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Abstract 

For any extension G of F’, by Z, which is not virtualiy a direct product of the two 
factors, we instruct a Zcomplex of nonpositive curvature with fundamental group G. As a 
corollary we obtain a new proof of the fact that any such extension has an automatic 
structure. 
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1. Introduction 

In 6, Ch. 41, Thurston constructs a spine for the figure-8 knot complement. This 
2-complex consists of two 2-cells, four l-cells and two O-cells. If the 2-complex is 
given a metric in which each 2-cell is isometric to a regular Euclidean hexagon, it is 
easy to check that the 2-complex has nonpositive curvature. Furthermore, the 
complement is the mapping torus of a homeomo~hism of a once punctured torus. 
Hence the fundamental group of the complement is an extension of the rank-2 free 
group F2 by 2, which acts cocompactly on a 2-complex of nonpositive curvature. 
The purpose of this paper is to construct similar 2-complexes for general exten- 
sions of F2 by 2. Specifically, if G is any extension of F2 by Z, which is not 
virtually a direct product of the two factors, we will construct a 2-complex of 
nonpositive curvature with fundamental group G. We would like to thank Noel 
Brady and Allen Hatcher for several helpful discussions and the referee for 
suggestions. 
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2. The 3-manifold M 

The following construction of a 3-manifold with boundary is attributed to 
Jorgensen in [3]. Take a collection of n tetrahedra whose vertices have been 
deleted. Label the tetrahedra 1 through n and orient the edges as shown in Fig. 1. 
We will refer to the edges as horizontal, vertical, front diagonal and back diagonal 
as shown. Similarly, we will refer to the faces as back left, back right, front left and 
front right. We identify the vertical pair of edges and the horizontal pair of edges 
on each tetrahedron to form a fattened copy of a once punctured torus. Next we 
identify the two front faces of tetrahedron k with the two back faces of tetrahe- 
dron k + 1 (mod n) according to one of the patterns shown in Fig. 2. The resulting 
3-manifold M is homeomorphic to the mapping torus of a homeomorphism of the 
once punctured torus. Thus G = r,(M) is an extension of F2 by Z, where Z acts 
on F2 by an automorphism 4. It follows from the construction that C$ has a special 
form, namely, it can be expressed as a product in which each factor is one of the 
automorphisms A :(x, y> + (xy, y> or p: (x, y) + (x, yx>. Note that no factor can 
be an inverse of one of these, so that C$ lies in the semigroup generated by A and 

P* 

3. The spine X 

We will be interested in a certain retraction of the 3-manifold above, onto a 
2-dimensional spine which is dual to the cell structure given by the ideal tetrahe- 
dra. For the moment we ignore the case where the automorphism C#J is given by A” 
or pn, i.e., the cases where the abelianization of C#I is parabolic. So X will be a 
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Fig. 1. 

Front of tetrahedron k Back of tetrahedron k+l 

Fig. 2. 
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k+l 

Fig. 3. 

2-complex which has a O-cell for each tetrahedron, a l-cell for each face common 
to a pair of tetrahedra and a 2-cell for each edge in the identification space. We 
label the O-cells of X by the integers 1 through it also. Note that X has 12 O-cells 
and 2n l-cells. To compute the number of 2-cells, we observe that for a given 
tetrahedron, say the kth, the front diagonal edge becomes either vertical or 
horizontal in the (k + 1)st tetrahedron. We say this front diagonal edge is “born at 
the kth stage”. Similarly the back diagonal edge “dies at the kth stage”, and the 
vertical and horizontal edges “live through the kth stage”. Since each edge is born 
at some stage and two edges cannot be born at once, there are IZ 2-cells also. A 
closer look at a 2-cell reveals that it has an axis of symmetry and a preferred 
direction along that axis. This is because the vertices on the boundary of the 2-cell 
are labeled by the stages or tetrahedra. There is a stage at which the edge is born 
and a stage where the edge dies. For an intermediate stage the edge lives through 
and two O-cells with that label appear on the boundary of the 2-cell opposite each 
other across the axis. See Fig. 3. 

We now put a metric on X which will make X a piecewise Euclidean 
2-complex. This is achieved by assigning unit length to each of the l-cells and 
assigning an angle at each O-cell on the boundary of a 2-cell. There are two cases 
depending on the lifespan of the corresponding edge. Suppose the edge is born at 
the kth stage and dies at the (k + m)th stage. If m > 2 then we assign the angle 
2~/3 to the O-cell at the kth stage, to both O-cells at the (k + 1)st stage, to both 
O-cells at the (k + m - 1)st stage and to the O-cell at the 6% + m)th stage. The 
O-cells at all other stages are assigned the angle T. If m = 2 then we assign the 
angle 2a/3 to the O-cell at the k th stage and to the O-cell at the (k + 2)nd stage 
while the two O-cells at the (k + 1)st stage are assigned the angle r/3. See Fig. 4. 

Recall from [4] that a piecewise Euclidean 2-complex has nonpositive curvature 
if every nontrivial circuit in the link of every vertex has total angular measure at 
least 27r. 

