Some existence results for a Paneitz type problem via the theory of critical points at infinity

Mohamed Ben Ayed ${ }^{\text {a,* }}$, Khalil El Mehdi ${ }^{\text {b,c }}$, Mokhless Hammami ${ }^{\text {a }}$
a Département de mathématiques, faculté des sciences de Sfax, route Soukra, Sfax, Tunisia
${ }^{\text {b }}$ Faculté des sciences et techniques, université de Nouakchott, Nouakchott, Mauritania
${ }^{\text {c }}$ The Abdus Salam ICTP, Mathematics Section, Strada Costiera 11, 34014 Trieste, Italy

Received 15 March 2003
Available online 8 December 2004

Abstract

In this paper a fourth order equation involving critical growth is considered under the Navier boundary condition: $\Delta^{2} u=K u^{p}, u>0$ in $\Omega, u=\Delta u=0$ on $\partial \Omega$, where K is a positive function, Ω is a bounded smooth domain in $\mathbb{R}^{n}, n \geqslant 5$ and $p+1=2 n /(n-4)$, is the critical Sobolev exponent. We give some topological conditions on K to ensure the existence of solution. Our methods involve the study of the critical points at infinity and their contribution to the topology of the level sets of the associated Euler-Lagrange functional. © 2004 Elsevier SAS. All rights reserved.

Résumé

Dans cet article, nous considérons une équation d'ordre quatre ayant une croissance critique avec conditions de Navier au bord : $\Delta^{2} u=K u^{p}, u>0$ dans $\Omega, u=\Delta u=0$ sur $\partial \Omega$, où K est une fonction strictement positive, Ω est un domaine borné régulier de $\mathbb{R}^{n}, n \geqslant 5$ et $p+1=2 n /(n-4)$, est l'exposant critique de Sobolev. Nous donnons certaines conditions topologiques sur K pour assurer l'existence de solution. Notre approche est fondée sur l'étude des points critiques à l'infini et de leur contribution à la topologie des ensembles de niveau de la fonctionnelle d'Euler-Lagrange associée. © 2004 Elsevier SAS. All rights reserved.

MSC: 35J60; 35J65; 58E05

[^0]Keywords: Critical points at infinity; Critical Sobolev exponent; Lack of compactness

1. Introduction and main results

In this paper we prove some existence results for the following nonlinear problem under the Navier boundary condition:

$$
\begin{cases}\Delta^{2} u=K u^{p}, u>0 & \text { in } \Omega, \tag{P}\\ \Delta u=u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a bounded smooth domain of $\mathbb{R}^{n}, n \geqslant 5, p+1=2 n /(n-4)$, is the critical exponent of the embedding $H^{2} \cap H_{0}^{1}(\Omega)$ into $L^{p+1}(\Omega)$ and K is a C^{3}-positive function in $\bar{\Omega}$.

This type of equation naturally arises from the study of conformal geometry. A well known example is the problem of prescribing the Paneitz curvature: given a function K defined in compact Riemannian manifold (M, g) of dimension $n \geqslant 5$, we ask whether there exists a metric \tilde{g} conformal to g such that K is the Paneitz curvature of the new metric \tilde{g} (for details one can see $[9,10,14,17-20]$ and the references therein).

We observe that one of the main features of problem (P) is the lack of compactness, that is, the Euler-Lagrange functional J associated to (P) does not satisfy the Palais-Smale condition. This means that there exist noncompact sequences along which the functional is bounded and its gradient goes to zero. Such a fact follows from the noncompactness of the embedding of $H^{2} \cap H_{0}^{1}(\Omega)$ into $L^{p+1}(\Omega)$. However, it is easy to see that a necessary condition for solving the problem (P) is that K has to be positive somewhere. Moreover, it turns out that there is at least another obstruction to solve the problem (P), based on Kazdan-Warner type conditions, see [17]. Hence it is not expectable to solve problem (P) for all the functions K, thus a natural question arises: under which conditions on $K,(P)$ has a solution. Our aim in this paper is to give sufficient conditions on K such that (P) possesses a solution.

In the last years, several researches have been developed on the existence of solutions of fourth order elliptic equations with critical exponent on a domain of \mathbb{R}^{n}, see $[11,12$, 15,16,21-23,26-28,31,32]. However, at the authors' knowledge, problem (P) has been considered for $K \equiv 1$ only.

As we mentioned before, (P) is delicate from a variational viewpoint because of the failure of the Palais-Smale condition, more precisely because of the existence of critical points at infinity, that is orbits of the gradient flow of J along which J is bounded, its gradient goes to zero, and which do not converge [3]. In this article, we give a contribution in the same direction as in the papers [1,4,8] concerning the problem of prescribing the scalar curvature on closed manifolds. Precisely, we extend some topological and dynamical methods of the Theory of critical points at infinity (see [3]) to the framework of such higher order equations. To do such an extension, we perform a careful expansion of J, and its gradient near a neighborhood of highly concentrated functions. Then, we construct a special pseudogradient for the associated variational problem for which the

Palais-Smale condition is satisfied along the decreasing flow lines far from a finite number of such "singularities". As a by product of the construction of our pseudogradient, we are able to characterize the critical points at infinity of our problem. Such a fine analysis of these critical points at infinity, which has its own interest, is highly nontrivial and plays a crucial role in the derivation of existence results. In our proofs, the main idea is to take advantage of the precise computation of the contribution of these critical points at infinity to the topology of the level sets of J; the main argument being that, under our conditions on K, there remains some difference of topology which is not due to the critical points at infinity and therefore the existence of a critical point of J.

Our proofs go along the methods of Aubin and Bahri [1], Bahri [4] and Ben Ayed, Chtioui and Hammami [8]. However, in our case the presence of the boundary makes the analysis more involved: it turns out that the interaction of "bubbles" and the boundary creates a phenomenon of new type which is not present in the closed manifolds' case. In addition, we have to prove the positivity of the critical point obtained by our process. It is known that in the framework of higher order equations such a proof is quite difficult in general (see [19], for example), and the way we handle it here is very simple compared with the literature, see Proposition 4.1 below.

In order to state our main results, we need to introduce some notation and the assumptions that we are using in our results. We denote by G the Green's function and by H its regular part, that is for each $x \in \Omega$,

$$
\begin{cases}G(x, y)=|x-y|^{-(n-4)}-H(x, y) & \text { in } \Omega \\ \Delta^{2} H(x, .)=0 & \text { in } \Omega \\ \Delta G(x, .)=G(x, .)=0 & \text { on } \partial \Omega\end{cases}
$$

Now, we state our assumptions.
$\left(A_{0}\right)$ Assume that, for each $x \in \partial \Omega$,

$$
\frac{\partial K(x)}{\partial v}<0
$$

where v is the outward normal to Ω.
$\left(A_{1}\right)$ We assume that K has only nondegenerate critical points $y_{0}, y_{1}, \ldots, y_{s}$ such that

$$
K\left(y_{0}\right) \geqslant K\left(y_{1}\right) \geqslant \cdots \geqslant K\left(y_{l}\right)>K\left(y_{l+1}\right) \geqslant \cdots \geqslant K\left(y_{s}\right)
$$

$\left(A_{2}\right)$ We assume that

$$
\begin{array}{ll}
-\frac{\Delta K\left(y_{i}\right)}{60 K\left(y_{i}\right)}+H\left(y_{i}, y_{i}\right)>0 & \text { for } i \leqslant l \quad \text { and } \\
\left.-\frac{\Delta K\left(y_{i}\right)}{60 K\left(y_{i}\right)}+H\left(y_{i}, y_{i}\right)<0 \quad \text { for } i>l \quad \text { (if } n=6\right)
\end{array}
$$

$$
-\Delta K\left(y_{i}\right)>0 \text { for } i \leqslant l \quad \text { and } \quad-\Delta K\left(y_{i}\right)<0 \text { for } i>l \quad(\text { if } n \geqslant 7)
$$

$\left(A_{2}^{\prime}\right)$ We assume that

$$
\begin{aligned}
& -\frac{1}{60} \frac{\Delta K\left(y_{i}\right)}{K\left(y_{i}\right)}+H\left(y_{i}, y_{i}\right)<0 \text { for } i>l(\text { if } n=6) \text { and } \\
& -\Delta K\left(y_{i}\right)<0 \text { for } i>l(\text { if } n \geqslant 7)
\end{aligned}
$$

In addition, for every $i \in\{1, \ldots, l\}$ such that

$$
-\frac{1}{60} \frac{\Delta K\left(y_{i}\right)}{K\left(y_{i}\right)}+H\left(y_{i}, y_{i}\right) \leqslant 0(\text { if } n=6) \quad \text { and } \quad-\Delta K\left(y_{i}\right) \leqslant 0(\text { if } n \geqslant 7)
$$

we assume that $n-m+3 \leqslant \operatorname{index}\left(K, y_{i}\right) \leqslant n-2$, where index $\left(K, y_{i}\right)$ is the Morse index of K at y_{i} and m is an integer defined in assumption $\left(A_{3}\right)$.

Now, let Z_{K} be a pseudogradient of K of Morse-Smale type (that is, the intersections of the stable and unstable manifolds of the critical points of K are transverse). Set:

$$
X=\overline{\bigcup_{0 \leqslant i \leqslant l} W_{s}\left(y_{i}\right)}
$$

where $W_{s}(y)$ is the stable manifold of y for Z_{K}.
$\left(A_{3}\right)$ We assume that X is not contractible and denote by m the dimension of the first nontrivial reduced homological group of X.
$\left(A_{4}\right)$ We assume that there exists a positive constant $\bar{c}<K\left(y_{l}\right)$ such that X is contractible in $K^{\bar{c}}=\{x \in \Omega \mid K(x) \geqslant \bar{c}\}$.

Now we are able to state our first results:
Theorem 1.1. Let $n \geqslant 6$. Under the assumptions $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right),\left(A_{3}\right)$ and $\left(A_{4}\right)$, there exists a constant c_{0} independent of K such that if $K\left(y_{0}\right) / \bar{c} \leqslant 1+c_{0}$, then (P) has a solution.

Corollary 1.2. The solution obtained in Theorem 1.1 has an augmented Morse index $\geqslant m$.
Theorem 1.3. Let $n \geqslant 7$. Under the assumptions $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}^{\prime}\right),\left(A_{3}\right)$ and $\left(A_{4}\right)$, there exists a constant c_{0} independent of K such that if $K\left(y_{0}\right) / \bar{c} \leqslant 1+c_{0}$, then (P) has a solution.

Remark 1.4. (i) The assumption $K\left(y_{0}\right) / \bar{c} \leqslant 1+c_{0}$ allows basically to perform a singlebubble analysis.
(ii) To see how to construct an example of a function K satisfying our assumptions, we refer the interested reader to [2].

Next, we state another kind of existence results for problem (P) based on a topological invariant introduced by A. Bahri in [4]. In order to give our results in this direction, we need to fix some notation and state our assumptions.

We denote by $W_{s}(y)$ and $W_{u}(y)$ the stable and unstable manifolds of y for Z_{K}.
$\left(A_{5}\right)$ We assume that K has only nondegenerate critical points y_{i} satisfying $\Delta K\left(y_{i}\right) \neq 0$ and $W_{s}\left(y_{i}\right) \cap W_{u}\left(y_{j}\right)=\emptyset$ for any i such that $-\Delta K\left(y_{i}\right)>0$ and for any j such that

$$
-\Delta K\left(y_{j}\right)<0
$$

For $k \in\{1, \ldots, n-1\}$, we define X as

$$
X=\overline{W_{s}\left(y_{i_{0}}\right)},
$$

where $y_{i_{0}}$ satisfies

$$
K\left(y_{i_{0}}\right)=\max \left\{K\left(y_{i}\right) \mid \operatorname{index}\left(K, y_{i}\right)=n-k,-\Delta K\left(y_{i}\right)>0\right\} .
$$

(A_{6}) We assume X without boundary.
We observe that assumption $\left(A_{0}\right)$ implies that X does not intersect the boundary $\partial \Omega$ and therefore it is a compact set of Ω.

Now, we denote by y_{0} the absolute maximum of K. Let us define the set $C_{y_{0}}(X)$ as

$$
C_{y_{0}}(X)=\left\{\alpha \delta_{y_{0}}+(1-\alpha) \delta_{x} \mid \alpha \in[0,1], x \in X\right\}
$$

where δ_{x} denotes the Dirac mass at x.
For λ large enough, we introduce a map $f_{\lambda}: C_{y_{0}}(X) \rightarrow \Sigma^{+}:=\left\{u \in H^{2} \cap H_{0}^{1} \mid u>0\right.$, $\left.\|u\|_{2}=1\right\}$,

$$
\alpha \delta_{y_{0}}+(1-\alpha) \delta_{x} \mapsto \frac{\left(\alpha / K\left(y_{0}\right)^{(n-4) / 8}\right) P \delta_{\left(y_{0}, \lambda\right)}+\left((1-\alpha) / K(x)^{(n-4) / 8}\right) P \delta_{(x, \lambda)}}{\left\|\left(\alpha / K\left(y_{0}\right)^{(n-4) / 8}\right) P \delta_{\left(y_{0}, \lambda\right)}+\left((1-\alpha) / K(x)^{(n-4) / 8}\right) P \delta_{(x, \lambda)}\right\|_{2}},
$$

where $\|u\|_{2}^{2}=\int_{\Omega}|\Delta u|^{2}$.
Then $C_{y_{0}}(X)$ and $f_{\lambda}\left(C_{y_{0}}(X)\right)$ are manifolds in dimension $k+1$, that is, their singularities arise in dimension $k-1$ and lower, see [4]. The codimension of $W_{s}\left(y_{0}, y_{i_{0}}\right)_{\infty}$ is equal to $k+1$, then we can define the intersection number (modulo 2) of $f_{\lambda}\left(C_{y_{0}}(X)\right)$ with $W_{s}\left(y_{0}, y_{i_{0}}\right)_{\infty}$:

$$
\mu\left(y_{i_{0}}\right)=f_{\lambda}\left(C_{y_{0}}(X)\right) \cdot W_{s}\left(y_{0}, y_{i_{0}}\right)_{\infty}
$$

where $W_{s}\left(y_{0}, y_{i_{0}}\right)_{\infty}$ is the stable manifold of the critical points at infinity $\left(y_{0}, y_{i_{0}}\right)_{\infty}$ for a decreasing pseudogradient for J which is transverse to $f_{\lambda}\left(C_{y_{0}}(X)\right)$. Such a number is well defined see $[4,25]$. Observe that $C_{y_{0}}(X)$ and $f_{\lambda}\left(C_{y_{0}}(X)\right)$ are contractible while X is not contractible.
$\left(A_{7}\right)$ Assume that $2 / K\left(y_{0}\right)^{(n-4) / 4}<1 / K(y)^{(n-4) / 4}$ for each critical point y of Morse index $n-(k+1)$ and satisfies $-\Delta K(y)>0$.

