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Abstract

The paper is concerned with the problem of automatic detection and correction of inconsistent or out of range data in a general
process of statistical data collection. The proposed approach is able to deal with hierarchical data containing both qualitative and
quantitative values. As customary, erroneous data records are detected by formulating a set of rules. Erroneous records should
then be corrected, by modifying as less as possible the erroneous data, while causing minimum perturbation to the original
frequency distributions of the data. Such process is calledimputation. By encoding the rules with linear inequalities, we convert
imputation problems into integer linear programming problems. The proposed procedure is tested on a real-world case of census.
Results are extremely encouraging both from the computational and from the data quality point of view.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When dealing with a large amount of collected information, a well-known relevant problem arises: perform the requested
elaboration without being misled by erroneous data. Data correctness is a crucial aspect of data quality, and, in practical cases, it
has always been a very computationally demanding problem. This paper is concerned with the problem of automatic detection
and correction of inconsistent or out of range data in a general process of statistical data collection. Examples of data collecting
are cases of statistical investigations, marketing analysis, experimental measures, etc. Without loss of generality, our attention
will be focused on the problem of a census of population carried out by collecting questionnaires. Note, however, that the
proposed methodology is general, in the sense that it can process any type of data, because it operates only at the formal level,
and it is not influenced by the meaning of processed data. A census is a particularly relevant process and actually constitutes the
most fundamental source of information about a country, and the processing of census data is in general a difficult task for an
imputation procedure[18]. Errors, or, more precisely, inconsistencies between answers or out of range answers, can be due to
the original compilation of the questionnaire, or introduced during any later phase of information conversion or processing.
As customary for structured information, data are organized into units calledrecords. A record has the formal structure of a set

of fields. Giving each field avalue, we obtain a record instance, or, simply, a record[17]. In the case of a Census, each data unit
(a family) is composed by more sub-units (persons). Data having such characteristic are calledhierarchicaldata. The problem
of error detectionis generally approached by formulating a set of rules that the records must respect in order to be declared
correct. A record not respecting all the rules is declarederroneous. In the field of database theory, rules are also calledintegrity
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constraints[17]. Integrity constraints are verified by correct records, and are generally checked before inserting a record into the
database. In the field of statistics, rules are often callededits[7]. Edits express the error condition, being verified by erroneous
records. In order to simplify our exposition, we consider here rules that are verified by correct questionnaires. Clearly, rules can
easily be converted from one representation to the other.
Given an erroneous questionnaire, the problem oferror correctionis usually tackled by changing some of its values, obtaining

acorrected questionnairewhich satisfies the above rules and is as close as possible to the (unknown)original questionnaire(the
one we would have if we had no errors). Such process is calleddata imputation. Many software systems deal with the problem of
questionnaires correction, by using a variety of different edit encodings and solution algorithms (e.g.[1,5,10,14,15,20]). A very
well-known approach to the problem, which implies the generation of all the rules logically implied by the initial set of rules,
is due to Fellegi and Holt[7]. In practical case, however, such methods suffer from severe computational limitations[15,20].
Computational efficiency could sometimes be obtained only by sacrificing the data quality issue.Another serious drawback is that
simultaneous processing of quantitative and qualitative fields is seldom allowed. A large monographic section on mathematical
approaches to the problem is in[6]. Mathematical programming approaches for the case of data having only continuous fields
have already been proposed, e.g.[16]. Recently, a declarative semantics for the imputation problem has been proposed in[8],
as an attempt to give an unambiguous formalization of the meaning of imputation and of the behavior of the various imputation
systems. Another logic-based approach to the problem is in[9].
A new automatic procedure for data imputation, capable of handling also hierarchical data, simultaneously operating on both

qualitative and quantitative fields, and based on the use of a discrete mathematical model, is here presented. In an earlier paper,
an imputation procedure for the case when all the rules are expressed by using propositional logic is already developed[4]. That
would not suffice when dealing with rules containing also mathematical operators. The effectiveness of a discrete mathematical
approach is also showed, for a similar problem, by the theory of LogicalAnalysis of Data ([2] among other papers). By encoding
the rules into linear inequalities, as explained in Section 2, integer programming models of the imputation problem can be given.
Note that, since a very precise syntax for writing the rules was developed, such encoding could be automatically performed. A
sequence of integer programming problems, as described in Section 3, is therefore solved by means of a state-of-the-art integer
programming solver (ILOG Cplex1). Moreover, due to the peculiar problem’s structure, the efficient use of a separation routine
for set coveringproblems was possible[13]. The proposed procedure is tested by executing the process of error detection and
correction in the case of real world census data, as shown in Section 4. The practical behavior of the proposed procedure is
evaluated both from the computational and from the data quality point of view. The latter analysis is carried out by means of
recognized statistical indicators[11]. The overall software system developed for data imputation, called Data Imputation Editing
System—Italian Software (DIESIS) is also described in[3].

