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Abstract

Let A be a finite-dimensional algebra given by quiver and monomial relations. In [E.L. Green,
D. Zacharia, Manuscripta Math. 85 (1994) 11–23] we see that the Ext-algebra of A is finitely gen-
erated only if all the Ext-algebras of certain cycle algebras overlying A are finitely generated. Here
a cycle algebra Λ is a finite-dimensional algebra given by quiver and monomial relations where the
quiver is an oriented cycle. The main result of this paper gives necessary and sufficient conditions
for the Ext-algebra of such a Λ to be finitely generated; this is achieved by defining a computable
invariant of Λ, the smo-tube. We also give necessary and sufficient conditions for the Ext-algebra of
Λ to be Noetherian.
© 2004 Elsevier Inc. All rights reserved.
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Introduction

Let Q be an oriented cycle with n vertices and n arrows. Label the vertices with the
natural ordering 1, . . . , n so that there is one arrow from i to i + 1 for 1 � i < n and one
arrow from n to 1. Let k be an algebraically closed field, I an admissible ideal of the path
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algebra kQ with a minimal generating set ρ of m monomial relations, which we fix, such
that kQ/I is a finite-dimensional algebra. We say that a path in kQ is a relation if and
only if it is in the set ρ. Hereinafter we let Λ = kQ/I , reading paths from left to right.
Let r denote the Jacobson radical of Λ, and let Λ̄ = Λ/r . Then the Ext-algebra of Λ,
denoted E(Λ), is the graded k-algebra

⊕∞
i=0 Exti (Λ̄, Λ̄), with multiplication the Yoneda

product.
The main result of this paper, Theorem 4.14, gives necessary and sufficient conditions

for E(Λ) to be finitely generated when Q is an oriented cycle. We also present a fast
method for determining if these conditions hold. This is motivated by [4, Proposition 1.6],
which states that the Ext-algebra of an arbitrary monomial algebra given by quiver and re-
lations is finitely generated only if the Ext-algebras of certain cycle algebras are all finitely
generated. Cycle algebras have an oriented cycle as underlying quiver and therefore are
exactly those we study here. Using the same machinery that we use for finite generation
of E(Λ), we also give necessary and sufficient conditions for the Ext-algebra of Λ to be
Noetherian.

The paper is structured as follows. In Section 1 we present a convenient way of rep-
resenting the basis elements of E(Λ): the smo-tube TΛ. This is improved in Section 2,
where Theorems 2.3, 2.5, and 2.11 give conditions on the smo-tube that speed-up its cal-
culation. Section 3 demonstrates the existence of natural constraints on TΛ, culminating in
Theorem 3.10, which serves to reduce computational work even further. This section paves
the way for Section 4 where our main result, Theorem 4.14, gives necessary and sufficient
conditions for the finite generation of E(Λ). We then give some special cases of this re-
sult. In Section 5 we give necessary and sufficient conditions for E(Λ) to be a Noetherian
ring.

Background and preliminaries

We now give some further notation that will be required. Let p be a path in kQ. We
denote by �(p) the length of p and by o(p) and t(p) the start and end vertices of p,
respectively. A path q is an initial subpath of p if p = qs for some path s ∈ kQ. A path q

is a terminal subpath of p if p = rq for some path r ∈ kQ.
Define a cycle algebra Λ to be a quotient of a path algebra that has an oriented cycle

Q for a quiver, and that has monomial relations. Then we have a very nice description of
the Yoneda product for E(Λ) via maximal overlaps of these relations. We recall the basic
definitions from [3] and recursively define certain sets of paths denoted Qz+1. Let Q0 be
the set of trivial paths of Q, Q1 the set of arrows and set Q2 = ρ. Let B be the usual basis
of kQ consisting of all finite paths, and let M = {b ∈ B: no subpath of b lies in ρ}. For
z � 1, a path p in kQ is a z-prechain if p = qwu, where q ∈ Qz−1, qw ∈Qz, u ∈ M−Q0,
and wu has a subpath in Q2. Call a z-prechain a z-chain if no proper initial subpath is a
z-prechain. Then Qz+1 is defined as the set of all z-chains, z � 1.

These z-chains correspond to the paths of maximal overlap sequences of [2], [4] and
also [1]. The terminology is understood in the following way. Let s, t ∈ ρ. The relation
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t is said to overlap the relation s if there are paths X, Y in kQ such that Y t = sX, with
1 � �(Y ) < �(s) and 1 � �(X) < �(t). This is illustrated in the following diagram:

t

s

Y

X

It is then clear that if t overlaps s, the path sX is a 2-prechain. Moreover, we say t

maximally overlaps s if t overlaps s and further, there are only 2 subpaths of Y t that are
relations: the proper initial subpath s and the proper terminal subpath t . If t maximally
overlaps s, then (s, t) is a maximal overlap sequence and sX is the underlying path of
(s, t). In this case the path sX is a 2-chain and so sX ∈ Q3. More generally, for z � 3 and
s2, s3, . . . , sz ∈ ρ, (s2, s3, . . . , sz) is a maximal left overlap sequence with underlying path
X2X3 · · ·Xz if

(i) X2 = s2;
(ii) 1 � �(Xi) < �(si) for i = 3, . . . , z;

(iii) there exist paths Y3, . . . , Yz with XiXi+1 = Yi+1si+1 for i = 2, . . . , z − 1;
(iv) there are only 2 subpaths of Y3s3 that are relations: the proper initial subpath s2 and

the proper terminal subpath s3;
(v) for i = 4, . . . , z, there is only 1 subpath of Yisi that is a relation: the proper terminal

subpath si .

The above conditions are visualised, thus:

s3 Y5
X4

s5

s2=X2

Y3

Y4

X3
s4

X5

. . .

sz−1

Xz

sz−2 Yz

Xz−1
sz

The path X2X3 · · ·Xz is a (z − 1)-chain and is thus an element of Qz. The degree of the
maximal left overlap sequence (s2, s3, . . . , sz) is z. Throughout the paper a maximal left
overlap sequence will be used interchangeably with its underlying path and will usually be
illustrated, thus:

s3 s5

s2 s4

. . .

s2k−1

s2(k−1) s2k

Note that if for some z � 3, P z = (s2, s3, . . . , sz) is a maximal left overlap sequence
with underlying path X2X3 · · ·Xz, then so is P z−1 = (s2, s3, . . . , sz−1) with underlying
path X2X3 · · ·Xz−1. We call Xz the path of unoverlapped arrows of P z. Note that P z =
P z−1Xz.

There is an analogous concept of a maximal right overlap sequence. In fact, from [1] we
know that the underlying path of a maximal left overlap sequence of degree z is also the un-
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derlying path of a maximal right overlap sequence of degree z and vice versa. Henceforth,
we refer to such a path as the underlying path of a maximal overlap sequence; however
the construction will always be considered as from the left. We comment further in Sec-
tion 5.

These maximal overlap sequences are of major importance, since they describe a mini-
mal projective resolution of Λ̄. Following our notation, for z � 0 the zth projective Pz in
such a resolution is given in [2] as

Pz =
⊕
p∈Qz

epΛ,

where ep is the trivial path at t(p). For each p ∈ Qz there is a corresponding element εz
p in

ExtzΛ(Λ̄, Λ̄). This element εz
p is represented by the Λ-homomorphism hz

p ∈ Hom(Pz, Λ̄)

given by

hz
p(eqλ) =

{
0 if p �= q in kQ,
epλ̄ if p = q in kQ,

where λ̄ is the image of λ under the canonical surjection Λ → Λ̄. Each set Qz is identified
with a k-basis of ExtzΛ(Λ̄, Λ̄) in the obvious way by taking p in Qz to εz

p in ExtzΛ(Λ̄, Λ̄).
The set Gz := {εz

p: p ∈ Qz} is a basis for ExtzΛ(Λ̄, Λ̄) and from [4] we have that the
union of all the Gz, for z � 0, forms a multiplicative basis for E(Λ). This means that for
εz
p ∈ Gz and εw

q ∈ Gw , either εz
pεw

q = 0, or εz
pεw

q ∈ Gz+w . The one-to-one correspondence
between Qz and Gz, for each z � 0, given in [4], means that for the remainder of the paper
we may deal with maximal overlap sequences as if they themselves form the multiplicative
basis of E(Λ). With this identification, a maximal overlap sequence of degree 0 is a trivial
path, and a maximal overlap sequence of degree 1 is an arrow. If P z1 and Qz2 are maximal
overlap sequences of degree z1 and z2, respectively, then P z1Qz2 represents a non-zero
element of E(Λ) if and only if the product of paths P z1Qz2 in kQ is the underlying path
of a maximal overlap sequence of degree z1 +z2. In this case P z1Qz2 represents an element
in E(Λ) of degree z1 + z2.

In particular, with this description we can avoid the lifting of maps usually associated to
the Yoneda product. Therefore, maximal overlap sequences are fundamental to the results
in this paper.

The definitions of the above paragraphs work for a general quiver Q with monomial
relations, but in this paper we restrict Q to an oriented cycle. This is a special case where,
given a (z − 1)-chain p, there is at most one z-chain of the form pr . We can thus form a
sequence of z-chains defined as follows. Let v be the start vertex of some relation r , and
for z � 2 let Az

v be the unique (z − 1)-chain, if it exists, starting at v. Note that A2
v = r .

Then we say the sequence Av := (Az
v)z�2 is the extending sequence of Λ starting at v. We

define o(Av) as being the vertex v. The suffix will often be omitted if the start vertex itself
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is clear from the context or if it is unspecified. Thus Av is formed from the sequence of
maximal overlaps

s3 s5

s2 s4

. . .

s2k−1

s2(k−1) s2k

. . .

with o(s2) = v and Az
v being the maximal overlap sequence (s2, s3, . . . , sz). We also define

the lower half of Av ; this is the sequence of relations (s2j )j�1, where each s2j is the

unique relation such that t(s2j ) = t(A
2j
v ). The upper half of Av is the sequence of relations

(s2j+1)j�1, where each s2j+1 is the unique relation such that t(s2j+1) = t(A
2j+1
v ). We may

also define the maximum degree attained by Av , denoted maxdegAv . If the sequence Av

terminates at some degree z � 2 (that is Az
v is a (z − 1)-chain but Az+1

v does not exist),
then maxdegAv = z; it is defined as ∞ otherwise. Note that maxdegAv must always be at
least 2.

Monomial algebras and cycle algebras

Here we review the results that show the fundamentality of cycle algebras in the study of
the Ext-algebra of a monomial algebra. We draw our material from [4] and from discussion
with the authors of [4].

Definition 0.1 ([4]). Let B be a monomial algebra and let Q be a quiver consisting of a
single oriented cycle in the quiver Γ of B . Note that we allow Q to go through the same
vertex or arrow of Γ more than once, so certain vertices or arrows of Γ may have several
copies appearing in Q. Let f : Q → Γ be a map of quivers, that is, f sends vertices to
vertices and arrows to arrows, so that if η is an arrow from i to j then f (η) is an arrow
from f (i) to f (j). We take the relations on Q by pulling back the relations on Γ , that is, a
path in Q is a relation if its image in Γ is a relation in B . Let ZQ be the algebra with quiver
Q and with the above relations on Q. Then ZQ is said to be a cycle algebra overlying B .

For oriented cycles Q and Q′, ZQ′ is a finite covering of ZQ if there is a surjective
quiver map Q′ → Q that takes relations to relations and each relation in Q lifts to one in Q′.
Then we say that a cycle algebra ZQ′ overlying B is a minimal cycle algebra overlying B

if, for all cycle algebras ZQ, whenever ZQ′ is a finite covering of ZQ then ZQ ∼= ZQ′ .

The reason we consider minimal cycle algebras is due to the following result from [4].
For completeness we provide a more detailed proof.

Proposition 0.2 ([4]). Let Q be the quiver of a minimal cycle algebra ZQ and let Q′ be
the quiver of a cycle algebra ZQ′ overlying ZQ. Then E(ZQ′) is finitely generated if and
only if E(ZQ) is finitely generated.
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Proof. Let Q have q vertices and q arrows. Then there exists a positive integer d such that
Q′ has dq vertices and dq arrows.

Let E(ZQ) be finitely generated, with b1, . . . , bl a complete set of generators from our
usual basis described in the previous section. Each bi in E(ZQ) lifts to one of d different
paths in Q′. Since the relations on Q′ are taken from Q, we get that each bi corresponds to
a set of d basis elements of E(ZQ′), denoted b′

i = {b′
i,1, . . . , b

′
i,d}. We will now show that

E(ZQ′) is finitely generated with generating set
⋃l

i=1 b′
i .

Let a′ be an element from the usual basis of E(ZQ′). The underlying path in Q′ of a′
corresponds to a path a in Q. Since the relations on Q′ are taken from Q we have that a

is a basis element of E(ZQ). Write a as a finite product of the bi ’s. For each copy of a
generator that appears in this product there is a single natural choice 1 � j � d so that a′
is written as a non-zero product of the b′

i,j ’s. We can be certain of obtaining a non-zero
product because the relations of Q′ are taken from Q. Since a′ was arbitrary, E(ZQ′) is
finitely generated.

Similarly, if we assume that E(ZQ′) is finitely generated, then an arbitrary basis element
a in E(ZQ) corresponds to some a′ in E(ZQ′), and thus it is shown that E(ZQ) is finitely
generated. �

We now consider the following claim from [4].

Claim ([4, Proposition 1.6]). Let B be a monomial algebra. Then the Ext-algebra E(B) is
finitely generated if and only if the k-algebras E(ZQ) are finitely generated for all minimal
cycle algebras ZQ overlying B .

We give a proof for one direction stated in the following proposition.