We then have the following result:
Theorem 1.5. Let $n \geqslant 7$. Under assumptions $\left(A_{0}\right)$, $\left(A_{5}\right),\left(A_{6}\right)$ and $\left(A_{7}\right)$, if $\mu\left(y_{i_{0}}\right)=0$ then (P) has a solution of an augmented Morse index less than $k+1$.

Now, we give a more general statement than Theorem 1.5. For this purpose, we define X as

$$
X=\overline{\bigcup_{y \in B} W_{s}(y)}
$$

where $B=\{y \in \Omega \mid \nabla K(y)=0,-\Delta K(y)>0\}$. We denote by k the dimension of X and by $B_{k}=\{y \in B \mid \operatorname{index}(K, y)=n-k\}$.

For $y_{i} \in B_{k}$, we define, for λ large enough, the intersection number (modulo 2):

$$
\mu\left(y_{i}\right)=f_{\lambda}\left(C_{y_{0}}(X)\right) \cdot W_{s}\left(y_{0}, y_{i}\right)_{\infty}
$$

By the above arguments, this number is well defined, see [25].
Then, we have:
Theorem 1.6. Let $n \geqslant 7$. Under assumptions $\left(A_{0}\right)$, $\left(A_{5}\right)$ and $\left(A_{6}\right)$, if $\mu\left(y_{i}\right)=0$ for each $y_{i} \in B_{k}$, then (P) has a solution of an augmented Morse index less than $k+1$.

The organization of the paper is the following. In Section 2, we set up the variational structure and recall some preliminaries. In Section 3, we give an expansion of the Euler functional associated to (P) and its gradient near potential critical points at infinity. In Section 4, we provide the proof of Theorem 1.1 and its corollary. In Section 5, we prove Theorem 1.3, while Section 6 is devoted to the proof of Theorems 1.5 and 1.6.

2. Preliminaries

In this section, we set up the variational structure and its mean features.
Problem (P) has a variational structure. The related functional is,

$$
J(u)=\left(\int_{\Omega} K|u|^{2 n /(n-4)}\right)^{-(n-4) / n}
$$

defined on

$$
\Sigma=\left\{\left.u \in H^{2} \cap H_{0}^{1}(\Omega)\left|\|u\|_{H^{2} \cap H_{0}^{1}(\Omega)}^{2}:=\|u\|_{2}^{2}:=\int_{\Omega}\right| \Delta u\right|^{2}=1\right\}
$$

The positive critical points of J are solutions of (P), up to a multiplicative constant.
Due to the non-compactness of the embedding $H^{2} \cap H_{0}^{1}(\Omega)$ into $L^{p+1}(\Omega)$, the functional J does not satisfy the Palais-Smale condition. An important result of Struwe [30] (see also [24] and [13]) describes the behavior of such sequences associated to second order equations of the type:

$$
\begin{equation*}
-\Delta u=u^{(n+2) /(n-2)}, \quad u>0 \quad \text { in } \Omega ; \quad u=0 \quad \text { on } \partial \Omega . \tag{2.1}
\end{equation*}
$$

In [21], Gazzola, Grunau and Squassina proved the analogue of this result for problem (P). To describe the sequences failing the Palais-Smale condition, we need to introduce some notation.

For $a \in \Omega$ and $\lambda>0$, let:

$$
\begin{equation*}
\delta_{(a, \lambda)}(x)=c_{n}\left(\frac{\lambda}{1+\lambda^{2}|x-a|^{2}}\right)^{(n-4) / 2} \tag{2.2}
\end{equation*}
$$

where c_{n} is a positive constant chosen so that $\delta_{(a, \lambda)}$ is the family of solutions of the following problem (see [23]):

$$
\begin{equation*}
\Delta^{2} u=u^{(n+4) /(n-4)}, \quad u>0 \text { in } \mathbb{R}^{n} \tag{2.3}
\end{equation*}
$$

For $f \in H^{2}(\Omega)$, we define the projection P by:

$$
\begin{equation*}
u=P f \Longleftrightarrow \Delta^{2} u=\Delta^{2} f \quad \text { in } \Omega, \quad u=\Delta u=0 \quad \text { on } \partial \Omega \tag{2.4}
\end{equation*}
$$

We have the following proposition which is extracted from [11].
Proposition 2.1 [11]. Let $a \in \Omega, \lambda>0$ and $\varphi_{(a, \lambda)}=\delta_{(a, \lambda)}-P \delta_{(a, \lambda)}$. We have:
(a) $0 \leqslant \varphi_{(a, \lambda)} \leqslant \delta_{(a, \lambda)}$,
(b) $\varphi_{(a, \lambda)}=c_{n} \frac{H(a, .)}{\lambda^{(n-4) / 2}}+f_{(a, \lambda)}$, where c_{n} is defined in (2.2) and $f_{(a, \lambda)}$ satisfies:

$$
\begin{aligned}
& f_{(a, \lambda)}=\mathrm{O}\left(\frac{1}{\lambda^{n / 2} d^{n-2}}\right), \quad \lambda \frac{\partial f_{(a, \lambda)}}{\partial \lambda}=\mathrm{O}\left(\frac{1}{\lambda^{n / 2} d^{n-2}}\right), \\
& \frac{1}{\lambda} \frac{\partial f_{(a, \lambda)}}{\partial a}=\mathrm{O}\left(\frac{1}{\lambda^{(n+2) / 2} d^{n-1}}\right)
\end{aligned}
$$

where d is the distance $d(a, \partial \Omega)$.
(c)

$$
\begin{aligned}
& \left|\varphi_{(a, \lambda)}\right|_{L^{2 n /(n-4)}}=\mathrm{O}\left(\frac{1}{(\lambda d)^{(n-4) / 2}}\right), \quad\left|\lambda \frac{\partial \varphi_{(a, \lambda)}}{\partial \lambda}\right|_{L^{2 n /(n-4)}}=\mathrm{O}\left(\frac{1}{(\lambda d)^{(n-4) / 2}}\right) \\
& \left\|\varphi_{(a, \lambda)}\right\|_{2}=\mathrm{O}\left(\frac{1}{(\lambda d)^{(n-4) / 2}}\right), \quad\left|\frac{1}{\lambda} \frac{\partial \varphi_{(a, \lambda)}}{\partial a}\right|_{L^{2 n /(n-4)}}=\mathrm{O}\left(\frac{1}{(\lambda d)^{(n-2) / 2}}\right)
\end{aligned}
$$

We now introduce the set of potential critical points at infinity.
For any $\varepsilon>0$ and $p \in \mathbb{N}^{*}$, let $V(p, \varepsilon)$ be the subset of Σ of the following functions: $u \in$ Σ such that there is $\left(a_{1}, \ldots, a_{p}\right) \in \Omega^{p},\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in\left(\varepsilon^{-1},+\infty\right)^{p}$ and $\left(\alpha_{1}, \ldots, \alpha_{p}\right) \in$ $(0,+\infty)^{p}$ such that

$$
\begin{aligned}
& \left\|u-\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}\right\|_{2}<\varepsilon, \quad \lambda_{i} d\left(a_{i}, \partial \Omega\right)>\varepsilon^{-1} ; \\
& \left|\frac{\alpha_{i}^{8 /(n-4)} K\left(a_{i}\right)}{\alpha_{j}^{8 /(n-4)} K\left(a_{j}\right)}-1\right|<\varepsilon, \quad \varepsilon_{i j}<\varepsilon \quad \text { for } i \neq j,
\end{aligned}
$$

where

$$
\begin{equation*}
\varepsilon_{i j}=\left(\frac{\lambda_{i}}{\lambda_{j}}+\frac{\lambda_{j}}{\lambda_{i}}+\lambda_{i} \lambda_{j}\left|a_{i}-a_{j}\right|^{2}\right)^{-(n-4) / 2} \tag{2.5}
\end{equation*}
$$

The failure of the Palais-Smale condition can be described going along the ideas developed in $[13,24,30]$. Namely, we have:

Proposition 2.2 [21]. Assume that J has no critical point in Σ^{+}. Let $\left(u_{k}\right) \in \Sigma^{+}$be a sequence such that $\left(\partial J\left(u_{k}\right)\right)$ tends to zero and $\left(J\left(u_{k}\right)\right)$ is bounded. Then, after possibly having extracted a subsequence, there exist $p \in N^{*}$ and a sequence $\left(\varepsilon_{k}\right)$, ε_{k} tends to zero, such that $u_{k} \in V\left(p, \varepsilon_{k}\right)$.

Now, we consider the following minimization problem for a function $u \in V(p, \varepsilon)$ with ε small:

$$
\begin{equation*}
\min \left\{\left\|u-\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}\right\|_{2}, \alpha_{i}>0, \lambda_{i}>0, a_{i} \in \Omega\right\} \tag{2.6}
\end{equation*}
$$

We then have the following proposition whose proof is similar, up to minor modifications, to the corresponding statement for the Laplacian operator in [5]. This proposition defines a parametrization of the set $V(p, \varepsilon)$.

Proposition 2.3. For any $p \in \mathbb{N}^{*}$, there exists $\varepsilon_{p}>0$ such that, if $\varepsilon<\varepsilon_{p}$ and $u \in V(p, \varepsilon)$, the minimization problem (2.6) has a unique solution (α, a, λ) (up to permutation). In particular, we can write $u \in V(p, \varepsilon)$ as follows:

$$
u=\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}+v
$$

where $\left(\alpha_{1}, \ldots, \alpha_{p}, a_{1}, \ldots, a_{p}, \lambda_{1}, \ldots, \lambda_{p}\right)$ is the solution of (2.6) and $v \in H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$ such that

$$
\begin{align*}
& \left(v, P \delta_{\left(a_{i}, \lambda_{i}\right)}\right)_{2}=\left(v, \partial P \delta_{\left(a_{i}, \lambda_{i}\right)} / \partial \lambda_{i}\right)_{2}=0 \\
& \left(v, \partial P \delta_{\left(a_{i}, \lambda_{i}\right)} / \partial a_{i}\right)_{2}=0 \quad \text { for } i=1, \ldots, p \tag{0}
\end{align*}
$$

where $(u, w)_{2}=\int_{\Omega} \Delta u \Delta w$.

3. Expansion of the functional and its gradient

In this section, we will give a useful expansion of the functional J and its gradient in the potential set $V(p, \varepsilon)$ for $n \geqslant 6$. In the sequel, for the sake of simplicity, we will write δ_{i} instead of $\delta_{\left(a_{i}, \lambda_{i}\right)}$. We start by the expansion of J.

Proposition 3.1. There exists $\varepsilon_{0}>0$ such that for any $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{i}+v \in V(p, \varepsilon)$, $\varepsilon<\varepsilon_{0}$, v satisfying (V_{0}), we have:

$$
\begin{aligned}
J(u)= & \frac{S_{n}^{4 / n} \sum_{i=1}^{p} \alpha_{i}^{2}}{\left(\sum_{i=1}^{p} \alpha_{i}^{2 n /(n-4)} K\left(a_{i}\right)\right)^{(n-4) / n}} \\
& \times\left[1+\frac{1}{S_{n} \sum_{i=1}^{p} K\left(a_{i}\right)^{(4-n) / 4}}\left(-\frac{n-4}{n} c_{3} \sum_{i=1}^{p} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right)^{n / 4} \lambda_{i}^{2}}\right.\right. \\
& \left.+c_{2} \sum_{i=1}^{p} \frac{H\left(a_{i}, a_{i}\right)}{K\left(a_{i}\right)^{(n-4) / 4} \lambda_{i}^{n-4}}-\frac{c_{2}}{\left(K\left(a_{i}\right) K\left(a_{j}\right)\right)^{(n-4) / 8} \sum_{i \neq j}}\left(\varepsilon_{i j}-\frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{(n-4) / 2}}\right)\right) \\
& \left.-f(v)+\frac{1}{\sum_{i=1}^{p} \alpha_{i}^{2} S_{n}} Q(v, v)+\mathrm{o}\left(\sum \frac{1}{\lambda_{k}^{2}}+\frac{1}{\left(\lambda_{k} d_{k}\right)^{n-4}}+\sum_{i \neq j} \varepsilon_{i j}+\|v\|_{2}^{2}\right)\right]
\end{aligned}
$$

where

$$
\begin{gathered}
Q(v, v)=\|v\|_{2}^{2}-\frac{n+4}{n-4} \sum_{i=1}^{p} \int_{\Omega} P \delta_{i}^{8 /(n-4)} v^{2}, \\
f(v)=\frac{2}{\sum_{i=1}^{p} \alpha_{i}^{2 n /(n-4)} K\left(a_{i}\right) S_{n}} \int_{\Omega} K\left(\sum_{i=1}^{p} \alpha_{i} P \delta_{i}\right)^{(n+4) /(n-4)} v, \\
S_{n}=\int_{\mathbb{R}^{n}} \frac{c_{n}^{2 n /(n-4)} \mathrm{d} y}{\left(1+|y|^{2}\right)^{n}}, \quad c_{2}=\int_{\mathbb{R}^{n}} \frac{c_{n}^{2 n /(n-4)}}{\left(1+|y|^{2}\right)^{(n+4) / 2}} \mathrm{~d} y, \quad c_{3}=\frac{c_{n}^{2 n /(n-4)}}{2 n} \int_{\mathbb{R}^{n}} \frac{|y|^{2}}{\left(1+|y|^{2}\right)^{n}} \mathrm{~d} y,
\end{gathered}
$$

and c_{n} is defined in (2.2). Observe that if $n=6$ we have $c_{2}=20 c_{3}$.

