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Abstract

The generalized Mycielskians (also known as cones over graphs) are the natural generalization of the Mycielski graphs (which
were first introduced by Mycielski in 1955). Given a graph G and any integer m�0, one can transform G into a new graph �m(G),
the generalized Mycielskian of G. This paper investigates circular clique number, total domination number, open packing number,
fractional open packing number, vertex cover number, determinant, spectrum, and biclique partition number of �m(G).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In 1955, Mycielski [13] introduced an interesting graph transformation which transforms a graph G into a new graph
�(G), we now call the Mycielskian of G. Using this construction, he created triangle-free graphs with large chromatic
numbers. For a graph G with vertex set V (G) = V and edge set E(G) = E, the Mycielskian of G is the graph �(G)

with vertex set V ∪ V ′ ∪ {u}, where V ′ = {x′ : x ∈ V }, and edge set E ∪ {xy′ : xy ∈ E} ∪ {y′u : y′ ∈ V ′}. Recently,
Mycielskians of graphs have been studied extensively, see [1,3–9,11].

Mycielskians have many interesting properties concerning various kinds of graph parameters. It was shown by
Mycielski [13] that �(�(G)) = �(G) + 1 for any graph G and �(�(G)) = �(G) for any graph G with at least one edge.
Fisher et al. [7] investigated Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielskians.
The same authors in [6] also obtained results for parameters related to the biclique partition number. Chang et al. [3]
proved that if G has no isolated vertices, then �(�(G))��(G)+1, where �(G) is the connectivity of G. In [11], Larsen
et al. showed that �f (�(G)) = �f (G) + 1/�f (G) for any graph G, where �f (G) is the fractional chromatic number
of G. This result was then used by Fisher [5] to construct examples of optimal fractional colorings that have large
denominators.

The circular chromatic number �c(G) is a natural generalization of the ordinary chromatic number of a graph G,
which was first introduced by Vince [16] under the name ‘star chromatic number’ of a graph. Readers are referred to
[2,17] for surveys on circular chromatic number. The circular chromatic numbers of Mycielskians have been studied
in several papers [3,4,9,8]. Huang and Chang [9] proved that �c(�(Gd

k )) = �(�(Gd
k )) = �k/d� + 1, where Gd

k is the
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graph with vertex set {0, 1, . . . , k − 1} in which i is adjacent to j if and only if d � |i − j |�k − d . Chang et al. [3]
investigated the circular chromatic number of �m(G) = �(�m−1(G)) for m�2.

The generalized Mycielskians are natural generalization of Mycielski graphs, which were also called by Tardif [15]
cones over graphs. Let G be a graph with vertex set V 0 = {v0

1, v0
2, . . . , v0

n} and edge set E0. Given an integer m�1 the
m-Mycielskian of G, denoted by �m(G), is the graph �m(G) with vertex set

V 0 ∪ V 1 ∪ V 2 ∪ · · · ∪ V m ∪ {u},
where V i = {vi

j : v0
j ∈ V 0} is the ith distinct copy of V 0 for i = 1, 2, . . . m, and edge set

E0 ∪
(

m−1⋃
i=0

{vi
j v

i+1
j ′ : v0

j v
0
j ′ ∈ E0}

)
∪ {vm

j u : vm
j ∈ V m}.

We define �0(G) to be the graph obtained from G by adding an universal vertex u. It is evident that the so-called
Mycielskian of a graph G is simply �1(G).

Given two graphs G and H. A homomorphism from G to H is a mapping f from V (G) to V (H) such that f (x)f (y) ∈
E(H) whenever xy ∈ E(G). Homomorphism of graphs are studied as a generalization of graph colorings. If there
exists a homomorphism from G to H, we say G is homomorphic to H. From the definition of �m(G), it is easy to see
that, for any two nonnegative integers i and j with i�j , �j (G) is homomorphic to �i (G) but not vice versa. And for
any two graphs G and H, if G is homomorphic to H then �m(G) is homomorphic to �m(H) (m�0). There are many
parameters of �m(G) which vary according to m, as the impact of the vertex u on G becomes weaker and weaker when
m gets large.