2. Encoding rules into linear inequalities

In Database theory, arecord schema Ris a set of fields{f1, ..., fh}. A record instance ris a set of values{v1, ..., vh}, one
for each of the above fields. In the case of a Census, each record contains the answers given in one questionnaire by an entire
household. A household consists in a set of individualsI = {1, ..., l} living together in the same housing unit. We assumel
pre-defined in our model, since data are generally subdivided into several data sets having the same numberl of individuals per
family. Such data sets are then processed independently. Census data are therefore calledhierarchicaldata, i.e. data with records
composed bymore sub-units (the individuals).We generally consider for every individual the same set of fieldsF ={f1, ..., fm}.
Considering all such fields for all such individuals, we have the following kind of record structure, that we will also call
questionnaire structure Q.

Q= {f 11 , ..., f 1m, ... f l1, ..., f lm}.
A questionnaire instance q, or, simply, a questionnaire, is therefore the following:

q = {v11, ..., v1m, ... vl1, ..., vlm}.

Example 2.1. In the case of a census, fields are for instanceage or marital status , corresponding examples of values
are18 or single .

Each fieldf i
j
, with i = 1...l, j = 1...m, has adomainDi

j
, which is the set of every possible value for that field. Since we

are dealing with errors, the domains include all values that can be found on questionnaires, even the erroneous ones. Fields are
usually distinguished inquantitativeandqualitativeones. A quantitative field is a field on whose values are applied (at least

1More informations available athttp://www.cplex.com.

http://www.cplex.com.
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some) mathematical operators (e.g.>,+), hence such operators should be defined on its domain. Examples of quantitative fields
are numbers (real or integer numbers, and we respectively speak of continuous or discrete fields), or even the elements of an
ordered set.A qualitative field simply requires its domain to be a discrete set with finite number of elements.We are not interested
here in considering fields ranging over domains having a non-finite number of non-ordered values. The proposed approach is
able to deal with both qualitative and quantitative values.

Example 2.2. For the qualitative fieldmarital status , answer can vary on a discrete set of possibilities inmutual exclusion,
or, due to errors, be missing or not meaningful (blank ).

Dimarital status = {single ,married , separate ,divorced ,widow ,blank }.
For the quantitative discrete fieldage , due to errors, the domain is

Diage = Z ∪ {blank }.

A questionnaire instanceq is declared correct if and only if it respects a set of rulesR= {r1, ..., rp}. Each rule can be seen as
a mathematical functionrs from the Cartesian product of all the domains (the questionnaire space) to the Boolean set {0,1}.

rs : D1
1 × · · · ×D1

m × · · · ×Dl1 × · · · ×Dlm → {0,1}.
Rules are such thatq is a correct questionnaire if and only ifrs(q)= 1 for all s = 1, ..., p. Rules should be expressed according
to some syntax. In our case, each rule is expressed as a disjunction (∨) of conditions, also called propositions (pv). Conditions
can also be negated (¬pv). Therefore, rules have the structure of clauses (i.e. a disjunction of possibly negated propositions).
By introducing, for each rulers , the set�s of the indices of the positive conditions and the set�s of the indices of the negative
conditions,rs can be written as follows:∨

v∈�s

pv ∨
∨
v∈�s

¬pv. (1)

Since all rules must be respected, a conjunction (∧) of conditions is simply expressed using a set of different rules, each made of
a single condition. As known, all other logic relations between conditions (implication⇒, etc.) can be expressed by using only
the above operators (∨, ∧, ¬). Differently from the case of propositional logic, conditions have an internal structure. We need
to distinguish between two different structures. A condition involving values of a single field is here called alogical condition.
A condition involving mathematical operations between values of fields is here calledmathematical condition.

Example 2.3.A logical condition is, for instance,(age <14), or(marital status =married ).Amathematical condition
is, for instance:(age − years married �14).

We call logical rules the rules expressed only with logical conditions,mathematical rulesthe rules expressed only with
mathematical conditions, andlogic-mathematical rulesthe rules expressed using both type of conditions.

A special case of logical rules are the ones delimitating thefeasible domain
◦
D
i
j

⊆ Di
j
of every field. Very often, in fact, some

values of the domain are not acceptable, regardless of values of all other fields. They are calledout-of-rangevalues. By removing

the out-of-range values from a domainDi
j
we have the feasible domain

◦
D
i
j
.

