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Abstract

The solvability is established of certain two-point boundary value problems for nonlinear equ
that arise in multi-ion electrodiffusion. Topological methods are adduced to prove the existe
solutions under appropriate conditions on the physical parameters.
 2003 Published by Elsevier Inc.

1. Introduction

The theory of electrodiffusion provides a macroscopic description of the migrati
charged particles through material barriers. Its origin resides in the liquid-junction t
of Nernst and Planck [1] and it has subsequently applied in the modelling of biolo
membranes [2–7]. The theory is also of importance in electrochemistry [8]. Schlö
demonstrated that it is convenient to partition the ions present in the electrodiffusion
into classes which have the same chargeqi. The distinct species that pertain to a giv
charge are indexed byj. In steady, one-dimensional régimes, the model may then b
duced to the form [10]

dni/dx = νipni − ci, i = 1,2, . . . ,m,
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dp/dx =
m∑
i=1

νini , (1.1)

where, ifNij denotes the number density of the ion labeledij then

nj =N−1
0

ki∑
j=1

Nij (1.2)

with N0 a unit of ion density;p denotes the electric fieldE appropriately scaled. The tot
number of ion species is

∑m
i=1 ki. The quantity

νi = qi/q0, (1.3)

whereq0 is a unit of charge is the signed valency of the ion. In general terms, the
plexity of the nonlinear coupled system (1.1) depends on the number of distinct ch
present and form charges it leads to anmth order nonlinear differential equation inp [10].
The casem= 2 produces

p′′ − (ν1 + ν2)pp
′ + 1

2
ν1ν2p

3 − ν1ν2cxp+ ν1c1 + ν2c2 = 0. (1.4)

The case of one positive and one negative ion was considered by Bruner [11] whi
for ions of equal and opposite charges so thatν1 + ν2 = 0 by Bass [12] and by Cohen an
Cooley [13]. In the latter instance, a Painlevé II reduction is obtained. Two point bou
value problems with Dirichlet and periodic side conditions for Painlevé II have rec
been investigated in [14]. The casem= 3 yields [10]

pp′′′ − p′p′′ − (ν1 + ν2 + ν3)p
2p′′ + (ν1ν2 + ν1ν3 + ν2ν3)p

3p′

− (ν1c1 + ν2c2 + ν3c3)p
′ − 1

2
ν1ν2ν3p

5 + ν1ν2ν3(c1 + c2 + c3)xp
3

− [
(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3

]
p2 = 0. (1.5)

Here, attention is restricted to the casesm = 2 andm = 3. The existence of solutions
the two-point boundary problem for (1.4) with Dirichlet and periodic side condition
investigated in the general caseν1 + ν2 �= 0. For m= 3, conditions are set down for th
existence of a solution of a two-point boundary value problem for (1.5).

2. The two-charge case

Let us consider the boundary value problem consisting of

p′′ − (ν1 + ν2)pp
′ + 1

2
ν1ν2p

3 − ν1ν2cxp+ ν1c1 + ν2c2 = 0, x ∈ (0, T ), (2.1)

subject, in turn, to either Dirichlet or periodic boundary conditions, namely

p(0)= p0, p(T )= pT , D, (2.2)

and

p(0)= p(T ), p′(0)= p′(T ), P, (2.3)
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wherec = c1 + c2 while p0,pT are known constants. Note that ifν1 + ν2 = 0 then (2.1)
may be reduced to Painlevé II. The existence of solutions of these boundary value pr
in this case has been established by Mariani et al. [14]. Here, we deal with the gener
whenν1 + ν2 �= 0. To establish the existence of solutions to the boundary value prob
under discussion we shall apply the method of upper and lower solutions. This m
which relies on maximum principles was developed by, notably, Scorza-Dragoni
Nagumo [16] and Jackson [17].

Let us recall that(α,β) is deemed to be an ordered couple of a lower and an u
solution for the problem ifα,β ∈ C2([0, T ]) with α(x)� β(x) for x ∈ [0, T ], and if∀x ∈
[0, T ] we have

α′′ − (ν1 + ν2)αα
′ + 1

2
ν1ν2α

3 − ν1ν2cxα+ ν1c1 + ν2c2 � 0,

β ′′ − (ν1 + ν2)ββ
′ + 1

2
ν1ν2β

3 − ν1ν2cxβ + ν1c1 + ν2c2 � 0,

and

α(0)� p0 � β(0), α(T )� pT � β(T ), (D),

α(0)= α(T ), α′(0)= α′(T ), β(0)= β(T ), β ′(0)= β ′(T ), (P).