An excellent generalization of the main result in [11] was made by Tardif in [15]. He proved that, for any graph
G, �f (�m(G)) = �f (G) + 1/

∑m
k=0(�f (G) − 1)k . Using different method, Stiebitz [14] and Tardif [15] proved that

�(�m(C2k+1)) = 4 for any integer m�0 and any k�1. Recently, it was proved in [12] that �c(�m(C2k+1)) = 4 for any
integers m�0 and k�1. The circular chromatic numbers of the generalized Mycielskians of complete graphs were
completely determined in [10]. They showed that �c(�m(Kn)) = �(�m(Kn)) = n + 1 for any odd integer n�3 and any
integer m�0. And �c(�m(Kn)) = n + 1/(�2m/n� + 1) for any positive even number n and any nonnegative integer m.

This paper investigates serval parameters of generalized Mycielskans. In Section 2, we show that if m is large enough
then the circular clique number of �m(G) equals that of G. Section 3 deals with domination and packing of �m(G). We
determine exact values of the total domination number, open packing number, and fractional total domination number
of �m(G) in terms of m and that of G. Upper and lower bounds (both are sharp) for the vertex cover number of �m(G)

in terms of m and that of G are given in Section 4. Section 5 studies the determinant, spectrum and biclique partition
number of �m(G).

2. Circular clique number

Suppose G is a graph. If H is an induced subgraph of G which is isomorphic to some G
q
p, then we call H a p/q-circular

clique of G. Clearly, G
q
p itself is a p/q-circular clique. The circular clique number �c(G) of G is

�c(G) = sup

{
k

d
: Gd

k is homomorphic to G

}
.

This notion of circular clique number of a graph was first introduced by Zhu in [18]. From the definition we can see
that for two graphs G and H, if G is homomorphic to H, then �c(G)��c(H). Particularly, if G is a subgraph of H,
then �c(G)��c(H). The following two lemmas can be found in [18].

Lemma 2.1. For any graph G, �(G)��c(G) < �(G) + 1.

Lemma 2.2. If G is a finite graph then �c(G)= k/d for some integers d �k� |V (G)|. Moreover, if �c(G)= k/d and
(k, d) = 1, then Gd

k is an induced subgraph of G.
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Theorem 2.3. Let G be an nonempty graph. If �c(G)=2, then �c(�m(G)) > �c(G) for any integer m�0. If �c(G)�3,
then �c(�m(G)) = �c(G) for any integer m�1. For 2 + 1/k��c(G) < 2 + 1/(k − 1), (k�2), if m�k − 2 then
�c(�m(G)) > �c(G); and if m�k then �c(�m(G)) = �c(G).

Proof. Since G is an induced subgraph of �m(G), �c(�m(G))��c(G). For any graph G with at least one edge we
have C2m+3 as a subgraph of �m(G). So �c(�m(G))��c(C2m+3) = 2 + 1/(m + 1). If �c(G) = 2, then clearly
�c(�m(G)) > �c(G) for any integer m�0. And for 2 + 1/k��c(G) < 2 + 1/(k − 1), (k�2), if m�k − 2 then
�c(�m(G)) > �c(G). For other two cases we only need to show that �c(�m(G))��c(G).

Let�c(�m(G))=p/q andG
q
p is ap/q-circular-clique of�m(G). By Lemma 2.2,Gq

p is an induced subgraph of�m(G).
Since any subgraph of �m(G)−u is homomorphic to G, we conclude that if u is not in V (G

q
p) then �c(�m(G))��c(G).

So we may assume that u is in V (G
q
p). Let V (G

q
p) = {0, 1, 2, . . . , p − 1}. Without loss of generality, we may assume

u=0. The neighborhood of u in G
q
p is [q, p −q]p (where [a, b]p ={a, a +1, . . . , b}, additions are carried out modulo

p). By the definition of �m(G), I1 = [q, p − q]p is contained in V m and so is an independent set of order p − 2q + 1.
This implies that |I1|=(p−2q)+1�q. Thus if �c(G)�3, then �c(�m(G))=�c(G) for any integer m�1. So we now
assume that 2+1/k��c(G) < 2+1/(k−1) for some k�2. The neighborhoods of q and p−q in G

q
p are [2q, 0]p and

[0, p−2q]p, respectively, both containing in V m−1 ∪{u}. Thus, we have I2 =[2q, 0]p ∪[0, p−2q]p =[2q, p−2q]p is
contained in V m−1 ∪ {u} and hence is independent, which implies that |I2| = 2(p − 2q)+ 1�q. Now consider the two
ends p−2q and 2q of the interval I2. Their neighborhoods in G

q
p are [p−q, 2p−3q]p and [3q−p, q]p]p, respectively,

both containing in V m ∪ V m−2. So I3 = [p − q, 2p − 3q]p ∪ I1 ∪ [3q − p, q]p = [3q − p, 2p − 3q]p is contained in
V m ∪V m−2 and is independent with 3(p−2q)+1 vertices. Suppose I1, I2, . . . , Ij (k−1�j �2) have been obtained.
Then Ij+1 is the union of Ij−1 and the neighborhoods of the two ends of Ij . We have, for i = 1, 2, . . . , �k/2�,

