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For positive integers m and i 22, let (m), denote the finite sequence of digits of
m written in A-ary notation. It is known that the real number

alg)=0-(g"), (8™ lg" )y

with g>2, h>2 is irrational, if the sequence (n,) of non-negative integers is
unbounded. We study the case where (#,) is bounded, and prove several irra-
tionality criteria.  « 1995 Academic Press, Inc.

1. INTRODUCTION

It i1s well known that the real number
a=0.12345678910111213.... (1)

is irrational. This follows at once from the fact that the sequence of digits
of a contains arbitrarily long finite sequences of zeros. Obviously, the
reasoning is not restricted to the decimal representation of integers. Going
beyond examples of the above kind, Mahler showed some 15 years ago
that the real number

£ =0.1248163264128 ...

is irrational. In order to formulate Mahler’s more general result, let m > 1,
h =2 be integers, and

m=mh " emh T m,

for some integers r>0 and 0<m;<h (1<i<r) with m, #0. Then we
define

{(m),=mm,---m,,

i.e., the sequence of digits of m written in A-ary notation.
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In 1981, Mahler [ 2] proved that for any g > 2, the number

alg) 3=0‘(80)10(g1)10 (gz)mm»

obtained by concatenation of the digits of (g%, (£')10, (€310, s 1S
irrational. In 1984, Bundschuh [ 1] generalized this to arbitrary bases by
showing that for any g =2 and A =2,

ag) 5=0'(g0)/,(gl)/. (gz)/w-

is irrational. In 1986, Niederreiter [ 3] gave a simpler proof of Bundschuh’s
result. Yet another proof using Kronecker’s theorem was published by
Shan [4] in 1987.

More generally, one studied numbers

a/l(g) ::(l;l"‘)(g) :=0 .(g"”)h ('g”])/l (g":)lz“'

for given g=2, h=2 and arbitrary sequences (#,),., of non-negative
integers. Results in this direction were obtained by Yang [7] and Yu [8]
in 1988. One year later, Shan and Wang [ 5] showed by use of Thue’s well
known theorem on the finite number of solutions of the Diophantine
equation

by"—ax"=¢ (a>0,b>0,n=3,¢c#0),

that a,(g) is irrational, if g>2, A=22 and (n,) is strictly increasing.
However, quite similar to the proof of the irrationality of a in (1), their
argument needs only the fact that the sequence (g™ ) contains integers with
arbitrarily many digits in A-ary expansion. Therefore, the state of art is
summarized by

THEOREM 1[5]. Let g=2, h=2, and let (n;) be an unbounded sequence
of non-negative integers. Then a,(g) is irrational.

The remaining problem is to consider «,(g) for bounded sequences (#,),
which means, in particular, sequences with a finite number of limit points.
Clearly, the corresponding a,(g) may be rational, for instance for cyclic
(n;), or irrational, for instance for g=2, h=10, n,e {0, 1} and (n,) not
ultimately periodic (a sequence (n;),.. 18 called ultimately periodic, if
(n;);»,, is periodic for some i,). For sequences (n,) with exactly one limit
point, i.e., convergent sequences, «,( g) is obviously rational. The first inter-
esting case, namely sequences (#;) with exactly two limit points, turns out
to be special among bounded sequences.

Before we can state the criterion for this situation, we have to in-
troduce some notation. Let £>2 and 1<m,<m, be integers with
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(m,),=my, ---m,,, say. We define: m, h-divides m, (or m, is h-divisible by
m,, or m, |, m,) if and only if

for some integer L > 1, i.e,, {m ), is a period of (m,),. Furthermore, m, and
m, are called A-dependent if and only if some positive integer a h-divides
m, as well as m,, i.e,, (m,), and (m,), have a common period. Otherwise,
m, and m, are said to be /-independent.

THEOREM 2. Let g =2, h=22, and let (n;) be a bounded sequence of non-
negative integers, which is not ultimately periodic and has exactly two limit
points Ny < N,. Then a,(g) is irrational if and only if

g¥ 1 g™ (2)

For ultimately periodic sequences (#,), the corresponding «,( g) is clearly
rational, which makes the condition of non-periodicity indispensable. The
restriction to sequences (#1,) with exactly two limit points is also necessary.
In order to see this, we first mention that for N, < N,, the assertion (2) is
equivalent to the h-independence of g™ and g™* (as demonstrated in the
proof of Theorem 2). Now suppose we have a sequence (n;) with three
limit points N,, N, and N,. If we assume that g™, g™ and g™ are pairwise
h-independent, we still cannot conclude that a,(g) is irrational. Take for
instance g =2, h=S5; then

(=2 (g=4  (g),=224

are pairwise A-independent. However, it is easy to define a sequence (n,),
which is not ultimately periodic, with n,e {1, 2, 6} having the limit points
1, 2 and 6 such that

as(2)=0224¢Q.