Then we have the following result:

Theorem 1. Let (α,β) be an ordered couple consisting of a lower and an upper solu
for side conditionsD or P. Then the respective boundary value problems admit at leas
solutionp with α � p � β .

Proof. Let us consider the functiong : [0, T ] × R × R
2 → R given by

g(x, y, z)= −(ν1 + ν2)δ(x, y)z+ 1

2
ν1ν2

[
δ(x, y)

]3 − ν1ν2cxδ(x, y)+ ν1c1 + ν2c2,

where

δ(x, y)=


y if α(x)� y � β(x),

α(x) if α(x) > y,

β(x) if y > β(x).

The problem of finding a solutionp with α � p � β is equivalent to solving

p′′ + g(x,p,p′)= 0, α � p � β,

under the respective boundary conditionsD or P. Set

R = |ν1 + ν2|M + |ν1ν2|
(
|c|T + 3

2
M2

)
, (2.4)

where

M = max
{‖α‖C1,‖β‖C1

}
and chooseλ�R. By standard results, for̄p ∈ C([0, T ]) the linear problem

p′′ + g
(
x, p̄(x),p′) − λp = −λp̄(x), x ∈ (0, T )
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(under the respective boundary conditions), admits a unique solutionp ∈ C2([0, T ]), and
the mappingK :C([0, T ]) → C([0, T ]) defined byK(p̄) = p is compact. Moreover, fo
α � p̄ � β it is seen that

p′′ + g(x, p̄,p′)− λp+Rp̄ = (R− λ)p̄ � (R − λ)β + β ′′ + g(x,β,β ′).

Hence, ifu= p− β we obtain

u′′ − (ν1 + ν2)p̄u
′ − λu� g(x,β,β ′)+Rβ − [

g(x, p̄, β ′)+Rp̄
]
.

From (2.4), for fixedx, the functionφ(V ) := g(x,V,β ′(x)) + RV is nondecreasin
whenα(x)� V � β(x). It follows that

u′′ − (ν1 + ν2)p̄(x)u
′ − λu� 0,

and by the maximum principle we conclude thatu � 0, i.e.,p � β . In the same way we
obtain thatp � α and the result follows from the Schauder fixed point theorem.✷
Remark. (i) If ν1c1 + ν2c2 � 0 thenα ≡ 0 is a lower solution forP, and also forD if
p0,pT � 0.

(ii) If ν1c1+ν2c2 � 0 thenβ ≡ 0 is an upper solution forP, and also forD if p0,pT � 0.

As a simple consequence of the preceding theorem we have the following

Corollary 1. If ν1ν2 < 0 then the boundary value problems consisting of the nonlin
equation(2.1) supplemented by the Dirichlet conditionsD or periodic conditionsP are
solvable.

Proof. It suffices to considerα � β to be constants such that

1

2
ν1ν2α

3 − ν1ν2cxα+ ν1c1 + ν2c2 � 0� 1

2
ν1ν2β

3 − ν1ν2cxβ + ν1c1 + ν2c2

(with α � p0, pT � β for the Dirichlet case). ✷
Comments. (i) Corollary 1 holds, in particular, whenν1 + ν2 = 0. Thus, the present resu
may be considered as an extension of the existence results in [14]. Note that, in this
c � 0, the respective solutions are unique; however, uniqueness does not necessar
if we replace(0, T ) by an arbitrary bounded interval, although Corollary 1 is still va
This may be illustrated by the boundary value problem

Y ′′ = 2Y 3 + xY + 1,

Y (−2π)= Y (−π), Y ′(−2π)= Y ′(−π)
which admits at least two solutions: indeed, it suffices to take

α1 ≡K1 � 0, β1 ≡ 0,

α2 ≡
√
π
, β2 ≡K2 � 0.
6
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(ii) For ν1ν2 < 0, if c � 0 then the following “minimum principle” holds for solution
of (2.1):

if ν1c1 + ν2c2 � 0 andp is periodic orp0,pT � 0 thenp � 0.