I2i = [2iq − (i − 1)p, ip − 2iq]p ⊆ {u} ∪
(

i⋃
t=1

V k−2t+1

)
,

and for i = 0, 1, . . . , �k/2� − 1,

I2i+1 = [(2i + 1)q − ip, (i + 1)p − (2i + 1)q]p ⊆
(

i⋃
t=0

V k−2t

)
.

Since P/q < q/(k − 1), q > (k − 1)(p − 2q), which means p�(2k − 1)(p − 2q) + 2. It follows that Ik and Ik−1
are disjoint. For each j = 1, 2, . . . , k, since m�k, Ij is an independent set with j (p − 2q) + 1 vertices. Particularly
|Ik| = k(p − 2q) + 1. Since Ik is independent, k(p − 2q) + 1�q. On the other hand, the assumption p/q �2 + 1/k

implies that k(p − 2q)�q, this is a contradiction. The theorem follows. �

Corollary 2.4. For any graph G with �c(G)�3, if m�1 then �c(�m(G)) = �c(G), where �i (G) = �(�i−1(G)) and
�1(G) = �(G).

Remark. For 2+1/k��c(G) < 2+1/(k−1), (k�2), when m=k−1 we do not know whether �c(�m(G))=�c(G).

3. Domination and packing

A closed neighborhood of a vertex consists of the vertex and all the vertices adjacent to it. An open neighborhood
of a vertex consists of all the vertices adjacent to it (but not the vertex itself). A domination of a graph G is a set of
vertices whose closed neighborhoods include every vertex of G. The domination number �(G) is the minimum size of
a domination of G. A total domination of a graph G is a set of vertices whose open neighborhoods include every vertex
of G. The total domination number �t (G) is the minimum size of a total domination of a graph G without isolated
vertices (a graph with isolated vertices has no total domination).

Let S be a subset of V (�m(G)). Denote by Si the vertex set S ∩ V i for i = 0, 1, . . . , m. And denote by S(j) the set
of jth twin vertices of all vertices in S\{u}. For example, Si(j) is the set of jth twin vertices of all vertices in S ∩ V i .
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Theorem 3.1. For any graph G without isolated vertices,

�t (�m(G)) =
⎧⎨
⎩

m

2
�t (G) + 2 if m is even,

(m + 1)

2
�t (G) + 1 if m is odd.

Proof. Suppose S is an minimum total domination of G. View S as a subset of V 0 in �m(G). Let

S′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k−1⋃
t=0

(S(4t + 1) ∪ S(4t + 2))

)
∪ {vm

1 , u} if m = 4k,

S(0) ∪
(

k−1⋃
t=0

(S(4t + 3) ∪ S(4t + 4))

)
∪ {vm

1 , u} if m = 4k + 2,(
k−1⋃
t=0

(S(4t + 1) ∪ S(4t + 2))

)
∪ S(4k + 1) ∪ {u} if m = 4k + 1,

S(0) ∪
(

k−1⋃
t=0

(S(4t + 3) ∪ S(4t + 4))

)
∪ S(4k + 3) ∪ {u} if m = 4k + 3.

Where if k = 0 then
⋃k−1

t=0 (· · ·) = ∅. Note that S(0) can dominate V 0 ∪ V 1 and that S(i) can dominate V i−1 ∪ V i+1

for 1� i�m − 1, it is not difficult to see that S′ is a total domination of �m(G) and that S′ has the order given in the
right hand of the equality in the theorem. Thus the “less than or equal to” inequality of the theorem holds. Following
we shall prove the opposite inequality.

Suppose S is any total domination of �m(G), we shall show that |S|�(m/2)�t (G) + 2 for m even and |S|�((m +
1)/2)�t (G) + 1 for m odd. If m = 0, then clearly |S|�2. So we assume m�1.