Proof. On one hand, Proposition 2.1 implies:

$$
\begin{align*}
\|P \delta\|_{2}^{2}= & S_{n}-c_{2} \frac{H(a, a)}{\lambda^{n-4}}+\mathrm{O}\left(\frac{1}{(\lambda d)^{n-2}}\right) \tag{3.1}\\
\int_{\Omega} K P \delta^{2 n /(n-4)}= & K(a) S_{n}+c_{3} \frac{\Delta K(a)}{\lambda^{2}}-\frac{2 n}{n-4} c_{2} K(a) \frac{H(a, a)}{\lambda^{n-4}} \\
& +\mathrm{O}\left(\frac{1}{\lambda^{3}}+\frac{1}{(\lambda d)^{n-2}}\right) \tag{3.2}
\end{align*}
$$

On the other hand, a computation similar to the one performed in [3] shows that, for $i \neq j$, we have:

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \delta_{i}^{(n+4) /(n-4)} \delta_{j}=c_{2} \varepsilon_{i j}+\mathrm{O}\left(\varepsilon_{i j}^{(n-2) /(n-4)}\right) \\
& \int_{\mathbb{R}^{n}}\left(\delta_{i} \delta_{j}\right)^{n /(n-4)}=\mathrm{O}\left(\varepsilon_{i j}^{n /(n-4)} \log \left(\varepsilon_{i j}^{-1}\right)\right) \tag{3.3}
\end{align*}
$$

Thus, we derive that

$$
\begin{align*}
& \left(P \delta_{i}, P \delta_{j}\right)_{2}=c_{2}\left(\varepsilon_{i j}-\frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{(n-4) / 2}}\right)+\mathrm{O}\left(\varepsilon_{i j}^{(n-2) /(n-4)}+\sum_{k=i, j} \frac{1}{\left(\lambda_{k} d_{k}\right)^{n-2}}\right) \tag{3.4}\\
& \quad \int_{\Omega} K P \delta_{i}^{(n+4) /(n-4)} P \delta_{j}=K\left(a_{i}\right)\left(P \delta_{i}, P \delta_{j}\right)_{2}+\mathrm{o}\left(\sum \frac{1}{\lambda_{k}^{2}}+\frac{1}{\left(\lambda_{k} d_{k}\right)^{n-4}}+\varepsilon_{i j}\right) \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
\int K\left(\sum_{i=1}^{p} \alpha_{i} P \delta_{i}\right)^{8 /(n-4)} v^{2}=\sum_{i=1}^{p} \alpha_{i}^{8 /(n-4)} K\left(a_{i}\right) \int P \delta_{i}^{8 /(n-4)} v^{2}+\mathrm{o}\left(\|v\|_{2}^{2}\right) \tag{3.6}
\end{equation*}
$$

Combining (3.1)-(3.6) and the fact that $\alpha_{i}^{8 /(n-4)} K\left(a_{i}\right) /\left(\alpha_{j}^{8 /(n-4)} K\left(a_{j}\right)\right)=1+\mathrm{o}(1)$, our result follows.

Now, let us recall that the quadratic form $Q(v, v)$ defined in Proposition 3.1 is positive definite (see [9]). Thus we have the following proposition which deals with the v-part of u.

Proposition 3.2 (see [9]). There exists a C^{1}-map which, to each (α, a, λ) satisfying $\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)} \in V(p, \varepsilon)$, with ε small enough, associates $\bar{v}=\bar{v}(\alpha, a, \lambda)$ satisfying $\left(V_{0}\right)$
such that \bar{v} is unique, minimizing $J\left(\sum_{i=1}^{p} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)}+v\right)$ with respect to v satisfying $\left(V_{0}\right)$, and we have the following estimate:

$$
\begin{aligned}
&\|\bar{v}\|_{2} \leqslant c|f|=\mathrm{O}\left(\sum_{i=1}^{p} \frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right) \\
&+\left\{\begin{array}{l}
\mathrm{O}\left(\sum \varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n}+1 /\left(\lambda_{i} d_{i}\right)^{n-4}\right) \\
\mathrm{O}\left(\sum \varepsilon_{i j}^{(n+4) /(2(n-4))}\left(\log \varepsilon_{i j}^{-1}\right)^{(n+4) / 2 n}\right. \\
\left.+\left(\log \lambda_{i} d_{i}\right)^{(n+4) / 2 n} /\left(\lambda_{i} d_{i}\right)^{(n+4) / 2}\right)
\end{array} \quad \text { if } n \geqslant 12\right.
\end{aligned} .
$$

Now regarding the gradient of J which we will denote by ∂J, we have the following expansions:

Proposition 3.3. For $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{i} \in V(p, \varepsilon)$, we have the following expansion:

$$
\begin{aligned}
\left(\partial J(u), \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right)_{2}= & 2 J(u)\left[\frac{n-4}{n} c_{3} \alpha_{i} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right) \lambda_{i}^{2}}-\frac{n-4}{2} c_{2} \alpha_{i} \frac{H\left(a_{i}, a_{i}\right)}{\lambda_{i}^{n-4}}(1+\mathrm{o}(1))\right. \\
& \left.-c_{2} \sum_{j \neq i} \alpha_{j}\left(\lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}}+\frac{n-4}{2} \frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{(n-4) / 2}}\right)(1+\mathrm{o}(1))\right] \\
& +\mathrm{o}\left(\sum \frac{1}{\lambda_{k}^{2}}+\frac{1}{\left(\lambda_{k} d_{k}\right)^{n-3}}+\sum_{k \neq r} \varepsilon_{k r}^{(n-3) /(n-4)}\right)
\end{aligned}
$$

Proof. We have:

$$
\begin{align*}
\left(\partial J(u), \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right)_{2}= & 2 J(u)\left[\sum \alpha_{j}\left(P \delta_{j}, \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right)_{2}\right. \\
& \left.-J(u)^{n /(n-4)} \int K\left(\sum \alpha_{j} P \delta_{j}\right)^{(n+4) /(n-4)} \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right] \tag{3.7}
\end{align*}
$$

Observe that

$$
\begin{align*}
\left(\sum \alpha_{j} P \delta_{j}\right)^{(n+4) /(n-4)}= & \sum_{j}\left(\alpha_{j} P \delta_{j}\right)^{(n+4) /(n-4)}+\frac{n+4}{n-4} \sum_{j \neq i}\left(\alpha_{i} P \delta_{i}\right)^{8 /(n-4)} \alpha_{j} P \delta_{j} \\
& +\mathrm{O}\left(\sum_{j \neq i} P \delta_{j}^{8 /(n-4)} P \delta_{i} \chi_{P \delta_{i} \leqslant \sum_{j \neq i} P \delta_{j}}\right. \\
& +\sum_{j \neq i} P \delta_{i}^{(12-n) /(n-4)} P \delta_{j}^{2} \chi_{P \delta_{j} \leqslant P \delta_{i}} \\
& \left.+\sum_{k \neq j, k, j \neq i} P \delta_{j}^{8 /(n-4)} P \delta_{k}\right) \tag{3.8}
\end{align*}
$$

Using Proposition 2.1, a computation similar to the one performed in [3] and [29] shows that

$$
\begin{align*}
\left(P \delta, \lambda \frac{\partial P \delta}{\partial \lambda}\right)_{2}= & \frac{n-4}{2} c_{2} \frac{H(a, a)}{\lambda^{n-4}}+\mathrm{O}\left(\frac{1}{(\lambda d)^{n-2}}\right) \tag{3.9}\\
\int K P \delta^{(n+4) /(n-4)} \lambda \frac{\partial P \delta}{\partial \lambda}= & -\frac{n-4}{n} c_{3} \frac{\Delta K(a)}{\lambda^{2}}+(n-4) c_{2} K(a) \frac{H(a, a)}{\lambda^{n-4}} \\
& +\mathrm{O}\left(\frac{1}{\lambda^{3}}+\frac{1}{(\lambda d)^{n-2}}\right) .
\end{align*}
$$

For $i \neq j$, we have:

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \delta_{i}^{(n+4) /(n-4)} \lambda_{j} \frac{\partial \delta_{j}}{\partial \lambda_{j}}=c_{2} \lambda_{j} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{j}}+\mathrm{O}\left(\varepsilon_{i j}^{(n-2) /(n-4)}\right), \tag{3.10}\\
& \left(P \delta_{j}, \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right)_{2}=c_{2}\left(\lambda_{i} \frac{\partial \varepsilon_{i j}}{\partial \lambda_{i}}+\frac{n-4}{2} \frac{H\left(a_{i}, a_{j}\right)}{\left(\lambda_{i} \lambda_{j}\right)^{(n-4) / 2}}\right) \\
& +\mathrm{O}\left(\sum_{k=i, j} \frac{1}{\left(\lambda_{k} d_{k}\right)^{n-2}}+\varepsilon_{i j}^{(n-2) /(n-4)}\right), \tag{3.11}\\
& \int K P \delta_{j}^{(n+4) /(n-4)} \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}} \\
& =K\left(a_{j}\right)\left(P \delta_{j}, \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right)_{2}+\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n}\left(\frac{1}{\lambda_{j}}+\frac{1}{\left(\lambda_{j} d_{j}\right)^{4}}\right)\right) \\
& + \begin{cases}\mathrm{O}\left(\varepsilon_{i j}^{n /(n-4)} \log \varepsilon_{i j}^{-1}+\log \left(\lambda_{j} d_{j}\right) /\left(\lambda_{j} d_{j}\right)^{n}\right) & \text { if } n \geqslant 8, \\
\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n} /\left(\lambda_{j} d_{j}\right)^{n-4}\right), & \text { if } n<8,\end{cases} \tag{3.12}\\
& \int K P \delta_{j} \lambda_{i} \frac{\partial\left(P \delta_{i}\right)^{(n+4) /(n-4)}}{\partial \lambda_{i}} \\
& =K\left(a_{i}\right)\left(P \delta_{j}, \lambda_{i} \frac{\partial P \delta_{i}}{\partial \lambda_{i}}\right)_{2}+\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n}\left(\frac{1}{\lambda_{i}}+\frac{1}{\left(\lambda_{i} d_{i}\right)^{4}}\right)\right) \\
& + \begin{cases}\mathrm{O}\left(\varepsilon_{i j}^{n /(n-4)} \log \varepsilon_{i j}^{-1}+\log \left(\lambda_{i} d_{i}\right) /\left(\lambda_{i} d_{i}\right)^{n}\right) & \text { if } n \geqslant 8, \\
\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n} /\left(\lambda_{i} d_{i}\right)^{n-4}\right) & \text { if } n<8 .\end{cases} \tag{3.13}
\end{align*}
$$

Now, it is easy to check,

$$
\begin{align*}
& \left|\lambda_{i} \partial P \delta_{i} / \partial \lambda_{i}\right| \leqslant c \delta_{i}, \quad P \delta_{k} \leqslant \delta_{k} \quad \text { and } \\
& J(u)^{n /(n-4)} \alpha_{j}^{8 /(n-4)} K\left(a_{j}\right)=1+\mathrm{o}(1) \forall j=1, \ldots, p \tag{3.14}
\end{align*}
$$

Combining (3.7)-(3.14), we easily derive our proposition.
Proposition 3.4. For $u=\sum_{i=1}^{p} \alpha_{i} P \delta_{i}$ belonging to $V(p, \varepsilon)$, we have the following expansion:

$$
\begin{aligned}
\left(\partial J(u), \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}}\right)_{2}= & 2 J(u)\left[-c_{4} \alpha_{i}^{(n+4) /(n-4)} J(u)^{n /(n-4)} \frac{\nabla K\left(a_{i}\right)}{\lambda_{i}}(1+\mathrm{o}(1))\right. \\
& +\frac{c_{2}}{2} \frac{\alpha_{i}}{\lambda_{i}^{n-3}} \frac{\partial H\left(a_{i}, a_{i}\right)}{\partial a_{i}}(1+\mathrm{o}(1)) \\
& \left.+\mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}+\frac{1}{\left(\lambda_{i} d_{i}\right)^{n-2}}+\sum_{j \neq i} \varepsilon_{i j}\right)\right]
\end{aligned}
$$

We can improve this expansion and we obtain:

$$
\begin{aligned}
\left(\partial J(u), \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}}\right)_{2}= & 2 J(u)\left[-c_{4} \alpha_{i}^{(n+4) /(n-4)} J(u)^{n /(n-4)} \frac{\nabla K\left(a_{i}\right)}{\lambda_{i}}(1+\mathrm{o}(1))\right. \\
& +\frac{c_{2}}{2} \frac{\alpha_{i}}{\lambda_{i}^{n-3}} \frac{\partial H\left(a_{i}, a_{i}\right)}{\partial a_{i}} \\
& +c_{2} \sum_{j \neq i} \alpha_{j}\left(\frac{1}{\lambda_{i}} \frac{\partial \varepsilon_{i j}}{\partial a_{i}}-\frac{1}{\left(\lambda_{i} \lambda_{j}\right)^{(n-4) / 2}} \frac{1}{\lambda_{i}} \frac{\partial H\left(a_{i}, a_{j}\right)}{\partial a_{i}}\right) \\
& \left.\times\left(1-J(u)^{n /(n-4)} \sum_{k=i, j} \alpha_{k}^{8 /(n-4)} K\left(a_{k}\right)\right)\right] \\
& +\mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}+\sum_{j \neq i} \lambda_{j}\left|a_{i}-a_{j}\right| \varepsilon_{i j}^{(n-1) /(n-4)}\right) \\
& +\mathrm{o}\left(\sum_{k} \frac{1}{\lambda_{k}^{2}}+\frac{1}{\left(\lambda_{k} d_{k}\right)^{n-3}}+\sum_{k \neq j} \varepsilon_{k j}^{(n-3) /(n-4)}\right) .
\end{aligned}
$$

Proof. As in the proof of Proposition 3.3, we get (3.7) but with $\lambda_{i} \partial P \delta_{i} / \partial \lambda_{i}$ changed by $\lambda_{i}^{-1} \partial P \delta_{i} / \partial a_{i}$.