Example 2.4.A logical rule expressing that all people declaring to be married should be at least 14 years old is

¬(marital status = married ) ∨ ¬(age <14).

Rules delimitating the feasible domain for the fieldage are for instance

(age�0), (age�110 ), ¬(age = blank ).

One can observe that, depending on the rules, some values (e.g.age 32 or33) appear to have essentially the same effect on the
correctness of a questionnaire. Formally, we say that two valuesv′

j
i andv′′

j
i areequivalentfrom the rules’ point of view when,

for every couple of questionnairesq ′ = {v11, ..., v′j i , ..., vlm} andq ′′ = {v11, ..., v′′j i , ..., vlm} having all values identical except for
field f i

j
, q ′ andq ′′ are either both correct or both erroneous

rs(q
′)= rs(q

′′) for all s = 1, ..., p.
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A key point is that we can always partition each domainDi
j
into nj subsets

Dij = Sij1 ∪ · · · ∪ Sijnj
in such a way that all values belonging to the sameSi

jk
are equivalent from the logical point of view (i.e. considering all and

only the rules containing logical conditions). Such partition is obtained as follows. The values of each domainDi
j
explicitly

appearing in the logical conditions are calledbreakpoints, or cut-points, for Di
j
. They represent logicalwatershedsamong the

values ofDi
j
. Their set will be denoted byBi

j
. DomainDi

j
can now becut in correspondence of each breakpoint in order to

obtain subsets (which are intervals for continuous fields, sequences of values for discrete fields, sets of values for qualitative
fields). By furthermore merging possibly equivalent subsets, which are detected by using again the set of rules, we obtain the
above mentioned partition.
A subset for theout-of-range values is always present. Moreover, the value for some field can be the missing value. Such

value is described asblank, and, depending on the field, can belong or not to the feasible domain. If the blank answer belongs to
the feasible domain (such as the case ofyears married , which should be blank for unmarried people), the subsetblank
is also present. Otherwise, it belongs to theout-of-range subset.

Example 2.5. Consider domainDiage , together with an hypothetic set of rulesR (including those of Example 2.4.) such that
the set of obtained breakpoints is

Biage = {0, 14, 18, 26, 110 , blank }.

FromR, values below0 or above110 areout-of-range , and the blank answer does not belong to the feasible domain,
hence belongs to theout-of-range subset. Therefore, by using againR for deciding whether each breakpoint is the upper
value of a subset or the lower one of the next subset, we have the following subsets:

Siage 1 = {0, ...,13}, Siage 2 = {14, ...,17},
Siage 3 = {18, ...,25}, Siage 4 = {26, ...,110 },
Siage 5 = {...,−1} ∪ {111 , ...} ∪ {blank }.

Now, the variables of our mathematical model can be defined. They are a set ofl ×m integer variableszi
j

∈ {0, ..., U}, one for
each domainDi

j
, a set ofl(n1+ · · · + nm) binary variablesxijk ∈ {0,1}, one for each subsetSi

jk
, and a set ofl(n1+ · · · + nm)

binary variables̄xi
jk

∈ {0,1}, which are the complements of thexi
jk
. We represent each valuevi

j
of the questionnaire with an

integer variablezi
j
, by defining a mapping�i

j
(a different mapping for each field) between values of the domain and integer

numbers between 0 and an upper valueU.U is the same for all domains, and such that no elements of any feasible domain maps
toU.

�i
j

: Di
j

→ {0, ..., U},
vi
j

�→ zi
j
.

Mapping for integer domains is straightforward. We approximate real domains with rational domains and then map them on the
set of integer positive numbers. Qualitative domains also are mapped on the set of integer numbers by choosing an ordering. The
integer variables are therefore

zij = �ij (v
i
j ).

Note that, in the case of the considered application, values were wanted to be integer. However, variableszi
j
are not structurally

bounded to be integer. All theout-of-range values map to the greater number usedU. Theblank value, when belonging
to the feasible domain, is encoded with the integer value�i

j
immediately consecutive to the greatest value of the encoding of the

rest of the feasible domain
◦
D
i
j
\blank . Note that�i

j
<U is always required.

The membership of a valuevi
j
to the subsetSi

jk
is encoded by using the binary variablesxi

jk
.

xijk =
{1 whenvi

j
∈ Si

jk

0 whenvi
j
/∈ Si
jk
.



