = {x ∈ Ω | K(x) � c}.

Now we are able to state our first results:

Theorem 1.1. Let n � 6. Under the assumptions(A0), (A1), (A2), (A3) and (A4), there
exists a constantc0 independent ofK such that ifK(y0)/c � 1 + c0, then (P ) has a
solution.

Corollary 1.2. The solution obtained in Theorem1.1has an augmented Morse index� m.

Theorem 1.3. Let n � 7. Under the assumptions(A0), (A1), (A′
2), (A3) and (A4), there

exists a constantc0 independent ofK such that ifK(y0)/c � 1 + c0, then (P ) has a
solution.

Remark 1.4. (i) The assumptionK(y0)/c̄ � 1 + c0 allows basically to perform a single
bubble analysis.

(ii) To see how to construct an example of a functionK satisfying our assumptions, w
refer the interested reader to [2].
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Next, we state another kind of existence results for problem(P ) based on a topological
we

-

ll
invariant introduced by A. Bahri in [4]. In order to give our results in this direction,
need to fix some notation and state our assumptions.

We denote byWs(y) andWu(y) the stable and unstable manifolds ofy for ZK .

(A5) We assume thatK has only nondegenerate critical pointsyi satisfying�K(yi) �= 0
andWs(yi) ∩ Wu(yj ) = ∅ for anyi such that−�K(yi) > 0 and for anyj such that

−�K(yj) < 0.

For k ∈ {1, . . . , n − 1}, we defineX as

X = Ws(yi0),

whereyi0 satisfies

K(yi0) = max
{
K(yi) | index(K,yi) = n − k, −�K(yi) > 0

}
.

(A6) We assumeX without boundary.

We observe that assumption(A0) implies thatX does not intersect the boundary∂Ω

and therefore it is a compact set ofΩ .
Now, we denote byy0 the absolute maximum ofK. Let us define the setCy0(X) as

Cy0(X) = {
αδy0 + (1− α)δx | α ∈ [0,1], x ∈ X

}
,

whereδx denotes the Dirac mass atx.
For λ large enough, we introduce a mapfλ :Cy0(X) → Σ+ := {u ∈ H 2 ∩ H 1

0 | u > 0,

‖u‖2 = 1},

αδy0 + (1− α)δx � (α/K(y0)
(n−4)/8)P δ(y0,λ) + ((1− α)/K(x)(n−4)/8)P δ(x,λ)

‖(α/K(y0)(n−4)/8)P δ(y0,λ) + ((1− α)/K(x)(n−4)/8)P δ(x,λ)‖2
,

where‖u‖2
2 = ∫

Ω
|�u|2.

ThenCy0(X) andfλ(Cy0(X)) are manifolds in dimensionk + 1, that is, their singu
larities arise in dimensionk − 1 and lower, see [4]. The codimension ofWs(y0, yi0)∞ is
equal tok + 1, then we can define the intersection number (modulo 2) offλ(Cy0(X)) with
Ws(y0, yi0)∞:

µ(yi0) = fλ

(
Cy0(X)

) · Ws(y0, yi0)∞,

whereWs(y0, yi0)∞ is the stable manifold of the critical points at infinity(y0, yi0)∞ for a
decreasing pseudogradient forJ which is transverse tofλ(Cy0(X)). Such a number is we
defined see [4,25]. Observe thatCy0(X) andfλ(Cy0(X)) are contractible whileX is not
contractible.
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(A7) Assume that 2/K(y0)
(n−4)/4 < 1/K(y)(n−4)/4 for each critical pointy of Morse
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prove
indexn − (k + 1) and satisfies−�K(y) > 0.

We then have the following result:

Theorem 1.5. Letn � 7. Under assumptions(A0), (A5), (A6) and(A7), if µ(yi0) = 0 then
(P ) has a solution of an augmented Morse index less thank + 1.

Now, we give a more general statement than Theorem 1.5. For this purpose, we
X as

X =
⋃
y∈B

Ws(y),

whereB = {y ∈ Ω | ∇K(y) = 0, −�K(y) > 0}. We denote byk the dimension ofX and
by Bk = {y ∈ B | index(K,y) = n − k}.

Foryi ∈ Bk , we define, forλ large enough, the intersection number (modulo 2):

µ(yi) = fλ

(
Cy0(X)

) · Ws(y0, yi)∞.

By the above arguments, this number is well defined, see [25].
Then, we have:

Theorem 1.6. Let n � 7. Under assumptions(A0), (A5) and (A6), if µ(yi) = 0 for each
yi ∈ Bk , then(P ) has a solution of an augmented Morse index less thank + 1.

The organization of the paper is the following. In Section 2, we set up the varia
structure and recall some preliminaries. InSection 3, we give an expansion of the Eu
functional associated to(P ) and its gradient near potential critical points at infinity.
Section 4, we provide the proof of Theorem 1.1 and its corollary. In Section 5, we
Theorem 1.3, while Section 6 is devoted to the proof of Theorems 1.5 and 1.6.

2. Preliminaries

In this section, we set up the variational structure and its mean features.
Problem(P ) has a variational structure. The related functional is,

J (u) =
(∫

Ω

K|u|2n/(n−4)

)−(n−4)/n

,

defined on

Σ =
{

u ∈ H 2 ∩ H 1
0 (Ω) | ‖u‖2

H2∩H1
0 (Ω)

:= ‖u‖2
2 :=

∫
Ω

|�u|2 = 1

}
.
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The positive critical points ofJ are solutions of (P ), up to a multiplicative constant.
2 1 p+1

[30]
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Due to the non-compactness of the embeddingH ∩ H0 (Ω) into L (Ω), the func-
tional J does not satisfy the Palais–Smale condition. An important result of Struwe
(see also [24] and [13]) describes the behavior of such sequences associated to sec
order equations of the type:

−�u = u(n+2)/(n−2), u > 0 in Ω; u = 0 on∂Ω. (2.1)

In [21], Gazzola, Grunau and Squassina proved the analogue of this result for proble(P ).
To describe the sequences failing the Palais–Smale condition, we need to introduce so
notation.

Fora ∈ Ω andλ > 0, let:

δ(a,λ)(x) = cn

(
λ

1+ λ2|x − a|2
)(n−4)/2

, (2.2)

wherecn is a positive constant chosen so thatδ(a,λ) is the family of solutions of the follow
ing problem (see [23]):

�2u = u(n+4)/(n−4), u > 0 in Rn. (2.3)

Forf ∈ H 2(Ω), we define the projectionP by:

u = Pf ⇐⇒ �2u = �2f in Ω, u = �u = 0 on∂Ω. (2.4)

We have the following proposition which is extracted from [11].

Proposition 2.1 [11]. Let a ∈ Ω , λ > 0 andϕ(a,λ) = δ(a,λ) − Pδ(a,λ). We have:

(a) 0� ϕ(a,λ) � δ(a,λ),
(b) ϕ(a,λ) = cn

H(a,.)

λ(n−4)/2 + f(a,λ), wherecn is defined in(2.2)andf(a,λ) satisfies:

f(a,λ) = O

(
1

λn/2dn−2

)
, λ

∂f(a,λ)

∂λ
= O

(
1

λn/2dn−2

)
,

1

λ

∂f(a,λ)

∂a
= O

(
1

λ(n+2)/2dn−1

)
,

whered is the distanced(a, ∂Ω).

(c)

|ϕ(a,λ)|L2n/(n−4) = O

(
1

(λd)(n−4)/2

)
,

∣∣∣∣λ∂ϕ(a,λ)

∂λ

∣∣∣∣
L2n/(n−4)

= O

(
1

(λd)(n−4)/2

)
,

‖ϕ(a,λ)‖2 = O

(
1

(λd)(n−4)/2

)
,

∣∣∣∣1

λ

∂ϕ(a,λ)

∂a

∣∣∣∣
L2n/(n−4)

= O

(
1

(λd)(n−2)/2

)
.
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We now introduce the set of potential critical points at infinity.
∗

eloped
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,
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For anyε > 0 andp ∈ N , letV (p, ε) be the subset ofΣ of the following functions:u ∈
Σ such that there is(a1, . . . , ap) ∈ Ωp, (λ1, . . . , λp) ∈ (ε−1,+∞)p and (α1, . . . , αp) ∈
(0,+∞)p such that

∥∥∥∥u −
p∑

i=1

αiPδ(ai ,λi)

∥∥∥∥
2
< ε, λid(ai, ∂Ω) > ε−1;

∣∣∣∣ α
8/(n−4)
i K(ai)

α
8/(n−4)

j K(aj )
− 1

∣∣∣∣ < ε, εij < ε for i �= j,

where

εij =
(

λi

λj

+ λj

λi

+ λiλj |ai − aj |2
)−(n−4)/2

. (2.5)

The failure of the Palais–Smale condition can be described going along the ideas dev
in [13,24,30]. Namely, we have:

Proposition 2.2 [21]. Assume thatJ has no critical point inΣ+. Let (uk) ∈ Σ+ be a
sequence such that(∂J (uk)) tends to zero and(J (uk)) is bounded. Then, after possib
having extracted a subsequence, there existp ∈ N∗ and a sequence(εk), εk tends to zero
such thatuk ∈ V (p, εk).