Now, using Proposition 2.1, we observe (see [3] and [29]):

$$
\begin{equation*}
\left(P \delta, \frac{1}{\lambda} \frac{\partial P \delta}{\partial a}\right)_{2}=-\frac{c_{2}}{2 \lambda^{n-3}} \frac{\partial H}{\partial a}(a, a)+\mathrm{O}\left(\frac{1}{(\lambda d)^{n-2}}\right) \tag{3.15}
\end{equation*}
$$

$$
\begin{aligned}
\int K P \delta^{(n+4) /(n-4)} \frac{1}{\lambda} \frac{\partial P \delta}{\partial a}= & -K(a) \frac{c_{2}}{\lambda^{n-3}} \frac{\partial H}{\partial a}(a, a)+c_{4} \frac{\nabla K(a)}{\lambda}(1+\mathrm{o}(1)) \\
& +\mathrm{O}\left(\frac{1}{\lambda^{2}}+\frac{1}{(\lambda d)^{n-2}}\right)
\end{aligned}
$$

where c_{4} is a positive constant.
We also observe, for $i \neq j$,

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \delta_{i}^{(n+4) /(n-4)} \frac{1}{\lambda_{j}} \frac{\partial \delta_{j}}{\partial a_{j}}=c_{2} \frac{1}{\lambda_{j}} \frac{\partial \varepsilon_{i j}}{\partial a_{j}}+\mathrm{O}\left(\lambda_{i}\left|a_{i}-a_{j}\right| \varepsilon_{i j}^{(n-1) /(n-4)}\right), \tag{3.16}\\
& \left(P \delta_{j}, \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}}\right)_{2}=c_{2} \frac{1}{\lambda_{i}} \frac{\partial \varepsilon_{i j}}{\partial a_{i}}-\frac{c_{2}}{\left(\lambda_{i} \lambda_{j}\right)^{(n-4) / 2}} \frac{1}{\lambda_{i}} \frac{\partial H}{\partial a_{i}}\left(a_{i}, a_{j}\right) \\
& +\mathrm{O}\left(\sum_{k=i, j} \frac{1}{\left(\lambda_{k} d_{k}\right)^{n-2}}+\varepsilon_{i j}^{(n-1) /(n-4)} \lambda_{j}\left|a_{i}-a_{j}\right|\right), \tag{3.17}\\
& \int K P \delta_{j}^{(n+4) /(n-4)} \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}} \\
& =K\left(a_{j}\right)\left(P \delta_{j}, \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}}\right)_{2}+\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n}\left(\frac{1}{\lambda_{j}}+\frac{1}{\left(\lambda_{j} d_{j}\right)^{4}}\right)\right) \\
& + \begin{cases}\mathrm{O}\left(\varepsilon_{i j}^{n /(n-4)} \log \varepsilon_{i j}^{-1}+\log \left(\lambda_{j} d_{j}\right) /\left(\lambda_{j} d_{j}\right)^{n}\right) & \text { if } n \geqslant 8, \\
\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n} /\left(\lambda_{j} d_{j}\right)^{n-4}\right) & \text { if } n<8,\end{cases} \tag{3.18}\\
& \int K P \delta_{j} \frac{1}{\lambda_{i}} \frac{\partial\left(P \delta_{i}\right)^{(n+4) /(n-4)}}{\partial a_{i}} \\
& =K\left(a_{i}\right)\left(P \delta_{j}, \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}}\right)_{2}+\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n}\left(\frac{1}{\lambda_{i}}+\frac{1}{\left(\lambda_{i} d_{i}\right)^{4}}\right)\right) \\
& + \begin{cases}\mathrm{O}\left(\varepsilon_{i j}^{n /(n-4)} \log \varepsilon_{i j}^{-1}+\log \left(\lambda_{i} d_{i}\right) /\left(\lambda_{i} d_{i}\right)^{n}\right) & \text { if } n \geqslant 8, \\
\mathrm{O}\left(\varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n} /\left(\lambda_{i} d_{i}\right)^{n-4}\right) & \text { if } n<8 .\end{cases} \tag{3.19}
\end{align*}
$$

Using (3.15)-(3.19), the proposition follows.

4. Proof of Theorem 1.1 and its corollary

First, we prove the following technical result which will be useful to prove the positivity of the solution that we will find.

Proposition 4.1. There exists a positive constant ε_{0} such that, if $u \in H^{2}(\Omega)$ is a solution of the following equation,

$$
\Delta^{2} u=K|u|^{8 /(n-4)} u \text { in } \Omega, \quad u=\Delta u=0 \text { on } \partial \Omega
$$

and satisfying $\left|u^{-}\right|_{L^{2 n /(n-4)}}<\varepsilon_{0}$, then u has to be positive.
Proof. First, we observe that $K\left(u^{-}\right)^{(n+4) /(n-4)} \in L^{2 n /(n+4)}$, where $u^{-}=\max (0,-u)$.
Now, let us introduce w satisfying:

$$
\begin{equation*}
\Delta^{2} w=-K\left(u^{-}\right)^{(n+4) /(n-4)} \text { in } \Omega, \quad w=\Delta w=0 \text { on } \partial \Omega \tag{4.1}
\end{equation*}
$$

Using a regularity argument, we derive that $w \in H^{2} \cap H_{0}^{1}(\Omega)$. Furthermore, the maximum principle implies that $w \leqslant 0$. Now, multiplying Eq. (4.1) by w and integrating on Ω, we derive that

$$
\begin{equation*}
\|w\|_{2}^{2}=\int_{\Omega} \Delta^{2} w \cdot w=-\int_{\Omega} K\left(u^{-}\right)^{(n+4) /(n-4)} w \leqslant c\|w\|_{2}\left|u^{-}\right|_{L^{2 n /(n-4)}}^{(n+4) /(n-4)} \tag{4.2}
\end{equation*}
$$

Thus, either $\|w\|_{2}=0$ and it follows that $u^{-}=0$ or $\|w\|_{2} \neq 0$ and therefore

$$
\begin{equation*}
\|w\|_{2} \leqslant c\left|u^{-}\right|_{L^{2 n /(n-4)}}^{(n+4) /(n-4)} \tag{4.3}
\end{equation*}
$$

On the other hand, we have:

$$
\begin{equation*}
\int_{\Omega} \Delta^{2} w \cdot u=\int_{\Omega} K\left(u^{-}\right)^{2 n /(n-4)} \geqslant c\left|u^{-}\right|_{L^{2 n /(n-4)}}^{2 n /(n-4)} \tag{4.4}
\end{equation*}
$$

Furthermore we obtain:

$$
\begin{align*}
\int_{\Omega} \Delta^{2} w \cdot u & =\int_{\Omega} w \cdot \Delta^{2} u=\int_{\Omega} K|u|^{8 /(n-4)} u w \\
& =-\int_{u \leqslant 0} K\left(u^{-}\right)^{(n+4) /(n-4)} w+\int_{u \geqslant 0} K\left(u^{+}\right)^{(n+4) /(n-4)} w \tag{4.5}\\
& \leqslant \int_{u \leqslant 0}-K\left(u^{-}\right)^{(n+4) /(n-4)} w=\int_{\Omega}-K\left(u^{-}\right)^{(n+4) /(n-4)} w \\
& =\int_{\Omega} \Delta^{2} w \cdot w=\|w\|_{2}^{2} \tag{4.6}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left|u^{-}\right|_{L^{2 n /(n-4)}}^{2 n /(n-4)} \leqslant c\|w\|_{2}^{2} \leqslant c\left|u^{-}\right|_{L^{2 n /(n-4)}}^{2(n+4) /(n-4)} \tag{4.7}
\end{equation*}
$$

Then, for $\left|u^{-}\right|_{L^{2 n /(n-4)}}$ small enough, we derive a contradiction and therefore the case $\|w\|_{2} \neq 0$ cannot occur, so $\|w\|_{2}$ has to be equal to zero and therefore $u^{-}=0$. Thus the result follows.

Now, we provide the characterization of the critical points at infinity of J in the case where we have only one mass. We recall that the critical points at infinity are the orbits of the gradient flow of J which remain in $V(p, \varepsilon(s))$, where $\varepsilon(s)$ is some function such that $\varepsilon(s)$ tends to zero when s tends to $+\infty$ (see [3]).

Proposition 4.2. Let $n \geqslant 7$ and assume that $\left(A_{0}\right)$ holds. Then there exists a pseudogradient Y_{1} such that the following holds:
(1) there exists a constant $c>0$ independent of $u=\alpha \delta_{(a, \lambda)} \in V(1, \varepsilon)$ such that

$$
\begin{gather*}
\left(-\partial J(u), Y_{1}\right)_{2} \geqslant c\left(\frac{1}{\lambda^{2}}+\frac{|\nabla K(a)|}{\lambda}+\frac{1}{(\lambda d)^{n-3}}\right) \\
\left(-\partial J(u+\bar{v}), Y_{1}+\frac{\partial \bar{v}}{\partial(\alpha, a, \lambda)}\left(Y_{1}\right)\right)_{2} \geqslant c\left(\frac{1}{\lambda^{2}}+\frac{|\nabla K(a)|}{\lambda}+\frac{1}{(\lambda d)^{n-3}}\right) \tag{2}
\end{gather*}
$$

(3) Y_{1} is bounded and the only case where λ increases along Y_{1} is when a is close to a critical point y of K with $-\Delta K(y)>0$. Furthermore the distance to the boundary only increases if it is small enough.

Proof. Using $\left(A_{0}\right)$ and the fact that the boundary of Ω is a compact set, then there exist two positive constants c and d_{0} such that for each x satisfying $d_{x} \leqslant d_{0}$ we have $\nabla K(x)$. $v_{x}<-c$ where ν_{x} is the outward normal to $\Omega_{d_{x}}=\left\{z \in \Omega \mid d_{z}=d(z, \partial \Omega)>d_{x}\right\}$. The construction will depend on a and λ. We distinguish three cases:

1 st case: If a is near the boundary, that is $d_{a} \leqslant d_{0}$, we define:

$$
W_{1}=-\frac{1}{\lambda} \frac{\partial P \delta_{(a, \lambda)}}{\partial a} v_{a} .
$$

2nd case: If $d_{a} \geqslant d_{0}$ and $|\nabla K(a)| \geqslant C_{2} / \lambda$ where C_{2} is a large positive constant. In this case, we define:

$$
W_{2}=\frac{1}{\lambda} \frac{\partial P \delta_{(a, \lambda)}}{\partial a} \frac{\nabla K(a)}{|\nabla K(a)|}
$$

3rd case: If $|\nabla K(a)| \leqslant 2 C_{2} / \lambda$, thus a is near a critical point y of K. Then we define:

$$
W_{3}=(\operatorname{sign}(-\Delta K(y))) \lambda \frac{\partial P \delta_{(a, \lambda)}}{\partial \lambda} .
$$

In all cases, using Propositions 3.3 and 3.4, we derive that

$$
\left(-\partial J(u), W_{i}\right)_{2} \geqslant c\left(\frac{1}{\lambda^{2}}+\frac{1}{(\lambda d)^{n-3}}+\frac{|\nabla K(a)|}{\lambda}\right)
$$

The pseudogradient Y_{1} will be a convex combination of W_{1}, W_{2} and W_{3}. Thus the proof of claim (1) is completed. The proof of claim (2) follows from the estimate of \bar{v} as in [4] and [7]. The proof of claim (3) follows from the construction of the vector field Y_{1}.

Proposition 4.3. Assume that J does not have any critical points in Σ^{+}and assume that $\left(A_{0}\right)$ and $\left(A_{2}\right)$ hold. Then the only critical points at infinity of J in $V(1, \varepsilon)$, for ε small enough, correspond to $P \delta_{(y,+\infty)}$ where y is a critical point of K with $-\Delta K(y)>0$ if $n \geqslant 7$ and with $-\Delta K(y) /(60 K(y))+H(y, y)>0$ if $n=6$. Moreover, such a critical point at infinity has a Morse index equal to $n-\operatorname{index}(K, y)$.

Proof. First, we recall that the 6-dimension case of such a proposition has already been proved in [11], so we need to prove our result for $n \geqslant 7$.

Now, from Proposition 4.2, we know that the only region where λ increases along the pseudogradient Y_{1}, defined in Proposition 4.2, is the region where a is near a critical point y of K with $-\Delta K(y)>0$. Arguing as in [4] and [7], we can easily derive from Proposition 4.2, the following normal form:

If a is near a critical point y of K with $-\Delta K(y)>0$, we can find a change of variables $(a, \lambda) \rightarrow(\bar{a}, \bar{\lambda})$ such that

$$
\begin{equation*}
J\left(P \delta_{(a, \lambda)}+\bar{v}\right)=\Psi(\bar{a}, \bar{\lambda}):=\frac{S_{n}^{4 / n}}{K(\bar{a})^{(n-4) / n}}\left(1-\frac{(c-\eta)}{\bar{\lambda}^{2}} \frac{\Delta K(y)}{K(y)^{n / 4}}\right), \tag{4.8}
\end{equation*}
$$

where c is a constant which depends only on n and η is a small positive constant.
This yields a split of variables a and λ, thus it follows that if $a=y$, only λ can move. In order to decrease the functional J, we have to increase λ, thus we find a critical point at infinity only in this case and our result follows.

Now, we are ready to prove Theorem 1.1 and its corollary.

Proof of Theorem 1.1. Arguing by contradiction, we suppose that J has no critical points in Σ^{+}. It follows from Propositions 3.1 and 4.3 , that under the assumptions of Theorem 1.1, the critical points at infinity of J under the level $c_{1}=\left(S_{n}\right)^{4 / n}\left(K\left(y_{l}\right)\right)^{(4-n) / n}+\varepsilon$, for ε small enough, are in one-to-one correspondence with the critical points of K $y_{0}, y_{1}, \ldots, y_{l}$. The unstable manifold at infinity of such critical points at infinity, $W_{u}\left(y_{0}\right)_{\infty}, \ldots, W_{u}\left(y_{l}\right)_{\infty}$ can be described, using (4.8), as the product of $W_{s}\left(y_{0}\right), \ldots, W_{s}\left(y_{l}\right)$ (for a pseudogradient of K) by [$A,+\infty$ [domain of the variable λ, for some positive number A large enough.

Let η be a small positive constant and let:

$$
\begin{equation*}
V_{\eta}\left(\Sigma^{+}\right)=\left\{\left.u \in \Sigma\left|J(u)^{(2 n-4) /(n-4)} \mathrm{e}^{2 J(u)}\right| u^{-}\right|_{L^{2 n /(n-4)}} ^{8 /(n-4)}<\eta\right\} . \tag{4.9}
\end{equation*}
$$

Since J has no critical points in Σ^{+}, it follows that $J_{c_{1}}=\left\{u \in V_{\eta}\left(\Sigma^{+}\right) \mid J(u) \leqslant c_{1}\right\}$ retracts by deformation on $X_{\infty}=\bigcup_{0 \leqslant j \leqslant l} W_{u}\left(y_{j}\right)_{\infty}$ (see Sections 7 and 8 of [6]) which can be parametrized as we said before by $X \times[A,+\infty[$.

On the other hand, we have X_{∞} contractible in $J_{c_{2}+\varepsilon}$, where $c_{2}=\left(S_{n}\right)^{4 / n} \bar{c}^{(4-n) / n}$. Indeed, from $\left(A_{4}\right)$, it follows that there exists a contraction $h:[0,1] \times X \rightarrow K^{\bar{c}}, h$ continuous, such that for any $a \in X, h(0, a)=a$ and $h(1, a)=a_{0} \in X$. Such a contraction gives rise to the following contraction $\tilde{h}:[0,1] \times X_{\infty} \rightarrow V_{\eta}\left(\Sigma^{+}\right)$defined by:

$$
[0,1] \times X \times\left[A,+\infty\left[\ni(t, a, \lambda) \mapsto P \delta_{(h(t, a), \lambda)}+\bar{v} \in V_{\eta}\left(\Sigma^{+}\right) .\right.\right.
$$

In fact, \tilde{h} is continuous and it satisfies $\tilde{h}(0, a, \lambda)=P \delta_{(a, \lambda)}+\bar{v} \in X_{\infty}$ and $\tilde{h}(1, a, \lambda)=$ $P \delta_{\left(a_{0}, \lambda\right)}+\bar{v}$.

Now, using Proposition 3.1, we deduce that

$$
J\left(P \delta_{(h(t, a), \lambda)}+\bar{v}\right)=\left(S_{n}\right)^{4 / n}(K(h(t, a)))^{(4-n) / n}\left(1+\mathrm{O}\left(A^{-2}\right)\right),
$$

where $K(h(t, a)) \geqslant \bar{c}$ by construction.
Therefore such a contraction is performed under $c_{2}+\varepsilon$, for A large enough, so X_{∞} is contractible in $J_{c_{2}+\varepsilon}$.