Indeed, ifp(x0) < 0 then we may assume thatx0 is a minimum so thatp′(x0)= 0 and

p′′(x0)= −1

2
ν1ν2p

3(x0)+ ν1ν2cx0p(x0)− (ν1c1 + ν2c2) < 0,

so we obtain a contradiction. In the same way, it is readily proved that

if ν1c1 + ν2c2 � 0 andp is periodic orp0,pT � 0 thenp � 0.

In particular, asc = c1 + c2, if 0 < ν1 = −ν2 then the previous minimum and maximu
principles read as

if |c1| + c2 � 0 andp is periodic orp0,pT � 0 thenp � 0,

if c1 + |c2| � 0 andp is periodic orp0,pT � 0 thenp � 0.

Note that for Painlevé II,

Y ′′ = 2Y 3 + xY +C,

we have

if C � 0 andY is periodic orY (0), Y (T )� 0 thenY � 0,

if C � 0 andY is periodic orY (0), Y (T )� 0 thenY � 0.

For the caseν1ν2 > 0, the method ensures the existence of solutions of the problem
Dirichlet boundary conditionsD whenT is sufficiently small.

Corollary 2. Assume thatν1ν2 > 0. Then there exists a positive constantT ∗ such that the
boundary value problem with Dirichlet conditionsD admits at least one solution for an
T < T ∗.

Proof. If ν1, ν2 > 0, considerβ(x)= rx + s. Thenβ is an upper solution if and only if

s � p0, rT + s � pT

and

−(ν1 + ν2)(rx + s)r + 1

2
(rx + s)3 − ν1ν2cx(rx + s)+ ν1c1 + ν2c2 � 0. (2.5)

Forx = 0 the l.h.s of (2.5) reads as

−(ν1 + ν2)sr + 1

2
s3 + ν1c1 + ν2c2.

Thus, ifs > 0,p0,pT andr > 0 is large enough then (2.5) holds on[0, T ] for small values
of T . On the other hand, we may considerα(x)= r̄x + s̄, taking s̄ < 0,p0,pT and r̄ > 0
large enough such that

−(ν1 + ν2)s̄r̄ + 1
s̄3 + ν1c1 + ν2c2 > 0.
2
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Moreover, ifT is small we also have thatr̄T + s̄ � pT , and the result follows. The proo
is analogous ifν1, ν2 < 0. ✷

3. Convergent iterative sequences (m = 2)

In this section we introduce iterative sequences that converge to solutions of the D
let and periodic boundary value problems in the casem = 2 under the conditions o
Theorem 1. We shall need the following:

Lemma 1. Assume that(α,β) is an ordered couple consisting of a lower and an up
solution for the respective boundary conditionsD andP andλ >K2, where

K = |ν1 + ν2|
2

max
{‖α‖C,‖β‖C

}
.

Then there exists a constantM such that for anyp̄ ∈C([0, T ]) with α � p̄ � β , if

p′′ + g
(
x, p̄(x),p′) − λp = −λp̄(x), x ∈ (0, T ),

with p satisfying periodic or Dirichlet conditions, then

‖p‖C1 �M.

Proof. Consider the operator given by

Sp = p′′ + g(· , p̄,p′)− λp

andP = p−ϕ, whereϕ(x)= (pT − p0)x/T +p0 for the Dirichlet conditions, andϕ ≡ 0
for the periodic conditions. Then

‖Sp− Sϕ‖L2‖P‖L2 � −
T∫

0

(Sp− Sϕ)P

= ‖P ′‖2
L2 + λ‖P‖2

L2 −
T∫

0

[
g(· , p̄,p)− g(· , p̄, ϕ)].P .