Since for each j, v0
j and v1

j have the same neighborhood in V 0, it follows that S0 ∪ S1(0) is a total domination of

G. Hence, |S0 ∪ S1(0)|��t (G). This implies that |S0| + |S1|��t (G). For 1� i�m − 1, since V i is dominated by
Si−1 ∪ Si+1, we conclude that (Si−1 ∪ Si+1)(0) dominates V 0, which implies that |(Si−1 ∪ Si+1)(0)|��t (G). Thus,
|Si−1|+|Si+1|��t (G) for 1� i�m−1. By summing up these inequalities together with |S0|+|S1|��t (G), we obtain

2
m∑

i=0

|Si |�m�t (G) + |Sm−1| + |Sm|.

That is,

|S\{u}| =
m∑

i=0

|Si |� m

2
�t (G) + |Sm−1| + |Sm|

2
.

We first deal with the case when m(�2) is even. Since the vertex u can only be dominated by Sm, |Sm|�1. It follows
that |S\{u}|�(m/2)�t (G) + 1. If u ∈ S, then clearly |S|�(m/2)�t (G) + 2. If u /∈ S, then to dominate all vertices of
V m, there must be at least two vertices in Sm−1. Again we have |S|�(m/2)�t (G) + 2.

For the case when m(�1) is odd, we first show that |S\{u}|�((m + 1)/2)�t (G). Since |Si−1| + |Si+1|��t (G) for
1� i�m − 1, we have

∑i+3
j=i |Sj |�2�t (G) for 0� i�m − 3. Note that |S0| + S1|��t (G) and that m + 1 is even, it is

easy to see that |S\{u}| =∑m
i=0 |Si |�((m + 1)/2)�t (G). If |Sm−1| + |Sm|��t (G) + 1, then by the inequality above,

|S|� |S\{u}| > ((m + 1)/2)�t (G). So we assume |Sm−1| + |Sm|��t (G). As Sm �= ∅ (otherwise S cannot dominate the
vertex u), |Sm−1| < �t (G).This implies that Sm−1 cannot dominate all vertices of V m. It follows that u ∈ S and hence
|S|�((m + 1)/2)�t (G) + 1. �

A packing is a set of vertices whose closed neighborhoods are disjoint. The packing number �(G) of a graph G is
the maximum order of a packing of G. An open packing is a set of vertices whose open neighborhoods are disjoint.
The open packing number �o(G) of a graph G is the maximum order of an open packing of G.
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Theorem 3.2. For any graph G without isolated vertices,

�o(�m(G)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

2
�o(G) + 1 if m is even,

(m + 1)

2
�o(G) if m is odd and �o(G)�2,

(m + 1)

2
�o(G) + 1 if m is odd and �o(G) = 1.

Proof. Suppose S is a maximum open packing of G. Let

S′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k−1⋃
t=0

(S(4t + 1) ∪ S(4t + 2))

)
∪ {u} if m = 4k,

S(0) ∪
(

k−1⋃
t=0

(S(4t + 3) ∪ S(4t + 4))

)
∪ {u} if m = 4k + 2,

S(0)

(
k−1⋃
t=0

(S(4t + 3) ∪ S(4t + 4))

)
if m = 4k + 1 and �o(G)�2,(

k−1⋃
t=0

(S(4t + 1) ∪ S(4t + 2))

)
if m = 4k + 3 and �o(G)�2,(

k−1⋃
t=0

(S(4t + 1) ∪ S(4t + 2))

)
∪ S(4k + 1) ∪ {u} if m = 4k + 1 and �o(G) = 1,

S(0)

(
k−1⋃
t=0

(S(4t + 3) ∪ S(4t + 4))

)
∪ S(4k + 3) ∪ {u} if m = 4k + 3 and �o(G) = 1.

It is straightforward to check that S′ is an open packing of �m(G) with order given in the right hand of the equality in
the theorem. Following we shall prove the opposite direction of the theorem.

Let S be any open packing of �m(G). We prove that |S| is less than or equal to left item of the equality in the
theorem. If m = 0, then clearly |S|�1 = (m/2)�o(G) + 1. So we assume m�1. Since for each j, v0

j and v1
j have

same neighborhood in V 0, we conclude that S0 ∩ S1(0) = ∅ and that S0 ∪ S1(0) is an open packing of G. Thus,
|S0|+ |S1|= |S0 ∪S1(0)|��o(G). For 1� i�m−1, we can similarly prove that |Si−1|+ |Si+1|��o(G). By summing
up these inequalities, we have

|S\{u}| =
m∑

i=0

|Si |� m

2
�o(G) + |Sm−1| + |Sm|

2
.

