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Abstract

The solvability is established of certain two-point boundary value problems for nonlinear equations
that arise in multi-ion electrodiffusion. Topological methods are adduced to prove the existence of
solutions under appropriate conditions on the physical parameters.
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1. Introduction

The theory of electrodiffusion provides a macroscopic description of the migration of
charged particles through material barriers. Its origin resides in the liquid-junction theory
of Nernst and Planck [1] and it has subsequently applied in the modelling of biological
membranes [2—-7]. The theory is also of importance in electrochemistry [8]. Schldgl [9]
demonstrated that it is convenient to partition the ions present in the electrodiffusion model
into classes which have the same chajgeThe distinct species that pertain to a given
charge are indexed by In steady, one-dimensional régimes, the model may then be re-
duced to the form [10]

dni/dx=vipn; —c;, i=12,...,m,
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m
dp/dx =" vin;, (1.1)
i=1

where, if N;; denotes the number density of the ion labelgthen

ki
I’ljZNalZNij (1.2)
j=1

with Ng a unit of ion densityp denotes the electric fiel# appropriately scaled. The total
number of ion species {5 ; k;. The quantity
Vi = qi/qo, (1.3)

wheregg is a unit of charge is the signed valency of the ion. In general terms, the com-
plexity of the nonlinear coupled system (1.1) depends on the number of distinct charges
present and fom charges it leads to anth order nonlinear differential equation in[10].

The casen = 2 produces

1
p’— (1 +va)pp + Evlvzp?’ — vvocxp +vicy + vacp =0. (1.4)

The case of one positive and one negative ion was considered by Bruner [11] while that
for ions of equal and opposite charges so that v» = 0 by Bass [12] and by Cohen and
Cooley [13]. In the latter instance, a Painlevé Il reduction is obtained. Two point boundary
value problems with Dirichlet and periodic side conditions for Painlevé Il have recently
been investigated in [14]. The case= 3 yields [10]

pp" —p'p — (14 va+ v3)p2p” + (viv2 + v1v3 + V2U3)P3P/
1
— (vic1 + vacz2 +vaez) p’ — §v1v2v3175 + v1vav3(c1 + c2 + cg)xp®

— [(v2 + va)vicr + (v1 + v3)vaca + (V1 + v2)v3es] p? = 0. (1.5)
Here, attention is restricted to the cases= 2 andm = 3. The existence of solutions to

the two-point boundary problem for (1.4) with Dirichlet and periodic side conditions is
investigated in the general casg+ vo # 0. For m = 3, conditions are set down for the
existence of a solution of a two-point boundary value problem for (1.5).

2. Thetwo-charge case

Let us consider the boundary value problem consisting of

1
P’ — w1+ v2)pp’ + Zvivep® —vivoexp +vicr +vec2=0, x€(0,7T), (2.1)

2
subject, in turn, to either Dirichlet or periodic boundary conditions, namely
p©@ =po, p(T)=pr, D, (2.2)

and
p(0)=p(T), p'O=p(T), P, (2.3)
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wherec = c1 + ¢z while pg, pr are known constants. Note thatif + v, = 0 then (2.1)
may be reduced to Painlevé Il. The existence of solutions of these boundary value problems
in this case has been established by Mariani et al. [14]. Here, we deal with the generic case
whenvi + v2 #£ 0. To establish the existence of solutions to the boundary value problems
under discussion we shall apply the method of upper and lower solutions. This method
which relies on maximum principles was developed by, notably, Scorza-Dragoni [15],
Nagumo [16] and Jackson [17].

Let us recall thatw, 8) is deemed to be an ordered couple of a lower and an upper
solution for the problem it, g € C2([0, T']) with a(x) < B(x) for x € [0, T], and ifVx €
[0, T] we have

1
o’ — (v + v2)aa’ + §U1V20l3 — vivoexa + vicl + vacp = 0,

1
B’ — (1+v)BB + §V1V2,33 —v1veexf + vicr + vac2 <0,

and
a(0) < po<BO), «T)<pr<p), D),
a0 =a(T), 'O =a(T), BO)=pT), BO)=p(T), @.
Then we have the following result:
Theorem 1. Let («, 8) be an ordered couple consisting of a lower and an upper solution

for side condition$) or P. Then the respective boundary value problems admit at least one
solutionp witha < p < 8.