Hence(‖P ′‖L2 −K‖P‖L2

)2 + (λ−K2)‖P‖2
L2 � ‖λp̄+ Sϕ‖L2‖P‖L2

and it follows that

‖p− ϕ‖H1 �M0

for some constantM0 independent of̄p. Further, asSp = −λp̄ we obtain that‖p′′‖L2 �
M1 for a constantM1 independent ofp̄, and the proof follows from the imbeddin
H 2(0, T ) ↪→ C1([0, T ]). ✷
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Corollary 3. LetK andM be as in Lemma1, withM � ‖α‖C1, M � ‖β‖C1, and let also
λ >K2,R, whereR is given by(2.4). Define the sequencesp±

n given by

p−
0 ≡ α, p+

0 ≡ β,

and (
p±
n+1

)′′ + g
(
x,p±

n ,
(
p±
n+1

)′) − λp±
n+1 = −λp±

n

under the respective boundary conditionsD and P. Then{p−
n } ({p+

n }) is nondecreasing
(nonincreasing) and converges to a solution of the problem.

Proof. From the arguments of Theorem 1, we have thatα � p+
1 � β . Assume as an induc

tive hypothesis thatα � p+
n � p+

n−1 � β , thenp+
n+1 � α. Moreover,(

p+
n+1 − p+

n

)′′ + g
(
x,p+

n ,
(
p+
n+1

)′) − g
(
x,p+

n ,
(
p+
n

)′) − λ
(
p+
n+1 − p+

n

)
= −[

(λ−R)
(
p+
n −p+

n−1

) + g
(
x,p+

n ,
(
p+
n

)′) +Rp+
n

− [
g
(
x,p+

n−1,
(
p+
n

)′) +Rp+
n−1

])
.

Thus,(
p+
n+1 − p+

n

)′′ − (ν1 + ν2)p
+
n

(
p+
n+1 − p+

n

)′′ − λ
(
p+
n+1 − p+

n

)
� 0

and it follows thatp+
n+1 � p+

n . As p+
n is nonincreasing and bounded, it converges po

wise to a functionp+. Furthermore, from the proof of Lemma 1 it is seen that{p+
n }

is bounded for theH 2-norm, and from the compactness of the imbeddingH 2(0, T ) ↪→
C1([0, T ]) it follows thatp+

n → p+ in C1([0, T ]). From the definition of{p+
n } it is imme-

diate thatp+ is a solution of the problem. The proof is analogous for{p−
n }. ✷

4. The three-charge case

Let us consider the two-point boundary value problem


pp′′′ − p′p′′ − (ν1 + ν2 + ν3)p
2p′′ + (ν1ν2 + ν1ν3 + ν2ν3)p

3p′

− (ν1c1 + ν2c2 + ν3c3)p
′ − 1

2ν1ν2ν3p
5 + ν1ν2ν3(c1 + c2 + c3)xp

3

− [(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3]p2 = 0,

p(0)= p0, p(T )= pT , p′′(0)= r0.

(4.1)

Let us assume first thatp0 �= 0. It proves convenient to setu = p′′/p so that the abov
nonlinear problem becomes

p2u′ − (ν1 + ν2 + ν3)p
3u+ (ν1ν2 + ν1ν3 + ν2ν3)p

3p′ − (ν1c1 + ν2c2 + ν3c3)p
′

− 1

2
ν1ν2ν3p

5 + ν1ν2ν3(c1 + c2 + c3)xp
3

= [
(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3

]
p2,

p′′ = pu,

p(0)= p0, p(T )= pT , u(0)= r0
. (4.2)
p0
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ν1c1 + ν2c2 + ν3c3 = 0 (4.3)

on the parameters. Letϕ(x)= (pT − p0)x/T +p0 and define a fixed point operatorK :ϕ+
H 1

0 (0, T ) → ϕ + H 1
0 (0, T ) as follows: for eachp ∈ ϕ + H 1

0 (0, T ) let u be the unique
solution of the problem

u′ − (ν1 + ν2 + ν3)pu

= −(ν1ν2 + ν1ν3 + ν2ν3)pp
′ + 1

2
ν1ν2ν3p

3

− ν1ν2ν3(c1 + c2 + c3)xp+ [
(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3

]
:= φp(x) (4.4)

with u(0)= r0/p0. Next, defineKp = p̃ as the unique solution of the problem

p̃′′ = pu, p̃(0)= p0, p̃(T )= pT .