In addition, choosing c_{0} small enough, we see that there is no critical point at infinity for J between the levels $c_{2}+\varepsilon$ and c_{1}, thus $J_{c_{2}+\varepsilon}$ retracts by deformation on $J_{c_{1}}$, which retracts by deformation on X_{∞}, therefore X_{∞} is contractible leading to the contractibility of X, which is in contradiction with assumption $\left(A_{3}\right)$. Hence J has a critical point in $V_{\eta}\left(\Sigma^{+}\right)$. Using Proposition 4.1, we derive that such a critical point is positive. Therefore our theorem follows.

Now, we give the proof of Corollary 1.2.
Proof of Corollary 1.2. Arguing by contradiction, we may assume that the Morse index of the solution provided by Theorem 1.1 is $\leqslant m-1$.

Perturbing, if necessary J, we may assume that all the critical points of J are nondegenerate and have their Morse index $\leqslant m-1$. Such critical points do not change the homological group in dimension m of level sets of J.

Since X_{∞} defines a homological class in dimension m which is nontrivial in $J_{c_{1}}$, but trivial in $J_{c_{2}+\varepsilon}$, our result follows.

5. Proof of Theorem 1.3

Arguing by contradiction, we suppose that J has no critical points in $V_{\eta}\left(\Sigma^{+}\right)$defined by (4.9). We denote by z_{1}, \ldots, z_{r} the critical points of K among of $y_{i}(1 \leqslant i \leqslant l)$, where

$$
-\Delta K\left(z_{j}\right) \leqslant 0 \quad(1 \leqslant j \leqslant r) .
$$

The idea of the proof of Theorem 1.3 is to perturb the function K in the C^{1} sense in some neighborhoods of z_{1}, \ldots, z_{r} such that the new function \widetilde{K} has the same critical points with the same Morse indices but satisfying $-\Delta \widetilde{K}\left(z_{j}\right)>0$ for $1 \leqslant j \leqslant r$. Notice that the new \widetilde{X}
corresponding to \widetilde{K}, defined in assumption $\left(A_{3}\right)$, is also not contractible and its homology group in dimension m is nontrivial.

Under the level $2^{4 / n} S_{n}^{4 / n}\left(K\left(y_{0}\right)\right)^{(4-n) / n}$, the associated functional \tilde{J} is close to the functional J in the C^{1} sense. Under the level $c_{2}+\varepsilon$, where c_{2} is defined in the proof of Theorem 1.1, the functional \tilde{J} may have other critical points, however a careful choice of \widetilde{K} ensures that all these critical points have Morse indices less than $m-2$ (see Proposition 5.1 below), and so they do not change the homology in dimension m, therefore the arguments used in the proof of Theorem 1.1 lead to a contradiction. It follows that Theorem 1.3 will be a corollary of the following proposition:

Proposition 5.1. Assume that J has no critical points in $V_{\eta}\left(\Sigma^{+}\right)$. We can choose \widetilde{K} close to K in the C^{1} sense such that \widetilde{K} has the same critical points with the same Morse indices and such that
(i) $-\Delta \underset{\sim}{\widetilde{K}}\left(z_{j}\right)>0$ for $1 \leqslant j \leqslant r$,
(ii) $-\Delta \widetilde{\tilde{K}}(y)>0$ for $y \in\left\{y_{0}, \ldots, y_{l}\right\} \backslash\left\{z_{1}, \ldots, z_{r}\right\}$,
(iii) $-\Delta \widetilde{K}\left(y_{i}\right)<0$ for $l+1 \leqslant i \leqslant s$,
(iv) if \tilde{J} has critical points under the level $c_{2}+\varepsilon$, then their Morse indices are less than $m-2$, where m is defined in assumption $\left(A_{3}\right)$,
(v) the new \widetilde{X} corresponding to \widetilde{K}, defined in assumption $\left(A_{3}\right)$, is also not contractible and its homology group in dimension m is nontrivial.

Next, we are going to prove Proposition 5.1. For this purpose, we need the following lemmas:

Lemma 5.2. Let z_{0} be a point of Ω such that $d\left(z_{0}, \partial \Omega\right) \geqslant c_{0}>0$ and let π be the orthogonal projection (with respect to the scalar inner $(u, v)_{2}=\int_{\Omega} \Delta u \Delta v$) onto

$$
E^{\perp}=\operatorname{Vect}\left(P \delta_{\left(z_{0}, \lambda\right)}, \lambda^{-1} \partial P \delta_{\left(z_{0}, \lambda\right)} / \partial z, \lambda \partial P \delta_{\left(z_{0}, \lambda\right)} / \partial \lambda\right)
$$

Then, we have the following estimates:

$$
\text { (i) }\left\|J^{\prime}\left(P \delta_{\left(z_{0}, \lambda\right)}\right)\right\|=\mathrm{O}\left(\frac{1}{\lambda}\right) ; \quad \text { (ii) }\left\|\frac{\partial \pi}{\partial z}\right\|=\mathrm{O}(\lambda) ; \quad \text { (iii) }\left\|\frac{\partial^{2} \pi}{\partial^{2} z}\right\|=\mathrm{O}\left(\lambda^{2}\right)
$$

Proof. The proof of claim (i) is easy, so we will omit it. Now, we prove claim (ii). Let $\varphi \in\left\{P \delta_{\left(z_{0}, \lambda\right)}, \lambda^{-1} \partial P \delta_{\left(z_{0}, \lambda\right)} / \partial z, \lambda \partial P \delta_{\left(z_{0}, \lambda\right)} / \partial \lambda\right\}$. We then have $\pi \varphi=\varphi$, therefore,

$$
\frac{\partial \pi}{\partial z}(\varphi)=\frac{\partial \varphi}{\partial z}-\pi \frac{\partial \varphi}{\partial z}
$$

thus $\left\|\frac{\partial \pi}{\partial z}(\varphi)\right\|=\mathrm{O}(\lambda)$.

Now, for $v \in E$, we have $\pi v=0$, thus

$$
\frac{\partial \pi}{\partial z} v=-\pi \frac{\partial v}{\partial z}=\sum_{i=1}^{3} a_{i} \varphi_{i}
$$

where $\varphi_{1}=P \delta_{\left(z_{0}, \lambda\right)}, \varphi_{2}=\lambda^{-1} \partial P \delta_{\left(z_{0}, \lambda\right)} / \partial z, \varphi_{3}=\lambda \partial P \delta_{\left(z_{0}, \lambda\right)} / \partial \lambda$.
But, we have:

$$
a_{i}\left\|\varphi_{i}\right\|^{2}=\left(\frac{\partial v}{\partial z}, \varphi_{i}\right)_{2}=-\left(v, \frac{\partial \varphi_{i}}{\partial z}\right)_{2}=\mathrm{O}(\lambda\|v\|)
$$

Thus claim (ii) follows.
In the same way, claim (iii) follows and hence the proof of our lemma is completed.

Lemma 5.3. Let z_{0} be a point of Ω close to a critical point of K such that $d\left(z_{0}, \partial \Omega\right) \geqslant$ $c_{0}>0$. Let $\bar{v}=\bar{v}\left(z_{0}, \alpha, \lambda\right) \in E$ defined in Proposition 3.2. Then, we have the following estimates:

$$
\text { (i) }\|\bar{v}\|=\mathrm{o}\left(\frac{1}{\lambda}\right), \quad \text { (ii) }\left\|\frac{\partial \bar{v}}{\partial z}\right\|=\mathrm{o}(1)
$$

Proof. We notice that claim (i) follows from Proposition 3.2. Then, we need only to show that claim (ii) is true. We know that \bar{v} satisfies,

$$
A \bar{v}=f+\mathrm{O}\left(\|\bar{v}\|^{(n+4) /(n-4)}\right) \quad \text { and } \quad \frac{\partial A}{\partial z} \bar{v}+A \frac{\partial \bar{v}}{\partial z}=\frac{\partial f}{\partial z}+\mathrm{O}\left(\|\bar{v}\|^{8 /(n-4)}\left|\frac{\partial \bar{v}}{\partial z}\right|\right)
$$

where A is the operator associated to the quadratic form Q defined on E (Q and f are defined in Proposition 3.1).

Then, we have:

$$
A\left(\frac{\partial \bar{v}}{\partial z}-\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right)=\frac{\partial f}{\partial z}-\frac{\partial A}{\partial z} \bar{v}-A \pi\left(\frac{\partial \bar{v}}{\partial z}\right)+\mathrm{O}\left(\|\bar{v}\|^{8 /(n-4)}\left|\frac{\partial \bar{v}}{\partial z}\right|\right)
$$

Since Q is a positive quadratic form on E (see [9]), we then derive,

$$
\left\|\frac{\partial \bar{v}}{\partial z}-\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right\| \leqslant C\left(\left\|\frac{\partial f}{\partial z}\right\|+\left\|\frac{\partial A}{\partial z}\right\|\|\bar{v}\|+\left\|\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right\|+\|\bar{v}\|^{8 /(n-4)}\left\|\frac{\partial \bar{v}}{\partial z}\right\|\right) .
$$

Now, we estimate each term of the right-hand side in the above estimate. First, it is easy to see $\left\|\frac{\partial A}{\partial z}\right\|=\mathrm{O}(\lambda)$. Therefore, using (i), we obtain $\left\|\frac{\partial A}{\partial z}\right\|\|\bar{v}\|=\mathrm{o}(1)$. Secondly, we have:

$$
\begin{align*}
\left(\frac{\partial f}{\partial z}, v\right)_{2}= & c \int K P \delta_{\left(z_{0}, \lambda\right)}^{8 /(n-4)} \frac{\partial P \delta}{\partial z} v=c \nabla K\left(z_{0}\right) \int d\left(z_{0}, x\right) \delta^{8 /(n-4)} \frac{\partial \delta}{\partial z} v \\
& +\mathrm{O}\left(\int d^{2}\left(x, z_{0}\right) \delta^{(n+4) /(n-4)} \lambda|v|\right) \\
& +\mathrm{O}\left(\int_{\Omega} \delta^{8 /(n-4)} \varphi|v|+\int_{\Omega} \delta^{8 /(n-4)}\left|\frac{\partial \varphi}{\partial z}\right||v|\right) \\
\leqslant & c\|v\|\left(\left|\nabla K\left(z_{0}\right)\right|+\frac{1}{\lambda}\right) \tag{5.1}
\end{align*}
$$

where $\varphi=\delta-P \delta$.
Since z_{0} is close to a critical point of K, we derive that $\left\|\frac{\partial f}{\partial z}\right\|=\mathrm{o}(1)$.
For the term $\left\|\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right\|$, we have, since $\bar{v} \in E$,

$$
\begin{gathered}
\left(\frac{\partial \bar{v}}{\partial z}, \delta_{\left(z_{0}, \lambda\right)}\right)_{2}=-\left(\bar{v}, \frac{\partial \delta_{\left(z_{0}, \lambda\right)}}{\partial z}\right)_{2}=0 \\
\left(\frac{\partial \bar{v}}{\partial z}, \lambda \frac{\partial \delta_{\left(z_{0}, \lambda\right)}}{\partial \lambda}\right)_{2}=-\left(\bar{v}, \lambda \frac{\partial^{2} \delta_{\left(z_{0}, \lambda\right)}}{\partial \lambda \partial z}\right)_{2}=\mathrm{O}(\lambda\|\bar{v}\|)=\mathrm{o}(1)
\end{gathered}
$$

In the same way, we have:

$$
\left(\frac{\partial \bar{v}}{\partial z}, \frac{1}{\lambda} \frac{\partial P \delta}{\partial z}\right)_{2}=\mathrm{o}(1)
$$

Therefore $\left\|\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right\|=\mathrm{o}(1)$. Now, using the following inequality:

$$
\left\|\frac{\partial \bar{v}}{\partial z}\right\| \leqslant\left\|\frac{\partial \bar{v}}{\partial z}-\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right\|+\left\|\pi\left(\frac{\partial \bar{v}}{\partial z}\right)\right\|,
$$

we easily derive our claim and our lemma follows.
We are now able to prove Proposition 5.1.
Proof of Proposition 5.1. We suppose that J has no critical points in $V_{\eta}\left(\Sigma^{+}\right)$and we perturb the function K only in some neighborhoods of z_{1}, \ldots, z_{r}, therefore claims (ii) and (iii) follow from assumption $\left(A_{2}^{\prime}\right)$. We observe that under the level $c_{2}+\varepsilon$ and outside $V\left(1, \varepsilon_{0}\right)$, we have $|\partial J|>c>0$. If \widetilde{K} is close to K in the C^{1}-sense, then \tilde{J} is close to J in the C^{1}-sense, and therefore $|\partial \tilde{J}|>c / 2$ in this region. Thus, a critical point u_{0} of \tilde{J} under the level $c_{2}+\varepsilon$ has to be in $V\left(1, \varepsilon_{0}\right)$. Therefore, we can write $u_{0}=P \delta_{\left(z_{0}, \lambda\right)}+\bar{v}$.

Next we will prove the following claim:
Claim. z_{0} has to be near a critical point z_{i} of $K, 1 \leqslant i \leqslant r$ (recall that z_{i} 's satisfy $\left.\Delta K\left(z_{i}\right) \geqslant 0\right)$.

To prove our claim, we will prove in the first step that $d_{z_{0}}:=d\left(z_{0}, \partial \Omega\right) \geqslant c_{0}>0$. For this fact, arguing by contradiction, we assume that $d_{z_{0}} \rightarrow 0$. Thus, we have:

$$
\begin{equation*}
\frac{\partial K}{\partial v}\left(z_{0}\right)<-c<0 \quad \text { and } \quad \frac{\partial H}{\partial v}\left(z_{0}, z_{0}\right) \sim \frac{c}{d_{z_{0}}^{n-3}} \tag{5.2}
\end{equation*}
$$

(The proof of the last fact is similar to the corresponding statement for the Laplacian operator in [29].)