R. Bruni /Discrete Applied Mathematics 144 (2004) 59–69 63

Finally, the complementary binary variablesx̄i
jk

are bound the former ones by the following so-calledcoupling constraints:

x̄ijk + xijk = 1.

The presence of the complementary variables is motivated by algorithmic issues (see Section 4). Integer and binary variables are
linked by using a set of linear inequalities calledbridge constraints. They impose that, whenzi

j
has a value such thatvi

j
belongs

to subsetSi
jk
, the correspondingxi

jk
is 1 and all others binary variables{xi

j1...x
i
jk−1, x

i
jk+1...x

i
jnj

} are 0.
By using the above variables all the above mentioned rules can be expressed. Logic conditionspv are expressed by using the

binary variablesxi
jk

or x̄i
jk
, mathematical conditionspv are expressed by using the integer variableszi

j
. Rules involving more

than one individual (called interpersonal rules) are expressed by using the opportune variables for the different individuals. By
doing so, each logical rulers having the structure (1) of a clause can be written as the following linear inequality:

∑
i,j,k∈�s

xijk +
∑

i,j,k∈�s

x̄ijk�1.

Moreover, with a commonly used slight abuse of notation, letx, x̄ andzbe the vectors, respectively, made of all the components
xi
jk
, x̄i
jk

andzi
j
, i = 1, ..., l, j = 1, ..., m, k = 1, ..., nj . By introducing the incidence vectorsa�s anda�s , respectively, of the

set of the positive conditions�s and of set of the negative conditions�s , each logical rule can be expressed with the following
vectorial notation:

a�s x + a�s x̄�1.

The only difference whenmathematical conditions are present is that they do not correspond to binary variables but to operations
between the integer variables. We limit mathematical rules to those which are linear or linearizable. In particular, we allow
rules composed by a division or a multiplication of two variables. For a digression on linearizable inequalities, see for instance
[19]. Occasionally, further binary variables are introduced, for instance to encode disjunctions of mathematical conditions. Note,
moreover, that a very precise syntax for rules was developed. Therefore, the encoding into linear inequalities could be performed
by means of an automatic procedure.

Example 2.6. Consider the following logical rule for all the individuals:

¬(marital status = married ) ∨ ¬(age <14).

By substituting the logical variables, we have the logic formulax̄imarital status {married } ∨ x̄iage {0..13}, i=1, ..., l. This
becomes the following linear inequalities:

x̄imarital status {married } + x̄iage {0..13}�1, i = 1, ..., l.

Consider now the following logic-mathematical rule for all the individuals:

¬(marital status = married ) ∨ (age − years married �14).

By substituting the logical and integer variables, we havex̄imarital status {married } ∨ (ziage − ziyears married �14),
i = 1, ..., l. This becomes the following linear inequalities:

Ux̄imarital status {married } + ziage − ziyears married �14, i = 1, ..., l.

Finally, the following interpersonal mathematical rule between individual 1 and 2:

age (of 1 )− age (of 2 )�14

becomes the linear inequality

z1age − z2age �14.

Evidently, rules involving more than one record cannot be directly expressed by means of the above variables. However, quite
often, this problem can be solved as follows. In the case when the inter-record rule involves fields which are obtained from the
whole data set, such as a mean value, this can be considered constant and introduced as an additional field in each record for
which the rule should be valid. In the case when such constant assumption cannot be done, on the contrary, anaugmentedrecord
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containing all the data that should be imputed together should be generated, although this may clearly increase computational
times.
Altogether, from the set of rules, a set of linear inequalities is obtained (to which the coupling constraints and the bridge

constraints are added). From the set of answers to a questionnaire, values for the introduced variables are given. By construction,
all and only the variable assignments corresponding to correct questionnaires satisfy all the linear inequalities, hence the linear
system

A�x + A�x̄�1,
B�x + B�x̄ + Bz� b,
x + x̄ = 1,
zi
j

∈ {0, ..., U}, i = 1, ..., l, j = 1, ..., m,

xi
jk
, x̄i
jk

∈ {0,1}, i = 1, ..., l, j = 1, ..., m, k = 1, ..., nj .

(2)

The coefficient matricesA�, A� are given by encoding the logical rules,B�, B�, B andb are given by encoding mathematical
and logic-mathematical rules, and also by any other additional constraints such as the bridge constraints. Briefly, even if slightly
improperly, a questionnaireqmust satisfy (2) to be correct.