It is evident that |Sm|�1. If u ∈ S then Sm−1=∅. In this case, |S|=|S\{u}|+1�(m/2)�o(G)+ 3
2 .And the theorem holds

clearly. Now assume u /∈ S. Since |Sm−1|��o(G) and |Sm|�1, if m is odd then |S|= |S\{u}|�((m+ 1)/2)�o(G)+ 1
2 .

That is the theorem holds for odd m. If m is even and m = 4k + 2, then

|S| = |S0| + |S1| +
k−1∑
t=0

(|S4t+2| + |S4t+4|) +
k−1∑
t=0

(|S4t+3| + |S4t+5|) + |S4k+2|� m

2
�o(G) + 1.

If m = 4k, then

|S| =
k−1∑
t=0

(|S4t | + |S4t+2|) +
k−1∑
t=0

(|S4t+1| + |S4t+3|) + |S4k|� m

2
�o(G) + 1.

This completes the proof. �

A fractional total domination puts nonnegative weights on vertices so the weights in any open neighborhood sum
to at least one. The fractional total domination number �t

f (G) is the minimum sum of weights in a fractional total
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domination of a graph G without isolated vertices (a graph with isolated vertices has no fractional total dominations).
A fractional open packing puts nonnegative weights on vertices so the weights in any open neighborhood sum to at
most one. The fractional open packing number �o

f (G) is the maximum sum of weights in a fractional open packing of
a graph G without isolated vertices (a fractional open packing can have arbitrarily large weights on isolated vertices).
A linear programming formulation that finds �t

f (G) is the dual of that finds �o
f (G). Thus, for all graphs G without

isolated vertices, we have

�o(G)��o
f (G) = �t

f (G)��t (G).

Theorem 3.3. For any graph G without isolated vertices,

�t
f (�m(G)) =

⎧⎪⎪⎨
⎪⎪⎩

m

2
�t
f (G) + 2 − 1

�t
f (G)

if m is even,

(m + 1)

2
�t
f (G) + 1

�t
f (G)

if m is odd.

Proof. Let a = 1/�t
f (G). For j = 1, 2, . . . , n, let w(v0

j ) be the weight on vertex v0
j in a minimal fractional total

domination of G. We assign weights w′ to the vertices of �m(G). If m = 4k (k�0), then let⎧⎨
⎩

w′(u) = 1 − a, w′(v0
j ) = aw(v0

j ),

w′(vi
j ) = (1 − a)w(v0

j ) for i = 4t + 1, 4t + 2, 0� t �k − 1 if k�1,

w′(vi
j ) = aw(v0

j ) for i = 4t + 3, 4t + 4, 0� t �k − 1 if k�1.

If m = 4k + 1 (k�0), then let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′(u) = a, w′(v0
j ) = (1 − a)w(v0

j ),

w′(vi
j ) = aw(v0

j ) for i = 4t + 1, 4t + 2, 0� t �k − 1 if k�1,

w′(vi
j ) = (1 − a)w(v0

j ) for i = 4t + 3, 4t + 4, 0� t �k − 1 if k�1.

w′(v4k+1
j ) = aw(v0

j ) .

If m = 4k + 2 (k�0), then let⎧⎨
⎩

w′(u) = 1 − a, w′(v0
j ) = (1 − a)w(v0

j ),

w′(vi
j ) = aw(v0

j ) for i = 4t + 1, 4t + 2, 0� t �k,

w′(vi
j ) = (1 − a)w(v0

j ) for i = 4t + 3, 4t + 4, 0� t �k − 1 if k�1.

If m = 4k + 3 (k�0), then let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w′(u) = a, w′(v0
j ) = aw(v0

j ),

w′(vi
j ) = (1 − a)w(v0

j ) for i = 4t + 1, 4t + 2, 0� t �k,

w′(vi
j ) = aw(v0

j ) for i = 4t + 3, 4t + 4, 0� t �k − 1 if k�1.

w′(v4k+3
j ) = aw(v0

j ) .

It is straightforward to check that w′(v0
j ) + w′(v1

j ) = w(v0
j ), w′(vi−1

j ) + w′(vi+1
j ) = w(v0

j ) for i = 1, 2, . . . , m − 1.