Proposition 0.3. Let B be a monomial algebra and let the Ext-algebra E(B) be finitely
generated. Then the k-algebras E(ZQ) are finitely generated for all minimal cycle alge-
bras ZQ overlying B .

Proof. Let B be a monomial algebra with quiver Γ and let E(B) be finitely generated
with (basis) generators b1, . . . , bl . Also let ZQ be an overlying minimal cycle algebra
of B . Reordering if necessary, let b1, . . . , bk be precisely those generators of E(B) whose
underlying paths lie on the closed path in Γ that is the image of Q. Since the relations of
ZQ are lifted from B , we have that b∗

1, . . . , b∗
k are corresponding basis elements of E(ZQ).

Now let a∗ be a basis element of E(ZQ). Then we have a as the corresponding basis
element of E(B), so a can be written as a product of b1, . . . , bl . However, if bi is a subpath
of a, then b∗

i is a path in Q, thus a is a product of b1, . . . , bk and so a∗ is a product of
b∗

1, . . . , b∗
k .

Since a∗ was arbitrary, we get that E(ZQ) is finitely generated. �
The details of the proof of this proposition are not given in [4]. Following discussion

with the authors of [4], we state here that the reverse implication of the claim above is
false. They have provided a counter-example which we give as Example 11 in Section 4,
where we can treat it more fully.
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However, it is the direction proved in Proposition 0.3 above that is most useful to us.
With it, it is clear that finding just one overlying cycle algebra with infinitely generated
Ext-algebra gives us the Ext-algebra of B infinitely generated. Hence, studying the Ext-
algebras of cycle algebras is fundamental. Of course, B has finite global-dimension if its
quiver has no oriented cycles: then E(B) is trivially finitely generated.

We note here that a similar result exists for the respective Ext-algebras being Noetherian.
In Section 5 we look at when the Ext-algebra of a cycle algebra is Noetherian, and Propo-
sition 5.5 is the Noetherian analogue to Proposition 0.3.

1. The smo-tube

We now turn exclusively to the study of the Ext-algebra of a monomial cycle algebra Λ,
that is Λ = kQ/I , where Q is an oriented cycle and I has monomial generators. In this
section we give the basic definition of the smo-tube and show how it relates to the extend-
ing sequences of Λ. We begin by giving some notation that will be used throughout the
paper.

If v and w are vertices let v → w denote the path in kQ from v to w with length in the
range 0 to n − 1 inclusive. The arrow will only ever be used with this precise meaning. Let
v be a vertex, z some integer. Then v + z is a vertex where the addition is integer addition
modulo n. We identify the vertex v with the trivial path ev in kQ of length 0 at v. Let p

be a path in kQ. If p ∈ kQxkQ for some path x of length 0 (or 1), then we say that x

is a vertex in p (respectively arrow in p). Likewise if p ∈ JxJ , where J is the 2-sided
ideal of kQ generated by the arrows, we say that x is a vertex (respectively arrow) strictly
in p.

Label the relations r1, . . . , rm such that the concatenation of m paths H1 → H2 →
·· · → Hm → H1 has length n, where Hi = o(ri). Likewise let Ti = t(ri). Define m+1 = 1.
We call Hi the head vertex or head, and Ti the tail vertex or tail of the relation ri . An ar-
row is called a head arrow of ri if its start vertex is Hi . Let αi be the head arrow of ri , so
o(αi) = Hi , and let ωi be the arrow that ends at Ti , so t(ωi) = Ti . A head vertex H is said
to follow a tail vertex T if the path T → H is of minimal length among all paths starting
at T and ending at a head vertex. If a tail vertex T is also a head vertex H then we also say
H follows T .

Our first results give us some control over the behaviour of maximal overlap sequences.
Proofs of the first two results use induction and are left to the reader.

Proposition 1.1. Let Λ have m relations r1, . . . , rm with the path H1 → ·· · → Hm → H1
of length n. Then the path T1 → ·· · → Tm → T1 is also of length n.

Proposition 1.2. The path of unoverlapped arrows at the end of an odd-degree maximal
overlap sequence always has length less than or equal to n.

Lemma 1.3. Let P 2i be a maximal overlap sequence of degree 2i with last relation s2i . If
�(s2i ) > n, then one can always overlap P 2i on the right with another relation.
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Proof. If i = 1, the result follows since a relation of length greater than n has to overlap
itself. For i > 1, P 2i takes the form:

P 2i =
s3

s2

. . .

s2i−1

p

s2(i−1) s2i

q

If there are n or more unoverlapped arrows at the end of P 2i , then we are done, so set p

equal to the path of unoverlapped arrows and suppose �(p) < n; let q be such that s2i = qp.
Now, since �(s2i ) > n, we must have at least two copies of the head arrow of s2i appearing
in s2i . By Proposition 1.2, only one copy can appear in q and so we must have at least one
copy in p. �

We will use the following example throughout the paper to illustrate our method.

Example 1. Let Q be an oriented cycle with 25 vertices labelled 1, . . . ,25. Label an arrow
ηi if it starts at vertex i. Let I = 〈r1, r2, r3, r4, r5, r6, r7, r8〉, where

r1 = η1 · · ·η13, r2 = η7 · · ·η15, r3 = η8 · · ·η17, r4 = η9 · · ·η21,

r5 = η14 · · ·η24, r6 = η20 · · ·η4, r7 = η21 · · ·η10, r8 = η23 · · ·η11,

and let Λ = kQ/I .
We thus have head vertices H1 = 1, H2 = 7, H3 = 8, etc., and tail vertices T1 = 14,

T2 = 16, T3 = 18, etc. The following diagram illustrates which vertices are head or tail
vertices in our example:

•

•

•
•

•

•••

•

•

•
•

•
•

• H1

T6

H2

H3

H4

T7
T8H5=T1

T2

T3

H6

H7

T4

H8

T5
>

<

1

5

7

8

9

11
12

14

16

18

20

21

22

23

25

Note that H2 is the head vertex that follows T6, and H5 follows T7, T8, and T1.
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Definition 1.4. A semi-maximal-overlap-sequence or smo-sequence of a tail vertex Ti is a
sequence of indices (a1, a2, . . .) from the set Xm = {1, . . . ,m}. It is defined inductively in
the following way:

(i) a1 = i.
(ii) For k � 1, ak+1 = l where Hl is the head vertex that follows Tak

.

The smo-function of the algebra Λ, fΛ : Xm → Xm, is defined as fΛ(ak) = ak+1.

Since entries in an smo-sequence are taken from a finite set and an entry is dependent
only on its direct predecessor, we have that after a certain stage the sequence will repeat.

Definition 1.5. Let (al) be an smo-sequence. Then a subsequence (ai, ai+1, . . . , ai+j−1) is
a repetition in Λ if j � 1 is minimal such that ai = ai+j . The order of this repetition is j .
If ak is a component of a repetition, i.e., i � k � i + j − 1 as above, call ak a repetition
index and rak

a repetition relation. We say two repetitions are equal if they share a com-
mon component, that is they have respective components ak and bk′ such that ak = bk′ . It
is clear that if two repetitions share one component in this way, they share all components.
The connective path for repetition relations rak

and rak+1 is the path Tak
→ Hak+1 , de-

noted cak+1 . The connective paths of a repetition R = (ai, ai+1, . . . , ai+j−1) are the paths
cai+1 , cai+2 , . . . , cai+j

and the connective paths of Λ are those of all the repetitions of Λ. If
x is a component of R, then the head vertex Hx is said to be R-indexed.

The lower half of an extending sequence starting at the vertex Ha1 may be illustrated as
below, with ai the first repetition index in the sequence (ak):

ra1 ra2

· · ·
rai−1 rai

cai+1 rai+1
cai+2 rai+2

· · ·
Ha1 Ta1 Hai

Tai
Hai+1 Tai+1 Hai+2 Tai+2

Note that no vertex of Q can be in two distinct connective paths of Λ.

Example 2. In Example 1 we have two distinct repetitions, each of order 2: R1 = (1,5)

and R2 = (2,6). We have four connective paths, η25 and e14 associated with R1, η5η6 and
η16η17η18η19 associated with R2. The smo-sequences of T1 and T2 are (1,5,1,5, . . .) and
(2,6,2,6, . . .), respectively.

Lemma 1.6. All repetitions of Λ are of the same order.

Proof. If Λ has precisely one repetition, and this is of order 1, we are immediately
done. We treat all other cases together. Thus let Rx be a repetition of order k with con-
nective paths cx2 , cx3, . . . , cxk+1 , let Ry be a repetition of order l with connective paths
cy2 , cy3, . . . , cyl+1 . Recall that cx2 is the path Tx1 → Hx2 and cy2 is the path Ty1 → Hy2 .
Relabelling if necessary, suppose that cx2 and cy2 are adjacent on the quiver, that is they
are the only distinct connective paths of Rx and Ry , respectively, that are subpaths of the
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path Tx1 → Hy2 . We will show that cx3 and cy3 are the only connective paths of Rx and
Ry , respectively, that are subpaths of the path Tx2 → Hy3 :

•

•

•

•

•

•

•

•

Hy2

Tx1

Ty1

Hx2

Tx2

Ty2

Hx3

Hy3

>

<

cx2

cy2

cx3

cy3

Let σ ⊆ ρ be the set of relations whose indices appear in Rx or Ry . In particular, the
head vertex of each of these relations is the end vertex of a connective path of either Rx

or Ry . By hypothesis, we have no head vertex indexed by a relation in σ in the path
Hx2 → Hy2 except the start and end vertices. Thus by Proposition 1.1, there is no tail
vertex indexed by a relation in σ in the path Tx2 → Ty2 except the start and end vertices.
Hence cx3 and cy3 are the only connective paths of Rx or Ry that are subpaths of the path
Tx2 → Hy3 . Inductively it follows that k + 1 = l + 1, giving equality of the orders of Rx

and Ry . �
Remark. The above proof gives us some insight not present in the statement of the lemma:
we will thus refer to the proof itself later in the paper. In particular, we note here a conse-
quence. Suppose that Λ has two or more repetitions, and let cx2 and cy2 be any two distinct
connective paths, with no other connective paths in the path Tx1 → Hy2 . Then cx2 and cy2

are in different repetitions.
The reader may like to note that diagrams of the sort in the proof above can be drawn to

illustrate most of the proofs in this paper.

We now define the smo-tube, a combinatorial description of the maximal overlap se-
quences of Λ.

Definition 1.7.

(1) A degeneration path is a path Tp → Hq , denoted dq , with no head or tail ver-
tices strictly in the path dq and such that, unless dq is of zero length, o(dq) is
not a head vertex and t(dq) is not a tail vertex. Then Hq follows Tp and we call
Tp and Hq respectively degeneration tail and head vertices. Notice that every con-
nective path has exactly one degeneration path as a terminal subpath: this means



536 G. Davis / Journal of Algebra 310 (2007) 526–568
that every repetition index is also the index of a degeneration head vertex. Let D

be the set of degeneration paths of Λ, with elements labelled dq1,dq2 , . . . ,dq|D| so
that p1 < p2 < · · · < p|D| with respect to the ordering of the relations of Λ, where
Tpi

= o(dqi
) for 1 � i � |D|.

(2) Place the smo-sequence of Tpi
in the ith row of an array where row 1 is at the bottom.

We call this array the smo-array.

In practice one need only write down the first L columns, for L = M + λ + 1, where
the M th column is the first to contain only repetition indices and λ is the order of the
repetitions. We can bound the size of L as follows. Consider any row i in the smo-array
that has entry (i,M − 1) not a repetition index. Since there are m relations, at least λ

of which are repetition relations, we have M − 1 � m − λ. This yields a bound of L =
M + λ + 1 � m + 2. Since |D| � m, we can have no more than m(m + 2) entries in the
first L columns of the smo-array.

Fix the above definitions of λ, M , and D for the remainder of the paper. We consider
the top row of the above array to be joined to the bottom, and so, once the flags of the next
definition have been placed, we will call this array the smo-tube and denote it TΛ. In this
spirit we will refer to the j th column as band j . Henceforth entry (i, j) refers to the entry
of the smo-tube (or array) in row i, band j . Thus, if (ak) is an smo-sequence such that
as = (i, j), for some s, i, j , then as+1 = (i, j + 1).

Example 3. In Example 1 we have 5 degeneration paths: η25, η5η6, e14, η18η19, and η22.
We thus have the smo-array:

1 2 3 4 5 6 · · · · · ·

5 6 2 6 2 6 2 · · · · · ·
4 5 1 5 1 5 1 · · · · · ·
3 4 8 5 1 5 1 · · · · · ·
2 3 6 2 6 2 6 · · · · · ·
1 1 5 1 5 1 5 · · · · · ·

Here we have M = 3 and λ = 2, giving L = 6. Let us look again at extending se-
quences to see how they relate to the smo-array. The extending sequence AH1 has lower
half (r1, r5, r1, r5, . . .) and upper half (r2, r6, r2, r6, . . .), yielding the overlaps

r2 r6 r2 r6

r1 r5 r1 r5

. . .
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However, the extending sequence AH2 terminates almost immediately, that is at degree 3,
with the maximal overlap sequence

r3

r2

It is clear that the reason for this degree 3 termination is that T2 is not the start of a degen-
eration path. We also view the overlaps from which AH3 is formed:

r4 r8 r5 r1

r3 r6 r2 r6

. . .

Note that in all but position 1, the upper half of AH1 is the same as the lower half of AH3 .
This occurs because the same head vertex, H6, follows T2 and T3.