Now, we consider the following minimization problem for a functionu ∈ V (p, ε) with
ε small:

min

{∥∥∥∥∥u −
p∑

i=1

αiPδ(ai ,λi)

∥∥∥∥∥
2

, αi > 0, λi > 0, ai ∈ Ω

}
. (2.6)

We then have the following proposition whose proof is similar, up to minor modifications
to the corresponding statement for the Laplacian operator in [5]. This proposition defin
a parametrization of the setV (p, ε).

Proposition 2.3. For anyp ∈ N∗, there existsεp > 0 such that, ifε < εp andu ∈ V (p, ε),
the minimization problem(2.6) has a unique solution(α, a,λ) (up to permutation). In
particular, we can writeu ∈ V (p, ε) as follows:

u =
p∑

i=1

αiPδ(ai ,λi) + v,

where (α1, . . . , αp, a1, . . . , ap,λ1, . . . , λp) is the solution of(2.6) and v ∈ H 2(Ω) ∩
H 1

0 (Ω) such that
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(v,Pδ(ai ,λi))2 = (v, ∂Pδ(ai ,λi)/∂λi)2 = 0,

te
(v, ∂Pδ(ai ,λi)/∂ai)2 = 0 for i = 1, . . . , p, (V0)

where(u,w)2 = ∫
Ω

�u�w.

3. Expansion of the functional and its gradient

In this section, we will give a useful expansion of the functionalJ and its gradient in
the potential setV (p, ε) for n � 6. In the sequel, for the sake of simplicity, we will wri
δi instead ofδ(ai ,λi). We start by the expansion ofJ .

Proposition 3.1. There existsε0 > 0 such that for anyu = ∑p

i=1 αiPδi + v ∈ V (p, ε),
ε < ε0, v satisfying(V0), we have:

J (u) = S
4/n
n

∑p
i=1 α2

i

(
∑p

i=1 α
2n/(n−4)

i K(ai))(n−4)/n

×
[

1+ 1

Sn

∑p

i=1 K(ai)(4−n)/4

(
−n − 4

n
c3

p∑
i=1

�K(ai)

K(ai)n/4λ2
i

+ c2

p∑
i=1

H(ai, ai)

K(ai)(n−4)/4λn−4
i

− c2

(K(ai)K(aj ))(n−4)/8

∑
i �=j

(
εij − H(ai, aj )

(λiλj )(n−4)/2

))

− f (v) + 1∑p

i=1 α2
i Sn

Q(v, v) + o

(∑ 1

λ2
k

+ 1

(λkdk)n−4 +
∑
i �=j

εij + ‖v‖2
2

)]
,

where

Q(v,v) = ‖v‖2
2 − n + 4

n − 4

p∑
i=1

∫
Ω

Pδ
8/(n−4)
i v2,

f (v) = 2∑p

i=1 α
2n/(n−4)
i K(ai)Sn

∫
Ω

K

(
p∑

i=1

αiPδi

)(n+4)/(n−4)

v,

Sn =
∫
Rn

c
2n/(n−4)
n dy

(1+ |y|2)n , c2 =
∫
Rn

c
2n/(n−4)
n

(1+ |y|2)(n+4)/2
dy, c3 = c

2n/(n−4)
n

2n

∫
Rn

|y|2
(1+ |y|2)n dy,

andcn is defined in(2.2). Observe that ifn = 6 we havec2 = 20c3.
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Proof. On one hand, Proposition 2.1 implies:

e

‖Pδ‖2
2 = Sn − c2

H(a,a)

λn−4 + O

(
1

(λd)n−2

)
, (3.1)

∫
Ω

KPδ2n/(n−4) = K(a)Sn + c3
�K(a)

λ2 − 2n

n − 4
c2K(a)

H(a, a)

λn−4

+ O

(
1

λ3
+ 1

(λd)n−2

)
. (3.2)

On the other hand, a computation similar to the one performed in [3] shows that, fori �= j ,
we have: ∫

Rn

δ
(n+4)/(n−4)
i δj = c2εij + O

(
ε
(n−2)/(n−4)
ij

)
,

∫
Rn

(δiδj )
n/(n−4) = O

(
ε
n/(n−4)
ij log

(
ε−1
ij

))
. (3.3)

Thus, we derive that

(P δi ,P δj )2 = c2

(
εij − H(ai, aj )

(λiλj )(n−4)/2

)
+ O

(
ε
(n−2)/(n−4)

ij +
∑
k=i,j

1

(λkdk)n−2

)
, (3.4)

∫
Ω

KPδ
(n+4)/(n−4)
i P δj = K(ai)(Pδi ,P δj )2 + o

(∑ 1

λ2
k

+ 1

(λkdk)n−4
+ εij

)
(3.5)

and

∫
K

(
p∑

i=1

αiPδi

)8/(n−4)

v2 =
p∑

i=1

α
8/(n−4)

i K(ai)

∫
Pδ

8/(n−4)

i v2 + o
(‖v‖2

2

)
. (3.6)

Combining (3.1)–(3.6) and the fact thatα
8/(n−4)
i K(ai)/(α

8/(n−4)
j K(aj )) = 1 + o(1), our

result follows. �
Now, let us recall that the quadratic formQ(v,v) defined in Proposition 3.1 is positiv

definite (see [9]). Thus we have the following proposition which deals with thev-part ofu.

Proposition 3.2 (see [9]). There exists aC1-map which, to each(α, a,λ) satisfying∑p

i=1 αiPδ(ai ,λi) ∈ V (p, ε), with ε small enough, associatesv = v(α, a,λ) satisfying(V0)
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such thatv is unique, minimizingJ (
∑p

i=1 αiPδ(ai ,λi) +v) with respect tov satisfying(V0),

and we have the following estimate:

‖v‖2 � c|f | = O

(
p∑

i=1

|∇K(ai)|
λi

+ 1

λ2
i

)

+


O

(∑
εij

(
logε−1

ij

)(n−4)/n + 1/(λidi)
n−4

)
if n < 12,

O
(∑

ε
(n+4)/(2(n−4))
ij

(
logε−1

ij

)(n+4)/2n

+ (logλidi)
(n+4)/2n/(λidi)

(n+4)/2
)

if n � 12.

Now regarding the gradient ofJ which we will denote by∂J , we have the following
expansions:

Proposition 3.3. For u = ∑p

i=1 αiPδi ∈ V (p, ε), we have the following expansion:(
∂J (u),λi

∂Pδi

∂λi

)
2
= 2J (u)

[
n − 4

n
c3αi

�K(ai)

K(ai)λ
2
i

− n − 4

2
c2αi

H(ai, ai)

λn−4
i

(
1+ o(1)

)
− c2

∑
j �=i

αj

(
λi

∂εij

∂λi

+ n − 4

2

H(ai, aj )

(λiλj )(n−4)/2

)(
1+ o(1)

)]

+ o

(∑ 1

λ2
k

+ 1

(λkdk)n−3 +
∑
k �=r

ε
(n−3)/(n−4)
kr

)
.

Proof. We have:(
∂J (u),λi

∂Pδi

∂λi

)
2
= 2J (u)

[∑
αj

(
Pδj ,λi

∂Pδi

∂λi

)
2

− J (u)n/(n−4)

∫
K

(∑
αjPδj

)(n+4)/(n−4)

λi

∂Pδi

∂λi

]
. (3.7)

Observe that(∑
αjPδj

)(n+4)/(n−4) =
∑

(αjPδj )
(n+4)/(n−4) + n + 4

n − 4

∑
j �=i

(αiP δi)
8/(n−4)αjPδj

+ O

(∑
j �=i

P δ
8/(n−4)

j P δiχPδi�
∑

j �=i P δj

+
∑
j �=i

P δ
(12−n)/(n−4)

i P δ2
j χPδj �Pδi

+
∑

k �=j, k,j �=i

P δ
8/(n−4)

j P δk

)
. (3.8)
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Using Proposition 2.1, a computation similar to the one performed in [3] and [29] shows

that (

Pδ,λ
∂Pδ

∂λ

)
2
= n − 4

2
c2

H(a,a)

λn−4
+ O

(
1

(λd)n−2

)
, (3.9)

∫
KPδ(n+4)/(n−4)λ

∂Pδ

∂λ
= −n − 4

n
c3

�K(a)

λ2
+ (n − 4)c2K(a)

H(a, a)

λn−4

+ O

(
1

λ3
+ 1

(λd)n−2

)
.