Using Propositions 3.2 and 3.4, we obtain:

$$
0=\left(\partial \tilde{J}\left(u_{0}\right), \frac{1}{\lambda} \frac{\partial P \delta}{\partial z}\right)_{2} \cdot v>\frac{c}{\lambda}+\frac{c}{\left(\lambda \delta_{z_{0}}\right)^{n-3}}>0
$$

Thus, we derive a contradiction and therefore z_{0} has to satisfy $d_{z_{0}} \geqslant c_{0}>0$.
Now, also using Propositions 3.2 and 3.4, we derive that

$$
0=\left(\partial \tilde{J}\left(u_{0}\right), \frac{1}{\lambda} \frac{\partial P \delta}{\partial z}\right)_{2}=c \frac{\nabla \widetilde{K}\left(z_{0}\right)}{\lambda}+\mathrm{o}\left(\frac{1}{\lambda}\right)
$$

thus z_{0} has to be close to y_{i}, where $i \in\{0, \ldots, s\}$.
We also have, by Propositions 3.2 and 3.4:

$$
\begin{equation*}
0=\left(\partial \tilde{J}\left(u_{0}\right), \lambda \frac{\partial P \delta}{\partial \lambda}\right)_{2}=c \frac{\Delta \tilde{K}\left(z_{0}\right)}{\lambda^{2}}+\mathrm{o}\left(\frac{1}{\lambda^{2}}\right) \tag{5.3}
\end{equation*}
$$

In the neighborhood of y_{i} with $i \in\left\{k \mid-\Delta K\left(y_{k}\right)>0\right\} \cup\{l+1, \ldots, s\}, \widetilde{K} \equiv K$ and therefore $|\Delta \widetilde{K}|>c>0$ in this neighborhood. Thus (5.3) implies that z_{0} has to be near z_{i} with $1 \leqslant i \leqslant r$. Thus our claim is proved.

In the sequel, we assume that $\delta=\delta_{\left(z_{0}, \lambda\right)}$ satisfies $\|\delta\|=1$, and thus $\Delta^{2} \delta=S_{n}^{4 /(n-4)} \times$ $\delta^{(n+4) /(n-4)}$. We also assume that $\left|D^{2} \widetilde{K}\right| \leqslant c\left(1+\left|D^{2} K\right|\right)$, where c is a fixed positive constant.

Let $u_{0}=P \delta_{\left(z_{0}, \lambda\right)}+\bar{v}$ be a critical point of \tilde{J}. In order to compute the Morse index of \tilde{J} at u_{0}, we need to compute $\left.\frac{\partial^{2}}{\partial z^{2}} \tilde{J}\left(P \delta_{(z, \lambda)}+\bar{v}\right)\right|_{z=z_{0}}$. We observe that

$$
\begin{aligned}
\frac{\partial}{\partial z} \tilde{J}\left(P \delta_{(z, \lambda)}+\bar{v}\right) & =\tilde{J}^{\prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial}{\partial z}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \\
& =\tilde{J}^{\prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \pi\left(\frac{\partial}{\partial z}\left(P \delta_{(z, \lambda)}+\bar{v}\right)\right)
\end{aligned}
$$

and

$$
\begin{align*}
\frac{\partial^{2}}{\partial z^{2}} \tilde{J}\left(P \delta_{(z, \lambda)}+\bar{v}\right)= & \tilde{J}^{\prime \prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial}{\partial z}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \pi\left(\frac{\partial}{\partial z}\left(P \delta_{(z, \lambda)}+\bar{v}\right)\right) \\
& +\tilde{J}^{\prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial}{\partial z}\left(\pi\left(\frac{\partial}{\partial z}\left(P \delta_{(z, \lambda)}+\bar{v}\right)\right)\right) \tag{5.4}
\end{align*}
$$

For $z=z_{0}$, we have $\tilde{J}^{\prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right)=0$. We will estimate each term of the right-hand side of (5.4). First, we have by Lemma 5.3,

$$
\tilde{J}^{\prime \prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial \bar{v}}{\partial z} \pi\left(\frac{\partial \bar{v}}{\partial z}\right)=\mathrm{o}(1)
$$

Secondly, we compute:

$$
\begin{aligned}
T & =\tilde{J}^{\prime \prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial P \delta}{\partial z} \pi \frac{\partial \bar{v}}{\partial z} \\
& =c\left[\left(\frac{\partial P \delta}{\partial z}, \pi \frac{\partial \bar{v}}{\partial z}\right)-\frac{n+4}{n-4} \tilde{J}\left(u_{0}\right)^{n /(n-4)} \int \tilde{K}(P \delta+\bar{v})^{8 /(n-4)} \frac{\partial P \delta}{\partial z} \pi \frac{\partial \bar{v}}{\partial z}\right]
\end{aligned}
$$

According to Proposition 3.1, we have:

$$
\begin{equation*}
\tilde{J}(P \delta+\bar{v})=\frac{S_{n}^{4 / n}}{\widetilde{K}(z)^{(n-4) / n}}+\mathrm{O}\left(\frac{\|\bar{v}\|}{\lambda}+\frac{1}{\lambda^{2}}\right) \tag{5.5}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
T= & c\left[\left(\frac{\partial P \delta}{\partial z}, \pi \frac{\partial \bar{v}}{\partial z}\right)_{2}-\frac{n+4}{n-4} S_{n}^{4 /(n-4)} \int \frac{\widetilde{K}}{\widetilde{K}(z)} P \delta^{8 /(n-4)} \frac{\partial P \delta}{\partial z} \pi \frac{\partial \bar{v}}{\partial z}\right] \\
& +\mathrm{O}\left(\int\left(\delta^{(12-n) /(n-4)}|\bar{v}|+|\bar{v}|^{8 /(n-4)} \chi_{P \delta \leqslant|\bar{v}|}\right)\left|\frac{\partial P \delta}{\partial z} \| \pi \frac{\partial \bar{v}}{\partial z}\right|\right)+\mathrm{o}(1) \\
= & c \frac{n+4}{n-4} S_{n}^{4 /(n-4)} \int\left(1-\frac{\widetilde{K}}{\widetilde{K}(z)}\right) \delta^{8 /(n-4)} \frac{\partial \delta}{\partial z} \pi\left(\frac{\partial \bar{v}}{\partial z}\right) \\
& +\mathrm{O}\left(\lambda\|\bar{v}\|\left\|\frac{\partial \bar{v}}{\partial z}\right\|+\lambda\|\bar{v}\|^{(n+4) /(n-4)}\left\|\frac{\partial \bar{v}}{\partial z}\right\|\right)+\mathrm{o}(1) \\
= & \mathrm{o}(1)
\end{aligned}
$$

Thus (5.4) becomes:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial z^{2}} \tilde{J}\left(P \delta_{(z, \lambda)}+\bar{v}\right)= & \tilde{J}^{\prime \prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial P \delta}{\partial z}\left(\frac{\partial P \delta}{\partial z}+\frac{\partial \bar{v}}{\partial z}\right)+\tilde{J}^{\prime}\left(P \delta_{(z, \lambda)}+\bar{v}\right) \frac{\partial^{2} P \delta}{\partial z^{2}}+\mathrm{o}(1) \\
= & 2 \tilde{J}\left(u_{0}\right)\left[\left(\frac{\partial P \delta}{\partial z}+\frac{\partial \bar{v}}{\partial z}, \frac{\partial P \delta}{\partial z}\right)_{2}+\left(P \delta+\bar{v}, \frac{\partial^{2} P \delta}{\partial z^{2}}\right)_{2}\right. \\
& -\tilde{J}\left(u_{0}\right)^{n /(n-4)} \frac{n+4}{n-4}\left(\int K(P \delta+\bar{v})^{8 /(n-4)}\left(\frac{\partial P \delta}{\partial z}\right)^{2}\right. \\
& \left.+\int K(P \delta+\bar{v})^{8 /(n-4)} \frac{\partial P \delta}{\partial z} \frac{\partial \bar{v}}{\partial z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\tilde{J}\left(u_{0}\right)^{n /(n-4)} \int K(P \delta+\bar{v})^{(n+4) /(n-4)} \frac{\partial^{2} P \delta}{\partial z^{2}}\right]+\mathrm{o}(1) \\
= & 2 \tilde{J}\left(u_{0}\right)\left[\left(\frac{\partial P \delta}{\partial z}+\frac{\partial \bar{v}}{\partial z}, \frac{\partial P \delta}{\partial z}\right)_{2}+\left(P \delta+\bar{v}, \frac{\partial^{2} P \delta}{\partial z^{2}}\right)_{2}\right. \\
& -\frac{n+4}{n-4} \tilde{J}\left(u_{0}\right)^{n /(n-4)}\left(\int K P \delta^{8 /(n-4)}\left(\frac{\partial P \delta}{\partial z}\right)^{2}\right. \\
& +\frac{8}{n-4} \int K P \delta^{(12-n) /(n-4)} \bar{v}\left(\frac{\partial P \delta}{\partial z}\right)^{2} \\
& +\int K P \delta^{8 /(n-4)} \frac{\partial P \delta}{\partial z} \frac{\partial \bar{v}}{\partial z}+\frac{n-4}{n+4} \int K P \delta^{(n+4) /(n-4)} \frac{\partial^{2} P \delta}{\partial z^{2}} \\
& \left.\left.+\int K P \delta^{8 /(n-4)} \bar{v} \frac{\partial^{2} P \delta}{\partial z^{2}}\right)\right]+\mathrm{o}(1) .
\end{aligned}
$$

Using (5.5) and Proposition 2.1, we derive that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial z^{2}} \tilde{J}\left(P \delta_{(z, \lambda)}+\bar{v}\right)= & 2 \tilde{J}\left(u_{0}\right)\left[S_{n}^{4 /(n-4)}\left(\int \frac{n+4}{n-4} \delta^{8 /(n-4)}\left(\frac{\partial \delta}{\partial z}\right)^{2}+\delta^{(n+4) /(n-4)} \frac{\partial^{2} \delta}{\partial z^{2}}\right)\right. \\
& -\tilde{J}\left(u_{0}\right)^{n /(n-4)}\left(\frac{n+4}{n-4} \int K \delta^{8 /(n-4)}\left(\frac{\partial \delta}{\partial z}\right)^{2}\right. \\
& \left.+\int K \delta^{(n+4) /(n-4)} \frac{\partial^{2} \delta}{\partial z^{2}}\right) \\
& +S_{n}^{4 /(n-4)} \frac{n+4}{n-4}\left(\int\left(1-\frac{K}{K(z)}\right) \delta^{8 /(n-4)} \frac{\partial \delta}{\partial z} \frac{\partial \bar{v}}{\partial z}\right. \\
& +\int\left(1-\frac{K}{K(z)}\right) \delta^{8 /(n-4)} \frac{\partial^{2} \delta}{\partial z^{2}} \bar{v} \\
& \left.\left.+\frac{8}{n-4} \int\left(1-\frac{K}{K(z)}\right) \delta^{(12-n) /(n-4)}\left(\frac{\partial \delta}{\partial z}\right)^{2} \bar{v}\right)\right]+\mathrm{o}(1) \\
= & 2 \tilde{J}\left(u_{0}\right)\left[S_{n}^{4 /(n-4)} \frac{\partial}{\partial z}\left(\iint^{(n+4) /(n-4)} \frac{\partial \delta}{\partial z}\right)\right. \\
& \left.-\tilde{J}\left(u_{0}\right)^{n /(n-4)} \int K \frac{\partial^{2} \delta^{2 n /(n-4)}}{\partial z^{2}}\right]+\mathrm{o}(1) .
\end{aligned}
$$

Thus,

$$
\left.\frac{\partial^{2}}{\partial z^{2}} \tilde{J}\left(P \delta_{(z, \lambda)}+\bar{v}\right)\right|_{z=z_{0}}=-c D^{2} K\left(z_{0}\right)+\mathrm{o}(1)
$$

where c is a positive constant.

Therefore, taking account of the λ-space, we derive that

$$
\operatorname{index}\left(\tilde{J}, u_{0}\right) \leqslant n-\operatorname{index}\left(K, z_{0}\right)+1 \leqslant m-2 .
$$

Then claims (i) and (iv) of Proposition 5.1 follow.
On the other hand, according to assumption $\left(A_{2}^{\prime}\right)$ we have:

$$
n-m+3 \leqslant \operatorname{index}\left(K, z_{j}\right)=\operatorname{index}\left(\widetilde{K}, z_{j}\right) \quad \text { for } 1 \leqslant j \leqslant r
$$

Thus, for any pseudogradient of \widetilde{K}, the dimension of the stable manifold of z_{j} is less than $m-3$. Note that our perturbation changes the pseudogradient Z to \widetilde{Z}, but only in some neighborhoods of z_{1}, \ldots, z_{r}. Therefore the stable manifolds of y_{i} for $i \notin\{1, \ldots, r\}$, remain unchanged. Since the dimension of X is greater than m and its homology group in dimension m is nontrivial, we derive that the homology group of \widetilde{X} in dimension m is also nontrivial. This completes the proof of Proposition 5.1.

6. Proof of Theorems 1.5 and 1.6

In this section we assume that assumptions $\left(A_{0}\right),\left(A_{5}\right)$ and $\left(A_{6}\right)$ hold and we are going to prove Theorems 1.5 and 1.6. First, we start by proving the following main results:

Proposition 6.1. Let $n \geqslant 7$. There exists a pseudogradient Y_{2} such that the following holds:
(1) There exists a constant $c>0$ independent of $u=\sum_{i=1}^{2} \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)} \in V(2, \varepsilon)$ such that

$$
\begin{gather*}
\left(-\partial J(u), Y_{2}\right)_{2} \geqslant c\left(\varepsilon_{12}^{(n-3) /(n-4)}+\sum \frac{1}{\lambda_{i}^{2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\left(\lambda_{i} d_{i}\right)^{n-3}}\right) \\
\left(-\partial J(u+\bar{v}), Y_{2}+\frac{\partial \bar{v}}{\partial\left(\alpha_{i}, a_{i}, \lambda_{i}\right)}\left(Y_{2}\right)\right)_{2} \tag{2}\\
\geqslant c\left(\varepsilon_{12}^{(n-3) /(n-4)}+\sum \frac{1}{\lambda_{i}^{2}}+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\left(\lambda_{i} d_{i}\right)^{n-3}}\right)
\end{gather*}
$$

(3) Y_{2} is bounded and the only case where the maximum of the λ_{i} 's increases along Y_{2} is when the points a_{i} 's are close to two different critical points y_{j} and y_{r} of K with $-\Delta K\left(y_{l}\right)>0$ for $l=j, r$. Furthermore the least distance to the boundary only increases if it is small enough.

Proof. We divide the set $V(2, \varepsilon)$ into three sets $A_{1} \cup A_{2} \cup A_{3}$ where, for $u=$ $\sum \alpha_{i} P \delta_{\left(a_{i}, \lambda_{i}\right)} \in V(2, \varepsilon), A_{1}=\left\{u \mid d_{1} \geqslant d_{0}\right.$ and $\left.d_{2} \geqslant d_{0}\right\}, A_{2}=\left\{u \mid d_{1} \leqslant d_{0}\right.$ and $\left.d_{2} \geqslant 2 d_{0}\right\}, A_{3}=\left\{u \mid d_{1} \leqslant 2 d_{0}\right.$ and $\left.d_{2} \leqslant 2 d_{0}\right\}$. We will build a vector field on each set and then, Y_{2} will be a convex combination of those vector fields.