The above example well illustrates what happens for general Λ, inasmuch as two
things go. Firstly, if Tk is not a degeneration tail vertex then AHk

terminates at degree 3.
This is clear since if Tk is not a degeneration tail vertex then it is immediate that we have
no head arrows in the path Tk → Tk+1. By Proposition 1.2, this path is equal to the path of
unoverlapped arrows in the maximal overlap sequence

rk+1

rk

This maximal overlap sequence therefore cannot be overlapped by a relation on the right.
Note that rk can always be overlapped by rk+1 if Tk is not a degeneration tail vertex. This is
why we include only degeneration tail vertices in the first band of the smo-array: all other
tail vertices give rise to extending sequences that terminate at degree 3.

Secondly, suppose that Ta and Tb are degeneration tail vertices. If Λ has only one
degeneration path take Ta = Tb , otherwise take Ta and Tb such that the path Ta → Tb

is of positive length (so Ta �= Tb) and contains no other degeneration tail vertices. We
consider the upper-half of AHa , (ra+1, rfΛ(a+1), rf 2

Λ(a+1), . . .), and the lower-half of AHb
,

(rb, rfΛ(b), rf 2
Λ(b), . . .). Let us show that rfΛ(a+1) = rfΛ(b). If Λ has only one degeneration

path, then this is immediate since HfΛ(b) is the head vertex that follows all tail vertices,
and thus follows Ta+1. So suppose Tb is different from Ta , as above, and consider Ta+1.
By hypothesis there cannot be a head vertex in the path Ta+1 → Tb, other than possibly Tb

itself, else we would have a degeneration tail vertex strictly in the path Ta → Tb. Hence we
have that HfΛ(b) is the head vertex that follows both Ta+1 and Tb , giving rfΛ(a+1) = rfΛ(b).
It follows immediately that r k = r k for all k � 1, and hence that the upper-half
fΛ(a+1) fΛ(b)
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of AHa is identical to the lower-half of AHb
in all places but the first. For this reason we

include only the lower halves of extending sequences AHk
, where Tk is a degeneration

tail vertex, as rows in the smo-array. We then get the upper halves automatically from the
row above. This simplifies matters a great deal, as long as we keep track of what is really
happening in band 1.

The above reasoning has shown that the smo-array contains all the information needed
to build the infinite extending sequences of Λ. However, with the smo-array as it stands,
we are unable to tell which, if any, of the extending sequences terminate. The problem is
that smo-sequences are infinite whilst extending sequences can be finite, terminating in a
maximal overlap sequence that cannot be overlapped on the right by a relation. We solve
this problem by introducing flags to the smo-array. The position of a flag in some row i of
TΛ indicates that the extending sequence with lower half associated to row i terminates;
the exact point of termination depends on the type of flag. For an extending sequence Av

of Λ, Theorem 1.10 gives the exact values of maxdeg(Av) for each position and type of
flag. The following definition gives the rules for marking the smo-array with the different
types of flag. Recall that αk is the first arrow of the relation rk .

Definition 1.8.

(0) Flags of type 0. For 1 � i � |D|, entry (i, j) is marked flag0 if and only if j = 1,
�(r(i,1)) � n and r(i,1) contains no head arrow other than α(i,1).

(1) Flags of type 1. If |D| = 1, then no entry is marked flag1.
If |D| > 1, then for 1 � i � |D| and 2 � j � L, entry (i, j) of the smo-tube is marked
flag1 if and only if (i, j) �= (i + 1, j) and no head arrow lies in the path T(i,j) →
T(i+1,j). Note that if i = |D| then i + 1 = 1.

(2) Flags of type 2. If |D| = 1, take (2,1) = (1,1) + 1, and (2, j) = (1, j) for j � 2. If
|D| > 1 and i = |D|, then take i + 1 = 1. Let N(i, j) be the number of occurrences of
α(1,1) in r(i,j).
(i) For 2 � i � |D|, 2 � j � L, entry (i, j) is marked flag2 if and only if∑j−1

k=1 N(i + 1, k) = ∑j

k=1 N(i, k) and
∗ for j = 2 we have (i,1) + 1 �= (i,2) and no head arrow lies in the path

T(i,1)+1 → T(i,2);
∗ for 3 � j � L we have (i, j) �= (i + 1, j − 1) and no head arrow lies in the path

T(i+1,j−1) → T(i,j).

(ii) Entry (1, j), for 2 � j � L, is marked flag2 if and only if 1 + ∑j−1
k=1 N(2, k) =∑j

k=1 N(1, k) and
∗ for j = 2 we have (1,1) + 1 �= (1,2) and no head arrow lies in the path

T(1,1)+1 → T(1,2);
∗ for 3 � j � L we have (1, j) �= (2, j − 1) and no head arrow lies in the path

T(2,j−1) → T(1,j).

Example 4. In Example 1 the only entry to be marked with a flag is entry (3,2): it is a
flag1. We return to this example in Section 2 with more detail.
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The above definition is a very slow way to calculate flags and so Section 2 will present
three theorems which speed up this calculation. However, we do have the following corol-
lary of Lemma 1.3.

Corollary 1.9. If all relations r are such that �(r) > n, then no flag0s or flag2s can be
placed in the smo-tube.

We complete this section by proving that the flags defined in Definition 1.8 really do
give us precisely the termination points of the finite extending sequences.

Theorem 1.10. Let A be an extending sequence with o(A) = Ha and let TΛ be the smo-tube
of Λ. Then

(1) maxdegA = 2 if and only if a = (i,1) for some row i of TΛ, and (i,1) is marked flag0;
(2) maxdegA = 3 if and only if a �= (i,1) for all rows i;
(3) maxdegA = 2j , some j � 2, if and only if a = (i,1) for some row i, and (i, j) is

marked flag2 and is the first flagged entry in row i;
(4) maxdegA = 2j + 1, some j � 2, if and only if a = (i,1) for some row i, and (i, j) is

marked flag1 and is the first flagged entry in row i;
(5) maxdegA = ∞ if and only if a = (i,1) for some unflagged row i.

Proof. Let us look in turn at the different ways in which an extending sequence might
terminate.

(1) Let A be an extending sequence; by definition A attains at least degree 2. The
degree 2 maximal overlap sequence is just a single relation, rk say. Thus by previous rea-
soning, A terminating at degree 2 is equivalent to k equalling (i,1), for some row i in TΛ,
and rk not having any relation overlapping it. This in turn is equivalent to k equalling (i,1),
for some row i in TΛ, and rk containing no head arrows other than αk once at the start:
exactly the condition needed to mark entry (i,1) with a flag0.

(2) We have seen already how TΛ excludes precisely those extending sequences that
terminate at degree 3.

(3) Whether the extending sequence A terminates at degree 2j , for some j � 2, is,
a priori, more difficult to determine. We know already that this condition is equivalent to
the degree 2j maximal overlap sequence of A,

A2j =
s3 s5

s2 s4

. . .

s2j−1

p

s2(j−1) s2j

having no head arrows in the path of unoverlapped arrows p. The problem is that p may
have length less, greater or equal to n. If �(p) � n, then there will be a head arrow in p, and
we can conclude that A does not terminate at degree 2j . If �(p) < n, then p equals the path
t(s2j−1) → t(s2j ). We then just need to check the path t(s2j−1) → t(s2j ) for head arrows
to determine whether or not A terminates at degree 2j . We calculate whether �(p) < n
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with a counting argument. Let A2j be the maximal overlap sequence shown above, with
o(A2j ) = o(s2).

Suppose first that the lower half of A2j is not in row 1 of TΛ. Consider the two paths
in kQ that consist of A2j−1 and A2j with the path aL appended to the start of each, where
�(aL) < n, o(aL) = H(1,1), t(aL) = o(s2) and aU is the path as shown below:

aU
s3 s5

aL s2 s4
H(1,1)

. . .

s2j−1

s2(j−1) s2j

Let U = aLA2j−1 and L = aLA2j . We visualise the paths U and L respectively in the
following natural way:

aU

s3 s5
H(1,1)

. . .
s2j−1

aL s2 s4
H(1,1)

. . .
s2(j−1) s2j

Write U = ckq , where c is the cycle such that �(c) = n, o(c) = t(c) = H(1,1) and q is such
that �(q) < n, o(q) = H(1,1), t(q) = t(s2j−1). Then L = Up = ckqp. We will count the
number of occurrences of α(1,1) in U and in L. Then, if α(1,1) occurs more often in L than
in U , we can conclude that at least one α(1,1) is in p. Since α(1,1) is a head arrow we would
know that A does not terminate at degree 2j . Otherwise, if α(1,1) occurs the same number
of times in U as it does in L, then we know it cannot occur in p. Thus �(p) < n and so we
check the path t(s2j−1) → t(s2j ) for head arrows as detailed above.

For any finite path ν ∈ kQ let N(ν) be the number of occurrences of α(1,1) in ν. Then

N(L) = 1 +
j∑

z=1

N(s2z) and N(U) = 1 +
j∑

z=2

N(s2z−1).

For firstly the “gaps” between the relations (the paths Yz, 4 � z � 2j , in the Preliminaries
section) contain no head arrows by maximality of the construction of A2j , and secondly,
since o(s2) �= H(1,1) the paths aU and aL contain exactly one copy of α(1,1). Thus

j∑
N(s2z) =

j∑
N(s2z−1) ⇐⇒ N(L) = N(U) �⇒ �(p) < n; and
z=1 z=2
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j∑
z=1

N(s2z) >

j∑
z=2

N(s2z−1) ⇐⇒ N(L) > N(U) �⇒ p

contains a head arrow. Note that the function N here is an extension to all paths of the
function of the same name in Definition 1.8. We leave it to the reader to verify that
N(s3) = N(i + 1,1), where s2 = r(i,1). This shows that marking entry (i, j) with a flag2
via Definition 1.8, part (2i), is equivalent to the corresponding maximal overlap sequence
terminating at degree 2j .

The case where o(s2) = H(1,1) is almost identical to above; the only change is that now
�(aL) = 0 and we have N(aL) = 0, N(aU) = 1. This is left to the reader.

(4) This part follows part (3) above, but without the necessity for the counting argument,
since by Proposition 1.2 the path of unoverlapped arrows p is always such that �(p) � n.

(5) This part is also left in the hands of the reader. �

2. Calculating flags

In this section we present three theorems that speed up calculation of the smo-tube
with its flags: for this reason the section becomes rather technical. Note that certain of the
auxiliary results presented here will be drawn upon throughout the remainder of the paper.
We will illustrate calculation of the smo-tube with two examples.

Lemma 2.1. For any entry (i, j) in an smo-tube, we have that the concatenation of paths
H(i,j) → H(i+1,j) → ·· · → H(|D|,j) → H(1,j) → ·· · → H(i−1,j) → H(i,j) is of length n.

Proof. Using Proposition 1.1 and the discussion in Definition 1.7, the result follows by
induction on j . �
Lemma 2.2. If x is some repetition index, then for all j greater or equal to 2, there exists
some row i in TΛ such that x = (i, j).

Proof. Recall that band 1 contains the indices of all degeneration tail vertices. By defini-
tion, the next entry in the smo-sequence of a such a tail vertex is the index of a degeneration
head. We get all degeneration head indices this way; these appear in band 2. As remarked
in Definition 1.7, each repetition index is also a degeneration head index, and so each rep-
etition index appears in band 2. Immediately we get that each repetition index appears in
band j , for all j � 2. �
Theorem 2.3. If an entry (i, j) of TΛ is assigned a flag1, then (i, j) �= (i + 1, j) and
(i, j + 1) = (i + 1, j + 1).

Moreover, if Λ has more than one repetition index, then (i, j) is assigned a flag1 if and
only if (i, j) �= (i + 1, j) and (i, j + 1) = (i + 1, j + 1).
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Proof. If entry (i, j) is marked with a flag1, then by definition (i + 1, j) �= (i, j) and there
is no head arrow in the path T(i,j) → T(i+1,j). This means that H(i,j+1) follows both T(i,j)

and T(i+1,j) giving H(i,j+1) = H(i+1,j+1) and so (i, j + 1) = (i + 1, j + 1).
Conversely suppose that (i, j) is such that (i, j) �= (i + 1, j) and (i, j + 1) = (i + 1,

j + 1); this means that either the path T(i,j) → T(i+1,j) or the path T(i+1,j) → T(i,j) is free
from head arrows. Suppose also that Λ has more than one repetition index. By Lemma 2.2,
all repetition indices occur in band j + 1 so, since Λ has more than one repetition index,
there must be a third row in TΛ, row k say, such that (i + 1, j + 1) �= (k, j + 1). This gives
us (i + 1, j) �= (k, j) and (i, j) �= (k, j). Thus we have that T(i,j) → T(i+1,j) → T(k,j) →
T(i,j) is a path of length n by Lemma 2.1 and Proposition 1.1. Since a different head vertex
follows T(k,j) than follows T(i,j) and T(i+1,j), there is a head vertex, namely H(k,j+1), in
the path T(i+1,j) → T(i,j). Thus there must no head arrow in the path T(i,j) → T(i+1,j), and
so (i, j) will be assigned a flag1. �
Proposition 2.4. The number of rows in TΛ that do not have a flag1 is equal to the number
of distinct repetition indices of Λ.

Proof. Recall that the M th band of TΛ is the first to contain only repetition indices. If
Λ has μ � 2 repetition indices, then by Lemma 2.2 there must be some row i such that
(i,M + 1) �= (i + 1,M + 1). By Lemma 1.6, we get (i, j) �= (i + 1, j), ∀j � 1. Thus by
Theorem 2.3, row i will never be marked flag1. Lemmas 2.1 and 2.2 give us exactly μ

rows i in TΛ such that (i,M + 1) �= (i + 1,M + 1), which gives us at least μ rows without
a flag1 by above. By Theorem 2.3, any row i with (i,M + 1) = (i + 1,M + 1) has a flag1.
This gives us precisely the same number of unflagged rows as we have repetition indices.