Theorem 3.1. X has nonpositive curvature. 

Proof. We consider the length of loops in the links of O-cells. The link of the O-cell 
corresponding to the kth stage has a vertex for each face of tetrahedron k and an 
edge joining a pair of vertices if the corresponding faces share an edge of the 
tetrahedron. Thus the link is the graph shown in Fig. 5. There are six corners of 
2-cells of X incident at a given O-cell. These correspond to the edge e,,, which is 
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Fig. 4. 

Fig. 5. 

born at this stage, the edge ed, which dies at this stage and the edges e, and eh, 
the vertical and horizontal edges respectively, which live through this stage. The 
edges e, and eh each contribute two corners of Z-cells, these corners are opposite 
in the link and have the same angie size. Let ab, ad, a,, a,, be the sizes of the 
angle at the corner corresponding to the edges eb, ed, e,, eh, respectively. We 
know that the values of eb and ed are both 2~/3. To calculate the possible values 
of a, and ah, we observe that, at stage k - 1, either the edge e, or the edge eh 
was born and that, at stage k + 1, either the edge e, or the edge e,, will die. This 
gives four possibilities which fall into two equivalent sets. We consider one of each; 
the other two are obtained by interchanging the roles of e,, and e,. 

(a) The edge eh is born at stage k - 1 and dies at stage k + 1. So a,., = n/3. 
However, this means that e, must live through each of the stages k - 1, k and 
k + 1. So a, = ?r. In this case, we see that the link has no loops with angle sum less 
than 27~. See Fig. 6. 

2d3 

2d3 

Fig. 6. 
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2x/3 

2rd3 

2rd3 

Fig. I. 

(b) The edge e,, is born at stage k - 1 while the edge e, dies at stage k + 1. So 
a,, = 2n/3 and a, = 2n/3. In this case also we see that the link has no loops with 
angle sum less than 21r. See Fig. 7. 0 

Example 3.2. Consider the case where the automorphism is given by 

4(.x, Y> = (VYVVYQW~ YWY). 

This can be expressed as a composition as: 

(x, Y> + (X(Y), Y) = (VT x> 

--+ (xy> Y(xy)G-Y>) = (xy, Yxyxy) 

+ (W(YVV)(YV~)~ YWY) = (VYQVYWY, YWY). 

Thus 4 = hhpph and the tetrahedra and identifications are as shown in Fig. 8. 
There are five 2-cells in the 2-complex X. Fig. 9 shows how the lifts of the 2-cells 
fit together to form a flat plane in the universal cover of X. This flat plane is the 
universal cover of the torus boundary in the 3-manifold M. In the figure, each 
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tetrahedron 2 

tetrahedron 5 

tetrahedron 3 

Fig. 8. 
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Fig. 9. 

l-cell joins a O-cell labeled k to a O-cell labeled k + 1, and is labeled R or L 
according as the corresponding front face of tetrahedron k is right or left. 

4. The A, complex Y 

Next we define Y to be the 2-complex obtained from X by subdividing each 
2-ceil into two rows of equilateral triangles as shown in Fig. 4. Since each 2-cell of 
Y is now an equilateral triangle, this makes Y a 2-complex of type A,, using the 
terminology of [4]. Furthe~ore, since the links of the new O-cells have no short 
loops and the lengths of loops in the links of the old O-cells are unchanged, Y also 
has nonpositive curvature. Thus the results of 141 apply to give: 

Corollary 4.1. P,(Y) has an automatic strz4cture. 

Note 4.2. This corollary also follows from [2, Ch. 121. This is because the existence 
of an automatic structure can be deduced from the structure of the 3-manifold M 
as a circle bundle over a once punctured torus. 
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5. Variations on the construction 

The above construction can be modified in various ways to give different 
manifolds. For each of the variations the links of O-cells in Y are the same as in 
Section 4 above, so the properties of having nonpositive curvature and being A, 
are maintained. 

(a) The ~u~ab~~ic case: Here C$ = h” or pn, the construction is the same except 
that one edge lives through every stage, is never born and never dies. It contributes 
an annulus to X rather than a 2-cell. The angles assigned at vertices on the 
boundary of the annulus each have value rr, and the annulus is subdivided into 
equilateral triangles in Y in the obvious way. 

(b) Rotation by T: Here we rotate the front of the final tetrahedron by n before 
gluing to the back of the first tetrahedron. The effect is to change 4 by composing 
with the automorphism T of F2, which inverts both generators: 

7:(x, y) 4 (x-1, y-1). 

(c) Reflection: Here we reflect the front of the final tetrahedron across the front 
diagonal before gluing to the back of the first tetrahedron. The resulting manifold 
is nonorientable and the effect on C$ is to compose with the automo~hism u of 
F2, which interchanges the generators: 

fl:(x, Y> + (Y, x). 

(d) Combinations: We can apply both processes (b) and (c) to an automorphism 
4, or we can apply one or both processes to an automo~hism of type (a). 