3. Modeling the problems

After a phase ofrules validation, were System (2) is checked to be feasible and to have more than one solution, detection of
erroneous questionnairesqe trivially becomes the problem of testing if the variable assignment corresponding to a questionnaire
instanceq satisfies (2).
When detected anerroneous questionnaireqe, the imputationprocess consists in changing some of its values, obtaining

a corrected questionnaireqc which satisfies System (2) and is as close as possible to the (unknown)original questionnaire
qo (the one we would have if we had no errors). In order to reach this purpose, two general principles should be followed
during the imputation process: to apply the minimum changes to erroneous data, and to modify as less as possible the original
frequency distribution of the data[7]. Generally, a cost for changing each value ofqe is given, based on the reliability of the field,
according to a previous statistical analysis of the data which cannot be described here. It is assumed that, when error is something
unintentional, the erroneous fields are the minimum-cost set of fields that, if changed, can restore consistency. Questionnaireqe

corresponds to a variable assignment. In particular, we have a set ofl(n1+· · ·+nm) binary valueseijk and a set ofl×m integer

valuesgi
j
. We have a costci

jk
∈ R+ for changing eachei

jk
, and a cost̃ci

j
∈ R+ for changing eachgi

j

{c11 1, ..., c
1
1 n1

, ..., c1m 1, ..., c
1
m nm

... cl1 1, ..., c
l
1 n1

, ..., clm 1, ..., c
l
m nm

}
{c̃11, ..., c̃1m ... c̃l1, ..., c̃lm}.

The questionnaireqc that we want to obtain corresponds to the values of the variables (xi
jk
, x̄i
jk
, andzi

j
) at the optimal solution

of the integer linear programming problems described below.
The problem oferror localizationis to find a setV of fields of minimum total cost such thatqc can be obtained fromqe by

changing (only and all) the values ofV. Imputation of actual values ofV can then be performed in a deterministic or probabilistic
way. This causes the minimum changes to erroneous data, but has little respect for the original frequency distributions.
A donor questionnaireqd is a correct questionnaire which should be as close as possible toqo. Questionnaireqd corresponds

to a variable assignment. In particular, we have a set of binary valuesdi
jk

and a set of integer valuesf i
j
. Donors are selected

according to an opportune distance function specified by the user.

� : (qe, qd) → R+.

The problem ofimputation through a donoris to find a setWof fields of minimum total cost such thatqc can be obtained from
qe by copying from the donorqd (only and all) the values ofW. This is generally recognized to cause low alteration of the
original frequency distributions, although changes caused to erroneous data may be not minimum. We are interested in solving
both of the above problems, and in choosing for each questionnaire the solution having the best quality.
Let us introducel(n1 + · · · + nm) binary variablesyijk ∈ {0,1} representing the changes we introduce inei

jk
.

yijk =
{1 if we changeei

jk
,

0 if we keepei
jk
.
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Furthermore, only in the case of imputation through a donor, let us introducel × m binary variableswi
j

∈ {0,1} representing
the changes we introduce ingi

j
.

wij =
{1 if we changegi

j
,

0 if we keepgi
j
.

The minimization of the total cost of the changes can be expressed with the following objective function (where the termsc̃i
j
wi
j

appear only in the case of imputation through a donor):

min
yijk,w

i
j∈{0,1}

l∑
i=1

m∑
j=1

nj∑
k=1

cijky
i
jk +

l∑
i=1

m∑
j=1

c̃ijw
i
j . (3)

However, Constraints (2) are expressed by means of variablesxi
jk
, x̄i
jk
, andzi

j
. A key issue is that there is a relation between

variables in (2) and (3). In the case of error localization, this depends on the values ofei
jk
, as follows:

yijk =
{
xi
jk
(=1− x̄i

jk
) if ei

jk
= 0,

1− xi
jk
(=x̄i

jk
) if ei

jk
= 1.

In fact, whenei
jk

= 0, to keep it unchanged means to putxi
jk

= 0. Since we do not change,yi
jk

= 0. On the contrary, to change

it means to putxi
jk

= 1. Since we change,yi
jk

= 1. Altogether,yi
jk

= xi
jk
. When, instead,ei

jk
= 1, to keep it unchanged means

to putxi
jk

= 1. Since we do not change,yi
jk

= 0. On the contrary, to change it means to putxi
jk

= 0. Since we change,yi
jk

= 1.

Altogether,yi
jk

= 1− xi
jk
.

By using the above results, we can rewrite the objective function (3). Therefore, the problem of error localization can be
modeled as follows, where the objective function and a consistent number of constraints have aset coveringstructure (see for
instance[12]).

min
xijk,x̄

i
jk∈{0,1}

l∑
i=1

m∑
j=1

nj∑
k=1

(1− ei
jk
)ci
jk
xi
jk

+
l∑
i=1

m∑
j=1

nj∑
k=1

ei
jk
ci
jk
x̄i
jk

S.t.