We obtain

u(x)= r0

p0
e(ν1+ν2+ν3)

∫ x
0 p +

x∫
0

φp(s)e
(ν1+ν2+ν3)

∫ x
s p ds. (4.5)

Since
x∫

0

p(s)p′(s)e(ν1+ν2+ν3)
∫ x
s p ds

= 1

2

[
p2(x)− p2

0e
(ν1+ν2+ν3)

∫ x
0 p + (ν1 + ν2 + ν3)

x∫
0

p3(s)e(ν1+ν2+ν3)
∫ x
s p ds

]
,

we deduce that∣∣u(x)∣∣ � P
(‖p‖L2,‖p‖C

)
e|ν1+ν2+ν3|T 1/2‖p‖

L2 ,

whereP is the polynomial given byP(A,B)= C0 +C1A+C2B
2 +C3A

2B with

C0 =
∣∣∣∣ r0p0

∣∣∣∣ + T
∣∣(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3

∣∣,
C1 = T√

2

∣∣ν1ν2ν3(c1 + c2 + c3)
∣∣,

C2 = 1

2

∣∣ν1ν2 + ν1ν3 + ν2ν3
∣∣,

C3 = 1

2

(|ν1ν2ν3| + |ν1 + ν2 + ν3|.|ν1ν2 + ν1ν3 + ν2ν3|
)
.

Moreover, from the equatioñp′′ = pu and the boundary conditions we have∥∥∥∥p̃′ − pT − p0
∥∥∥∥

2

� ‖pu‖L2‖p̃− ϕ‖L2.

T L2
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By the Poincaré inequality we conclude that∥∥∥∥p̃′ − pT − p0

T

∥∥∥∥
L2

� T

π
‖pu‖L2 � T

π
‖p‖L2P

(‖p‖L2,‖p‖C
)
e|ν1+ν2+ν3|T 1/2‖p‖

L2 .

On the other hand, it is readily shown that

‖p‖L2 �
(
T

3

(
p2

0 + p0pT + p2
T

))1/2

+ T

π

∥∥∥∥p′ − pT − p0

T

∥∥∥∥
L2

and

‖p‖C � max
{|p0|, |pT |} + T 1/2

∥∥∥∥p′ − pT − p0

T

∥∥∥∥
L2
.

Remark. Replacingr0/p0 by 0, it is clear that the previous computations also hold for
casep0 = r0 = 0.

Thus we have

Theorem 2. Assume that(4.3) holds and letA,B, θ :R+ → R
+ be defined by

A(R)= T

π
R +

(
T

3

(
p2

0 + p0pT + p2
T

))1/2

,

B(R) = max
{|p0|, |pT |} + T 1/2R,

θ(R)= T

π
A(R)P

(
A(R),B(R)

)
e|ν1+ν2+ν3|T 1/2A(R),

whereP is the polynomial introduced as above. Assume there existsR > 0 such that
θ(R)�R. Then the boundary value problem(4.1) admits at least one solution.

Proof. From the previous computations, if∥∥∥∥p′ − pT − p0

T

∥∥∥∥
L2

�R

then ∥∥∥∥p̃′ − pT − p0

T

∥∥∥∥
L2

�R,

and the result follows from the Schauder theorem.✷
In particular, we deduce

Corollary 4. Assume that(4.3) holds and

∣∣(ν2 + ν3)ν1c1 + (ν1 + ν3)ν2c2 + (ν1 + ν2)ν3c3
∣∣< π2

T 3
.

Then there existδ0, δT , δ > 0 such that the boundary value problem(4.1) admits a solution
for anyp0,pT with |p0|< δ0, |pT |< δT and |r0| � δ|p0|.
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, Van
Proof. With the notation of Theorem 2, ifδ is small enough we have that|C0| < π2/T 2.
Moreover, it is seen that

A(R),B(R) → 0 asR,δ0, δT → 0

and hence, ifδ0, δT , δ andR are small enough,

P
(
A(R),B(R)

)
e|ν1+ν2+ν3|T 1/2A(R) <

π2

(1+ ε)T 2

for some positive constantε. Lettingδ0, δT → 0 we may assume that(
T

3

(
p2

0 + p0pT + p2
T

))1/2

<
T

π
εR

and the result follows from Theorem 2.✷
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