For i �= j , we have:∫
Rn

δ
(n+4)/(n−4)
i λj

∂δj

∂λj

= c2λj

∂εij

∂λj

+ O
(
ε
(n−2)/(n−4)
ij

)
, (3.10)

(
Pδj ,λi

∂Pδi

∂λi

)
2
= c2

(
λi

∂εij

∂λi

+ n − 4

2

H(ai, aj )

(λiλj )(n−4)/2

)

+ O

( ∑
k=i,j

1

(λkdk)n−2 + ε
(n−2)/(n−4)
ij

)
, (3.11)

∫
KPδ

(n+4)/(n−4)
j λi

∂Pδi

∂λi

= K(aj )

(
Pδj ,λi

∂Pδi

∂λi

)
2
+ O

(
εij

(
logε−1

ij

)(n−4)/n

(
1

λj

+ 1

(λj dj )4

))

+
O

(
ε
n/(n−4)
ij logε−1

ij + log(λj dj )/(λjdj )
n
)

if n � 8,

O
(
εij

(
logε−1

ij

)(n−4)/n
/(λjdj )

n−4
)
, if n < 8,

(3.12)

∫
KPδjλi

∂(Pδi)
(n+4)/(n−4)

∂λi

= K(ai)

(
Pδj ,λi

∂Pδi

∂λi

)
2
+ O

(
εij

(
logε−1

ij

)(n−4)/n
(

1

λi

+ 1

(λidi)4

))

+
O

(
ε
n/(n−4)
ij logε−1

ij + log(λidi)/(λidi)
n
)

if n � 8,

O
(
εij

(
logε−1

ij

)(n−4)/n
/(λidi)

n−4
)

if n < 8.
(3.13)
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Now, it is easy to check,

-

|λi∂Pδi/∂λi | � cδi, P δk � δk and

J (u)n/(n−4)α
8/(n−4)
j K(aj ) = 1+ o(1) ∀j = 1, . . . , p. (3.14)

Combining (3.7)–(3.14), we easily derive our proposition.�
Proposition 3.4. For u = ∑p

i=1 αiPδi belonging toV (p, ε), we have the following expan
sion: (

∂J (u),
1

λi

∂Pδi

∂ai

)
2
= 2J (u)

[
−c4α

(n+4)/(n−4)
i J (u)n/(n−4) ∇K(ai)

λi

(
1+ o(1)

)
+ c2

2

αi

λn−3
i

∂H(ai, ai)

∂ai

(
1+ o(1)

)
+ O

(
1

λ2
i

+ 1

(λidi)n−2
+

∑
j �=i

εij

)]
.

We can improve this expansion and we obtain:(
∂J (u),

1

λi

∂Pδi

∂ai

)
2
= 2J (u)

[
−c4α

(n+4)/(n−4)
i J (u)n/(n−4) ∇K(ai)

λi

(
1+ o(1)

)
+ c2

2

αi

λn−3
i

∂H(ai, ai)

∂ai

+ c2

∑
j �=i

αj

(
1

λi

∂εij

∂ai

− 1

(λiλj )(n−4)/2

1

λi

∂H(ai, aj )

∂ai

)

×
(

1− J (u)n/(n−4)
∑
k=i,j

α
8/(n−4)

k K(ak)

)]

+ O

(
1

λ2
i

+
∑
j �=i

λj |ai − aj |ε(n−1)/(n−4)
ij

)

+ o

(∑
k

1

λ2
k

+ 1

(λkdk)n−3
+

∑
k �=j

ε
(n−3)/(n−4)
kj

)
.

Proof. As in the proof of Proposition 3.3, we get (3.7) but withλi∂Pδi/∂λi changed by
λ−1

i ∂P δi/∂ai .
Now, using Proposition 2.1, we observe (see [3] and [29]):(

Pδ,
1

λ

∂Pδ

∂a

)
2
= − c2

2λn−3

∂H

∂a
(a, a) + O

(
1

(λd)n−2

)
, (3.15)
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KPδ(n+4)/(n−4) 1

λ

∂Pδ

∂a
= −K(a)

c2

λn−3

∂H

∂a
(a, a) + c4

∇K(a)

λ

(
1+ o(1)

)

ivity
+ O

(
1

λ2
+ 1

(λd)n−2

)
,

wherec4 is a positive constant.
We also observe, fori �= j ,∫

Rn

δ
(n+4)/(n−4)
i

1

λj

∂δj

∂aj

= c2
1

λj

∂εij

∂aj

+ O
(
λi |ai − aj |ε(n−1)/(n−4)

ij

)
, (3.16)

(
Pδj ,

1

λi

∂Pδi

∂ai

)
2
= c2

1

λi

∂εij

∂ai

− c2

(λiλj )(n−4)/2

1

λi

∂H

∂ai

(ai, aj )

+ O

( ∑
k=i,j

1

(λkdk)n−2
+ ε

(n−1)/(n−4)
ij λj |ai − aj |

)
, (3.17)

∫
KPδ

(n+4)/(n−4)
j

1

λi

∂Pδi

∂ai

= K(aj )

(
Pδj ,

1

λi

∂Pδi

∂ai

)
2
+ O

(
εij

(
logε−1

ij

)(n−4)/n
(

1

λj

+ 1

(λj dj )4

))

+
O

(
ε
n/(n−4)

ij logε−1
ij + log(λj dj )/(λjdj )

n
)

if n � 8,

O
(
εij

(
logε−1

ij

)(n−4)/n
/(λjdj )

n−4
)

if n < 8,
(3.18)

∫
KPδj

1

λi

∂(Pδi)
(n+4)/(n−4)

∂ai

= K(ai)

(
Pδj ,

1

λi

∂Pδi

∂ai

)
2
+ O

(
εij

(
logε−1

ij

)(n−4)/n
(

1

λi

+ 1

(λidi)4

))

+
O

(
ε
n/(n−4)
ij logε−1

ij + log(λidi)/(λidi)
n
)

if n � 8,

O
(
εij

(
logε−1

ij

)(n−4)/n
/(λidi)

n−4
)

if n < 8.
(3.19)

Using (3.15)–(3.19), the proposition follows.�

4. Proof of Theorem 1.1 and its corollary

First, we prove the following technical result which will be useful to prove the posit
of the solution that we will find.
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Proposition 4.1. There exists a positive constantε0 such that, ifu ∈ H 2(Ω) is a solution

of the following equation,

�2u = K|u|8/(n−4)u in Ω, u = �u = 0 on∂Ω,

and satisfying|u−|L2n/(n−4) < ε0, thenu has to be positive.

Proof. First, we observe thatK(u−)(n+4)/(n−4) ∈ L2n/(n+4), whereu− = max(0,−u).
Now, let us introducew satisfying:

�2w = −K(u−)(n+4)/(n−4) in Ω, w = �w = 0 on∂Ω. (4.1)

Using a regularity argument, we derive thatw ∈ H 2 ∩H 1
0 (Ω). Furthermore, the maximum

principle implies thatw � 0. Now, multiplying Eq. (4.1) byw and integrating onΩ , we
derive that

‖w‖2
2 =

∫
Ω

�2w · w = −
∫
Ω

K(u−)(n+4)/(n−4)w � c‖w‖2|u−|(n+4)/(n−4)

L2n/(n−4) . (4.2)

Thus, either‖w‖2 = 0 and it follows thatu− = 0 or‖w‖2 �= 0 and therefore

‖w‖2 � c|u−|(n+4)/(n−4)

L2n/(n−4) . (4.3)

On the other hand, we have:∫
Ω

�2w · u =
∫
Ω

K(u−)2n/(n−4) � c|u−|2n/(n−4)

L2n/(n−4) . (4.4)

Furthermore we obtain:∫
Ω

�2w · u =
∫
Ω

w · �2u =
∫
Ω

K|u|8/(n−4)uw

= −
∫

u�0

K(u−)(n+4)/(n−4)w +
∫

u�0

K(u+)(n+4)/(n−4)w (4.5)

�
∫

u�0

−K(u−)(n+4)/(n−4)w =
∫
Ω

−K(u−)(n+4)/(n−4)w

=
∫
Ω

�2w · w = ‖w‖2
2. (4.6)

Thus,

|u−|2n/(n−4)

L2n/(n−4) � c‖w‖2
2 � c|u−|2(n+4)/(n−4)

L2n/(n−4) . (4.7)
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Then, for |u−|L2n/(n−4) small enough, we derive a contradiction and therefore the case
−

its of
t

ent

ry

ist

is
‖w‖2 �= 0 cannot occur, so‖w‖2 has to be equal to zero and thereforeu = 0. Thus the
result follows. �

Now, we provide the characterization of the critical points at infinity ofJ in the case
where we have only one mass. We recall that the critical points at infinity are the orb
the gradient flow ofJ which remain inV (p, ε(s)), whereε(s) is some function such tha
ε(s) tends to zero whens tends to+∞ (see [3]).