By use of a theorem of Shorey and Tijdeman [6], which in turn is an
application of Baker’s results for linear forms in logarithms, we can prove
that for sequences as defined in Theorem 2, the number q,( g) is irrational
except for finitely many pairs N, < N,.

THEOREM 3. Let g>=2 have a fixed prime factor or h=2 be a fixed
integer. Then there is an effectively computable constant ¢( g) resp. c(h) only
depending on g resp. h and, moreover, a finite set V of pairs of integers with

card V<c(g),
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resp.
card V< e(h),

such that for any not ultimately periodic sequence (n;) with exactly two limit
points Ny < N,, (N,, N,) ¢V, a,{g) is irrational.

The proof of Theorem 3 will show that the constant c¢(g), hence the
cardinality of the exceptional set V' is effectively computable. The method
does, however, not yield a bound for the size of the largest pair in V, since
Lemma 2 is ineffective in this sense.

For sequences (n;) with more than two limit points, we show the
following irrationality criterion.

THEOREM 4. Let g =2, h=2, and let (n;) be a bounded, not ultimately
periodic sequence of non-negative integers having exactly J limit points
N < -~ <N, If

g¥#g" modh (3)

for all 1 <i<j<J, then a,(g) is irrational.

The theorem says that a,(g) is irrational whenever the last digits of the
integers g™ (1<i<J) are pairwise distinct. As the proof will show the
conclusion also holds if the first digits of the g"' are pairwise distinct.

For J=1, the theorem is obviously true, since then (n,) is ultimately
periodic. For J =2, Theorem 4 is an immediate consequence of Theorem 2.

Condition (3) implies pairwise s-independence of the g". The example
following Theorem 2 demonstrates, however, that pairwise independence is
not sufficient for the irrationality of «,(g) for J > 2.

2. SeqQuENcEs WITH ExacTtLy Two LiMiT PoiNTs: PROOF OF THEOREM 2

In this section, we shall write

a=a, -a,
for the finite sequence of non-negative integers a,, ..., a,. Such an a will be
called self-overlapping if for some j, 1< <r, we have ¢, ,=a, for all
1 <i<r, where q;, :=a, for k=imod r and 1 <i<r. The following lemma
reveals that a sequence is self-overlapping if and only if it has a proper
subperiod.

LEMMA 1. Let a=a,---a, be given. If a is self-overlapping, then a is
periodic and contains a period of length d<r,d | r.
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Proof. Since a is self-overlapping, there is some j, 1 <j <r, such that
forall 1 <i<r,

A, =d; ;=i 5= 0 T digoy—np (4)

where
’

(r,j)

roi=

The subscripts in (4) are pairwise incongruent mod r, but pairwise
congruent mod (r, j). Hence a; = a,, for all i; =i, mod (r, j), which proves
the lemma with d=(r,j).

PROPOSITION. Let g =2, h =2, m and n be non-negative integers such that
g™ and g" are h-independent. Let (n;) be a sequence with n;€ {m, n}, and
define g,=(g"),- If

a,(g)=0-g,8:8;

is rational, then (n;) is ultimately periodic.

Proof. Without loss of generality , m and n both occur infinitely often
in (n,), because otherwise (n,) is obviously finally constant, thus ultimately
periodic.

We assume that (n;) is not ultimately periodic. Let

a=a,---a, :=(g",

and
bi=by b, :=(g"h,

say.
Suppose g is periodic and has a period

a:=a, --a,

with « < r, and minimal u, hence

riu

a=(a’)

where (@)! :=a and (a)"*':=(a)"a for n>=1. By definition, we have for
all i

a for n;,=n,
g =
R for n,=m.
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We define the sequence (g;) by replacing the terms g, = ¢ in the sequence
(g:) by r/u terms a’; the terms g, = b remain unchanged (apart from their
index). One might think of this procedure as stretching the old sequence.
We clearly have

0-218283 -+ =a,(g).