- 1 st set: For $u \in A_{1}$. We can assume without loss of generality that $\lambda_{1} \leqslant \lambda_{2}$. We introduce the following set $T=\left\{i| | \nabla K\left(a_{i}\right) \mid \geqslant C_{2} / \lambda_{i}\right\}$ where C_{2} is a large constant. The set A_{1} will be divided into four subsets:

1 st subset: The set of u such that $\varepsilon_{12} \geqslant C_{1} / \lambda_{2}^{2}$ and $\left(10 \lambda_{1} \geqslant \lambda_{2}\right.$ or $\left.\left|\nabla K\left(a_{1}\right)\right| \geqslant C_{2} / \lambda_{1}\right)$, where C_{1} is a large constant. In this case, we define W_{1} as

$$
W_{1}=-M \lambda_{2} \frac{\partial P \delta_{2}}{\partial \lambda_{2}}+\sum_{i \in T} \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}} \frac{\nabla K\left(a_{i}\right)}{\left|\nabla K\left(a_{i}\right)\right|},
$$

where M is a large constant. Using Propositions 3.3 and 3.4, we derive that

$$
\begin{align*}
\left(-\partial J(u), W_{1}\right)_{2} & \geqslant M\left(c \varepsilon_{12}+\mathrm{O}\left(\frac{1}{\lambda_{2}^{2}}\right)\right)+\sum_{i \in T}\left(\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}+\varepsilon_{12}\right)\right) \\
& \geqslant c\left(\varepsilon_{12}+\sum \frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right) \tag{6.1}
\end{align*}
$$

2nd subset: The set of u such that $\varepsilon_{12} \geqslant C_{1} / \lambda_{2}^{2}, 10 \lambda_{1} \leqslant \lambda_{2}$ and $\left|\nabla K\left(a_{1}\right)\right| \leqslant C_{2} / \lambda_{1}$. In this case, the point a_{1} is close to a critical point y of K. We define W_{2} as

$$
W_{2}=W_{1}+\sqrt{M} \lambda_{1} \frac{\partial P \delta_{1}}{\partial \lambda_{1}}(\operatorname{sign}(-\Delta K(y)))
$$

Using Propositions 3.3 and 3.4, we obtain:

$$
\begin{align*}
\left(-\partial J(u), W_{2}\right)_{2} \geqslant & M\left(c \varepsilon_{12}+\mathrm{O}\left(\frac{1}{\lambda_{2}^{2}}\right)\right)+\sqrt{M}\left(\frac{c}{\lambda_{1}^{2}}+\mathrm{O}\left(\varepsilon_{12}\right)\right) \\
& +\sum_{i \in T}\left(\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}+\varepsilon_{12}\right)\right) \\
\geqslant & c\left(\varepsilon_{12}+\sum \frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right) . \tag{6.2}
\end{align*}
$$

$3 r d$ subset: The set of u such that $\varepsilon_{12} \leqslant C_{1} / \lambda_{2}^{2}$ and $\left(\left|\nabla K\left(a_{1}\right)\right| \geqslant C_{2} / \lambda_{1}\right.$ or $\left|\nabla K\left(a_{2}\right)\right| \geqslant$ C_{2} / λ_{2}). In this case, the set T is not empty, thus we define:

$$
W_{3}^{\prime}=\sum_{i \in T} \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}} \frac{\nabla K\left(a_{i}\right)}{\left|\nabla K\left(a_{i}\right)\right|} .
$$

Using Proposition 3.4, we find:

$$
\begin{equation*}
\left(-\partial J(u), W_{3}^{\prime}\right)_{2} \geqslant c \sum_{i \in T}\left(\frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}+\varepsilon_{12}\right)\right) \tag{6.3}
\end{equation*}
$$

If we assume that $\left(\left|\nabla K\left(a_{1}\right)\right| \geqslant C_{2} / \lambda_{1}\right.$ or $\left.10 \lambda_{1} \geqslant \lambda_{2}\right)$ and we choose $C_{1} \ll C_{2}$, (6.3) implies the desired estimate. In the other situation, i.e., $\left(\left|\nabla K\left(a_{1}\right)\right| \leqslant C_{2} / \lambda_{1}\right.$ and $10 \lambda_{1} \leqslant \lambda_{2}$), the point a_{1} is close to a critical point y of K. As in the second case, we define $W_{3}^{\prime \prime}$ as

$$
W_{3}^{\prime \prime}=\frac{1}{\lambda_{2}} \frac{\partial P \delta_{2}}{\partial a_{2}} \frac{\nabla K\left(a_{2}\right)}{\left|\nabla K\left(a_{2}\right)\right|}+\lambda_{1} \frac{\partial P \delta_{1}}{\partial \lambda_{1}}(\operatorname{sign}(-\Delta K(y)))
$$

Using Propositions 3.3 and 3.4, we derive that

$$
\begin{align*}
\left(-\partial J(u), W_{3}^{\prime \prime}\right)_{2} & \geqslant c\left(\frac{\left|\nabla K\left(a_{2}\right)\right|}{\lambda_{2}}+\mathrm{O}\left(\frac{1}{\lambda_{2}^{2}}+\varepsilon_{12}\right)\right)+c\left(\frac{1}{\lambda_{1}^{2}}+\mathrm{O}\left(\varepsilon_{12}\right)\right) \\
& \geqslant c\left(\varepsilon_{12}+\sum \frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right) \tag{6.4}
\end{align*}
$$

W_{3} will be a convex combination of W_{3}^{\prime} and $W_{3}^{\prime \prime}$.
4th subset: The set of u such that $\varepsilon_{12} \leqslant C_{1} / \lambda_{2}^{2}$ and $\left|\nabla K\left(a_{i}\right)\right| \leqslant C_{2} / \lambda_{i}$ for $i=1,2$. In this case, the concentration points are near two critical points y_{i} and y_{j} of K. Two cases may occur: either $y_{i}=y_{j}$ or $y_{i} \neq y_{j}$.

- If $y_{i}=y_{j}=y$. Since y is a nondegenerate critical point, we derive that $\lambda_{k}\left|a_{k}-y\right| \leqslant c$ for $k=1,2$ and therefore $\lambda_{1}\left|a_{1}-a_{2}\right| \leqslant c$. Thus we obtain $\varepsilon_{12} \geqslant c\left(\lambda_{1} / \lambda_{2}\right)^{(n-4) / 2}$ and therefore $\varepsilon_{12} \leqslant C_{1} / \lambda_{2}^{2}=o\left(1 / \lambda_{1}^{2}\right)$. In this case we define $W_{4}^{\prime}=\lambda_{1}\left(\partial P \delta_{1} / \partial \lambda_{1}\right)(\operatorname{sign}(-\Delta K(y)))$. Using Proposition 3.3, we derive that

$$
\begin{equation*}
\left(-\partial J(u), W_{4}^{\prime}\right)_{2} \geqslant \frac{c}{\lambda_{1}^{2}}+\mathrm{O}\left(\varepsilon_{12}\right) \geqslant c\left(\varepsilon_{12}+\sum \frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right) \tag{6.5}
\end{equation*}
$$

- If $y_{i} \neq y_{j}$. In this case we have $\varepsilon_{12}=\mathrm{o}\left(1 / \lambda_{k}^{2}\right)$ for $k=1,2$. The vector field $W_{4}^{\prime \prime}$ will depend on the sign of $-\Delta K\left(y_{k}\right), k=i, j$. If $-\Delta K\left(y_{i}\right)<0\left(y_{i}\right.$ is near $\left.a_{1}\right)$, we decrease λ_{1}. If $-\Delta K\left(y_{i}\right)>0$ and $-\Delta K\left(y_{j}\right)<0$, we decrease λ_{2} in the case where $10 \lambda_{1} \geqslant \lambda_{2}$ and we increase λ_{1} in the other case. If $-\Delta K\left(y_{k}\right)>0$ for $k=i, j$, we increase both λ_{k} 's. Thus we obtain:

$$
\begin{equation*}
\left(-\partial J(u), W_{4}^{\prime \prime}\right)_{2} \geqslant c\left(\varepsilon_{12}+\sum \frac{\left|\nabla K\left(a_{i}\right)\right|}{\lambda_{i}}+\frac{1}{\lambda_{i}^{2}}\right) \tag{6.6}
\end{equation*}
$$

The vector field W_{4} will be a convex combination of W_{4}^{\prime} and $W_{4}^{\prime \prime}$.

- 2nd set: For $u \in A_{2}$, we have $\left|a_{1}-a_{2}\right| \geqslant d_{0}$. Therefore $\varepsilon_{12}=o\left(1 / \lambda_{1}\right)$ and $H\left(a_{2},.\right) \leqslant c$. Let us define $W_{5}=\left(1 / \lambda_{1}\right)\left(\partial P \delta_{1} / \partial a_{1}\right)\left(-v_{1}\right)$. Using Proposition 3.4, we find:

$$
\begin{equation*}
\left(-\partial J(u), W_{5}\right)_{2} \geqslant \frac{c}{\lambda_{1}}+\mathrm{O}\left(\varepsilon_{12}\right)+\frac{c}{\left(\lambda_{1} d_{1}\right)^{n-3}} \geqslant \frac{c}{\lambda_{1}}+\frac{c}{\left(\lambda_{1} d_{1}\right)^{n-3}} \tag{6.7}
\end{equation*}
$$

If $\lambda_{1} \leqslant 10 \lambda_{2}$, then, in the lower bound of (6.7), we can make appear $1 / \lambda_{2}$ and all the terms needed in (1). In the other case, i.e., $\lambda_{1} \geqslant 10 \lambda_{2}$, we define W_{6} as $W_{6}=W_{5}+Y_{1}\left(P \delta_{2}\right)$ and we obtain the desired estimate in this case also.

- $3 r d$ set: For $u \in A_{3}$, i.e., $d_{i} \leqslant 2 d_{0}$ for $i=1,2$. We have three cases.

1 st case: If there exists $i \in\{1,2\}$ (we denote by j the other index) such that $M_{1} d_{i} \leqslant d_{j}$, where M_{1} is a large constant. In this case we define:

$$
\begin{equation*}
W_{7}=\sum \frac{1}{\lambda_{i}} \frac{\partial P \delta_{i}}{\partial a_{i}}\left(-v_{i}\right) \tag{6.8}
\end{equation*}
$$

Using Proposition 3.4, we derive that

$$
\begin{align*}
\left(-\partial J(u), W_{7}\right) \geqslant & c \sum_{k}\left(\frac{1}{\lambda_{k}}+\frac{1}{\left(\lambda_{k} d_{k}\right)^{n-3}}\right)+\mathrm{o}\left(\varepsilon_{12}^{(n-3) /(n-4)}\right) \\
& +\mathrm{O}\left(\sum_{k} \frac{1}{\lambda_{k}}\left|\frac{\partial \varepsilon_{12}}{\partial a_{k}}\right|+\frac{1}{\left(\lambda_{1} \lambda_{2}\right)^{(n-4) / 2}} \frac{1}{\lambda_{k}}\left|\frac{\partial H\left(a_{1}, a_{2}\right)}{\partial a_{k}}\right|\right. \\
& \left.+\lambda_{k}\left|a_{1}-a_{2}\right| \varepsilon_{12}^{(n-1) /(n-4)}\right) \tag{6.9}
\end{align*}
$$

Since $M_{1} d_{i} \leqslant d_{j}$, then we have $\left|a_{1}-a_{2}\right| \geqslant d_{j} / 2 \geqslant M_{1} d_{i} / 2$. Thus we obtain:

$$
\begin{equation*}
\frac{1}{\lambda_{k}}\left|\frac{\partial \varepsilon_{12}}{\partial a_{k}}\right|+\frac{1}{\left(\lambda_{1} \lambda_{2}\right)^{(n-4) / 2}} \frac{1}{\lambda_{k}}\left|\frac{\partial H\left(a_{1}, a_{2}\right)}{\partial a_{k}}\right|+\varepsilon_{12}^{(n-3) /(n-4)}=\mathrm{o}\left(\sum_{r=1}^{2} \frac{1}{\left(\lambda_{r} d_{r}\right)^{n-3}}\right) \tag{6.10}
\end{equation*}
$$

The same estimate holds for $\lambda_{k}\left|a_{1}-a_{2}\right| \varepsilon_{12}^{(n-1) /(n-3)}$. Thus claim (1) follows in this case.
2nd case: If $d_{2} / M_{1} \leqslant d_{1} \leqslant M_{1} d_{2}$ and $\lambda_{2} / M_{2} \leqslant \lambda_{1} \leqslant M_{2} \lambda_{2}$, where M_{2} is chosen large enough. In this case we define:

$$
\begin{equation*}
W_{8}=\frac{1}{\lambda_{2}} \sum_{i} \frac{\partial P \delta_{i}}{\partial a_{i}}\left(-\alpha_{i} v_{i}\right) \tag{6.11}
\end{equation*}
$$

Using Proposition 3.4 we derive that

$$
\begin{align*}
\left(-\partial J(u), W_{8}\right)_{2} \geqslant & \frac{c}{\lambda_{2}}\left(1+\sum_{k} \frac{1}{d_{k}\left(\lambda_{k} d_{k}\right)^{n-4}}+c \alpha_{1} \alpha_{2} \frac{\partial \varepsilon_{12}}{\partial a_{1}}\left(v_{1}-v_{2}\right)\right. \\
& \left.+\frac{c \alpha_{1} \alpha_{2}}{\left(\lambda_{1} \lambda_{2}\right)^{(n-4) / 2}} \sum_{k} \frac{\partial H\left(a_{1}, a_{2}\right)}{\partial a_{k}} v_{k}\right)+\mathrm{o}\left(\varepsilon_{12}^{(n-3) /(n-4)}\right) \tag{6.12}
\end{align*}
$$

Observe that $\left|\partial \varepsilon_{12} / \partial a_{1} \| \nu_{1}-v_{2}\right|=\mathrm{O}\left(\varepsilon_{12}\right)=\mathrm{o}(1)$ and using the fact that $\partial H\left(a_{1}, a_{2}\right) /$ $\partial v_{i} \geqslant \mathrm{o}\left(\left(d_{1} d_{2}\right)^{(3-n) / 2}\right)$. It remains to appear ε_{12} in the lower bound. For this, if there
exists i such that $\varepsilon_{12} \leqslant m /\left(\lambda_{i} d_{i}\right)^{4-n}$, where m is a fixed large positive constant, then we can make to appear ε_{12} in (6.12). In the other case, we decrease both λ_{i} 's and we define $W_{9}=-\sum \lambda_{i} \partial P \delta_{i} / \partial \lambda_{i}$. Using Proposition 3.3, we obtain:

$$
\begin{equation*}
\left(-\partial J(u), W_{9}\right)_{2} \geqslant c \varepsilon_{12}+\sum_{i} \mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}+\frac{1}{\left(\lambda_{i} d_{i}\right)^{n-4}}\right) \geqslant c \varepsilon_{12}+\sum_{i} \mathrm{O}\left(\frac{1}{\lambda_{i}^{2}}\right) . \tag{6.13}
\end{equation*}
$$

Thus, in this case, we define the vector field as $W_{8}+W_{9}$. Using (6.12) and (6.13), we obtain the desired estimate.
3rd case: If $d_{2} / M_{1} \leqslant d_{1} \leqslant M_{1} d_{2}$ and there exists i (we denote j the other index) such that $\lambda_{i} \geqslant M_{2} \lambda_{j}$. In this case we increase λ_{j}, we decrease λ_{i} and we move the points along the inward normal vector. Then we define $W_{10}=-2 m \lambda_{i} \partial P \delta_{i} / \partial \lambda_{i}+$ $m \lambda_{j} \partial P \delta_{j} / \partial \lambda_{j}+W_{7}$, where m is a large constant. Using Propositions 3.3 and 3.4, we derive that

$$
\begin{align*}
\left(-\partial J(u), W_{10}\right) \geqslant & m\left(c \varepsilon_{12}+\frac{c}{\left(\lambda_{j} d_{j}\right)^{n-4}}+\mathrm{O}\left(\frac{1}{\left(\lambda_{i} d_{i}\right)^{n-4}}\right)\right) \\
& +c\left(\sum \frac{1}{\lambda_{k}}+\frac{1}{\left(\lambda_{k} d_{k}\right)^{n-3}}+\mathrm{O}\left(\varepsilon_{12}\right)\right) . \tag{6.14}
\end{align*}
$$

Observe that, in this case, we have $\lambda_{j} d_{j}=\mathrm{o}\left(\lambda_{i} d_{i}\right)$ if we choose M_{1} / M_{2} so small. Thus the desired estimate follows.
The proof of claim (1) is then completed. Claim (3) follows immediately from the construction of Y_{2}. Claim (2) follows from the estimate of \bar{v} as in [3] and [7].