Proposition 4.2. Letn � 7 and assume that(A0) holds. Then there exists a pseudogradi
Y1 such that the following holds:

(1) there exists a constantc > 0 independent ofu = αδ(a,λ) ∈ V (1, ε) such that

(−∂J (u),Y1
)
2 � c

(
1

λ2
+ |∇K(a)|

λ
+ 1

(λd)n−3

)
;

(2)

(
−∂J (u + v),Y1 + ∂v

∂(α, a,λ)
(Y1)

)
2
� c

(
1

λ2 + |∇K(a)|
λ

+ 1

(λd)n−3

)
;

(3) Y1 is bounded and the only case whereλ increases alongY1 is whena is close to a
critical point y of K with −�K(y) > 0. Furthermore the distance to the bounda
only increases if it is small enough.

Proof. Using (A0) and the fact that the boundary ofΩ is a compact set, then there ex
two positive constantsc andd0 such that for eachx satisfyingdx � d0 we have∇K(x) ·
νx < −c whereνx is the outward normal toΩdx = {z ∈ Ω | dz = d(z, ∂Ω) > dx}. The
construction will depend ona andλ. We distinguish three cases:

1st case: If a is near the boundary, that isda � d0, we define:

W1 = −1

λ

∂Pδ(a,λ)

∂a
νa.

2nd case: If da � d0 and|∇K(a)| � C2/λ whereC2 is a large positive constant. In th
case, we define:

W2 = 1

λ

∂Pδ(a,λ)

∂a

∇K(a)

|∇K(a)| .

3rd case: If |∇K(a)| � 2C2/λ, thusa is near a critical pointy of K. Then we define:

W3 = (
sign

(−�K(y)
))

λ
∂Pδ(a,λ)

∂λ
.

In all cases, using Propositions 3.3 and 3.4, we derive that

(−∂J (u),Wi

)
2 � c

(
1

λ2
+ 1

(λd)n−3
+ |∇K(a)|

λ

)
.
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The pseudogradientY1 will be a convex combination ofW1, W2 andW3. Thus the proof

t

l

been

e
t
si-

es

t

heo-

ity,

-

h

of claim (1) is completed. The proof of claim (2) follows from the estimate ofv as in [4]
and [7]. The proof of claim (3) follows from the construction of the vector fieldY1. �
Proposition 4.3. Assume thatJ does not have any critical points inΣ+ and assume tha
(A0) and (A2) hold. Then the only critical points at infinity ofJ in V (1, ε), for ε small
enough, correspond toPδ(y,+∞) wherey is a critical point ofK with −�K(y) > 0 if
n � 7 and with −�K(y)/(60K(y)) + H(y,y) > 0 if n = 6. Moreover, such a critica
point at infinity has a Morse index equal ton − index(K,y).

Proof. First, we recall that the 6-dimension case of such a proposition has already
proved in [11], so we need to prove our result forn � 7.

Now, from Proposition 4.2, we know that the only region whereλ increases along th
pseudogradientY1, defined in Proposition 4.2, is the region wherea is near a critical poin
y of K with −�K(y) > 0. Arguing as in [4] and [7], we can easily derive from Propo
tion 4.2, the following normal form:

If a is near a critical pointy of K with −�K(y) > 0, we can find a change of variabl
(a,λ) → (ā, λ̄) such that

J (Pδ(a,λ) + v̄) = �(ā, λ̄) := S
4/n
n

K(ā)(n−4)/n

(
1− (c − η)

λ̄2

�K(y)

K(y)n/4

)
, (4.8)

wherec is a constant which depends only onn andη is a small positive constant.
This yields a split of variablesa andλ, thus it follows that ifa = y, only λ can move.

In order to decrease the functionalJ , we have to increaseλ, thus we find a critical point a
infinity only in this case and our result follows.�

Now, we are ready to prove Theorem 1.1 and its corollary.

Proof of Theorem 1.1. Arguing by contradiction, we suppose thatJ has no critical points
in Σ+. It follows from Propositions 3.1 and 4.3, that under the assumptions of T
rem 1.1, the critical points at infinity ofJ under the levelc1 = (Sn)

4/n(K(yl))
(4−n)/n + ε,

for ε small enough, are in one-to-one correspondence with the critical points ofK
y0, y1, . . . , yl . The unstable manifold at infinity of such critical points at infin
Wu(y0)∞, . . . ,Wu(yl)∞ can be described, using (4.8), as the product ofWs(y0), . . . ,Ws(yl)

(for a pseudogradient ofK) by [A,+∞[ domain of the variableλ, for some positive num
berA large enough.

Let η be a small positive constant and let:

Vη(Σ
+) = {

u ∈ Σ | J (u)(2n−4)/(n−4)e2J (u)|u−|8/(n−4)

L2n/(n−4) < η
}
. (4.9)

SinceJ has no critical points inΣ+, it follows that Jc1 = {u ∈ Vη(Σ
+) | J (u) � c1}

retracts by deformation onX∞ = ⋃
0�j�l Wu(yj )∞ (see Sections 7 and 8 of [6]) whic

can be parametrized as we said before byX × [A,+∞[.
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On the other hand, we haveX∞ contractible inJc2+ε , wherec2 = (Sn)
4/nc̄(4−n)/n.
c̄

s

nity

ty

fore

dex

he

h

Indeed, from(A4), it follows that there exists a contractionh : [0,1] × X → K , h contin-
uous, such that for anya ∈ X, h(0, a) = a andh(1, a) = a0 ∈ X. Such a contraction give
rise to the following contractioñh : [0,1] × X∞ → Vη(Σ

+) defined by:

[0,1] × X × [A,+∞[� (t, a, λ) �→ Pδ(h(t,a),λ) + v̄ ∈ Vη

(
Σ+)

.

In fact, h̃ is continuous and it satisfies̃h(0, a, λ) = Pδ(a,λ) + v̄ ∈ X∞ and h̃(1, a, λ) =
Pδ(a0,λ) + v̄.

Now, using Proposition 3.1, we deduce that

J (Pδ(h(t,a),λ) + v̄) = (Sn)
4/n

(
K

(
h(t, a)

))(4−n)/n(1+ O
(
A−2)),

whereK(h(t, a)) � c̄ by construction.
Therefore such a contraction is performed underc2 + ε, for A large enough, soX∞ is

contractible inJc2+ε.
In addition, choosingc0 small enough, we see that there is no critical point at infi

for J between the levelsc2 + ε andc1, thusJc2+ε retracts by deformation onJc1, which
retracts by deformation onX∞, thereforeX∞ is contractible leading to the contractibili
of X, which is in contradiction with assumption(A3). HenceJ has a critical point in
Vη(Σ

+). Using Proposition 4.1, we derive that such a critical point is positive. There
our theorem follows. �

Now, we give the proof of Corollary 1.2.

Proof of Corollary 1.2. Arguing by contradiction, we may assume that the Morse in
of the solution provided by Theorem 1.1 is� m − 1.

Perturbing, if necessaryJ , we may assume that all the critical points ofJ are non-
degenerate and have their Morse index� m − 1. Such critical points do not change t
homological group in dimensionm of level sets ofJ .

SinceX∞ defines a homological class in dimensionm which is nontrivial inJc1, but
trivial in Jc2+ε , our result follows.