We claim that the sequence (g;) is not ultimately periodic. To prove this
we proceed as follows. Since (#,) is not ultimately periodic by assumption,
the same holds for (g;). Hence the terms ¢ and b both occur infinitely often
in (g,), thus ¢’ and b both occur infinitely often in { g}). Suppose (g}) were
ultimately periodic. Without loss of generality we then may assume that
(g;) is periodic,

'

’ '
awg__:ja =g1, L) g;

o~

g, g

for some ¢, say. Therefore, we have for 1 €/ <1t

! ! ! _ ' ’ ’ ’ 13 13
8108 8o =Gl B 12 & o B B1e o Bl

We choose the least j=j, such that g; =b and g} , (=a’. By definition, o'
occurs in (g}) always in blocks of lengths r/u. By choice of j,, each of these
blocks

(a" ) (ke N) (3)
lies completely in a period

r ! ! ’
Sio+trr 58Uy 8usyivts 2 8Ur ) r+jp—1 (6)

for some /20, since the next period starts with b. By replacing each block

(5) in (6) by a block (a)*, we have reconstructed our old sequence (g;),

which is now obviously periodic with the period corresponding to (6). This

contradicts the initial assumption, hence ( g}) cannot be ultimately periodic.
After renaming, we have two finite sequences of digits

a=da, --a,, b=b,--b,,
with r<s, where g has no subperiod and is itself not a period of 5 (by

h-independence). Moreover, there is a not ultimately periodic sequence (n,)
over {m, n}, such that for

_fa for n,=n,
&= b for n,=m,
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the number

08,8283 =0-C ¢,
say, is rational.
For I €/ </ let

I:={nl+j:n>0}.

Since ¢ appears infinitely often in (g;), the box principle shows that for
some j, 1 <j </ there is an infinite set /* = /,, such that for all ke /* the
digit ¢, is the first digit of @, i.e., ¢, is the first digit of a g, with n,=n. Let
k, <k, be two elements of /*. Clearly,

k,=k,mod /. (7)
Let ¢, resp. c,, be the first digits of g, Tesp. g, withn,=n,=nlfg, ,,=

g,y for all i>0, then n,,,=n,,, for all i>0, and (rn;) would be
ultimately periodic. Thus there is a least i, > 1 satisfying g, ., # .+ 4> 1.6

gi|+i(.=gﬂ gl:+11):b

(or the other way round, which is dealt with analogously). Since r <s, we
conclude by (7) and the minimality of i,

b:gbr'+l'”b.v (8)

for s>r; for s=r, we have a=5. Clearly, Ziri+1 =9 OF & 4ips1 = b.
By (8), the sequence of digits of g, ., begins in any case with g, hence

b=aabs, b,
for s > 2r, and

bzgal'”a,&'—r

for r<s<2r. Writing s=qgr+d with ¢g=1 and 0<d<r, we obtain by
induction

b=(a)a, -a, (9
For d =0, we have
b={(a)",
but this contradicts the conditions on « and b. Thus 0 <d <r. By (9), the
first (g+ 1) r+ d digits of

gi3+iugf1+i(,+l e
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ba=(a)a,- -a,a.
Since g, ., =a, the first (¢ + 1) r + d digits of

i ig8iy+inrt """
are

(a)™! a,---day.

(10)

(11)

By (7), the sequences (10) and (11) are equal, in other words, « is self-over-
lapping. By Lemma 1, ¢ contains a smaller subperiod, which contradicts
the properties of @. Hence the initial assumption on (#;) cannot hold. This

proves the proposition.

Proof of Theorem 2. First suppose that g™ |, g™ Then

(gNl)h =a,---4a,,
say, is a period of (g™*),, and
ah( g) = 0 . b] e b[ra’

for some integers b,(1 <i</), thus a,(g) is rational.
On the contrary, let

gh b g™
We assume g™ and g"* are h-dependent, namely
(g™, =(a)"
and

(g™)=(a)”

witha=a,---a,, s, <s,,8ay. Let s,=¢s, +rforsomeg>=1and 0 <r<ys,.