A�x + A�x̄�1,
B�x + B�x̄ + Bz� b,
x + x̄ = 1,
zi
j

∈ {0, ..., U}, i = 1, ..., l, j = 1, ..., m,

xi
jk
, x̄i
jk

∈ {0,1}, i = 1, ..., l, j = 1, ..., m, k = 1, ..., nj .

(4)

Conversely, in the case of imputation through a donor, relation betweenxi
jk

andyi
jk

depends on the values ofei
jk

anddi
jk
.

yijk =



xi
jk
(=1− x̄i

jk
) if ei

jk
= 0 anddi

jk
= 1,

1− xi
jk
(=x̄i

jk
) if ei

jk
= 1 anddi

jk
= 0,

0 if ei
jk

= di
jk
.

In fact, whenei
jk

= 0 anddi
jk

= 1, not to copy the element means to putxi
jk

= 0. Since we do not change,yi
jk

= 0. On the

contrary, to copy the element means to putxi
jk

=1. Since we change,yi
jk

=1.Altogether,yi
jk

=xi
jk
.When, instead,ei

jk
=1 and

di
jk

= 0, not to copy the element means to putxi
jk

= 1. Since we do not change,yi
jk

= 0. On the contrary, to copy the element

means to putxi
jk

= 0. Since we change,yi
jk

= 1. Altogether,yi
jk

= 1− xi
jk
. Finally, whenei

jk
= di

jk
, we cannot changeei

jk
,

henceyi
jk

= 0.

Note, however, that even when we do not changexi
jk

from ei
jk

to di
jk
, we still could need to changezi

j
from gi

j
to f i

j
. For

instance, this could help in satisfying some mathematical constraints without changing too many values. In order to guide the
choice of values forzi

j
, information obtained by thexi

jk
variables is used.We take forzi

j
the value of the donor when (a) changes

on thexi
jk

are made, or (b) when, even if for allk thexi
jk

do not change, we need to takef i
j
instead ofgi

j
.

zij =
{
gi
j

if ∀k ∈ {1, ..., nj } yijk = 0 andwi
j

= 0,

f i
j

if ∃k ∈ {1, ..., nj } : yi
jk

= 1 or if wi
j

= 1.
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For eachzi
j
, nj quantitiesv

i
jk

are defined. They are 0 or 1 when the correspondingyi
jk

are 0 or 1.

vijk = (xijk(1− eijk)d
i
jk)+ ((1− xijk)e

i
jk(1− dijk))

we have that the condition∃k ∈ {1, ..., nj } : yi
jk

= 1 becomes
∑
kv
i
jk

= 2, and that the condition∀k ∈ {1, ..., nj } yijk = 0

becomes
∑
kv
i
jk

= 0. Therefore,zi
j
is f i

j
when

∑
kv
i
jk

= 2, and we need to choose betweenf i
j
andgi

j
otherwise.

By using the above, we can rewrite the objective function (3). Therefore, the problem of imputation through a donor can be
modeled as follows. Again, the objective function and a consistent number of constraints have a set covering structure.

min
xi
jk
, x̄i
jk

∈ {0,1},
wi
j

∈ {0,1}

l∑
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m∑
j=1

nj∑
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)di
jk
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jk
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jk

+
l∑
i=1

m∑
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nj∑
k=1
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jk
(1− di

jk
)ci
jk
x̄i
jk

+
l∑
i=1

m∑
j=1

c̃i
j
wi
j

S.t.
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A�x + A�x̄�1,
B�x + B�x̄ + Bz� b,
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j

(
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+
∑
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2

)
+ gi

j

(
1− wi

j
−

∑
kv
i
jk

2

)
, i = 1, ..., l, j = 1, ..., m,

wi
j
�1−

∑
kv
i
jk

2 , i = 1, ..., l, j = 1, ..., m,

zi
j

∈ {0, ..., U}, i = 1, ..., l, j = 1, ..., m,

xi
jk
, x̄i
jk

∈ {0,1}, i = 1, ..., l, j = 1, ..., m, k = 1, ..., nj ,

wi
j

∈ {0,1}, i = 1, ..., l, j = 1, ..., m.

(5)

The presence of the group of covering constraints and of that of equalities constraints allows the use of an additional separation
routine during the branch-and-cut solution of the above described models.