5. Proof of Theorem 1.3

Arguing by contradiction, we suppose thatJ has no critical points inVη(Σ
+) defined

by (4.9). We denote byz1, . . . , zr the critical points ofK among ofyi (1 � i � l), where

−�K(zj ) � 0 (1 � j � r).

The idea of the proof of Theorem 1.3 is to perturb the functionK in theC1 sense in some
neighborhoods ofz1, . . . , zr such that the new functioñK has the same critical points wit
the same Morse indices but satisfying−�K̃(zj ) > 0 for 1� j � r. Notice that the new̃X
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corresponding tõK , defined in assumption(A3), is also not contractible and its homology

-

),
in

be a

ices

n

g

et
group in dimensionm is nontrivial.
Under the level 24/nS

4/n
n (K(y0))

(4−n)/n, the associated functionalJ̃ is close to the func
tionalJ in theC1 sense. Under the levelc2+ε, wherec2 is defined in the proof of Theorem
1.1, the functional̃J may have other critical points, however a careful choice ofK̃ ensures
that all these critical points have Morse indices less thanm−2 (see Proposition 5.1 below
and so they do not change the homology in dimensionm, therefore the arguments used
the proof of Theorem 1.1 lead to a contradiction. It follows that Theorem 1.3 will
corollary of the following proposition:

Proposition 5.1. Assume thatJ has no critical points inVη(Σ
+). We can choosẽK close

to K in theC1 sense such that̃K has the same critical points with the same Morse ind
and such that

(i) −�K̃(zj ) > 0 for 1 � j � r,
(ii) −�K̃(y) > 0 for y ∈ {y0, . . . , yl}�{z1, . . . , zr },
(iii) −�K̃(yi) < 0 for l + 1 � i � s,
(iv) if J̃ has critical points under the levelc2 + ε, then their Morse indices are less tha

m − 2, wherem is defined in assumption(A3),
(v) the newX̃ corresponding tõK , defined in assumption(A3), is also not contractible

and its homology group in dimensionm is nontrivial.

Next, we are going to prove Proposition 5.1. For this purpose, we need the followin
lemmas:

Lemma 5.2. Let z0 be a point ofΩ such thatd(z0, ∂Ω) � c0 > 0 and letπ be the orthog-
onal projection(with respect to the scalar inner(u, v)2 = ∫

Ω �u�v) onto

E⊥ = Vect
(
Pδ(z0,λ), λ

−1∂Pδ(z0,λ)/∂z,λ∂Pδ(z0,λ)/∂λ
)
.

Then, we have the following estimates:

(i)
∥∥J ′(P δ(z0,λ))

∥∥ = O

(
1

λ

)
; (ii)

∥∥∥∥∂π

∂z

∥∥∥∥ = O(λ); (iii)

∥∥∥∥∂2π

∂2z

∥∥∥∥ = O
(
λ2).

Proof. The proof of claim (i) is easy, so we will omit it. Now, we prove claim (ii). L
ϕ ∈ {Pδ(z0,λ), λ

−1∂Pδ(z0,λ)/∂z,λ∂Pδ(z0,λ)/∂λ}. We then haveπϕ = ϕ, therefore,

∂π

∂z
(ϕ) = ∂ϕ

∂z
− π

∂ϕ

∂z
,

thus‖ ∂π
∂z

(ϕ)‖ = O(λ).
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Now, for v ∈ E, we haveπv = 0, thus

.

g

w

is
∂π

∂z
v = −π

∂v

∂z
=

3∑
i=1

aiϕi,

whereϕ1 = Pδ(z0,λ), ϕ2 = λ−1∂Pδ(z0,λ)/∂z, ϕ3 = λ∂Pδ(z0,λ)/∂λ.
But, we have:

ai‖ϕi‖2 =
(

∂v

∂z
,ϕi

)
2
= −

(
v,

∂ϕi

∂z

)
2
= O

(
λ‖v‖).

Thus claim (ii) follows.
In the same way, claim (iii) follows and hence the proof of our lemma is completed�

Lemma 5.3. Let z0 be a point ofΩ close to a critical point ofK such thatd(z0, ∂Ω) �
c0 > 0. Let v̄ = v̄(z0, α,λ) ∈ E defined in Proposition3.2. Then, we have the followin
estimates:

(i) ‖v̄‖ = o

(
1

λ

)
, (ii)

∥∥∥∥∂v̄

∂z

∥∥∥∥ = o(1).

Proof. We notice that claim (i) follows from Proposition 3.2. Then, we need only to sho
that claim (ii) is true. We know that̄v satisfies,

Av̄ = f + O
(‖v̄‖(n+4)/(n−4)

)
and

∂A

∂z
v̄ + A

∂v̄

∂z
= ∂f

∂z
+ O

(
‖v̄‖8/(n−4)

∣∣∣∣∂v̄

∂z

∣∣∣∣),

whereA is the operator associated to the quadratic formQ defined onE (Q andf are
defined in Proposition 3.1).

Then, we have:

A

(
∂v̄

∂z
− π

(
∂v̄

∂z

))
= ∂f

∂z
− ∂A

∂z
v̄ − Aπ

(
∂v̄

∂z

)
+ O

(
‖v̄‖8/(n−4)|∂v̄

∂z
|
)

.

SinceQ is a positive quadratic form onE (see [9]), we then derive,∥∥∥∥∂v̄

∂z
− π

(
∂v̄

∂z

)∥∥∥∥ � C

(∥∥∥∥∂f

∂z

∥∥∥∥ +
∥∥∥∥∂A

∂z

∥∥∥∥‖v̄‖ +
∥∥∥∥π

(
∂v̄

∂z

)∥∥∥∥ + ‖v̄‖8/(n−4)

∥∥∥∥∂v̄

∂z

∥∥∥∥)
.

Now, we estimate each term of the right-hand side in the above estimate. First, it
easy to see‖ ∂A

∂z
‖ = O(λ). Therefore, using (i), we obtain‖ ∂A

∂z
‖‖v̄‖ = o(1). Secondly, we

have:
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∂f

∂z
, v

)
= c

∫
KPδ

8/(n−4)

(z0,λ)

∂Pδ

∂z
v = c∇K(z0)

∫
d(z0, x)δ8/(n−4) ∂δ

∂z
v

2

+ O

(∫
d2(x, z0)δ

(n+4)/(n−4)λ|v|
)

+ O

(∫
Ω

δ8/(n−4)ϕ|v| +
∫
Ω

δ8/(n−4)

∣∣∣∣∂ϕ

∂z

∣∣∣∣|v|
)

� c‖v‖
(∣∣∇K(z0)

∣∣ + 1

λ

)
, (5.1)

whereϕ = δ − Pδ.
Sincez0 is close to a critical point ofK, we derive that‖ ∂f

∂z
‖ = o(1).

For the term‖π(∂v
∂z

)‖, we have, sincev ∈ E,(
∂v

∂z
, δ(z0,λ)

)
2
= −

(
v,

∂δ(z0,λ)

∂z

)
2
= 0,

(
∂v

∂z
,λ

∂δ(z0,λ)

∂λ

)
2
= −

(
v,λ

∂2δ(z0,λ)

∂λ∂z

)
2
= O

(
λ‖v‖) = o(1).

In the same way, we have: (
∂v

∂z
,

1

λ

∂Pδ

∂z

)
2
= o(1).

Therefore‖π(∂v
∂z

)‖ = o(1). Now, using the following inequality:∥∥∥∥∂v

∂z

∥∥∥∥ �
∥∥∥∥∂v

∂z
− π

(
∂v

∂z

)∥∥∥∥ +
∥∥∥∥π

(
∂v

∂z

)∥∥∥∥,

we easily derive our claim and our lemma follows.�
We are now able to prove Proposition 5.1.

Proof of Proposition 5.1. We suppose thatJ has no critical points inVη(Σ
+) and we

perturb the functionK only in some neighborhoods ofz1, . . . , zr , therefore claims (ii) and
(iii) follow from assumption(A′

2). We observe that under the levelc2 + ε and outside
V (1, ε0), we have|∂J | > c > 0. If K̃ is close toK in theC1-sense, theñJ is close toJ in
theC1-sense, and therefore|∂J̃ | > c/2 in this region. Thus, a critical pointu0 of J̃ under
the levelc2 + ε has to be inV (1, ε0). Therefore, we can writeu0 = Pδ(z0,λ) + v.