Suppose that > 0. For

Ai=ah'" " +ah' *+ - +a,
and H := /', we have
g“N"ZA(H‘T171+ o+ HA1)
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and

gV =AH* '+ ... + H+ 1),
therefore

wow HP '+ -+ HA
—H‘y'71+ +H+l

4

q st
=(H“¥I‘1+"'+H+1)¥l<<z Z Hj.v1+r x>_+_
j=1ls=1

+H“W~~+H+Q

H '+ ... +H+1
H' '+ ..+ H+1

q
— Z Hu’flb.\-\+r+

J=1

Since r<s,, the fraction is not integral, which is contradictive. Hence,
r =0, which means that s, |s,. This in turn contradicts (12). For this
reason, g™ and g™ have to be A-independent.

Since (#,);. r, 1s bounded, having exactly two limit points N, < N,, there
is an #, such that (n,),;,, and n:= N, m := N, satisfy the conditions of the
Proposition. Since (#,) 1s not ultimately periodic, we conclude that a,(g) is
irrational, as desired.

3. SEQUENCES WITH ExacTLY Two LiMIT POINTS: PROOF OF THEOREM 3

LemMa 2[6]. (i) Let g=2 have a fixed prime factor. Then the
equation

e
L 13
=8 (13)

has only finitely many solutions in integers h=2, t=1, L>1 and d>3
(bounded by an effectively computable constant only depending on g).

(1) Let h=22 be a fixed integer. Then eq. (13) has only finitely many
solutions in integers g =2, t =1, L21 and d = 3 (again effectively bounded).

Proof. Bytaking a:=b:=1,x:=h", y:=gand g :=d, our lemma is an
immediate consequence of [6], Theorem 5(iv) for even L and Theorem
5(vi) for odd L.
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Proof of Theorem 3. 1If (n;) is unbounded, «,(g) is irrational by
Theorem 1. Therefore, we may assume that (n;) is bounded. Then by
Theorem 2, a,(g) is rational only if

g1, g™, (14)
i.e., there are integers ¢ > 1, L > 2 and digits 0 <a, </ {1 <i<¢), such that
gV =ah’ '+ .. +a,, (15)
ghlr=gM " R+ ], (16)
Set == N,— N,. Then

At —1

(I:}(L—rl)l ;1 1: )
g 1 + + 1+ 1

Assume that g has some fixed prime factor. By Lemma 2(i), d, A, L, and
t are effectively bounded in terms of g. Since a, < h, we conclude from (15)
that g™, hence N, is bounded by some constant only depending on g. Since
d=N,—N,, this implies that N, is also bounded which proves the
theorem in this case.

The same argument yields the desired result, if 4 is fixed.

4. BoUNDED SEQUENCES: PROOF OF THEOREM 4

In order to prove Theorem 4, we make the assumption that «,(g) 1s
rational, without loss of generality

alg)=0.-a, a,

say. By the remark following Theorem 4, we may further assume that J > 3.
It remains to show that for some 1 <i<j</J,

gV =g" mod 4. (17}

(This is, of course, trivial for J>h by a box principle argument.)
We define

& :Z(g”()h‘

Hence

a,(g)=0-g,8,85-,
say. For 1< </, let

I={nl+j:nz0}.
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Since N, is a limit point of (#n,), for at least one j, 1 <j </ there is an
infinite set /* < /;, such that for all ke 7* the digit a, is the first digit of
some g; with

g =(g"),.
Let | <k, <k, be two elements of /*. We clearly have
ki=k, mod /. (18)
If a, resp. a,, are the first digits of& resp. g,,. say, with
£, =8, =(8")s

then by (18), we have 4, ,=a,, ,, in other words, the last digits of g, _,
and g,, , are equal. If g, , #g, ,, (17) is proven. Otherwise, we look at
g, - and g, _, and proceed recursively.

A problem occurs only in case

gl]—i:glzfi (19)
for all 1 <i<,, and this for all pairs i, <, corresponding to some k, <k,
in /* Then we fix k,, k,el* k,<k,, and pick some kel* satisfying
k —ky>ky—k,, where a, s the first digit of g;, say. By (18) and (19),

i+ &i+1> 0 8in- 1
and
i 8n+1s - 8i

share a common subperiod. Since this holds for any ke /* and /* is an
infinite set, we conclude that the subperiod is a period of

gﬂvgi1+l_ﬁgi|+lv

This means that the sequence (g,) is ultimately periodic. By definition of
g:. this also holds for (n,), contradicting the conditions of the theorem.
Therefore, (19) does not occur, and this gives the result.
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