Proof. Let us consider the functiog: [0, 7] x R x RZ — R given by

1 3
g(x,y,2)=—(1+v2)8(x, )z + Evm[é (x, »)]” = vavaexd(x, y) + vie1 + vaco,

where
y if a(x) <y <px),
S(x,y)=q akx) ifalx) >y,
Bx) ify>B(x).
The problem of finding a solutiop with & < p < g is equivalent to solving
p'+el,p,p)=0 a<p<p,
under the respective boundary conditihser P. Set

3
R=|V1+V2|M+|v1v2|<|C|T+§M2>, (2.4)

where
M =max{|lalc1, |Bllc1)

and choose > R. By standard results, fg¥ € C ([0, T']) the linear problem
p'+g(x, p(x), p') —rip=—Ap(x), x€(0,T)
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(under the respective boundary conditions), admits a unique solut®a?2([0, T']), and
the mappingC: C([0, T]) — C([0, T']) defined byX(p) = p is compact. Moreover, for
a < p < Bitisseenthat

P 8, p,p)—rp+Rp=R-Mp=(R—-1+B"+gx,B, ).
Hence, ifu = p — 8 we obtain
u" — (1 +v)pu’ —ru>g(x, B, B)+ RB —[g(x, p. B)) + Rp].

From (2.4), for fixedx, the functiong (V) := g(x, V, 8/(x)) + RV is nondecreasing
whena(x) <V < B(x). It follows that

' — 4+ v)px)u' —ru >0,
and by the maximum principle we conclude thaf 0, i.e., p < 8. In the same way we
obtain thatp > « and the result follows from the Schauder fixed point theorem.

Remark. (i) If vic1 + voc2 > 0 thena =0 is a lower solution foi?, and also forD if

po, pT = 0.
(ii) If vic1+v2c2 < 0theng = 0is an upper solution fdp, and also fo® if pg, pr < 0.

As a simple consequence of the preceding theorem we have the following

Corallary 1. If viv2 < 0 then the boundary value problems consisting of the nonlinear
equation(2.1) supplemented by the Dirichlet conditiofisor periodic conditionsP are
solvable.

Proof. It suffices to considex < 8 to be constants such that

1 1
§v1v2a3 —viveexa +vic1 +voc2 > 02> §v1v2ﬁ3 — v1vacxB + vicl + vaco

(with @ < po, pr < B for the Dirichlet case). O

Comments. (i) Corollary 1 holds, in particular, whem + v2 = 0. Thus, the present result
may be considered as an extension of the existence results in [14]. Note that, in this case, if
¢ < 0, the respective solutions are unique; however, uniqueness does not necessarily hold
if we replace(0, T') by an arbitrary bounded interval, although Corollary 1 is still valid.
This may be illustrated by the boundary value problem

Y =23+ xy +1,

Y(—2n)=Y(—n), Y'(-27)=Y'(-n)
which admits at least two solutions: indeed, it suffices to take

a1 =K1 <0, p1=0,

T
0125\/;, B2=K2> 0.
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(i) For v1vp < 0, if ¢ < 0 then the following “minimum principle” holds for solutions
of (2.1):

if vic1+ vocz > 0 andp is periodic orpg, pr > 0 thenp > 0.
Indeed, if p(xg) < 0 then we may assume thaf is a minimum so thap’ (xg) = 0 and

1
p"(x0) = —EV1v2p3(xo) + vivzexop(xo) — (vic1+ vaco) <0,
SO we obtain a contradiction. In the same way, it is readily proved that
if vic1 + vocz < 0 andp is periodic orpg, pr < 0 thenp < 0.

In particular, as = c1 + ¢, if 0 < v = —vp then the previous minimum and maximum
principles read as

if |c1] + c2 <0 andp is periodic orpg, pr > 0thenp > 0,
if ¢c1+ |c2| <0 andp is periodic orpg, pr < 0thenp <0
Note that for Painlevé Il,
Y"=2v34xY +C,
we have
if C <0 andY is periodic orY (0), Y(T
Z

) > 0thenY >0,
if C >0 andY is periodic orY (0), Y(T) <0

0 thenY <O0.

For the case;v2 > 0, the method ensures the existence of solutions of the problem with
Dirichlet boundary condition® whenT is sufficiently small.