Next we will prove the following claim:

Claim. z0 has to be near a critical pointzi of K, 1 � i � r (recall that zi ’s satisfy
�K(zi) � 0).
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To prove our claim, we will prove in the first step thatdz0 := d(z0, ∂Ω) � c0 > 0. For

oper-
this fact, arguing by contradiction, we assume thatdz0 → 0. Thus, we have:

∂K

∂ν
(z0) < −c < 0 and

∂H

∂ν
(z0, z0) ∼

c

dn−3
z0

. (5.2)

(The proof of the last fact is similar to the corresponding statement for the Laplacian
ator in [29].)

Using Propositions 3.2 and 3.4, we obtain:

0 =
(

∂J̃ (u0),
1

λ

∂Pδ

∂z

)
2
· ν >

c

λ
+ c

(λδz0)
n−3

> 0.

Thus, we derive a contradiction and thereforez0 has to satisfydz0 � c0 > 0.
Now, also using Propositions 3.2 and 3.4, we derive that

0 =
(

∂J̃ (u0),
1

λ

∂Pδ

∂z

)
2
= c

∇K̃(z0)

λ
+ o

(
1

λ

)
,

thusz0 has to be close toyi , wherei ∈ {0, . . . , s}.
We also have, by Propositions 3.2 and 3.4:

0 =
(

∂J̃ (u0), λ
∂Pδ

∂λ

)
2
= c

�K̃(z0)

λ2
+ o

(
1

λ2

)
. (5.3)

In the neighborhood ofyi with i ∈ {k | −�K(yk) > 0} ∪ {l + 1, . . . , s}, K̃ ≡ K and there-
fore |�K̃| > c > 0 in this neighborhood. Thus (5.3) implies thatz0 has to be nearzi with
1 � i � r. Thus our claim is proved.

In the sequel, we assume thatδ = δ(z0,λ) satisfies‖δ‖ = 1, and thus�2δ = S
4/(n−4)
n ×

δ(n+4)/(n−4). We also assume that|D2K̃| � c(1 + |D2K|), wherec is a fixed positive
constant.

Let u0 = Pδ(z0,λ) + v be a critical point ofJ̃ . In order to compute the Morse index ofJ̃

atu0, we need to compute∂
2

∂z2 J̃ (P δ(z,λ) + v)|z=z0. We observe that

∂

∂z
J̃ (P δ(z,λ) + v) = J̃ ′(P δ(z,λ) + v)

∂

∂z
(Pδ(z,λ) + v)

= J̃ ′(P δ(z,λ) + v)π

(
∂

∂z
(Pδ(z,λ) + v)

)
and

∂2

∂z2
J̃ (P δ(z,λ) + v) = J̃ ′′(P δ(z,λ) + v)

∂

∂z
(Pδ(z,λ) + v)π

(
∂

∂z
(Pδ(z,λ) + v)

)
+ J̃ ′(P δ(z,λ) + v)

∂

∂z

(
π

(
∂

∂z
(Pδ(z,λ) + v)

))
. (5.4)
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Forz = z0, we haveJ̃ ′(P δ(z,λ) + v) = 0. We will estimate each term of the right-hand side

of (5.4). First, we have by Lemma 5.3,

J̃ ′′(P δ(z,λ) + v)
∂v

∂z
π

(
∂v

∂z

)
= o(1).

Secondly, we compute:

T = J̃ ′′(P δ(z,λ) + v)
∂Pδ

∂z
π

∂v

∂z

= c

[(
∂Pδ

∂z
,π

∂v

∂z

)
− n + 4

n − 4
J̃ (u0)

n/(n−4)

∫
K̃(Pδ + v)8/(n−4) ∂P δ

∂z
π

∂v

∂z

]
According to Proposition 3.1, we have:

J̃ (P δ + v) = S
4/n
n

K̃(z)(n−4)/n
+ O

(‖v‖
λ

+ 1

λ2

)
. (5.5)

Thus,

T = c

[(
∂Pδ

∂z
,π

∂v

∂z

)
2
− n + 4

n − 4
S

4/(n−4)
n

∫
K̃

K̃(z)
Pδ8/(n−4) ∂P δ

∂z
π

∂v

∂z

]
+ O

(∫ (
δ(12−n)/(n−4)|v| + |v|8/(n−4)χPδ�|v|

)∣∣∣∣∂Pδ

∂z

∣∣∣∣∣∣∣∣π ∂v

∂z

∣∣∣∣) + o(1)

= c
n + 4

n − 4
S

4/(n−4)
n

∫ (
1− K̃

K̃(z)

)
δ8/(n−4) ∂δ

∂z
π

(
∂v

∂z

)
+ O

(
λ‖v‖

∥∥∥∥∂v

∂z

∥∥∥∥+λ‖v‖(n+4)/(n−4)

∥∥∥∥∂v

∂z

∥∥∥∥)
+ o(1)

= o(1).

Thus (5.4) becomes:

∂2

∂z2 J̃ (P δ(z,λ) + v) = J̃ ′′(P δ(z,λ) + v)
∂Pδ

∂z

(
∂Pδ

∂z
+ ∂v

∂z

)
+ J̃ ′(P δ(z,λ) + v)

∂2Pδ

∂z2 + o(1)

= 2J̃ (u0)

[(
∂Pδ

∂z
+ ∂v

∂z
,
∂Pδ

∂z

)
2
+

(
Pδ + v,

∂2Pδ

∂z2

)
2

− J̃ (u0)
n/(n−4) n + 4

n − 4

(∫
K(Pδ + v)8/(n−4)

(
∂Pδ

∂z

)2

+
∫

K(Pδ + v)8/(n−4) ∂P δ

∂z

∂v

∂z

)
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− J̃ (u0)
n/(n−4)

∫
K(Pδ + v)(n+4)/(n−4) ∂

2Pδ

2

]
+ o(1)
∂z

= 2J̃ (u0)

[(
∂Pδ

∂z
+ ∂v

∂z
,
∂Pδ

∂z

)
2
+

(
Pδ + v,

∂2Pδ

∂z2

)
2

− n + 4

n − 4
J̃ (u0)

n/(n−4)

(∫
KPδ8/(n−4)

(
∂Pδ

∂z

)2

+ 8

n − 4

∫
KPδ(12−n)/(n−4)v

(
∂Pδ

∂z

)2

+
∫

KPδ8/(n−4) ∂P δ

∂z

∂v

∂z
+ n − 4

n + 4

∫
KPδ(n+4)/(n−4) ∂

2Pδ

∂z2

+
∫

KPδ8/(n−4)v
∂2Pδ

∂z2

)]
+ o(1).

Using (5.5) and Proposition 2.1, we derive that

∂2

∂z2 J̃ (P δ(z,λ) + v) = 2J̃ (u0)

[
S

4/(n−4)
n

(∫
n + 4

n − 4
δ8/(n−4)

(
∂δ

∂z

)2

+ δ(n+4)/(n−4) ∂
2δ

∂z2

)
− J̃ (u0)

n/(n−4)

(
n + 4

n − 4

∫
Kδ8/(n−4)

(
∂δ

∂z

)2

+
∫

Kδ(n+4)/(n−4) ∂
2δ

∂z2

)
+ S

4/(n−4)
n

n + 4

n − 4

(∫ (
1− K

K(z)

)
δ8/(n−4) ∂δ

∂z

∂v

∂z

+
∫ (

1− K

K(z)

)
δ8/(n−4) ∂

2δ

∂z2v

+ 8

n − 4

∫ (
1− K

K(z)

)
δ(12−n)/(n−4)

(
∂δ

∂z

)2

v

)]
+ o(1)

= 2J̃ (u0)

[
S

4/(n−4)
n

∂

∂z

(∫
Rn

δ(n+4)/(n−4) ∂δ

∂z

)

− J̃ (u0)
n/(n−4)

∫
Ω

K
∂2δ2n/(n−4)

∂z2

]
+ o(1).

Thus,
∂2

∂z2 J̃ (P δ(z,λ) + v)|z=z0
= −cD2K(z0) + o(1),

wherec is a positive constant.
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Therefore, taking account of theλ-space, we derive that

g

in-

t

index(J̃ , u0) � n − index(K, z0) + 1� m − 2.

Then claims (i) and (iv) of Proposition 5.1 follow.
On the other hand, according to assumption(A′

2) we have:

n − m + 3 � index(K, zj ) = index(K̃, zj ) for 1 � j � r.