Suppose then that Λ has only one repetition index. We get our result immediately if
|D| = 1, so suppose |D| � 2. All entries of band M are equal to the same repetition index,
x say. From the proof of Lemma 2.2, band 2 contains at least 2 distinct indices and so we
have M � 3. Now, all entries of band M − 1 index tail vertices that are followed by Hx ,
so by Lemma 2.1 and Proposition 1.1 there exists exactly one row, i say, such that the
path T(i,M−1) → T(i+1,M−1) contains a head arrow. It follows from Theorem 2.3 that row i

will not get a flag1. Let row k be different to row i. Then there exists j , with 1 � j �
M − 1, such that (k, j) �= (k + 1, j) and (k, j + 1) = (k + 1, j + 1). We will show (k, j)

is marked flag1. To seek a contradiction suppose it is not. Then by definition, T(k,j) →
T(k+1,j) contains a head arrow. Since both T(k,j) and T(k+1,j) are followed by H(k,j+1),
this means the path T(k+1,j) → T(k,j) must contain no head arrows. Hence by Lemma 2.1,
we must have j = M − 1, but since k �= i, we get a contradiction. Thus entry (k, j) is
marked flag1 for all k �= i. �
Theorem 2.5. If entry (i,1) of TΛ is marked flag0, then (i,1) + 1 = (i,2) modulo m.

Moreover, if �(r(i,1)) � n, entry (i,1) is marked flag0 if and only if (i,1) + 1 = (i,2)

modulo m.

Proof. Suppose (i,1) is marked flag0. This means no head arrow lies in r(i,1) except
α(i,1) once at the start. Therefore H(i,1)+1 is the head vertex that follows T(i,1), and hence
(i,1) + 1 = (i,2).
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Conversely, suppose (i,1)+1 = (i,2) and that �(r(i,1)) � n. We have that H(i,1)+1 is the
head vertex that follows T(i,1) and so the path H(i,1) → T(i,1) → H(i,1)+1 must have length
less than or equal to n. Suppose r(i,1) is not the only relation, else we are done. This means
(i,1) �= (i,1) + 1 and so α(i,1) is the only head arrow in the path H(i,1) → H(i,1)+1. Since
�(r(i,1)) � n, r(i,1) must be an initial subpath of H(i,1) → H(i,1)+1. Thus r(i,1) contains no
head arrow other than α(i,1). Hence (i,1) gets marked with a flag0. �

To prove a similar theorem concerning flag2s, we need access to a few more results.
Recall that λ is the order of the repetitions.

Proposition 2.6. If λ � 2, and rx1 and rx2 are two distinct relations, then the path Hx1 →
Tx1 → Tx2 → Hx2 → Hx1 has length greater than n.

Proof. We proceed by contradiction. Assume that rx1 and rx2 are distinct relations such
that the path Hx1 → Tx1 → Tx2 → Hx2 → Hx1 is of length n. Since λ � 2, Hx2 cannot
follow Tx2 . We therefore have a third relation, rx3 say, distinct from rx1 and rx2 , such that
Hx3 is in the path Tx2 → Hx2 − 1. By Proposition 1.1, Tx3 must lie in the path Tx1 → Tx2 .

It is clear that each time this argument is applied to rx1 and rxi
, for some i � 2, we get a

new relation rxi+1 distinct from all the others. Since I has a fixed finite generating set, we
get our contradiction. �
Corollary 2.7. Suppose λ � 2 and let rk be a relation such that cn < �(rk) � (c + 1)n, for
some non-negative integer c. Then cn < �(r) � (c + 1)n for all relations r .

Proof. Let rk be a relation such that cn < �(rk) � (c+1)n, for some positive integer c and
let rl be a relation such that (c − 1)n < �(rl) � cn. To ensure that rl is not a subpath of rk
it is clear that the path Hk → Tk → Tl → Hl → Hk must have length n. This contradicts
the above proposition. �
Definition 2.8. Let ry1 , . . . , ryl

be the repetition relations of Λ, ordered such that the con-
catenation of l paths Hy1 → Hy2 → ·· · → Hyl

→ Hy1 is of length n. Then we call the path
Hyi

→ Hyi+1 the repetition path byi+1 , where l + 1 = 1. Clearly every arrow in kQ is in
precisely one repetition path.

Example 5. In Example 1 the repetition relations are r1, r2, r5, and r6; the repetition paths
are η1 · · ·η6, η7 · · ·η13, η14 · · ·η19, and η20 · · ·η25.

Lemma 2.9. Suppose λ � 2. Let Hl be a degeneration head vertex with rl not a repetition
relation, and let Hl and Tl lie in the repetition path ba , with Tl �= o(ba). Then t(ba) = Ha

is the head vertex that follows Tl .

Proof. Let the setup be as above and let Hk = o(ba), so that ba is the path Hk → Ha . To
seek a contradiction suppose Ha does not follow Tl . Firstly, Tl lies in the path Hk + 1 →
Hl − 1, otherwise the path Hl → Tl → Tk → Hk → Hl would have length n, since Tk is
a repetition tail vertex. This would contradict Proposition 2.6. Now λ � 2, so Ha may not
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follow Ta and so Ta , since it is a repetition tail vertex, is in the path Ha → Hk . By the
ordering imposed by Proposition 1.1, we get that the path Ha → Ta → Tk → Hk → Ha is
of length n. This contradicts Proposition 2.6 and we get our result. �
Lemma 2.10. Suppose λ � 2 and let (i, j) be an entry of TΛ. Then

(1) if j = 2, the path H(i,1) → H(i,1)+1 → H(i,2) → H(i+1,2) → H(i,1) has length n;
(2) if j � 3, the path H(i,j−1) → H(i+1,j−1) → H(i,j) → H(i+1,j) → H(i,j−1) has

length n.

Proof. (1) Suppose that j = 2. Since H(i,2) and H(i+1,2) are both degeneration head
vertices, the path T(i,1) → H(i,2) → T(i,1)+1 → H(i+1,2) → T(i,1) is of length n. Also
T(i+1,2) must be in the path H(i+1,2) + 1 → T(i,1) since λ � 2. Now, T(i,2) must be in
the path T(i,1) → T(i+1,2) else we contradict Proposition 2.6 with r(i+1,2) and r(i,2). Since
λ � 2, T(i,2) �= T(i,1) so in fact T(i,2) is in the path T(i,1)+1 → T(i+1,2). Thus the path
T(i,1) → T(i,1)+1 → T(i,2) → T(i+1,2) → T(i,1) has length n and Proposition 1.1 yields our
result.

(2) Suppose now that j � 3. We show that the path H(i,j−1) → H(i+1,j−1) → H(i,j) →
H(i+1,j) → H(i,j−1) has length n. Note that if (i, j − 1) = (i + 1, j − 1), then (i, j) =
(i + 1, j) and we immediately get our result. Thus we assume (i, j − 1) �= (i + 1, j − 1).
Consider the two vertices H(i,j−1) and H(i+1,j−1), the terminating vertices of the degener-
ation paths d(i,j−1) and d(i+1,j−1), respectively.

We first wish to place H(i,j) in the path H(i+1,j−1) → H(i,j−1). We assume (i, j) �=
(i + 1, j − 1) and (i, j) �= (i, j − 1). To seek a contradiction suppose H(i,j) is in the path
H(i,j−1) +1 → H(i+1,j−1) −1. Then by Lemmas 2.1 and 2.2, d(i,j), and therefore d(i,j−1),
cannot be a repetition degeneration path. By Lemma 2.9 this means H(i,j−1) and T(i,j−1)

cannot be in the same repetition path. Thus there must be a repetition head vertex in the
path H(i,j−1) + 1 → H(i,j) − 1, contradicting Lemmas 2.1 and 2.2 regarding band j − 1.
Hence H(i,j) must lie in the path H(i+1,j−1) → H(i,j−1) − 1.

It remains only to locate H(i+1,j) in the path H(i,j) → H(i,j−1). Assume (i + 1, j) �=
(i, j) and (i + 1, j) �= (i, j − 1). There are two cases to consider:

(i) If H(i+1,j) lies in the path H(i,j−1) → H(i+1,j−1), then so does T(i+1,j−1). Two sub-
cases arise. If H(i+1,j−1) is a repetition head, then so is H(i+1,j). This is contradicted
by Lemmas 2.1 and 2.2. If H(i+1,j−1) is not a repetition head, then we must have
a repetition head in the path H(i+1,j) → H(i+1,j−1) or Lemma 2.9 will be contra-
dicted. However, the existence of this repetition head again contradicts Lemmas 2.1
and 2.2.

(ii) If H(i+1,j) lies in the path H(i+1,j−1) +1 → H(i,j) −1, then so does T(i+1,j−1). Propo-
sition 2.6 on relations r(i,j−1) and r(i+1,j−1) provides the contradiction.

Hence H(i+1,j) must lie in the path H(i,j) → H(i,j−1). This completes the proof. �
We can at last prove our final theorem of this section.
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Theorem 2.11. If an entry (i, j) of TΛ is assigned a flag2, then

(1) for j = 2 we have (i,1) + 1 �= (i,2) and (i + 1,2) = (i,3);
(2) for j � 3 we have (i + 1, j − 1) �= (i, j) and (i + 1, j) = (i, j + 1).

Moreover, if λ � 2 and �(r) � n for all relations r , then (i, j) is assigned a flag2 if and
only if the appropriate condition (1) or (2) holds.

Proof. If (i, j) is assigned a flag2, then showing the appropriate condition (1) or (2) is
easy.

For the reverse direction, suppose λ � 2 and �(r) � n for all relations r . Suppose also
that j � 3 and the conditions from (2) hold. For a contradiction assume that no flag2 is
assigned to entry (i, j). As �(r) � n for all relations r , and by Theorem 1.10, no flag2
assigned to entry (i, j) is equivalent to the existence of a head arrow in the path of unover-
lapped arrows T(i+1,j−1) → T(i,j). However, since T(i+1,j−1) and T(i,j) are both followed
by the same head vertex, we have the path T(i,j) → T(i+1,j−1) free from head arrows. As
λ � 2 we must have T(i+1,j) in the path T(i+1,j−1) + 1 → T(i,j) − 1. This means the path
T(i+1,j−1) → T(i,j) → T(i+1,j) has length greater than n, contradicting Lemma 2.10.

The case of j = 2 is similar. �
Example 6. For our algebra of Example 1, we have a single flag1 in the smo-tube. There
are no flag0s or flag2s. The position of the flag1 is indicated by the square box:

1 2 3 4 5 6 · · · · · ·

5 6 2 6 2 6 2 · · · · · ·
4 5 1 5 1 5 1 · · · · · ·
3 4 8 5 1 5 1 · · · · · ·
2 3 6 2 6 2 6 · · · · · ·
1 1 5 1 5 1 5 · · · · · ·

Theorem 2.3 was used to mark the flag1: notice above that (3,2) �= (4,2) but that (3,3) =
(4,3). Since here �(r) � n, for all relations r , and λ � 2, we may use the full equivalences
of Theorems 2.5 and 2.11 to conclude that there are no flag0s or flag2s present in TΛ.

Example 7. Let us consider a different example. We keep the same quiver of 25 vertices
and 25 arrows, but this time put on 6 relations:

r1 = η1 · · ·η6, r2 = η2 · · ·η10, r3 = η4 · · ·η13,

r4 = η10 · · ·η15, r5 = η15 · · ·η22, r6 = η18 · · ·η24.
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We get a different smo-tube; this time all rows have a flag. The position of a flag0 or
flag2 is indicated by a circle; the flag1 by the square:

1 2 3 4 5 6 7 · · · · · ·

4 6 1 4 6 1 4 6 · · · · · ·
3 4 6 1 4 6 1 4 · · · · · ·
2 3 5 1 4 6 1 4 · · · · · ·
1 1 4 6 1 4 6 1 · · · · · ·

Notice in each example that the number of rows without a flag1 is equal to the number
of repetition indices, as stated in Proposition 2.4. It is no fluke that all the rows have flags in
the second example above. The next section, while introducing the notion of shifts, shows
that if an smo-tube has any flag0s or flag2s at all, then all rows have a flag.

3. Repetition shift

The aim of this section is to present some further structure of the smo-tube, the so-called
repetition shift, and we see how important the repetition shift is in governing the placement
of flags. This importance is shown in Theorem 3.10, which gives exact conditions for
when and how the different types of flag will be present on the smo-tube. We begin with a
definition. Recall that the M th band of TΛ is the first to contain only repetition indices and
that fΛ is the smo-function of Λ.

Definition 3.1. Let a and b be rows in TΛ that share the same repetition. Then row a is said
to have a b-shift of N if (a,M + N) = (b,M) and N � 0 is minimal with this property.

Lemma 3.2. Let R be a repetition of Λ with order λ � 2. Let x1, . . . , xλ be the repetition
indices of R with the path Hx1 → ·· · → Hxλ → Hx1 of length n. If N � 0 is minimal such
that f N

Λ (x1) = x2, then N is minimal such that f N
Λ (xi) = xi+1, for all i = 1, . . . , λ. Note

that if i = λ we take i + 1 = 1.

Proof. Pick 2 � k � λ. Let l be minimal such that f l
Λ(x1) = xk . Thus f l+N

Λ (x1) = f N
Λ (xk)

giving f l
Λ(x2) = f N

Λ (xk). Now the proof of Lemma 1.6, applied l times, gives us no R-
indexed head vertex in the path Hf l

Λ(x1)
→ Hf l

Λ(x2)
except the start and end vertices. Hence

there is no R-indexed head vertex in the path Hxk
→ Hf l

Λ(x2)
except the start and end

vertices. Thus f l
Λ(x2) = xk+1, and so f N

Λ (xk) = xk+1. Minimality of N follows since x1

was arbitrary. �
Motivated by this result, we now make the following definition.
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Definition 3.3. Let R be a repetition of Λ, with x1 and x2 repetition indices of R such that
no R-indexed head vertex lies in the path Hx1 → Hx2 except the start and end vertices. The
repetition shift of R is the least positive integer N such that f N

Λ (x1) = x2.