Coroallary 2. Assume thativ, > 0. Then there exists a positive constdritsuch that the
boundary value problem with Dirichlet conditiofisadmits at least one solution for any
T <T*.
Proof. If v1,v2 > 0, consideB(x) =rx +s. Theng is an upper solution if and only if

s 2 po, rT +s 2> pr
and

1

—(w1+v2)(rx +s)r + E(rx + s)3 —vvocx(rx +s) +vic1 + voco < 0. (2.5)

Forx =0 the l.h.s of (2.5) reads as

1
—(v1 + v2)sr + §s3 + v1c1 + vaca.

Thus, ifs > 0, po, pr andr > 0 is large enough then (2.5) holds @ T'] for small values
of T. On the other hand, we may considgr) = rx + s, takings < 0, po, pr andr > 0
large enough such that

1
—(v1 + v2)57 + 553 +v1c1 +vacz > 0.
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Moreover, if T is small we also have thafl” + 5 < pr, and the result follows. The proof
is analogousit1,v2 <0. O

3. Convergent iterative sequences (m = 2)

In this section we introduce iterative sequences that converge to solutions of the Dirich-
let and periodic boundary value problems in the case- 2 under the conditions of
Theorem 1. We shall need the following:

Lemma 1. Assume thate, ) is an ordered couple consisting of a lower and an upper
solution for the respective boundary conditidhgndP and > K2, where

|v1 + v2|

Then there exists a constamt such that for anyp € C([0, T]) witha < p < B, if
P +g(x, px), p')—rp=—-21p(x), xe(0,T),
with p satisfying periodic or Dirichlet conditions, then

lpllcr < M.

Proof. Consider the operator given by
Sp=p"+gC,p,p)—hp

andP = p — ¢, wherep(x) = (pr — po)x/ T + po for the Dirichlet conditions, angd = 0
for the periodic conditions. Then

T
1Sp — Sell 21 Pll 2 > —/(Sp _Se)P
0

T
=[P, +AIPI?, —/[g(',ﬁ,p)—g(',ﬁ,w)].P.
0
Hence
2 _
(1P .2 — KIIPIl2)" + (A — KDPIZ, < 1hp + Soll 2l Pll 2
and it follows that

P —ellgr < Mo

for some constanMg independent op. Further, asSp = —A p we obtain thaf| p”||;2 <
M for a constantM; independent ofp, and the proof follows from the imbedding
H?0,T)— Cc(0,T]). O
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Corollary 3. Let K and M be as in Lemma, with M > || -1, M > ||Bllc1, and let also
A > K2, R, whereR is given by(2.4). Define the sequence§ given by

p65a7 ngﬁ7

+ + + + +
(Prra) +8(x. P (Pria) ) — APy = —4p;
under the respective boundary conditidisandP. Then{p; } ({p;'}) is nondecreasing
(nonincreasingand converges to a solution of the problem.

Proof. From the arguments of Theorem 1, we have ﬁhgtpir < B. Assume as an induc-
tive hypothesis that < p;” < p;"_; <8, thenp",; > «. Moreover,

(Paa—pa)" + 8l (prd)) = g ol (p)) = 2P = 1)
=—[0.=R)(py = p,_y) +elx. il ()) + Rpyf
—[s(x.pys. (p)) + R4)).
Thus,
(P = p)" = 12 (p = pi) = M —pi) 20
and it follows thatp;Qrl < p;f. As p; is nonincreasing and bounded, it converges point-

wise to a functionp™. Furthermore, from the proof of Lemma 1 it is seen thaf}
is bounded for the#2-norm, and from the compactness of the imbeddt®0, 7') —
cL([o, 7)) it follows that p;- — p* in C*([0, T1). From the definition of p;"} it is imme-
diate thatp™ is a solution of the problem. The proof is analogous{fer}. O

4. Thethree-chargecase

Let us consider the two-point boundary value problem

pp” = p'p" — (v1+va+va) p?p” + (v1va + viva + vav3) p°p’
— (vic1 + vaco +vaez) p’ — %vwszs + v1vpva(er + 2 + c3)xp3 (4.1)
— [(v2 + v3)vicr + (v1 + v3)vaca + (V1 + v2)vzes] p? =0, .
p(©) =po, p(T)=pr, p"0) =ro.
Let us assume first thatg # 0. It proves convenient to sat= p”’/p so that the above
nonlinear problem becomes

p2u’ — (V14 v2 +v3) p3u 4 (viv2 4 vivs + v2u3) p3p’ — (vic1 + vaca 4 vacs) p’