Thus, for any pseudogradient of̃K , the dimension of the stable manifold ofzj is less
thanm − 3. Note that our perturbation changes the pseudogradientZ to Z̃, but only in
some neighborhoods ofz1, . . . , zr . Therefore the stable manifolds ofyi for i /∈ {1, . . . , r},
remain unchanged. Since the dimension ofX is greater thanm and its homology group in
dimensionm is nontrivial, we derive that the homology group ofX̃ in dimensionm is also
nontrivial. This completes the proof of Proposition 5.1.�

6. Proof of Theorems 1.5 and 1.6

In this section we assume that assumptions(A0), (A5) and(A6) hold and we are goin
to prove Theorems 1.5 and 1.6. First, we start by proving the following main results:

Proposition 6.1. Letn � 7. There exists a pseudogradientY2 such that the following holds:

(1) There exists a constantc > 0 independent ofu = ∑2
i=1 αiPδ(ai ,λi) ∈ V (2, ε) such that

(−∂J (u),Y2
)
2 � c

(
ε
(n−3)/(n−4)
12 +

∑ 1

λ2
i

+ |∇K(ai)|
λi

+ 1

(λidi)n−3

)
;

(2)
(

−∂J (u + v),Y2 + ∂v

∂(αi, ai, λi)
(Y2)

)
2

� c

(
ε
(n−3)/(n−4)

12 +
∑ 1

λ2
i

+ |∇K(ai)|
λi

+ 1

(λidi)n−3

)
;

(3) Y2 is bounded and the only case where the maximum of theλi ’s increases alongY2
is when the pointsai ’s are close to two different critical pointsyj andyr of K with
−�K(yl) > 0 for l = j, r. Furthermore the least distance to the boundary only
creases if it is small enough.

Proof. We divide the setV (2, ε) into three setsA1 ∪ A2 ∪ A3 where, for u =∑
αiPδ(ai ,λi) ∈ V (2, ε), A1 = {u | d1 � d0 andd2 � d0}, A2 = {u | d1 � d0 and

d2 � 2d0}, A3 = {u | d1 � 2d0 andd2 � 2d0}. We will build a vector field on each se
and then,Y2 will be a convex combination of those vector fields.
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• 1st set: For u ∈ A1. We can assume without loss of generality thatλ1 � λ2. We intro-
e
duce the following setT = {i | |∇K(ai)| � C2/λi} whereC2 is a large constant. Th

setA1 will be divided into four subsets:

1st subset: The set ofu such thatε12 � C1/λ
2
2 and(10λ1 � λ2 or |∇K(a1)| � C2/λ1),

whereC1 is a large constant. In this case, we defineW1 as

W1 = −Mλ2
∂Pδ2

∂λ2
+

∑
i∈T

1

λi

∂Pδi

∂ai

∇K(ai)

|∇K(ai)| ,

whereM is a large constant. Using Propositions 3.3 and 3.4, we derive that

(−∂J (u),W1
)
2 � M

(
cε12 + O

(
1

λ2
2

))
+

∑
i∈T

( |∇K(ai)|
λi

+ O

(
1

λ2
i

+ ε12

))

� c

(
ε12 +

∑ |∇K(ai)|
λi

+ 1

λ2
i

)
. (6.1)

2nd subset: The set ofu such thatε12 � C1/λ
2
2, 10λ1 � λ2 and|∇K(a1)| � C2/λ1. In

this case, the pointa1 is close to a critical pointy of K. We defineW2 as

W2 = W1 + √
Mλ1

∂Pδ1

∂λ1

(
sign

(−�K(y)
))

.

Using Propositions 3.3 and 3.4, we obtain:

(−∂J (u),W2
)
2 � M

(
cε12 + O

(
1

λ2
2

))
+ √

M

(
c

λ2
1

+ O(ε12)

)
+

∑
i∈T

( |∇K(ai)|
λi

+ O

(
1

λ2
i

+ ε12

))

� c

(
ε12 +

∑ |∇K(ai)|
λi

+ 1

λ2
i

)
. (6.2)

3rd subset: The set ofu such thatε12 � C1/λ
2
2 and(|∇K(a1)| � C2/λ1 or |∇K(a2)| �

C2/λ2). In this case, the setT is not empty, thus we define:

W ′
3 =

∑
i∈T

1

λi

∂Pδi

∂ai

∇K(ai)

|∇K(ai)| .

Using Proposition 3.4, we find:

(−∂J (u),W ′
3

)
2 � c

∑
i∈T

( |∇K(ai)|
λi

+ O

(
1

λ2
i

+ ε12

))
. (6.3)
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If we assume that (|∇K(a1)| � C2/λ1 or 10λ1 � λ2) and we chooseC1 � C2,

e

hat

-

(6.3) implies the desired estimate. In the other situation, i.e., (|∇K(a1)| � C2/λ1 and
10λ1 � λ2), the pointa1 is close to a critical pointy of K. As in the second case, w
defineW ′′

3 as

W ′′
3 = 1

λ2

∂Pδ2

∂a2

∇K(a2)

|∇K(a2)| + λ1
∂Pδ1

∂λ1

(
sign

(−�K(y)
))

.

Using Propositions 3.3 and 3.4, we derive that

(−∂J (u),W ′′
3

)
2 � c

( |∇K(a2)|
λ2

+ O

(
1

λ2
2

+ ε12

))
+ c

(
1

λ2
1

+ O(ε12)

)

� c

(
ε12 +

∑ |∇K(ai)|
λi

+ 1

λ2
i

)
. (6.4)

W3 will be a convex combination ofW ′
3 andW ′′

3 .
4th subset: The set ofu such thatε12 � C1/λ

2
2 and|∇K(ai)| � C2/λi for i = 1,2. In

this case, the concentration points are near two critical pointsyi andyj of K. Two
cases may occur: eitheryi = yj or yi �= yj .
– If yi = yj = y. Since y is a nondegenerate critical point, we derive t

λk|ak − y| � c for k = 1,2 and thereforeλ1|a1 − a2| � c. Thus we obtain
ε12 � c(λ1/λ2)

(n−4)/2 and thereforeε12 � C1/λ
2
2 = o(1/λ2

1). In this case we de
fineW ′

4 = λ1(∂Pδ1/∂λ1)(sign(−�K(y))). Using Proposition 3.3, we derive that

(−∂J (u),W ′
4

)
2 � c

λ2
1

+ O(ε12) � c

(
ε12 +

∑ |∇K(ai)|
λi

+ 1

λ2
i

)
. (6.5)

– If yi �= yj . In this case we haveε12 = o(1/λ2
k) for k = 1,2. The vector fieldW ′′

4
will depend on the sign of−�K(yk), k = i, j . If −�K(yi) < 0 (yi is neara1), we
decreaseλ1. If −�K(yi) > 0 and−�K(yj) < 0, we decreaseλ2 in the case where
10λ1 � λ2 and we increaseλ1 in the other case. If−�K(yk) > 0 for k = i, j , we
increase bothλk ’s. Thus we obtain:

(−∂J (u),W ′′
4

)
2 � c

(
ε12 +

∑ |∇K(ai)|
λi

+ 1

λ2
i

)
. (6.6)

The vector fieldW4 will be a convex combination ofW ′
4 andW ′′

4 .
• 2nd set: Foru ∈ A2, we have|a1−a2| � d0. Thereforeε12 = o(1/λ1) andH(a2, .) � c.

Let us defineW5 = (1/λ1)(∂Pδ1/∂a1)(−ν1). Using Proposition 3.4, we find:

(−∂J (u),W5
)
2 � c

λ1
+ O(ε12) + c

(λ1d1)n−3
� c

λ1
+ c

(λ1d1)n−3
. (6.7)
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If λ1 � 10λ2, then, in the lower bound of (6.7), we can make appear 1/λ2 and

e

all the terms needed in (1). In the other case, i.e.,λ1 � 10λ2, we defineW6 as
W6 = W5 + Y1(P δ2) and we obtain the desired estimate in this case also.

• 3rd set: Foru ∈ A3, i.e.,di � 2d0 for i = 1,2. We have three cases.
1st case: If there existsi ∈ {1,2} (we denote byj the other index) such thatM1di � dj ,
whereM1 is a large constant. In this case we define:

W7 =
∑ 1

λi

∂Pδi

∂ai

(−νi). (6.8)

Using Proposition 3.4, we derive that

(−∂J (u),W7
)
� c

∑
k

(
1

λk

+ 1

(λkdk)n−3

)
+ o

(
ε
(n−3)/(n−4)

12

)
+ O

(∑
k

1

λk

∣∣∣∣∂ε12

∂ak

∣∣∣∣ + 1

(λ1λ2)(n−4)/2

1

λk

∣∣∣∣∂H(a1, a2)

∂ak

∣∣∣∣
+ λk|a1 − a2|ε(n−1)/(n−4)

12

)
. (6.9)

SinceM1di � dj , then we have|a1 − a2| � dj/2� M1di/2. Thus we obtain:

1

λk

∣∣∣∣∂ε12

∂ak

∣∣∣∣ + 1

(λ1λ2)(n−4)/2

1

λk

∣∣∣∣∂H(a1, a2)

∂ak

∣∣∣∣ + ε
(n−3)/(n−4)
12 = o

(
2∑

r=1

1

(λrdr)n−3

)
.