Example 8. We take the usual oriented cycle Q with 25 vertices and 25 arrows, and let
Λ = kQ/I , where I is generated by the 8 relations:

r1 = η1 · · ·η16, r2 = η3 · · ·η19, r3 = η5 · · ·η21, r4 = η8 · · ·η22,

r5 = η12 · · ·η24, r6 = η14 · · ·η4, r7 = η19 · · ·η11, r8 = η21 · · ·η14.

The only flags on this smo-tube are flag1s:

1 2 3 4 5 6 7 · · · · · ·

5 7 5 1 7 5 1 7 · · · · · ·
4 6 3 1 7 5 1 7 · · · · · ·
3 5 1 7 5 1 7 5 · · · · · ·
2 2 8 7 5 1 7 5 · · · · · ·
1 1 7 5 1 7 5 1 · · · · · ·

There is only one repetition here, R = (1,7,5). The repetition shift N of R is equal
to 2.

The repetition shift can be observed in the smo-tube by taking a flag1-free row contain-
ing R: the b-shift of that row gives the repetition shift, where row b is the next flag1-free
row up that contains R.

Example 9. The algebra in Example 1 has a repetition shift of N = 1.

We use the proof of Lemma 1.6 to get the following result.

Lemma 3.4. Let Λ have a repetition with repetition shift N . Then all repetitions of Λ have
repetition shift N .

For the remainder of the paper, fix N as the repetition shift of all the repetitions of Λ.

Proposition 3.5. Suppose Λ has only one repetition R, and this is of order λ � 2. Then for
each i, row i of the smo-tube of Λ has (i + 1)-shift equal to 0 or N .

Proof. If we have only 2 degeneration paths then, since λ � 2, the indices of both paths
must be repetition indices. So clearly R has a repetition shift of N = 1. Now, since there are
only 2 rows in TΛ, we get immediately from Lemma 2.2 that each row i has (i + 1)-shift
of 1.
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Thus assume Λ has at least 3 degeneration paths. Let x1, . . . , xλ be the repetition in-
dices of R, with the path Hx1 → ·· · → Hxλ → Hx1 of length n. Let y and z be distinct
degeneration head indices such that no degeneration head vertices lie in the path Hy → Hz

other than the start and end vertices. Then for some k ∈ {1, . . . , λ} (with λ+1 = 1) we have
that Hy and Hz lie in the path Hxk

→ Hxk+1 . We will show that either f M
Λ (y) = f M

Λ (z) or
f M+N

Λ (y) = f M
Λ (z).

By applying Proposition 1.1 M times, we get that the path

Hf M
Λ (xk)

→ Hf M
Λ (y) → Hf M

Λ (z) → Hf M
Λ (xk+1)

has length less than or equal to n. By M applications of the proof of Lemma 1.6 we have no
repetition head vertices in this path except the start and end vertices. Since by the definition
of M , f M

Λ (y) and f M
Λ (z) are repetition indices, three possibilities occur:

(1) f M
Λ (y) = f M

Λ (z) = f M
Λ (xk),

(2) f M
Λ (y) = f M

Λ (z) = f M
Λ (xk+1),

(3) f M
Λ (y) = f M

Λ (xk), f M
Λ (z) = f M

Λ (xk+1).

Let i be such that y = (i,2), and so by hypothesis z = (i + 1,2). If either possibility (1)
or (2) occurs, then row i has an (i + 1)-shift of 0, since (i,M + 2) = f M

Λ (y) = f M
Λ (z) =

(i +1,M +2) and hence (i,M +λ) = (i +1,M +λ), so (i,M) = (i +1,M). If possibility
(3) occurs, then f M+N

Λ (y) = f M+N
Λ (xk) = f M

Λ (xk+1) = f M
Λ (z), and by a similar argument

(i,M + N) = (i + 1,M); so row i has an (i + 1)-shift of N . �
We can bring the above results together to form the next proposition, which builds upon

Proposition 2.4. First though, as a consequence of the proof of Lemmas 1.6 and 2.1 we
have the following result.

Lemma 3.6. If λ � 2 then there is an ordering on the repetitions of Λ: R1, . . . ,Rl such that
whenever (i, j) �= (i + 1, j), for some j � M , we have (i, j) ∈ Rk and (i + 1, j) ∈ Rk+1,
some k ∈ {1, . . . , l} with l + 1 = 1.

Remark. Notice that in the case of Example 8 we have only one repetition. This renders
Lemma 3.6 somewhat trivial in that l = 1, giving an ordered list of one element. Thus
Rk+1 = Rk and the lemma is then obvious in this case.

Proposition 3.7. Suppose λ � 2. If the following conditions all occur:

(1) Λ has only one repetition R,
(2) R has repetition shift N = 1,
(3) �(r) � n for all relations r ,

then all rows in TΛ are flagged. Otherwise the number of unflagged rows is equal to the
number of distinct repetition indices.
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Proof. If conditions (1) and (2) hold, then by Proposition 3.5, for each i, row i has (i +1)-
shift either 0 or 1. If this shift is 0 then, since λ � 2, we can use Theorem 2.3 to get a flag1
in row i. If the (i + 1)-shift is 1 then by condition (3) we can use Theorems 2.5 and 2.11
to get a flag0 or flag2 in row i. Hence all the rows are flagged.

Otherwise Proposition 2.4 states there are the same number of rows without a flag1
as there are repetition indices. Thus we need to show there are no flag0s or flag2s in TΛ

whenever one of the three conditions above fails.
If condition (1) fails, we have 2 or more repetitions. Let (i, j) be an entry of TΛ, with

j � 3. Suppose for a contradiction that (i, j) = (i + 1, j − 1); then we have (i, j + M) =
(i+1, j +M −1) and so, since λ � 2, this gives (i, j +M) �= (i+1, j +M) with (i, j +M)

and (i + 1, j + M) in the same repetition. This is prohibited by Lemma 3.6. We can thus
assume that (i, j) �= (i + 1, j − 1) for all i, j , and so by Theorem 2.11 we have no flag2s.
A similar argument in the case j = 2 shows that (i,2) �= (i,1) + 1 and hence by Theo-
rem 2.5 that there are no flag0s.

If condition (2) fails, then for all i and for all j � 3 we have (i, j) �= (i + 1, j − 1) and
(i,2) �= (i + 1,1) + 1. Theorems 2.5 and 2.11 then give us no flag0s or flag2s.

If condition (3) fails, we get our result by Corollaries 2.7 and 1.9. �
We now focus our attention to the case where the order of the repetitions is 1.

Lemma 3.8. Let λ = 1 and let rx be a repetition relation. If (a − 1)n < �(rx) � an for
some positive integer a, then (a − 1)n < �(rk) � (a + 1)n for all relations rk .

Proof. Let a ∈ Z be such that (a − 1)n < �(rx) � an and let rk be some relation. Clearly
we must have �(rk) � (a + 1)n else rx would be a subpath of rk .

Now, since Hx must follow Tx , we must have Hk in the path Hx → Tx . The following
three diagrams show the possible relative positions of Tk : note that we allow Tx = Hx and
Tk = Hx or Hk where appropriate. By looking at each diagram in turn it is not hard to see
that we must have �(rk) > (a − 1)n to prevent rk being a subpath of rx .

•

••

•Hk

TxHx

Tk> •

•• •

Hk

TxHx
Tk

> •

••
•

Hk

TxHx

Tk

>

�

Proposition 3.9. Suppose λ = 1. If the following conditions both occur:

(1) Λ has only one repetition relation rx ,
(2) �(rx) � n,

then all rows in TΛ are flagged. Otherwise the number of unflagged rows is equal to the
number of distinct repetition indices.
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Proof. Suppose both conditions hold and yet we have an unflagged row in the smo-tube
of Λ. This gives rise to a degree 2M + 1 maximal overlap sequence ending with

. . .
rx

rx

which contradicts condition (2), since the head arrow of rx appears here in rx twice.
For the converse we will show that if either condition (1) or (2) fails, then the number

of unflagged rows in TΛ is equal to the number of repetition indices.
Suppose (1) fails. Then we have k � 2 repetition relations. We know from Proposi-

tion 2.4 that there are k rows in TΛ with no flag1: let row i be one of these. To seek
a contradiction suppose that entry (i, j) has a flag2 and that j � 3. By Theorem 2.11, we
have (i, j) �= (i +1, j −1) and (i, j +1) = (i +1, j). Thus (i, j +M +1) = (i +1, j +M)

and so, since λ = 1, (i, j + M + 1) = (i + 1, j + M + 1). By Theorem 2.3, row i has a
flag1, contradicting our hypothesis. The cases where j = 1 or 2 are similar to the above,
with the case j = 1 prohibiting flag0s.

Finally, if (2) fails then Lemma 3.8 and Corollary 1.9 show that there are no flag0s or
flag2s in TΛ. Thus by Proposition 2.4, the number of unflagged rows is equal to the number
of distinct repetition indices. �

Putting the last two propositions together gives us the theorem of this section. Using
Theorem 1.10, we follow with a useful corollary.

Theorem 3.10. The smo-tube TΛ has every row flagged if and only if one of the following
occurs:

(1) λ � 2, there is only 1 repetition, N = 1, and �(r) � n for all relations r .
(2) λ = 1, there is only 1 repetition relation rx , and �(rx) � n.

Otherwise the smo-tube has the same number of unflagged rows as it does distinct rep-
etition indices.

Corollary 3.11. If Λ has an infinite extending sequence, then TΛ has no flag0s or
flag2s. �

4. Finite generation of the Ext-algebra

The previous sections have given us a method to identify exactly those extending se-
quences that are infinite in extent. In this section we bring together these results to deter-
mine precisely when E(Λ) is finitely generated: Theorem 4.14, our main result, does this
for us. Toward the end of this section there are a number of propositions each of which, for
different conditions on E(Λ), give an explicit finite generating set. As noted in the intro-
duction, we will freely interchange a maximal overlap sequence and its underlying path.
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However, when we talk about products of maximal overlap sequences, we refer to the cor-
responding product as basis elements in E(Λ). Thus the product of two maximal overlap
sequences may be zero in E(Λ), whilst the product of their underlying paths may be non-
zero in kQ. We recall here that, for Λ a cycle algebra, λ is the order of the repetitions, N

is the repetition shift, and M is the first band of TΛ to contain only repetition indices.
Our first three results, for certain conditions on Λ, give us restrictions on the behav-

iour of the maximal overlap sequences. These results will aid us when determining finite
generation of E(Λ).

Lemma 4.1.

(1) If λ � 2 and �(r) > n for all relations r , then there are always n or more unoverlapped
arrows at the end of any even-degree maximal overlap sequence.

(2) If λ = 1, rx and ry are repetition relations, and �(r) > n for all repetition relations r ,
then there are always n or more unoverlapped arrows at the end of any even-degree
maximal overlap sequence which ends

. . .

ry

rx rx

Proof. (1) If the degree of the maximal overlap sequence is 2, then it is a relation and
there is nothing to prove. Thus suppose the degree is � 4. If �(r) > 2n for all relations r ,
the result is immediate using Proposition 1.2. So by Corollary 2.7, we may suppose n <

�(r) � 2n, for all relations r . Let

. . .

rj

ri rk

be the end of the even-degree maximal overlap sequence. Note that ri �= rk by hypothesis.
If rj = rk , then the result is immediate, so assume rj �= rk . By Theorems 2.3 and 1.10,
we may assume ri �= rj . The diagram below is a copy of the one above, but with the
relative positions of certain arrows marked; the order in which an arrow has been marked
is indicated below that arrow. Recall that for a relation rl we have αl as the start arrow and
ωl as the end arrow:

. . .
αi αj ωi

3

αk

2

αi

1

ωi

g
αk ωj ωk

5

ωi

4

αk

1

ωk

Once the start and end arrows of each relation have been marked on the diagram above, we
know we can mark the other arrows for the following reasons, given by order of marking.
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Note that from Lemma 2.10 and Proposition 1.1, the paths Hi → Hj → Hk → Hi and
Ti → Tj → Tk → Ti each have length n.

(1) As �(ri) > n, ri contains two copies of αi . One copy must lie in the overlapped part of
ri and rj , by Proposition 1.2 if the degree of the maximal overlap sequence is greater
than or equal to 6, or trivially if the degree is 4. By the same reasoning, a copy of αk

must lie in the unoverlapped part of rk . We remark that αi �= ωi since a copy of αj

must lie between αi and αk , but cannot lie in the path g. At this stage we allow the
possibility that αk = ωk .

(2) By the note above, a copy of αk lies in ri between αj and the copy of αi placed in 1.
(3) Hk is the head vertex that follows Ti by maximality of the overlap sequence, so ωi sits

as marked in the overlapped part of ri and rj .
(4) Three copies of ωi cannot lie in rj , but a copy of ωi must lie in rk , since n <

�(rj ), �(rk) � 2n. Thus there is a copy of ωi as shown.
(5) By the note above, a copy of ωk lies in rk between ωj and ωi .