Now, arguing as in the proof of Proposition 4.3, we easily derive the following result:
Corollary 6.2. Let $n \geqslant 7$. The only critical points at infinity in $V(2, \varepsilon)$ correspond to $P \delta_{\left(y_{i}, \infty\right)}+P \delta_{\left(y_{j}, \infty\right)}$, where y_{i} and y_{j} are two different critical points of K satisfying $-\Delta K\left(y_{k}\right)>0$ for $k=i, j$. Such critical point has a Morse index equal to $2 n-\sum_{r=i, j} \operatorname{index}\left(K, y_{r}\right)+1$.

Proposition 6.3. Let $n \geqslant 7$ and assume that (P) has no solution. Then the following claims hold:
(i) If $X=\overline{\bigcup_{y \in B} W_{s}(y)}$, where $B=\{y \in \Omega \mid \nabla K(y)=0,-\Delta K(y)>0\}$, then $f_{\lambda}\left(C_{y_{0}}(X)\right)$ retracts by deformation on $\bigcup_{y_{i} \in X-\left\{y_{0}\right\}} W_{u}\left(y_{0}, y_{i}\right)_{\infty} \cup X_{\infty}$ where $X_{\infty}=\left(\bigcup_{y_{i} \in X} W_{u}\left(y_{i}\right)_{\infty}\right)$.
(ii) If $X=\overline{W_{s}\left(y_{i_{0}}\right)}$, where $y_{i_{0}}$ satisfies:

$$
K\left(y_{i_{0}}\right)=\max \left\{K\left(y_{i}\right) \mid \operatorname{index}\left(K, y_{i}\right)=n-k,-\Delta K\left(y_{i}\right)>0\right\}
$$

and if assumption $\left(A_{7}\right)$ holds, then $f_{\lambda}\left(C_{y_{0}}(X)\right)$ retracts by deformation on $\bigcup_{y_{i} \in X-\left\{y_{0}\right\}}$ $W_{u}\left(y_{0}, y_{i}\right)_{\infty} \cup X_{\infty} \cup \sigma_{1}$, where $\sigma_{1} \subset \bigcup_{y_{i} / \operatorname{index}\left(K, y_{i}\right) \geqslant n-k} W_{u}\left(y_{i}\right)_{\infty}$.

Proof. Let us start by proving claim (i). Since J does not have any critical point, the manifold $f_{\lambda}\left(C_{y_{0}}(X)\right)$ retracts by deformation on the union of the unstable manifolds of the critical points at infinity dominated by $f_{\lambda}\left(C_{y_{0}}(X)\right)$ (see $\left.[6,25]\right)$. Proposition 4.3 and Corollary 6.2 allow us to characterize such critical points. Observe that we can modify the construction of the pseudogradient defined in Propositions 4.2 and 6.1 such that, when we move the point x it remains in X, i.e., we can use Z_{K} instead of $\nabla K /|\nabla K|$ where Z_{K} is the pseudogradient for K which we use to build the manifold X.

For an initial condition $u=\left(\alpha / K\left(y_{0}\right)^{(n-4) / 8}\right) P \delta_{\left(y_{0}, \lambda\right)}+\left((1-\alpha) / K(x)^{(n-4) / 8}\right) P \delta_{(x, \lambda)}$ in $f_{\lambda}\left(C_{y_{0}}(X)\right.$), the action of the pseudogradient (see Proposition 6.1) is essentially on α. The action of bringing α to zero or to 1 depends on whether $\alpha<1 / 2$ (in this case, u goes to X_{∞}) or $\alpha>1 / 2$ (in this case, u goes to $\bar{W}_{u}\left(\left(y_{0}\right)_{\infty}\right)$). On the other hand, we have another action on $x \in X$, when $\alpha=1-\alpha=1 / 2$. Since only x can move, then y_{0} remains one of the concentration points of u and either x goes to $W_{s}\left(y_{j}\right)$ where y_{j} is a critical point of K in $X-\left\{y_{0}\right\}$ or x goes to a neighborhood of y_{0}. In the last case the flow has to exit from $V(2, \varepsilon)$ (see the construction of Y_{2} in Proposition 6.1). The level of J in this situation is close to $\left(2 S_{n}\right)^{4 / n} / K\left(y_{0}\right)^{(n-4) / n}$ and therefore it cannot dominate any critical point at infinity of two masses (since $K\left(y_{0}\right)=\max K$). Thus the flow has to enter in $V(1, \varepsilon)$ and it will dominate $\left(y_{i}\right)_{\infty}$ for $y_{i} \in X$. Then u goes to

$$
\left(\bigcup_{y_{i} \in X-\left\{y_{0}\right\}} W_{u}\left(\left(y_{0}, y_{i}\right)_{\infty}\right)\right) \cup\left(\bigcup_{y_{i} \in X} W_{u}\left(\left(y_{i}\right)_{\infty}\right)\right)
$$

Then claim (i) follows. Now, using assumption $\left(A_{7}\right)$ and the same argument as in the proof of claim (i), we easily derive claim (ii). Thus our proposition follows.

We now prove our theorems.
Proof of Theorem 1.5. Arguing by contradiction, we assume that (P) has no solution. Using Proposition 6.3 and the fact that $\mu\left(y_{i_{0}}\right)=0$, we derive that $f_{\lambda}\left(C_{y_{0}}(X)\right)$ retracts by deformation on $X_{\infty} \cup D$ where $D \subset \sigma$ is a stratified set of dimension at most k (in the topological sense, that is, $D \in \Sigma_{j}$, the group of chains of dimension j with $j \leqslant k$) and where $\sigma=\bigcup_{y_{i} \in X-\left(\left\{y_{i 0}, y_{0}\right\}\right)} W_{u}\left(\left(y_{0}, y_{i}\right)_{\infty}\right) \cup \bigcup_{y_{i} / \operatorname{index}\left(K, y_{i}\right) \geqslant n-k} W_{u}\left(y_{i}\right)_{\infty}$ is a manifold in dimension at most k.

As $f_{\lambda}\left(C_{y_{0}}(X)\right)$ is a contractible set, we then have $H_{*}\left(X_{\infty} \cup D\right)=0$, for all $* \in \mathbb{N}^{*}$. Using the exact homology sequence of $\left(X_{\infty} \cup D, X_{\infty}\right)$, we derive $H_{k}\left(X_{\infty}\right)=H_{k+1}\left(X_{\infty} \cup\right.$ $\left.D, X_{\infty}\right)=0$. This yields a contradiction since $X_{\infty} \equiv X \times[A,+\infty)$, where A is a large positive constant. Therefore our theorem follows.

Proof of Theorem 1.6. Assume that (P) has no solution. By the above arguments, if $\mu\left(y_{i}\right)=0$ for each $y_{i} \in B_{k}$, then $f_{\lambda}\left(C_{y_{0}}(X)\right)$ retracts by deformation on $X_{\infty} \cup D$ where $D \subset \sigma$ is a stratified set and where $\sigma=\bigcup_{y_{i} \in X-\left(B_{k} \cup\left\{y_{0}\right\}\right)} W_{u}\left(\left(y_{0}, y_{i}\right)_{\infty}\right)$ is a manifold in dimension at most k.

As in the proof of Theorem 1.5, we derive that $H_{*}\left(X_{\infty} \cup D\right)=0$ for each $*$. Using the exact homology sequence of $\left(X_{\infty} \cup D, X_{\infty}\right)$ we obtain $H_{k}\left(X_{\infty}\right)=H_{k+1}\left(X_{\infty} \cup D, X_{\infty}\right)=$ 0 , this yields a contradiction and therefore our result follows.

References

[1] T. Aubin, A. Bahri, Méthodes de topologie algébrique pour le problème de la coubure scalaire prescrite, J. Math. Pures Appl. 76 (1997) 525-549.
[2] T. Aubin, A. Bahri, Une hypothèse topologique pour le problème de la courbure scalaire prescrite, J. Math. Pures Appl. 76 (1997) 843-850.
[3] A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, Harlow, 1989.
[4] A. Bahri, An invariant for Yamabe-type flows with application to scalar curvature problems in high dimension, A celebration of J.F. Nach Jr., Duke Math. J. 81 (1996) 323-466.
[5] A. Bahri, J.M. Coron, On a nonlinear elliptic equation involving the critical Dobolev exponent: the effect of the topology on the domain, Comm. Pure Appl. Math. 41 (1988) 253-294.
[6] A. Bahri, P.H. Rabinowitz, Periodic solution of Hamiltonian systems of three-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 561-649.
[7] M. Ben Ayed, Y. Chen, H. Chtioui, M. Hammami, On the prescribed scalar curvature problem on 4manifolds, Duke Math. J. 84 (1996) 633-667.
[8] M. Ben Ayed, H. Chtioui, M. Hammami, The scalar curvature problem on higher dimensional spheres, Duke Math. J. 93 (1998) 379-424.
[9] M. Ben Ayed, K. El Mehdi, The Paneitz curvature problem on lower dimensional spheres, The Abdus Salam ICTP Preprint IC/2003/48, Trieste, Italy.
[10] M. Ben Ayed, K. El Mehdi, Existence of conformal metrics on spheres with prescribed Paneitz curvature, Manuscripta Math. 114 (2004) 211-228.
[11] M. Ben Ayed, M. Hammami, On a fourth order elliptic equation with critical nonlinearity in dimension six, Preprint (2003).
[12] F. Bernis, J. Garcia-Azorero, I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems, Adv. Differential Equations 1 (1996) 219-240.
[13] H. Brezis, J.M. Coron, Convergence of solutions of H -systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985) 21-56.
[14] S.A. Chang, On a Paneitz operator-a fourth order differential operator-in conformal geometry, in: M. Christ, C. Kenig, C. Sadorsky (Eds.), Harmonic Analysis and Partial Differential Equations; Essays in honor of Alberto P. Calderon, in: Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1999, pp. 127-150.
[15] D.E. Edmunds, D. Fortunato, E. Janelli, Critical exponents, critical dimension and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990) 269-289.
[16] F. Ebobisse, M. Ould Ahmedou, On a nonlinear fourth order elliptic equation involving the critical Sobolev exponent, Nonlinear Anal. 52 (2003) 1535-1552.
[17] Z. Djadli, E. Hebey, M. Ledoux, Paneitz type operators and applications, Duke Math. J. 104 (2000) 129-169.
[18] Z. Djadli, A. Malchiodi, M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result, Commun. Contemp. Math. 4 (2002) 375-408.
[19] Z. Djadli, A. Malchiodi, M. Ould Ahmedou, Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow-up analysis and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (2002) 387434.
[20] V. Felli, Existence of conformal metrics on S^{n} with prescribed fourth-order invariant, Adv. Differential Equations 7 (2002) 47-76.
[21] F. Gazzola, H.C. Grunau, M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations 18 (2003) 117-143.
[22] J. Hulshof, R.C.A.M. Van Der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993) 32-58.
[23] C.S. Lin, A classification of solutions of a conformally invariant fourth order equation in \mathbb{R}^{n}, Comment. Math. Helv. 73 (1998) 206-231.
[24] P.L. Lions, The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1 (1985), I: 165-201; II: 45-121.
[25] J. Milnor, Lectures on h-Cobordism Theorem, Princeton Univ. Press, Princeton, NJ, 1965.
[26] E.S. Noussair, C.A. Swanson, Y. Jianfu, Critical semilinear biharmonic equations in \mathbb{R}^{n}, Proc. Royal Soc. Edinburgh Sect. A 121 (1992) 139-148.
[27] L. Peletier, R.C.A.M. Van Der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential Integral Equations 5 (1992) 747-767.
[28] P. Pucci, J. Serrin, Critical exponents and critical dimensions for polyharmonic operator, J. Math. Pures Appl. 69 (1990) 55-83.
[29] O. Rey, The role of Green's function in a nonlinear elliptic equation involving critical Sobolev exponent, J. Funct. Anal. 89 (1990) 1-52.
[30] M. Struwe, A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z. 187 (1984) 511-517.
[31] R.C.A.M. Van Der Vorst, Fourth order elliptic equations with critical growth, C. R. Acad. Sci. Paris Sér. I 320 (1995) 295-299.
[32] R.C.A.M. Van Der Vorst, Best constant for the embedding of the space $H^{2} \cap H_{0}^{1}(\Omega)$ into $L^{2 n /(n-4)}(\Omega)$, Differential Integral Equations 6 (1993) 259-276.

[^0]: * Corresponding author. Fax: + 21674274437.

 E-mail addresses: Mohamed.Benayed@fss.rnu.tn (M. Ben Ayed), khalil@univ-nkc.mr (K. El Mehdi), Mokhless.Hammami@fss.rnu.tn (M. Hammami).

 0021-7824/\$ - see front matter © 2004 Elsevier SAS. All rights reserved.
 doi:10.1016/j.matpur.2004.09.012