(6.10)

The same estimate holds forλk |a1 − a2|ε(n−1)/(n−3)
12 . Thus claim (1) follows in this

case.
2nd case: If d2/M1 � d1 � M1d2 andλ2/M2 � λ1 � M2λ2, whereM2 is chosen large
enough. In this case we define:

W8 = 1

λ2

∑
i

∂P δi

∂ai
(−αiνi). (6.11)

Using Proposition 3.4 we derive that

(−∂J (u),W8
)
2 � c

λ2

(
1+

∑
k

1

dk(λkdk)n−4
+ cα1α2

∂ε12

∂a1
(ν1 − ν2)

+ cα1α2

(λ1λ2)(n−4)/2

∑
k

∂H(a1, a2)

∂ak

νk

)
+ o

(
ε
(n−3)/(n−4)

12

)
. (6.12)

Observe that|∂ε12/∂a1‖ν1 − ν2| = O(ε12) = o(1) and using the fact that∂H(a1, a2)/

∂νi � o((d1d2)
(3−n)/2). It remains to appearε12 in the lower bound. For this, if ther



M. Ben Ayed et al. / J. Math. Pures Appl. 84 (2005) 247–278 275

existsi such thatε12 � m/(λidi)
4−n, wherem is a fixed large positive constant, then

e

, we

the

s

we can make to appearε12 in (6.12). In the other case, we decrease bothλi ’s and we
defineW9 = −∑

λi∂Pδi/∂λi . Using Proposition 3.3, we obtain:

(−∂J (u),W9
)
2 � cε12 +

∑
i

O

(
1

λ2
i

+ 1

(λidi)n−4

)
� cε12 +

∑
i

O

(
1

λ2
i

)
. (6.13)

Thus, in this case, we define the vector field asW8 + W9. Using (6.12) and (6.13), w
obtain the desired estimate.
3rd case: If d2/M1 � d1 � M1d2 and there existsi (we denotej the other index)
such thatλi � M2λj . In this case we increaseλj , we decreaseλi and we move the
points along the inward normal vector. Then we defineW10 = −2mλi∂Pδi/∂λi +
mλj∂Pδj/∂λj + W7, wherem is a large constant. Using Propositions 3.3 and 3.4
derive that

(−∂J (u),W10
)
� m

(
cε12 + c

(λj dj )n−4
+ O

(
1

(λidi)n−4

))
+ c

(∑ 1

λk

+ 1

(λkdk)n−3
+ O(ε12)

)
. (6.14)

Observe that, in this case, we haveλj dj = o(λidi) if we chooseM1/M2 so small. Thus
the desired estimate follows.
The proof of claim (1) is then completed. Claim (3) follows immediately from
construction ofY2. Claim (2) follows from the estimate ofv as in [3] and [7]. �

Now, arguing as in the proof of Proposition 4.3, we easily derive the following result:

Corollary 6.2. Let n � 7. The only critical points at infinity inV (2, ε) correspond
to Pδ(yi,∞) + Pδ(yj ,∞), where yi and yj are two different critical points ofK sat-
isfying −�K(yk) > 0 for k = i, j . Such critical point hasa Morse index equal to
2n − ∑

r=i,j index(K,yr) + 1.

Proposition 6.3. Letn � 7 and assume that(P ) has no solution. Then the following claim
hold:

(i) If X = ⋃
y∈B Ws(y), where B = {y ∈ Ω | ∇K(y) = 0, −�K(y) > 0}, then

fλ(Cy0(X)) retracts by deformation on
⋃

yi∈X−{y0} Wu(y0, yi)∞ ∪ X∞ where
X∞ = (

⋃
yi∈X Wu(yi)∞).

(ii) If X = Ws(yi0), whereyi0 satisfies:

K(yi0) = max
{
K(yi) | index(K,yi) = n − k, −�K(yi) > 0

}
and if assumption(A7) holds, thenfλ(Cy0(X)) retracts by deformation on

⋃
yi∈X−{y0}

Wu(y0, yi)∞ ∪ X∞ ∪ σ1, whereσ1 ⊂ ⋃
yi/index(K,yi)�n−k Wu(yi)∞.
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Proof. Let us start by proving claim (i). SinceJ does not have any critical point, the
s of
d

ify the
hen we

on

er

xit

at

oof

.

, if
manifold fλ(Cy0(X)) retracts by deformation on the union of the unstable manifold
the critical points at infinity dominated byfλ(Cy0(X)) (see [6,25]). Proposition 4.3 an
Corollary 6.2 allow us to characterize such critical points. Observe that we can mod
construction of the pseudogradient defined in Propositions 4.2 and 6.1 such that, w
move the pointx it remains inX, i.e., we can useZK instead of∇K/|∇K| whereZK is
the pseudogradient forK which we use to build the manifoldX.

For an initial conditionu = (α/K(y0)
(n−4)/8)P δ(y0,λ) + ((1− α)/K(x)(n−4)/8)P δ(x,λ)

in fλ(Cy0(X)), the action of the pseudogradient (see Proposition 6.1) is essentiallyα.
The action of bringingα to zero or to 1 depends on whetherα < 1/2 (in this case,u goes to
X∞) or α > 1/2 (in this case,u goes toWu((y0)∞)). On the other hand, we have anoth
action onx ∈ X, whenα = 1 − α = 1/2. Since onlyx can move, theny0 remains one
of the concentration points ofu and eitherx goes toWs(yj ) whereyj is a critical point
of K in X − {y0} or x goes to a neighborhood ofy0. In the last case the flow has to e
from V (2, ε) (see the construction ofY2 in Proposition 6.1). The level ofJ in this situation
is close to(2Sn)

4/n/K(y0)
(n−4)/n and therefore it cannot dominate any critical point

infinity of two masses (sinceK(y0) = maxK). Thus the flow has to enter inV (1, ε) and it
will dominate(yi)∞ for yi ∈ X. Thenu goes to( ⋃

yi∈X−{y0}
Wu

(
(y0, yi)∞

)) ∪
( ⋃

yi∈X

Wu

(
(yi)∞

))
.

Then claim (i) follows. Now, using assumption(A7) and the same argument as in the pr
of claim (i), we easily derive claim (ii). Thus our proposition follows.�

We now prove our theorems.

Proof of Theorem 1.5. Arguing by contradiction, we assume that(P ) has no solution
Using Proposition 6.3 and the fact thatµ(yi0) = 0, we derive thatfλ(Cy0(X)) retracts by
deformation onX∞ ∪ D whereD ⊂ σ is a stratified set of dimension at mostk (in the
topological sense, that is,D ∈ Σj , the group of chains of dimensionj with j � k) and
whereσ = ⋃

yi∈X−({yi0,y0}) Wu((y0, yi)∞) ∪ ⋃
yi/ index(K,yi)�n−k Wu(yi)∞ is a manifold

in dimension at mostk.
As fλ(Cy0(X)) is a contractible set, we then haveH∗(X∞ ∪ D) = 0, for all ∗ ∈ N∗.

Using the exact homology sequence of(X∞ ∪D,X∞), we deriveHk(X∞) = Hk+1(X∞ ∪
D,X∞) = 0. This yields a contradiction sinceX∞ ≡ X × [A,+∞), whereA is a large
positive constant. Therefore our theorem follows.�
Proof of Theorem 1.6. Assume that(P ) has no solution. By the above arguments
µ(yi) = 0 for eachyi ∈ Bk , thenfλ(Cy0(X)) retracts by deformation onX∞ ∪ D where
D ⊂ σ is a stratified set and whereσ = ⋃

yi∈X−(Bk∪{y0}) Wu((y0, yi)∞) is a manifold in
dimension at mostk.

As in the proof of Theorem 1.5, we derive thatH∗(X∞ ∪ D) = 0 for each∗. Using the
exact homology sequence of(X∞ ∪D,X∞) we obtainHk(X∞) = Hk+1(X∞ ∪D,X∞) =
0, this yields a contradiction and therefore our result follows.�
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