The presence of two copies of ωk in the unoverlapped part of rk yields our result.
(2) is proved in a similar way with the diagram:

. . .
αx αy ωx αx ωy αy

2

ωx

3

αx

1

ωx

�
Proposition 4.2. A maximal overlap sequence P 2k , k � 2, cannot be written as a product
of maximal overlap sequences P 2a+1F 2l+1Q2b , some a � 0, l � M + 1, b � 0, if one of
the following occurs:

(1) λ � 2, Λ has � 3 repetitions,
(2) λ � 2, Λ has 2 repetitions and N �= 1,
(3) λ � 2, Λ has only 1 repetition and 2N �≡ 1 (mod λ),
(4) λ � 2, �(r) > n for all relations r ,
(5) λ = 1, Λ has 2 repetition relations rx and ry , and �(rx), �(ry) > n,
(6) λ = 1, Λ has � 3 repetitions.

Proof. (1) If P 2k is to be written as such a product, we at least need the product in kQ
of the three underlying paths to be non-zero: thus we assume this now. Suppose for a
contradiction that P 2k can be written as the above product. Consider the underlying path
of F 2l+1, represented thus

p2a+3 p2a+5

p2a+4

. . .

p2a+2l+1

p2a+2l p2a+2l+2



G. Davis / Journal of Algebra 310 (2007) 526–568 553
where the relations are from P 2k , in the same positions that they appear in the correspond-
ing part of the underlying path of P 2k .

Let us also construct F 2l+1 as a maximal overlap sequence, starting at o(p2a+3):

s3

p2a+3

. . .

s2l−1 p2a+2l+2

p2a+2l−1 p2a+2l+1

Now look at TΛ. If p2a+2l+1 = p2a+2l+2, then two cases arise. Either s3 = p2a+3, in which
case p2a+3 is the only relation of Λ by maximality of the overlap sequence, or s3 �= p2a+3,
in which case by Theorems 2.3 and 1.10 there is no such maximal overlap sequence of
degree 2l + 1. Both cases give a contradiction to the hypothesis.

So assume p2a+2l+1 �= p2a+2l+2. Let f , g and h be integers such that 1 � f,g,h � m

and rf = p2a+2l , rg = p2a+2l+1 and rh = p2a+2l+2. By the remark following Lemma 1.6,
the two indices g and h are in different repetitions, respectively Rt and Rs say. By
Lemma 3.6, we have a special ordering on the repetitions, which says that Rs follows
Rt . However, since the index f is in Rs we have that Rt follows Rs . Since there are more
than two repetitions this contradicts Lemma 3.6. Hence P 2k cannot be written as such a
product.

The cases (2)–(6) are proved in a similar way, with (4) and (5) using Lemma 4.1. �
Lemma 4.3. Let Λ be such that �(r) � n for all repetition relations r and suppose one of
the following occurs:

(1) λ � 2, Λ has precisely 2 repetitions, N = 1,
(2) λ � 2, Λ has only 1 repetition, 2N �≡ 1 (mod λ),
(3) λ = 1, Λ has precisely 2 repetition relations.

Let P k be a maximal overlap sequence and let S be the subpath (but not necessarily a
maximal overlap sequence):

p2a+3 p2a+5

p2a+4

. . .

p2a+2l−1 p2a+2l+1

p2a+2l−2 p2a+2l p2a+2l+2

for some l � M . The relations above are from P k , in the same positions that they appear in
the corresponding part of the underlying path of P k . Then the path S can be constructed
as a maximal overlap sequence if and only if a maximal overlap sequence exists starting
at o(p2a+3) of degree 2l + 1.



554 G. Davis / Journal of Algebra 310 (2007) 526–568
Proof. If the path S can be formed as a maximal overlap sequence, then it must take the
form:

s3

p2a+3

. . .

s2l−1 p2a+2l+2

p2a+2l−1 p2a+2l+1

which is a maximal overlap sequence of degree 2l + 1.
We prove the converse in the case where condition (2) holds. Suppose there exists a

maximal overlap sequence of degree 2l + 1 starting at o(p2a+3). It will take the form:

s3

p2a+3

. . .

s2l−1 s2l+1

p2a+2l−1 p2a+2l+1

Since �(r) � n for all relations r , it is enough to show that s2l+1 = p2a+2l+2. It is clear that
s2l+1 �= p2a+2l+1 and p2a+2l+2 �= p2a+2l+1. Now in TΛ, 2N �≡ 1 (mod λ) is equivalent to
having (i, j) = (i + 2 + k(i), j − 1) for every unflagged row i and for j � M , where k(i)

is the number of flagged rows counting up from row i to the next but one unflagged row.
Consider band a + l of TΛ. From the maximal overlap sequence P k , and using Lemma 2.1,
we can see this means that the index of p2a+2l+2 is the next different one in band a + l up
from the index of p2a+2l+1. Since s2l+1 �= p2a+2l+1 we thus get that s2l+1 = p2a+2l+2.

Similar arguments may be used to prove the converse where either condition (1) or (3)

holds. �
The following definition and lemma are fundamental to the finite generation of E(Λ).

Definition 4.4. Let ev be a zero-length connective path of some repetition R. For ease
of notation, we write R = (a1, a2, . . . , aλ) and ca1 = ev , with o(ra1) = t(raλ) = v and
f i

Λ(a1) = ai+1, for all 0 � i < λ. The multiplication path of ca1 is the path in kQ,

gv = ra1 ca2ra2 ca3 · · · raλ−1 caλraλ .

If a multiplication path can be formed as a maximal overlap sequence then it is called a
generative multiplication path. Note that if this is the case, deg(gv) = 2λ.

Remark. If gv = ra1 ca2ra2 ca3 · · · raλ−1 caλraλ is a generative multiplication path, then
ra1 ca2ra2 ca3 · · · rai−1 cai

rai
is also a maximal overlap sequence, for any i � λ.

Proposition 4.5. Let Λ be such that no flag0s or flag2s are present in TΛ and let P 2i and
Q2j be even-degree maximal overlap sequences (of degree 2i and 2j , respectively) such
that the product of underlying paths P 2iQ2j is non-zero in kQ. Then the path P 2iQ2j is
also a maximal overlap sequence, of degree 2i + 2j .
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Proof. Consider two maximal overlap sequences P 2i and Q2j :

P 2i =
p3 p5

p2 p4

. . .

p2(i−1)+1

p2(i−1) p2i

Q2j =
q3 q5

q2 q4

. . .

q2(j−1)+1

q2(j−1) q2j

Suppose that P 2iQ2j is non-zero as a path in kQ; then t(P 2i ) = o(Q2j ). We need to build
the path P 2iQ2j as a maximal overlap sequence. We start with P 2i as above:

p3

p2

. . .

p2(i−1)+1

p2(i−1) p2i

By hypothesis and Theorem 1.10, we know we may overlap with another relation, p2i+1
say. Since t(p2i ) = o(q2), and using the hypothesis and Theorem 1.10 again, we have the
maximal overlap sequence:

p3

p2

. . .

p2(i−1)+1 p2i+1 p2i+3

p2(i−1) p2i p2(i+1)
p

where p2(i+1) = q2 and p is the path of unoverlapped arrows. In the following diagram we
can see the path p within Q2j :

q3

p2i+3

q2
p

Thus p has as an initial subpath the path of unoverlapped arrows of Q3 and hence we
may overlap our maximal overlap sequence above with the relation q4. Using the hypoth-
esis and Theorem 1.10, we get the maximal overlap sequence

p3

p2

. . .

p2(i−1)+1 p2i+1 p2i+3 p2i+5

p2(i−1) p2i p2(i+1) p2(i+2)

where p2(i+2) := q4. We continue inductively setting p2(i+k) = q2k for 1 � k � j . �
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Corollary 4.6. Let Λ be such that no flag0s or flag2s are present in TΛ. If gv is a generative
multiplication path, then gl

v ∈ E(Λ) is non-zero for all l � 1.

Once we have stated the following definition, we will be in a position to start deciding
if E(Λ) is or is not finitely generated.

Definition 4.7. If Aw is an extending sequence of E(Λ) starting at the vertex w then, along
with w and the arrow starting at w, it naturally corresponds to Ew := Ext∗Λ(Sw, Λ̄), where
Sw is the simple Λ-module occurring at w. Then Ew is a (possibly non-unital) subring
of E(Λ). We also let Eev

w := Ext2∗
Λ (Sw, Λ̄) be the (possibly non-unital) subring of Ew

consisting of the even-degree elements.
Say that a non-unital subring R of E(Λ) has a finite generating set if there is a finite

subset S of E(Λ) in which every element of R may be expressed as a finite product of
elements from S .

A maximal overlap sequence a of degree z is said to be in an extending sequence A if
a = Az for some z � 2. A generative multiplication path gv is in the lower half (respec-
tively upper half ) of an infinite extending sequence A if there is some degree z � 2 and
some even-degree (respectively odd-degree) maximal overlap sequence p in A such that
Az = pgv , with the product in E(Λ).

Using this definition, we get that E(Λ) is finitely generated as a k-algebra if and only
if Ew has a finite generating set for all w such that Aw is an infinite extending sequence.

Remark. Once and for all we take care of the basis elements of E(Λ) of degree 0 and 1;
from the introduction we know these correspond respectively to the vertices and arrows
of Λ. The question we resolve here is that of whether, to have a finite generating set S
for Ext�2

Λ (Λ̄, Λ̄), we need S to include elements of E(Λ) of degree 0 or 1. The answer
is that it does not, as the next proposition shows, when used with subsequent proposi-
tions.

Proposition 4.8. Let Aw be an infinite extending sequence and let a be a maximal overlap
sequence in Aw of degree greater than or equal to 2M . Let η be an arrow in kQ; then η

corresponds to a basis element of E(Λ) of degree 1 and we have the following:

(1) If deg(a) is even and aη ∈ kQ is non-zero in E(Λ), then Aw has a generative multi-
plication path in its lower half.

(2) If deg(a) is odd and aη ∈ kQ is non-zero in E(Λ), then Aw has a generative multipli-
cation path in its upper half.

Proof. Let Aw , a and η be as above.
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(1) Let deg(a) be even and aη be non-zero in E(Λ); we let a2l and a2l+1 be the last
relations of a and aη, respectively. Then since η is a path of length 1 and deg(a) � 2M ,
Aw must take the form

. . .

a2l+1 s3

a2l s2

η
. . .

s2λ+1 s2λ+3

s2λ

η

s2λ+2

. . .

with s2λ+2 = s2 and s2λ+3 = s3. It is immediate to see that the multiplication path starting
at o(η) is a maximal overlap sequence since clearly s3 is the relation that maximally over-
laps s2: if η were a longer path this need not be true. We continue building the maximal
overlap sequence up to degree 2λ in the obvious way using the relations from Aw . Thus
Aw has a generative multiplication path in its lower half.

(2) Now let deg(a) be odd with aη non-zero in E(Λ) and let a2l−1 and a2l be the last
relations of a and aη, respectively. Then since η is a path of length 1 and deg(a) > 2M ,
Aw must take the form

. . .

a2l−1 s2

a2l

η

s3

. . .

s2λ s2λ+2

s2λ+1

η

s2λ+3

. . .

with s2λ+2 = s2 and s2λ+3 = s3. As before, it is immediate that the multiplication path start-
ing at o(η) = o(s2) is a maximal overlap sequence and hence a generative multiplication
path in the upper half of Aw . �
Remark. If Λ satisfies one of the six conditions in Proposition 4.2, then the second di-
agram in the proof above yields the existence of an arbitrarily long odd-degree maximal
overlap sequence in the position of the F 2l+1 from Proposition 4.2. This contradicts that
proposition and so we may conclude that condition (2) of Proposition 4.8 never occurs
under any of the conditions from Proposition 4.2.

In Proposition 4.2 we showed that, given one of six conditions, a maximal overlap se-
quence could not be written as a product with a second odd-degree factor of degree greater
than or equal to 2M + 3 (called F 2l+1 in Proposition 4.2). Non-existence of this factor is
used as a hypothesis in part of the next proposition. The reason for this is that we want
to examine the cases where we cannot use arbitrary powers of a generative multiplication
path found in the upper half of an extending sequence, to get a finite generating set.

Proposition 4.9. Let Aw be an infinite extending sequence of Λ.
If there is a generative multiplication path gv in the lower half of Aw , then Eev

w has a
finite generating set.

Moreover, if no even-degree maximal overlap sequence A2k
w in Aw may be written as a

product of maximal overlap sequences A2a+1
w F 2l+1Q2b , for any a � 0, l � M + 1, b � 0,
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then there is a generative multiplication path gv in the lower half of Aw if and only if Eev
w

has a finite generating set.

Proof. Let Aw be an infinite extending sequence with a generative multiplication path gv

in its lower half. Let Gv be the infinite extending sequence starting at v, so that gv is
in Gv . Define pw as the maximal overlap sequence of least even-degree in Aw such that
deg(pw) � 2M and t(pw) = v. We take as our generating set for Eev

w :

(1) The trivial path ev .
(2) All even-degree maximal overlap sequences in Aw with degree less than or equal to

deg(pw).
(3) The maximal overlap sequence gv of the hypothesis.
(4) All even-degree maximal overlap sequences in Gv that have degree less than the degree

of gv .

Let a be an even-degree maximal overlap sequence in Aw . We show how to get a from the
above set by considering the degree of a:

• If deg(a) � deg(pw), then a is in the chosen generating set.
• If deg(a) > deg(pw), then, using the remark following Definition 4.4, we may

write a = pwgk
vq , for some k � 0, and where q is a maximal overlap sequence in

Gv of even-degree less than or equal to deg(gv). We show this below:

pw

. . .

gk
v

. . .

q

. . .

The above product is non-zero in E(Λ) by Proposition 4.5.