4. Solving the problems

The practical behavior of the proposed procedure is evaluated both from the computational and from the data quality points of
view, as follows. Two large data sets representing correct questionnaires were initially perturbed by introducing errors.After this,
detection of erroneous questionnaires was performed, as a trivial task. The proposed procedure is then used for the imputation
of such erroneous questionnaires.
Dataused for experimentationsarise from the ItalianCensusofPopulation1991.Theyconsist in45,716 four-personhouseholds

and 20,306 six-person households (from a single region). Data perturbation consists in randomly introducing non responses
(blank answers or out-of-range answers) or other valid responses (other values belonging to the feasible domain). In each data set
the demographic fieldsrelation to head of the house , sex ,marital status , age , years married were
perturbed at the four different increasing error levels (50, 100, 150, 200) described inTable 1.
The following eight different data sets are therefore obtained:

(4_050,4_100,4_150,4_200,6_050,6_100,6_150,6_200).

The set of rules used for experimentations are real rules, developed by experts of the Italian Statistic Office. Note that the
possibility of using a large set of rules is required for improving the accuracy of an imputation procedure. The considered set is
in fact quite large compared to other census cases, and consist in:

32 logic individual rules (to be repeated for each individuali ∈ I );
35 logic interpersonal with 2 individuals rules (to be repeated for each couple of individuals(i, i′) ∈ I );
2 logic interpersonal with 3 individuals rules (to be repeated for each triple of individuals(i, i′, i′′) ∈ I );
1 logic-mathematic individual rule (to be repeated for each individuali ∈ I );
55 logic-mathematical interp. with 2 individual rules (to be repeated for each couple of individuals(i, i′) ∈ I );
2 logic-mathematical interp. with 3 individual rules (to be repeated for each triple of individuals(i, i′, i′′) ∈ I );
1 logic-mathematical interp. with 4 individual rules (to be repeated for each quadruple of individuals(i, i′, i′′, i′′′) ∈ I ).

For each erroneous questionnaireqe, the error localization problem (4) is solved at first, obtaining a valuez(loc of the cost

function. After this, a number�(qe) of donor questionnaires is used. Such donors{qd1, ..., qd�} are selected among the correct
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Table 1
Percentages of non responses or other valid responses artificially introduced in the affected fields

Level Perturbation Relation to Sex Martial status Age Years married

Non resp. 0.26 0.25 0.65 0.20 0.85
050

Other valid resp. 2.04 1.59 1.00 1.61 0.15

Non resp. 0.52 0.50 1.30 0.40 1.70
100

Other valid resp. 4.08 3.17 2.00 3.22 0.30

Non resp. 0.78 0.75 1.95 0.60 2.55
150

Other valid resp. 6.12 4.76 3.00 4.83 0.45

Non resp. 1.04 1.00 2.60 0.80 3.40
200

Other valid resp. 8.16 6.34 4.00 6.44 0.60

Table 2
Imputation times in minutes for 4-person households and 6-persons households

Data set Number of households # of problems solved Total time

4_050 45,716 320,656 53.0
4_100 45,716 346,223 96.4
4_150 45,716 385,680 130.5
4_200 45,716 416,074 157.9
6_050 20,306 145,322 85.8
6_100 20,306 160,371 139.8
6_150 20,306 186,434 174.5
6_200 20,306 198,121 202.6

records of the data set, by choosing the nearest ones toqe, according to our distance function�. Consequently, for each erroneous
questionnaireqe, �(qe) problems of imputation through a donor (5) are solved, obtaining�(qe) values{z(imp 1, ..., z

(
imp �} for

the cost function. By construction, such values are all greater than or equal toz(loc. The corrected questionnaireqc is finally
obtained by choosing the best result among such imputations through a donor, as the one having the smallest value for the
described cost function. Moreover, the number�(qe) is increased when the quality of the above imputations through a donor is
not satisfactory. The quality is not satisfactory when the values{z(imp 1, ..., z

(
imp �} are all higher thanz(loc multiplied by a fixed

parameters >1. This means that the donors selected so far are not good, and therefore other donors should be selected forqe.
In this experimentation,� is initially set to 5 and possibly increased until a maximum of 15,s is set to 1.4. Altogether, for each
erroneous questionnaireqe, �(qe)+ 1optimization problems are solved.
Problems are solved by using a commercial implementation of a state-of-the-art branch-and-bound routine for integer pro-