1
- EV1v2v3p5 + vivpvs(cr 4 c2 + c3)xp®

= [(v2 + va)vics + (v1+ va)vacz + (v1 + v2)vaes] p2,
p// — pu,
r0
p(®)=po, p(T)=pr, u(0)= o (4.2)
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Here, we proceed with the constraint
vic1 + vocor +v3¢3=0 (4.3)

on the parameters. Letx) = (pr — po)x/T + po and define a fixed point operatr. ¢ +
Hy(0,T) — ¢ + H}(O,T) as follows: for eactp € ¢ + HJ (0, T) let u be the unique
solution of the problem

u' — (v1+v2+v3)pu
1
= —(v1v2 + v1va + vov3) pp’ + §v1v2v3p3
—v1v2v3(c1 4 c2 + €3)xp 4 [(v2 4 va)vicr + (V1 + v3)vaca 4+ (1 + v2)vacs]

=¢p(x) (4.4)
with u(0) = ro/ po. Next, definelCp = p as the unique solution of the problem

p'=pu, pO=po, pT)=pr.

We obtain
X
u(x) = r—Oe(V1+”2+”3) Jor + / bp (s5)e(vitvztys) [P gs. (4.5)
Po 0
Since

X

/ p(s)p/(s)e(”1+vz+v3) I ds
0

X

1 . :

=2 [pz(x) — Pt Py (ug 4 vy + v3) / stz fy ds},
0

we deduce that
1/2
)| < P(Ipl 2. I plc)el s T Pz

whereP is the polynomial given by (A, B) = Co + C1A + C2B? + C3A?B with

’

o
Co= ‘p—‘ + T|(v2 +v3)vicy + (v1+ v3z)vacz + (v1 + v2)vacs
0

9

T
C1=—=|v1ivova(c1+c2+c3)
ﬁ|

1
Ca= 5\\/11)2 + v1v3 + V213

bl

1
C3= 5(|V1v2v3| + |1 4 v2 4 v3|.|vivz + v1v3 4 V2V3)).

Moreover, from the equatioff” = pu and the boundary conditions we have
2

< llpullp2llp — @l 2.
L2

T
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By the Poincaré inequality we conclude that

= PT— PO T T v1va-+v3 T2 p|
s < —|lpu <= P , elvitvatvs pl2
P T L2 nllp [F%: nllplle (Ilpllz2. liplic)
On the other hand, it is readily shown that
1/2
T, 5 2 T\ , pr—opo
<\ 3 + +=|p - =
Ipll.2 <3(P0+P0PT pT)) n‘p T |,
and
PT — PO
Ipllc <max{ipol. Ipri}+TY2)p' = =—= R
L

Remark. Replacingro/ po by 0, it is clear that the previous computations also hold for the
casepgo=ro=0.

Thus we have

Theorem 2. Assume that4.3) holds and letd, B, 8 :R* — R™ be defined by

T T 1/2
A(R) = =R+ ( % (p3 + popr + p?)
— 3 (Po+popr 7))

B(R) =maX{|pol, |pr|} + TR,
T
O(R) = —A(RYP(A(R), B(R))el" 72+l AR,
4
where P is the polynomial introduced as above. Assume there ekistsO such that
0(R) < R. Then the boundary value proble@h 1) admits at least one solution.

Proof. From the previous computations, if

/_PT PO

T SR

L2

p

then

p~/_ pT_pO
T L2

and the result follows from the Schauder theorem.

N

Rv

In particular, we deduce

Coroallary 4. Assume that4.3) holds and

2
g
|(v2 4 v3)vicr + (v + v3)vaca + (V1 + v2)vacs| < 73"

Then there existy, 87, 8 > 0 such that the boundary value problg1) admits a solution
for any po, pr with |po| < 8o, |pr| < 87 and|ro| < §|pol.
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Proof. With the notation of Theorem 2, i is small enough we have thato| < 72/T?2.
Moreover, it is seen that

A(R), B(R) >0 asR, 8,87 — 0
and hence, i, 87, § and R are small enough,
72
(1+e)717?
for some positive constaat Letting 8o, 57 — 0 we may assume that

P(A(R), B(R))e\v1+u2+U3|T1/zA(R) _

T 1/2
<§(p§ + popr + p%)) < _eR

and the result follows from Theorem 20
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