Hence, for each vertex v0
j of V 0, the weights in its open neighborhood sum to

∑
v0
j ′v0

j ∈E0(w
′(v0

j ′) + w′(v1
j ′)) =∑

v0
j ′v0

j ∈E0w(v0
j ′)�1. And for each vertex vi

j of V i , the weights in its open neighborhood sum to
∑

v0
j ′v0

j ∈E0(w
′(vi−1

j ′ )+
w′(vi+1

j ′ ))=∑v0
j ′v0

j ∈E0w(v0
j ′)�1. For each vertex vm

j of V m, the weights in its open neighborhood sum to
∑

v0
j ′v0

j ∈E0 w′

(vm−1
j ′ ) + w′(u)�(1 − a) + a (or a + (1 − a)). Finally, for the vertex u, the weights in its open neighborhood sum

to
∑n

j=1 w′(vm
j ) = a

∑n
j=1 w(v0

j ) = a�t
f (G) = 1. We conclude that w′ is a fractional total domination of �m(G). And

it is evident that the sum of weights in this fractional total domination is the right item in the equality of the theorem.
This proves one direction of the theorem.
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Let w(v0
j ) be the weight on vertex v0

j in a maximum fractional open packing of G. By defining a fractional open
packing of �m(G) as we do in defining the fractional total domination w′ above, we can prove the other direction of
the theorem. �

Theorem 3.3 generalizes Theorem 13 in [7] which asserts that �t
f (�(G))=�t

f (G)+1/�t
f (G) for any graph G without

isolated vertices.

4. Vertex cover number

A set of vertices S is called a vertex cover of a graph G if each edge of G has at least one end in S. The vertex cover
number �(G) is the minimum order of a vertex cover of G. This section investigates the vertex cover number of �m(G).
We find that �(�m(G)) is not a function of �(G) and m. However, we can give upper and lower bounds (both are sharp)
of �(�m(G)) in terms of �(G) and m.

Theorem 4.1. For any graph G, �(�m(G))�(m + 1)�(G) + 1.

Proof. Suppose S is an minimum vertex cover of G. Then it is easy to verify that S′ = (
∑m

i=0S(i)) ∪ {u} is a vertex
cover of �m(G). Thus �(�m(G))�(m + 1)�(G) + 1. �

This upper bound is sharp since we have graphs G with �(�m(G)) = (m + 1)�(G) + 1. For example, consider the
star graph K1,r , clearly �(K1,r ) = 1 and it is not difficult to verify that �(�m(K1,r )) = m + 2.

Theorem 4.2. For any graph G,

�(�m(G))�

⎧⎨
⎩

(m + 1)

2
(�(G) + 1) + 1 if m is odd,

(m + 2)

2
(�(G) + 1) if m is even.

Proof. Let S be any vertex cover of �m(G). We shall show that |S| is great than or equal to the lower bound given in the
theorem. Clearly |S0|��(G). For each i=0, 1, . . . , m−1, by identifying the vertex vi

j and vi+1
j for all j =1, 2, . . . , n in

the subgraph induced by V i ∪V i+1, we obtain a copy of G, denote this copy of G by Hi . Since the edges between V i and
V i+1 can only be covered by Si ∪ Si+1, it follows that Si ∪ Si+1(i) is a vertex cover of Hi . Thus, |Si ∪ Si+1(i)|��(G).
Therefore, |Si | + |Si+1|��(G) for i = 0, 1, . . . , m − 1. Furthermore, we now verify that |Si | + |Si+1|��(G) + 1 for
i = 0, 1, . . . , m − 1. We need the following simple observation.

For any minimum vertex cover of G, since �(G)� |V (G)| − 1 (this can be seen from the definition of �(G)), there
is at least one edge of G covered exactly once by the given minimum vertex cover.

If for some i, |Si | + |Si+1| = �(G), then clearly Si ∩ Si+1(i) = ∅ and Si ∪ Si+1(i) is an minimum vertex cover of Hi .
From the above observation, suppose e = vi

1v
i
j is an edge of Hi such that vi

1 is in Si ∪ Si+1(i) but vi
j is not in. Now it

is easy to see that vi
1v

i+1
j or vi+1

1 vi
j cannot be covered by Si ∪ Si+1 in �m(G). This contradicts the assumption that S

is an vertex cover of �m(G). Hence |Si | + |Si+1|��(G) + 1 for i = 0, 1, . . . , m − 1.