Conversely, suppose that we do have some finite generating set S for Eev
w and that no

maximal overlap sequence A2k
w in Aw may be written as a product of maximal overlap

sequences A2a+1
w F 2l+1Q2b , for any a � 0, l � M + 1, b � 0. We consider a maximal

overlap sequence in Aw of sufficiently high even-degree such that, in any expression of it as
a product of elements of S , at least one element of S of degree � 2 occurs with multiplicity
at least 2. Without loss of generality, we may choose a maximal overlap sequence a in Aw

with a = h0dh1d , where d ∈ S , deg(d) � 2, each hi is a product of generators, i = 0,1,
and deg(h1) � 2M + 1. Now, since deg(h1d) � 2M + 3 and deg(a) is even, we have by
hypothesis that deg(h1d) is even. Thus deg(h0d) is even. Therefore, since t(d) = o(h1),
we have that the maximal overlap sequence h1d is either a generative multiplication path,
or some power (with multiplication in E(Λ)) of a generative multiplication path, in the
lower half of Aw . �
Theorem 4.10. If each infinite extending sequence of E(Λ) contains a generative multipli-
cation path in its lower half, then E(Λ) is finitely generated as a k-algebra.
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Proof. Let Aw be an infinite extending sequence with gv , pw , and Gv as in Proposition 4.9.
Then by Corollary 3.11, TΛ has no flag0s or flag2s. Note also that deg(gv) = 2λ and 2M �
deg(pw) � 2M + 2λ − 2. From the first part of Proposition 4.9 we get all the even-degree
maximal overlap sequences in Aw with the finite generating set for Eev

w as given there.
Now augment that generating set by including the following elements:

(5) The arrow starting at w.
(6) All odd-degree maximal overlap sequences s in Aw such that deg(s) � deg(pw) +

2M + 1.
(7) All odd-degree maximal overlap sequences t in Gv such that 2M + 1 � deg(t) <

2M + 2λ + 1.

With this set we now describe how to get any odd-degree maximal overlap sequence b

in Aw . Note that the degrees are larger here than in the generating set of the last proposition
for the following reason. Let q be a maximal overlap sequence in Gv of odd-degree less
than deg(gv). Then the underlying path of q is an initial subpath of that of gv . Now, if b

is of high-degree, its last relation must be a repetition relation. However, the last relation
of q need not be. We must therefore choose the right-most factor of b, denoted t below,
to be of sufficiently high degree to end with a repetition relation. We then use Lemma 2.1
and Theorem 2.3 to give us the correct end relation for the product (this is trivial if Λ has
only 1 repetition relation):

• If deg(b) � deg(pw) + 2M + 1, then b is in the chosen generating set.
• If deg(b) > deg(pw) + 2M + 1, then b = pwgk

vt , for k � 0 and where t is some max-
imal overlap sequence of Gv as in (7) above, so that deg(t) = deg(b) − deg(pw) −
k deg(gv). We illustrate pwgk

vt below and then prove that such a maximal overlap se-
quence b may indeed be expressed in this way:

pw

. . .

gk
v

. . .

q

. . .

Firstly, pwgk
vt

′ is non-zero in E(Λ) by Proposition 4.5, where t ′ is the even-degree maxi-
mal overlap sequence in Gv of degree deg(t)−1. By maximality of our overlap sequences,
and using the remark following Definition 4.4, we have that the last relation of t ′ is the
same as that of b′, where b′ is the even-degree maximal overlap sequence in Aw of de-
gree deg(b) − 1. By Proposition 1.2, it is enough to show that the last relation of t is the
same as the last relation of b. If Λ has only 1 repetition relation then this is immediate,
so suppose Λ has more than 1 repetition relation. Then, since Gv and Aw are infinite ex-
tending sequences, Theorem 2.3 says that t(t) �= t(t ′) and t(b) �= t(b′). Moreover, since
deg(t) � 2M + 1, we have that the last relation of t is a repetition relation. By Lemmas 2.1
and 2.2, we have that the last relation of t is equal to that of b. Thus pwgk

vt is non-zero in
E(Λ) and is equal to b.
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Since there are only finitely many such Aw , taking the union of the above sets over each
infinite Aw , along with all other trivial paths, arrows and maximal overlap sequences in
finite extending sequences, gives us a finite generating set for E(Λ). �

The next two propositions examine the cases where arbitrary powers of a generative
multiplication path in the upper half of an extending sequence can also be used to get a
finite generating set.

Proposition 4.11. Let Λ be such that �(r) � n for all repetition relations r . Suppose one
of the following occurs:

(1) λ � 2, Λ has precisely 2 repetitions, N = 1,
(2) λ � 2, Λ has only 1 repetition, 2N ≡ 1 (modλ),
(3) λ = 1, Λ has precisely 2 repetition relations rx and ry .

Let Aw be an infinite extending sequence. Then Ew has a finite generating set if and only
if there is a generative multiplication path gv in the lower or upper half of Aw .

Proof. Suppose first that Ew has a finite generating set S , which we fix. We consider a
maximal overlap sequence in Aw of sufficiently high even-degree such that, in any expres-
sion of it as a product of elements of S , at least one element of S of degree � 2 occurs
with multiplicity at least 3. Without loss of generality, we may choose a maximal overlap
sequence a in Aw with a = h0dh1dh2d , where d ∈ S , deg(d) � 2, each hi is a product of
generators, i = 0,1,2, and deg(h1) � 2M + 1.

We have that t(hi) = o(d), for i = 0, 1 and 2. Thus o(d) is a zero-length connective path.
We need to show that o(d) has a generative multiplication path. Since at least one out of
dh1, dh2, and dh1dh2 is of even degree, one of the three will be a generative multiplication
path or a power of one. Thus Aw has a generative multiplication path in its lower or upper
half.

Conversely, suppose Λ has a zero-length connective path ev that has a generative mul-
tiplication path gv . If gv is in the lower half of Aw , then by the proof of Theorem 4.10
we get a finite generating set for Ew . Thus suppose gv is in the upper half of Aw . Note
that for condition (2), since we have only 1 repetition, gv being in the upper half of Aw

is equivalent to gv being in the lower half of Aw . Thus we get our result immediately for
condition (2). Define sw as the maximal overlap sequence of least odd-degree in Aw , such
that deg(sw) � 2M + 1 and t(sw) = v. Let Gv be the extending sequence starting at v, a
sequence infinite by Corollary 3.11 and Proposition 4.5. For condition (1) we take as a
finite generating set for Ew:

(1) The trivial path ew and the arrow starting at w.
(2) All even-degree maximal overlap sequences in Aw with degree less than or equal to

deg(sw) + 2M − 1.
(3) All odd-degree maximal overlap sequences in Aw with degree less than or equal to

deg(sw).
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(4) All even-degree maximal overlap sequences in Gv with degree less than or equal to
that of gv .

(5) All odd-degree maximal overlap sequences t in Gv , such that 2M + 1 � deg(t) <

2M + 2λ + 1.

For condition (3) we take:

(1) The trivial path ew and the arrow starting at w.
(2) All even-degree maximal overlap sequences in Aw with degree less than or equal to

deg(sw) + 2M − 1.
(3) All odd-degree maximal overlap sequences in Aw with degree less than or equal to

deg(sw).
(4) The (degree 2) maximal overlap sequence gv ,
(5) The maximal overlap sequence in Gv of degree 2M + 1.

It is left to the reader to verify that in each case we have a finite generating set for Ew . �
Proposition 4.12. Let Λ be such that �(r) � n for all repetition relations r . Suppose one
of the following occurs:

(1) λ � 2, Λ has precisely 2 repetitions, N = 1,
(2) λ � 2, Λ has only 1 repetition, 2N ≡ 1 (modλ),
(3) λ = 1, Λ has precisely 2 repetition relations rx and ry .

Then E(Λ) is finitely generated as a k-algebra if and only if each infinite extending se-
quence has a generative multiplication path in either its lower or upper half.

Proof. This follows immediately from Proposition 4.11 since E(Λ) is finitely generated
as a k-algebra if and only if for each infinite extending sequence Aw , we have a finite
generating set for Ew . �

The last proposition in this section deals with a special case.

Proposition 4.13. Let Λ have only one order 1 repetition relation, rx , with �(rx) > n,
and let Aw be the single infinite extending sequence. Then E(Λ) is finitely generated as a
k-algebra if and only if w = o(rx) = t(rx).

Proof. If rx is the only repetition relation, then from Theorem 3.10 we have a single un-
flagged row in TΛ, which corresponds to Aw . Thus finite generation of E(Λ) is equivalent
to Ew having a finite generating set. If w = o(rx) = t(rx), then we take as generating set:

(1) All odd-degree maximal overlap sequences in A up to degree 2M + 1.
(2) The (degree 2) maximal overlap sequence rx .

Clearly this is a finite generating set for Ew .
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Conversely, suppose Ew has a finite generating set. As there is only one repetition re-
lation, and by Proposition 4.8, we must have a generative multiplication path in the upper
or lower half of Aw . Since rx is the only repetition relation this means we must have
o(rx) = t(rx). Now, rx is a maximal overlap sequence (of degree 2), and by hypothesis
there are no flag0s or flag2s in TΛ. We may therefore apply Proposition 4.5 to get o(rx) the
start of some infinite extending sequence G. By hypothesis G = Aw ; hence w = o(rx). �

The following theorem is our main result and provides the classification of the finite
generation of E(Λ) as a k-algebra.

We put Theorem 3.10 with Corollary 2.7, and Propositions 4.12 and 4.13 together to
form conditions (1)–(6) in Theorem 4.14 below. Any conditions other than those of (1)–(6)
are captured by Proposition 4.2. Proposition 4.9 and Theorem 4.10 then yield the stated
result for these.

It is remarked here that, for any of our algebras Λ, Theorem 4.10 gives sufficient con-
ditions for E(Λ) to be finitely generated.

Theorem 4.14. Let Λ = kQ/I be a finite-dimensional algebra, with Q an oriented cycle
and I an admissible ideal, with the notation of the previous section. Then E(Λ) is finite-
dimensional if and only if one of the following occurs:

(1) λ � 2, there is only 1 repetition, N = 1 and �(r) � n for all repetition relations r ,
(2) λ = 1, there is only 1 repetition relation rx and �(rx) � n.

If E(Λ) has infinite dimension and one of the following occurs:

(3) λ � 2, Λ has precisely 2 repetitions, N = 1 and �(r) � n for all repetition relations r ,
(4) λ � 2, Λ has only 1 repetition, 2N ≡ 1 (mod λ) and �(r) � n for all repetition rela-

tions r ,
(5) λ = 1, Λ has precisely 2 repetition relations rx and ry , and �(rx), �(ry) � n,

then E(Λ) is finitely generated as a k-algebra if and only if each infinite extending
sequence has a generative multiplication path in either its lower or upper half.

If E(Λ) has infinite dimension and the following occurs:

(6) λ = 1, Λ has only 1 repetition relation rx and �(rx) > n,
then E(Λ) is finitely generated as a k-algebra if and only if o(A) = o(rx) = t(rx),
where A is the single infinite extending sequence of Λ.

Otherwise, if E(Λ) has infinite dimension, then E(Λ) is finitely generated as a k-algebra
if and only if each infinite extending sequence has a generative multiplication path in its
lower half.

We can now use the above theorem to yield an immediate result in some special cases;
many of these algebras are considered in the literature. It should be noted that the bound on
the size of the smo-tube given after Definition 1.7 does not grow too large next to the size
of the algebra. Therefore any reasonably sized examples can easily be checked by hand.
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Corollary 4.15. Let Λ have only one relation r and let �(r) = kn+ c, for k � 0, 0 � c < n

and �(r) � 2.

(1) If k = 0, then E(Λ) is finite-dimensional.
(2) If c = 0, then E(Λ) is finitely generated as a k-algebra (with E(Λ) finite-dimensional

if k = 1).
(3) If k �= 0 and c �= 0, then E(Λ) is infinitely generated as a k-algebra.

Proof. If k = 0 or if k = 1 and c = 0 we are in condition (2) of the theorem. If k � 2 and
c = 0 we have condition (6) in Theorem 4.14, with o(r) = t(r). If k �= 0 and c �= 0 we have
condition (6) again, but this time o(r) �= t(r). �

The algebras covered in the following corollary are those Λ which are self-injective.

Corollary 4.16. Let J be the 2-sided ideal of kQ generated by the arrows and let
Λ = kQ/J l , so that Λ has m = n relations, each of length l � 2. Then E(Λ) has infi-
nite dimension but is finitely generated as a k-algebra.

Proof. Since the tail of any relation is the head of another, any relation is the start of some
infinite extending sequence. This also means each extending sequence has a generative
multiplication path in its lower (and upper) half. �
Corollary 4.17. Let Λ have m relations, each of length kn � 2, for some fixed k � 1. Then
E(Λ) is finitely generated as a k-algebra. Moreover, if m = 1 and k = 1, then E(Λ) is
finite-dimensional.

Proof. If m = 1 and k = 1, then we are in case (2) of the theorem. If m �= 1 or k �= 1, then
since t(r) = o(r) for all relations r , every extending sequence is infinite so we cannot have
any flags in TΛ. Every relation r is then the start of an infinite extending sequence that has
r as a (degree 2) generative multiplication path in its lower half. �
Example 10. From its smo-tube, the algebra in Example 1 can be identified as having 2
repetitions of order λ = 2. The repetition shift is N = 1 and the length of all repetition
relations is less than or equal to n. We thus have condition (3), so by Theorem 4.14 we
need to find a zero-length connective path ev that has a generative multiplication path gv .
From Example 2 and an inspection of the quiver we see that e14 is a zero-length connective
path, with multiplication path gv = r5η25r1. In this case gv is generative. Checking the
smo-tube, we find gv is in either the upper or lower half of each of the 4 infinite extending
sequences. This gives E(Λ) finitely generated as a k-algebra.

We close this section with a remark on generalising to monomial path algebras. We
also give the counter-example provided by the authors of [4] to their claim of the reverse
implication of Proposition 0.3.