6. Extensions of F, by 2 

Now let G be an extension of F2 by 2, which is not virtually a direct product of 
the two factors. In this section, we will show that G is isomorphic to the 
fundamental group of one of the complexes Y, constructed in Section 4 or one of 
the variations in Section 5 above. First note that G fits into the exact sequence 

l+F,-,G+Z+l, 

which splits since Z is free. Thus G can be expressed as the semidirect product of 
F, by Z where Z acts on F by some element 4 of Aut(E;). Since G has a 
presentation given by 

G&=(x, y, tit-k=&(x), t-‘yt=Sh(y)), 

it follows that the isomorphism class of G will depend only on the conjugacy class 
of # in A&F,). Next the group Aut(F~) fits into the exact sequence 

l+Inn(F,) +Aut(F*) +GL(2, Z) -+ 1, 

so that the isomorphism class of G depends only on the image of C#J in GL(2, Z) 
under the map induced by abelianization. For, if (f, and I/J have the same 
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abelianization then tfi = $1, where 1, is an inner automo~hism. Thus the exten- 
sions determined by 4 and $I are isomorphic. 

So Iet A = c i) be a matrix in GL(2, 21. In what follows we will need to refer 
to the specific 2 x 2 integral matrices: 

L=(: y), R=(h i), I=(: i), -I=(j)l _ol), and 

Note that f;, R, -I and 5’ are the images of A, p, T and CT, respectively under the 
map induced by abelianization. The matrix A has dete~inant det = ad - bc and 
trace tr = u + d. We will consider six cases co~esponding to the possible values of 
det and tr: 

Case 1: det = 1, tr = - 1, 0, 1 or det = - 1, tr = 0. In each of these cases A is of 
finite order and Gb contains the direct product Fz X Z as a subgroup of finite 
index. We will omit these cases. 

Case 2: det = 1, tr = 2. Here A has a single eigenvalue equal to 1, and the 
corresponding eigenvector is (,lr,) or ( ‘id) if b = 0. Thus A can be conjugated in 
GL(2, Z> to R” or L”. So cf, can be conjugated in At&l;,) to pn or h” and we are 
in the case of variation (a) of Section 5 above. 

Case 3: det = 1, tr = - 2. Now Case 2 can be applied to -L4 and since -I is in 
the centre of GL(2, Z>, A is conjugate to -IR” or -It”. So (b can be conjugated 
in AutfF,) to rpn or rh” and we have a combination of variations (a) and (b). 

Case 4: det = 1, tr > 2. The eigenvalues of A are given by 

h = (tr f \i(td2_4)/2, 

which in this case consists of a pair of irrational real numbers. The corresponding 
eigenvectors are 

i 

26 

(d-a)*/_ ’ 
1 

The action of A on the hyperbolic plane is as a hyperbolic tr~slation along the 
axis with endpoints given by the slopes of these eigenvectors. Since the endpoints 
are irrational the axis crosses at least one geodesic whose endpoints are adjacent 
Farey fractions. This shows us to conjugate A, within GU2, Z>, to a matrix B = 
@ ,“), the slopes of whose eigenvectors are separated by the line joining 0 to 03. 
This means that the slopes of the eigenvectors have different signs, so that 

0 > ((s -P> + J_}((s -P) - II=) 

=(s-pJ2- ((p+s)*-4j 

=4{1 -ps}. 

Thus p and s are nonzero and have the same sign. Since p + s > 2, p and s must 
both be positive. Now gr =JB - 1 > 0, so q and r are nonzero and have the same 



T. Brady / Topology and its Applications 63 (199.5) 267-275 275 

sign. If q and r are both negative, conjugation by (-A y) will give a matrix with 
positive entries. Then, by [l], for example, this positive matrix with determinant 1 
can be expressed as a product in R and L. This allows us to conjugate 4 in 
Aut(F,) to a product in p and A of the form described in Section 2. 

Case 5: det = 1, tr < - 2. Now -01 is of the form discussed in Case 4, so -01 
is conjugate to a product in R and L. Since -Z is in the centre of GL(2, 21, A is 
conjugate to a product in R and L premultiplied by -I and variation (b) applies. 

Case 6: det = - 1, tr # 0. Here the eigenvalues of A are 

A = {tr k i-)/2. 

These are always real and irrational. As in Case 4, we can conjugate A to a matrix 
B = (f z), the slopes of whose eigenvectors have different signs. So 

0>((~-~)+~(~+~)z+4}{(~-~)-~t~+~)z+4} 

=(s-p)2-((p+s)z+4} 

= 4{ - 1 -ps). 

Thus ps > - 1 and qr =ps + 1> 0. If p and s are both nonzero, we see that p and 
s have the same sign and q and r have the same sign. Thus either A or -L4 is 
conjugate to a positive matrix. Since det = - 1, this matrix can be expressed as a 
product in R and L, premultiplied by the matrix T. Thus we are in the case of 
variation (C) from Section 5 above or a combination of variations (c) and (b). 
Finally, if one of p or s is zero, then q = r = + 1 and Z? can be expressed in a 
similar form, except that oniy one of the matrices R or L will occur in the product. 
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