gramming (ILOGCplex 7.1). However, such solver allows the user to define specific separation subroutines to be used within its
framework, obtaining therefore a branch-and-cut procedure. Since most of the constraints have a structure similar to those of set
covering problems, a separation routine for the set covering polytope was used in order to generate valid cuts. Such separation
routine, described in[13], is based on projection operations, which were possible thanks to the presence of the equality con-
straints above calledcoupling constraints. Since such cut generation is a relatively costing operation, it is preferable to perform
it only at the very first levels of the branching tree, where its effect is greater. Each single imputation problem that is solved
corresponds to an integer linear programming problem in which only some variables are generated: all variables corresponding
to fields involved in failed rules, together with all other variables connected by the rules to the former ones. Therefore, such
problems do not have all the same number of variables and, consequently, of constraints. The average number of variables per
problem is 3000, while the average number of constraints is 3500. Computational times in minutes for solving each data set (on
a Pentium III 800MHz PC) are reported inTable 2. As observable, each single imputation problem is solved in extremely short
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Table 3
Percentage of not modified values erroneously imputed (Etrue), percentage of modified values not imputed (Emod), percentage of imputed values
for which imputation is a failure (Iimp)

Data set DIESIS CANCEIS

Etrue Emod Iimp Etrue Emod Iimp

4_050 0.04 24.61 15.02 0.09 25.62 16.07
4_100 0.09 26.02 15.48 0.17 26.01 16.69
4_150 0.13 26.32 16.20 0.26 27.16 18.10
4_200 0.19 27.25 17.10 0.40 28.40 19.10
6_050 0.08 31.20 20.47 0.15 32.13 20.94
6_100 0.16 31.44 20.29 0.32 32.67 21.64
6_150 0.25 32.83 21.45 0.48 33.88 23.41
6_200 0.35 33.01 21.88 0.66 35.11 24.26

times. Therefore, large data sets are imputed in very reasonable times. Also, this would allow the use of a more numerous set of
rules. Consequently, accuracy improvements of a general process of data imputation are made possible.
The statistical performances of the proposed methodology, implemented in a software system called DIESIS has also been

strictly evaluated and compared with the performance of the Canadian Nearest-neighbour Imputation Methodology (CANCEIS)
[1] by a simulation study based on real data from the 1991 Italian Population Census. We report here the summarized results,
while for details we refer to[11]. CANCEIS has been selected for the comparative statistical evaluation because at the time
of writing it is deemed to be the best specific methodology to automatically handle hierarchical demographic data. The quality
of imputed data was evaluated by comparing the original questionnaires (here known) with the corrected ones. We report in
Table 3the value of some particularly meaningful statistical indicator: the percentage of not modified values erroneously imputed
by the procedure (Etrue); the percentage of modified values not imputed (Emod); the percentage of imputed values for which
imputation is a failure (Iimp). Therefore, lower values correspond to a better data quality. Reported value is computed as average
on the demographic fieldsrelation to head of the house , sex , marital status , age , years married .
Results of such comparison are very encouraging: the quality of the imputation performed by the proposed procedure is generally
comparable, and sometimes better, than CANCEIS.
The proposed procedure introduces surprisingly few changes in fields that were not perturbed, is able to discover more than

two times out of three the values which weremodified, and imputes values which are generally correct. Note that, when randomly
modifying values, the record can still appear correct, in the sense that it still satisfies the rules, so detection of perturbed values
inherently has no possibility of being always exact. Note, moreover, that for fields having many values, such as the case ofage ,
the correct imputation is extremely difficult. Detailed results on the Italian Census 2001 correction should be made available, as
far as concerning information that can be made publicly accessible, at the Italian Statistic Office web site.2

5. Conclusions

Imputation problems are of great relevance in every process of data collecting. They also arise when cleaning databases
which can contain errors. Imputation problems have been tackled in several different manners, but satisfactory data quality
and computational efficiency appear to be at odds. A discrete mathematics model of the whole imputation process allows the
implementation of an automatic procedure for data imputation. Such procedure repairs the data using donors, ensuring so
that the marginal and joint distribution within the data are, as far as it is possible, preserved. The sequence of arisen integer
programming problems can be solved to optimality by using state-of-the-art implementation of branch-and-cut procedures.
Related computational problems for considered data sets are completely overcome. Each single imputation problem is solved to
optimality in extremely short times (always less than 1 s). Therefore, computational limits of a generic imputation procedure can
be pushed further by using the proposed approach.Also, this would allow the use of a more numerous set of rules. Consequently,
considerable accuracy improvements of a generic process of data imputation are made possible.
The statistical performances of the proposed procedure has been strictly evaluated on real-world problems, and compared

with the performance of the Canadian Nearest-neighbour Imputation Methodology, which is deemed to be, at the time of

2 http://www.istat.it

http://www.istat.it
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writing, the best methodology to automatically handle hierarchical demographic data. Results are very encouraging both form
the computational and from the data quality point of view.
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