When m is odd, |S\{u}|=∑m
i=0 |Si |=∑(m−1)/2

t=0 (|S2t |+|S2t+1|)�((m+1)/2)(�(G)+1). If u ∈ S, then |S|�((m+
1)/2)(�(G) + 1) + 1. If u /∈ S, then we must have Sm = V m. It follows that |Sm|��(G) + 1. And |S| =∑m

i=0 |Si | =∑(m−1)/2−1
t=0 (|S2t+1| + |S2t+2|) + |S0| + |Sm|�((m + 1)/2)(�(G) + 1) + 1. When m is even, |S\{u}| =∑m

i=0 |Si | =∑m/2−1
t=0 (|S2t+1| + |S2t+2|) + |S0|�((m + 2)/2)(�(G) + 1) − 1. If u ∈ S, then |S|�((m + 2)/2)(�(G) + 1). If u /∈ S,

then |Sm|��(G) + 1 and |S| =∑m
i=0 |Si | =∑m/2−1

t=0 (|S2t | + |S2t+1|) + |Sm|�((m + 2)/2)(�(G) + 1). �

This lower bound for �(�m(G)) is also sharp. Consider the complete graph Kn. Clearly, �(Kn) = n − 1 for n�2.
It is straightforward to check that

⋃m/2
t=0 V 2t is a vertex cover of �m(Kn) of order (m + 2)n/2 if m is even, and

(
⋃(m−1)/2

t=0 V 2t ) ∪ {u} is a vertex cover of �m(Kn) of order (m + 1)n/2 + 1 if m is odd.
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5. Determinant, spectrum and biclique partition

Given a graph G with vertices {v1, v2, . . . , vn}, the adjacency matrix A(G) is the n × n matrix with aij = 1 if
vivj ∈ E(G) and aij = 0 otherwise. Let 1 = (1, 1, . . . , 1)T, � = (0, 0, . . . , 0)T, and Ik the identity matrix of order k.
Let 0 be a 0-matrix with its order varying according to the situation. If we arrange the vertices of �m(G) in the order
V 0, V 1, . . . , V m, u, then it is easy to see that

A(�0(G)) =
(

A(G) 1
1T 0

)
, A(�1(G)) =

(
A(G) A(G) �
A(G) 0 1
�T 1T 0

)
.

And in general,

A(�m(G)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(G) A(G) 0 · · · 0 0 �
A(G) 0 A(G) · · · 0 0 �

0 A(G) 0 · · · 0 0 �
...

...
...

...
...

...
...

0 0 0 · · · 0 A(G) �
0 0 0 · · · A(G) 0 1
�T �T �T · · · �T 1T 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For i�1, let

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

In 0 0 · · · 0 0 �
In (−1)1In 0 · · · 0 0 �
0 0 (−1)2In · · · 0 0 �
...

...
...

...
...

...
...

0 0 0 · · · (−1)i−1In 0 �
0 0 0 · · · 0 (−1)iIn �
�T �T �T · · · �T �T (−1)i+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is not too difficult to check that

A(�i (G)) = Hi

(
A(G) 0

0 −A(�i−1(G))

)
HT

i .

For 1� i�m, let

H ′
i =

(
I(m−i)n 0

0 Hi

)
,

and let

Am =

⎛
⎜⎜⎜⎜⎜⎜⎝

A(G) 0 0 · · · 0 0
0 (−1)1A(G) 0 · · · 0 0
0 0 (−1)2A(G) · · · 0 0
...

...
...

...
...

...

0 0 0 · · · (−1)mA(G) 0
0 0 0 · · · 0 (−1)mA(�0(G))

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then

A(�m(G)) = (H ′
m · · · H ′

1) · Am · (H ′
m · · · H ′

1)
T.

That is A(�m(G)) is congruent to Am (m�1).
Let 	+(A), 	−(A), and 	0(A) be the number of positive, negative, and zero eigenvalues (counting multiplicities) of

a symmetric matrix A. And let r(A) be the rank of a matrix A.
We then get the following theorem which is a generalization of Theorem 4 in [7].
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Theorem 5.1. Let G be a graph on n vertices and m(�1) an integer. Then

(a) r(A(�m(G))) = m · r(A(G)) + r(A(�0(G))),
(b) 	0(A(�m(G))) = m · 	0(A(G)) + 	0(A(�0(G))),

(c)

	+(A(�m(G))) =
⎧⎨
⎩

m

2
	+(A(G)) + m

2
	−(A(G)) + 	+(A(�0(G))) if m is even,

m + 1

2
	+(A(G)) + m − 1

2
	−(A(G)) + 	−(A(�0(G))) if m is odd.

(d)

	−(A(�m(G))) =
⎧⎨
⎩

m

2
	−(A(G)) + m

2
	+(A(G)) + 	−(A(�0(G))) if m is even,

m + 1

2
	−(A(G)) + m − 1

2
	+(A(G)) + 	+(A(�0(G))) if m is odd.