564 G. Davis / Journal of Algebra 310 (2007) 526–568
Remark. Let Γ be any finite quiver; we form the path algebra kΓ . Recall that if I is
an admissible ideal of kΓ generated by a finite set of paths such that B := kΓ/I is finite-
dimensional, then we say that B is a monomial algebra. From Proposition 0.3, to determine
if E(B) is infinitely generated it is enough to find one infinitely generated E(Λ) for any
minimal cycle algebra Λ overlying B . We can now use Theorem 4.14 on each overlying
minimal cycle algebra Λ to determine whether or not E(Λ) is infinitely generated. The
bound on the size of the smo-tube means that for each cycle-algebra Λ this determination
can be quickly made.

We now present an example of a monomial algebra with infinitely generated Ext-
algebra, but with all overlying minimal cycle algebras having finitely generated Ext-
algebra.

Example 11 ((E.L. Green, D. Zacharia)). Let B be the k-algebra with quiver

•
b

• x •

a

•

c

y • z •

•
d

and relations abcd , bcda, cdab, dabc, xab, daby, and byz. This algebra has only one
overlying minimal cycle algebra and by Theorem 4.14 this has finitely generated Ext-
algebra. To show E(B) is infinitely generated we consider basis elements in E(B) with
underlying path x(abcd)nabyz, for n � 1. Such an element takes the form

abcd abcd

xab cdab cdab

. . .

abcd abcd byz

cdab cdab

Since multiplication relies on concatenation of paths, to non-trivially factor an element
of the above form we need to split its underlying path in two at a vertex that is both the start
of a relation and the end of one. So far we have many choices. However, it is clear that no
matter where one chooses the split to be, the right hand path will not be a maximal overlap
sequence. Thus maximal overlap sequences of the sort above cannot be non-trivially fac-
tored. Since we have infinitely many such maximal overlap sequences, E(B) is infinitely
generated.

5. Noetherian Ext-algebras

Now that we have determined precisely when E(Λ) is finitely generated as a k-algebra,
we determine for which cycle algebras Λ the Ext-algebra is a Noetherian ring. In doing
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so we produce a class of examples for which the Ext-algebra is finitely generated but not
Noetherian, and a further class that have Noetherian Ext-algebra with Λ � kQ/J n for any
n � 2, where J is the 2-sided ideal of kQ generated by the arrows.

We may immediately state the main result of this section.

Theorem 5.1. Let Λ = kQ/I be a finite-dimensional algebra, with Q an oriented cycle,
I an admissible ideal. Suppose further that the Ext-algebra E(Λ) has infinite dimension.
Then E(Λ) is a Noetherian ring if and only if every connective path of E(Λ) is of zero
length.

Before we can prove this theorem we need the following.

Remark. So far in the paper we have talked of connective paths. In fact, just as a maximal
overlap sequence is considered to be a left maximal overlap sequence if it is constructed
from the left, so a left connective path and a left repetition come from an extending
sequence constructed from the left. In the preceding sections, connective paths and rep-
etitions have both been constructed from the left. This left construction of the extending
sequences naturally shows the right E(Λ)-module structure of E(Λ), which we exploit in
Theorem 5.1. However, we also need to show how E(Λ) behaves as a left E(Λ)-module:
this is done by constructing right maximal overlap sequences. From [1] we know that left
and right maximal overlap sequences have the same underlying path. In general however,
the left and right repetitions need not be the same and so the left and right connective paths
need not be the same. The following proposition gives us conditions under which the left
and right repetitions do coincide.

Proposition 5.2. Let Λ be such that E(Λ) has infinite dimension and suppose all left
connective paths are of zero length. Then the set of left repetition relations is equal to the
set of right repetition relations. In particular, all right connective paths are also of zero
length.

Proof. Suppose E(Λ) is of infinite dimension and that all left connective paths are of zero
length. Let ra1 , ra2 , . . . , raλ be the left repetition relations of (a1, a2, . . . , aλ), one of the
left repetitions of E(Λ). Then ra1ra2 · · · raλ is a non-zero path in kQ. Since each rai

is a
degree 2 left maximal overlap sequence, and E(Λ) has infinite dimension, we may use
Theorems 1.10 and 3.10 and Proposition 4.5 to conclude that the path h := ra1ra2 · · · raλ is
also a left maximal overlap sequence. Similarly rai

rai+1 · · · raλh
k is a left maximal overlap

sequence for all 1 � i � λ and k � 0. Hence we can construct a left maximal overlap se-
quence beginning at the vertex o(rai

) for all 1 � i � λ, of degree greater than 2M . From [1]
we have that, as a path in kQ, each left maximal overlap sequence of degree l is also a right
maximal overlap sequence of degree l. Thus the path rai

rai+1 · · · raλh
k is a right maximal

overlap sequence for all 1 � i � λ and k � 0 and so rai
is a right repetition relation for all

1 � i � λ. We thus have that all left repetition relations are also right repetition relations.
By an identical argument we get that all right repetition relations are also left repetition
relations. It follows immediately that all right connective paths are of zero length. �
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A dual argument yields the following corollary.

Corollary 5.3. All left connective paths are of zero length if and only if all right connective
paths are of zero length.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Assume first that all left connective paths of E(Λ) are of zero
length. We will show that E(Λ) is a Noetherian right E(Λ)-module. Let rb1 , rb2 , . . . , rbμ

be the left repetition relations of Λ. Since all left connective paths are of zero length, and
E(Λ) has infinite dimension, we have by Theorems 1.10 and 3.10 that every left repetition
relation is the start of a generative multiplication path. Let gbi

be the generative multi-
plication path such that o(gbi

) = o(rbi
). Set ζ = gb1 + gb2 + · · · + gbμ ∈ E(Λ). Then by

Lemma 1.6, ζ is a homogeneous element of E(Λ) in degree 2λ and has the property that
ζ l = gl

b1
+ gl

b2
+ · · · + gl

bμ
for all l � 1. We thus have that 1 and ζ in E(Λ) generate a

graded subalgebra of E(Λ) which is isomorphic to the polynomial ring in one variable,
which we denote by k[ζ ].

Consider the usual basis of E(Λ) consisting of trivial paths, arrows and maximal
overlap sequences constructed from the left. Since k[ζ ] is a subring of E(Λ) we con-
sider E(Λ) as a right k[ζ ]-module. Let S ′ = {Az: A is an infinite extending sequence of
E(Λ), 2 � z � 2M + 2λ − 1} and let S = S ′ ∪ {trivial paths and arrows of Λ}. We will
show that S is a (finite) generating set for E(Λ) as a right k[ζ ]-module.

Let Ay be a maximal overlap sequence of degree y � 2M + 2λ, in some infi-
nite extending sequence A of E(Λ). Then t(Ay) = t(rbi

) for some 1 � i � μ. Write
y − 2M = c(2λ) + k′, for some 0 � k′ < 2λ, c � 1, so that y = c(2λ) + k, for some
2M � k � 2λ + 2M − 1, c � 1. Then Ay = Akgc

bi
= Akζ c, with Ak ∈ S . Since Ay was

arbitrary we get all maximal overlap sequences of degree greater or equal to 2M + 2λ in
this way. Hence E(Λ) is finitely generated as a right k[ζ ]-module with generating set S .
As k[ζ ] is a Noetherian ring, we get that E(Λ) is a Noetherian right k[ζ ]-module. Hence
E(Λ) is a Noetherian right E(Λ)-module.

Now we must show that E(Λ) is a Noetherian left E(Λ)-module. By Proposition 5.2
since the left connective paths of E(Λ) are of zero length, so are the right ones. Also the
right repetition relations are the same as the left. By a similar argument to that above, it
follows that E(Λ) is finitely generated as a left k[ζ ]-module. That E(Λ) is a Noetherian
left E(Λ)-module then follows. Hence E(Λ) is a Noetherian ring.

Conversely, assume now that there exists a connective path of E(Λ) that has positive
length. We can take this to be a left connective path by Corollary 5.3. Suppose this path
starts at t(rai−1) and ends at o(rai

), for rai−1 and rai
repetition relations in some left repeti-

tion. The connective path is then denoted cai
. By taking the basis of E(Λ) of left maximal

overlap sequences, we view E(Λ) as a right E(Λ)-module. We now construct a strictly
ascending chain of right submodules of E(Λ) that is of infinite length. First consider some
special basis elements of E(Λ), namely those left maximal overlap sequences of degree
greater than 2M that end at t(rai−1). Since rai−1 is a left repetition relation, there is some
extending sequence A in which there are infinitely many of these maximal overlap se-



G. Davis / Journal of Algebra 310 (2007) 526–568 567
quences. Label these left maximal overlap sequences in A that end at the vertex t(rai−1) by
ξ1, ξ2, . . . in increasing order of degree.

Now let q be an element from our basis of E(Λ): then q corresponds to a vertex, an
arrow or a left maximal overlap sequence of degree � 2. Pick j � 1; then, since t(ξj ) =
o(cai

) and �(cai
) > 0, we get that the product ξj q is zero in E(Λ), for all q �= t(rai−1). Thus

deg(ξj a) � deg(ξj ), for all a ∈ E(Λ), j � 1. We now construct our chain of submodules.
Let I0 = {0} and for j � 1 let Ij = (ξ1, ξ2, . . . , ξj )E(Λ). Then I0 ⊂ I1 ⊂ I2 ⊂ · · · is clearly
an infinite, strictly ascending chain of right E(Λ)-submodules of E(Λ). Hence E(Λ) is
not right Noetherian and therefore not Noetherian. �

Recalling the definition of a minimal cycle algebra from Definition 0.1, we have the
following corollary.

Corollary 5.4. Let ZQ′ be a cycle algebra overlying a minimal cycle algebra ZQ. Then
E(ZQ′) is Noetherian if and only E(ZQ) is Noetherian.

Proof. The result is immediate since by definition all the connective paths in E(ZQ) are
of zero length if and only if all the connective paths in E(ZQ′) are of zero length. �

Notice that Theorem 5.1 says nothing about the relations on Λ being of equal length
if E(Λ) is Noetherian. The following example shows they need not be. Note that in both
examples below, E(Λ) has infinite dimension.

Example 12. Let Q be an oriented cycle with 9 vertices labelled 1, . . . ,9. Let ηi be the
arrow which starts at the vertex i. Let I = 〈r1, r2, r3, r4, r5〉, where r1 = η1η2η3, r2 =
η2η3η4η5, r3 = η3η4η5η6, r4 = η4η5η6η7η8η9, r5 = η6η7η8η9η1. Let Λ = kQ/I . Then
the repetition relations of Λ are r1, r2, r4, and r5; the connective paths are the trivial paths
e1, e2, e4, and e6. By Theorem 5.1, since E(Λ) has infinite dimension, we get that E(Λ)

is Noetherian (and hence also finitely generated).

Example 13. Let Λ be as in Example 12, with the exception that here r4 = η4η5η6η7η8.
We have the same left repetition relations as above, but now the left connective paths are
η9, e2, e4, and e6. Thus from Theorem 5.1, E(Λ) is not Noetherian. The positive length left
connective path η9 means that the ξj ’s from the proof of Theorem 5.1 arise, each ending at
the vertex 9. However, from Theorem 4.14, we get that E(Λ) is finitely generated.

Remark. It is clear that using Theorems 4.14 and 5.1, we can extend Examples 12 and 13
in both cases to a large class of examples with the same finiteness conditions on the Ext-
algebra.

Lastly we return to our discussion on monomial algebras.

Proposition 5.5. Let B be a monomial algebra and let the Ext-algebra E(B) be
Noetherian. Then the k-algebras E(ZQ) are Noetherian for all minimal cycle algebras
ZQ overlying B .
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Proof. Let ZQ be a minimal cycle algebra overlying B and let E(ZQ) be non-Noetherian.
Let B have quiver Γ . We will show that E(B) is non-Noetherian. By Theorem 5.1, we
have a connective path of E(ZQ) of positive length, so in particular E(ZQ) is not right
Noetherian. We thus have the infinite strictly ascending chain of right ideals of E(ZQ)

constructed in the proof of Theorem 5.1. Recall that an ideal from this chain was written
I

ZQ
j = (ξ∗

1 , ξ∗
2 , . . . , ξ∗

j )E(ZQ). We use the ∗-notation to remain consistent with Proposi-
tion 0.3. As discussed in the proof of Proposition 0.3, each ξ∗

i in E(ZQ) corresponds to
a maximal overlap sequence ξi in E(B). We can thus form an infinite ascending chain of
right ideals of E(B): IB

0 ⊂ IB
1 ⊂ IB

2 ⊂ · · ·, where IB
0 = {0} and IB

j = (ξ1, ξ2, . . . , ξj )E(B).
It remains to show that this chain is strictly ascending. Fix some j � 0 and consider the
basis element ξj+1. To seek a contradiction suppose IB

j = IB
j+1. Then since ξj+1 is one

maximal overlap sequence (not a linear combination), ξj+1 = ξib, for some 1 � i � j and
b some basis element of E(B). Then the underlying path of b is a terminal subpath of ξj+1
and so lies along the path in Γ that is covered by Q. Thus b corresponds to a basis element
b∗ in E(ZQ). This gives us ξ∗

j+1 = ξ∗
i b∗, and so I

ZQ
j = I

ZQ
j+1. This is a contradiction and

therefore we conclude that IB
j �= IB

j+1. Since j was arbitrary, we have that our chain of
right ideals of E(B) is strictly ascending. Hence E(B) is not Noetherian. �

As a counter-example to the reverse implication, Example 11 gives a monomial algebra
with non-Noetherian Ext-algebra that has all its overlying minimal cycle algebras possess-
ing Noetherian Ext-algebras.
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