(e)

det(A(�m(G))) =

⎧⎪⎨
⎪⎩

det(A)m det(A(�0(G))) if m = 4k,

(−1)n+1 det(A)m det(A(�0(G))) if m = 4k + 1,

(−1)n det(A)m det(A(�0(G))) if m = 4k + 2,

− det(A)m det(A(�0(G))) if m = 4k + 3.

As indicated by Fisher et al. in [7] that the invertibility of A(G) and A(�0(G)) are independent. In general, we have
r(A(G))�r(A(�0(G)))�r(A(G)) + 1. The lower and the upper bound are both attainable. So according to the above
theorem, to investigate many parameters of A(�m(G)) it is necessary and sufficient to investigate those of A(G) and
A(�0(G)).

A biclique of a graph G is a complete bipartite subgraph of G. A biclique partition of a graph G is a set of bicliques of
G with each edge of G in exactly one biclique. The biclique partition number bp(G) is the minimum size of a biclique
partition of G. The following lemma can be found in [7].

Lemma 5.2. For any simple graph G,

bp(G)� max{	+(G), 	−(G)}� 1
2 r(A(G)).

Theorem 5.1 and Lemma 5.2 allow us to investigate bp(�m(G)) for m�1.

Theorem 5.3. Let G be a graph on n vertices. If A(G) and A(�0(G)) are invertible, then bp(�m(G))= (m+1)n/2+1
if m is odd; and mn/2 + (n + 1)/2�bp(�m(G))�mn/2 + 1 + bp(G) if m is even.

Proof. By Lemma 5.2 and Theorem 5.1 (a), bp(�m(G))�(m + 1)n/2 + 1
2 . If m is odd then the integrality gives that

bp(�m(G))�(m + 1)n/2 + 1. On the other hand, by placing a star around each vertex of (
⋃(m−1)/2

t=0 V 2t ) ∪ {u}, we
obtain a biclique partition of �m(G) with (m+1)n/2+1 bicliques. Thus, if m is odd then bp(�m(G))=(m+1)n/2+1.

If m is even, then the (mn)/2 + 1 stars around each vertex of (
⋃m/2

t=1 V 2t−1) ∪ {u} together with bp(G) bicliques
in a biclique partition of G form a biclique partition of �m(G). This gives the upper bound for bp(�m(G)) when m
is even. �

Theorem 5 in [7] is a special case of Theorem 5.3 for m = 1.

Theorem 5.4. For any graph G, bp(�m(G))�(m + 1)bp(G) + 1.

Proof. Suppose bp(G) = q and let [T1, U1], . . . , [Tq, Uq ] be a biclique partition of G with q bicliques. To prove the
theorem it is sufficient to partition the edge set of �m(G) into (m + 1)bp(G) + 1 bicliques. We distinguish two case
according to the parity of m.
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Case 1: m is even. Suppose m = 2k for some k. Then

[T1(0), U1(0)], . . . , [Tq(0), Uq(0)],
[T1(2t + 1), U1(2t) ∪ U1(2t + 2)], . . . , [Tq(2t + 1), Uq(2t) ∪ Uq(2t + 2)],
[T1(2t) ∪ T1(2t + 2), U1(2t + 1)], . . . , [Tq(2t) ∪ Tq(2t + 2), Uq(2t + 1)],
(t = 0, 1, . . . , k − 1.)

and [V m, {u}] is a biclique partition of �m(G) with (m + 1)bp(G) + 1 bicliques.
Case 2: m is odd. Suppose m = 2k + 1 for some k. Then

[T1(0), U1(0) ∪ U1(1)], . . . , [Tq(0), Uq(0) ∪ Uq(1)],
[T1(1), U1(0)], . . . , [Tq(1), Uq(0)],
[T1(2t), U1(2t − 1) ∪ U1(2t + 1)], . . . , [Tq(2t), Uq(2t − 1) ∪ Uq(2t + 1)],
[T1(2t − 1) ∪ T1(2t + 1), U1(2t)], . . . , [Tq(2t − 1) ∪ Tq(2t + 1), Uq(2t)],
(t = 1, 2, . . . , k.)

and [V m, {u}] is a biclique partition of �m(G) with (m + 1)bp(G) + 1 bicliques. �

When bp(G) < n/2, the upper bound in Theorem 5.4 is better than that in Theorem 5.3.
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