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a b s t r a c t

In this work, the contact problem between an elastic body and a rigid obstacle is studied,
including the development of material damage which results from internal compression
or tension. The variational problem is formulated as a first-kind variational inequality for
the displacements coupled with a parabolic partial differential equation for the damage
field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme
is introduced using the finite element method to approximate the spatial variable and
an Euler scheme to discretize the time derivatives. Error estimates are derived on the
approximate solutions, from which the linear convergence of the algorithm is deduced
under suitable regularity conditions. Finally, three two-dimensional numerical simulations
are performed to demonstrate the accuracy and the behaviour of the scheme.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This work deals with the numerical analysis of a quasistatic contact problem between an elastic body and a rigid obstacle,
the so-called foundation. The damage of thematerial, caused by the opening and growth ofmicro-cracks andmicro-cavities,
is also taken into account since it leads to the decrease in the load carrying capacity of the body and, eventually, to the
possible failure of the system in which the body is situated.
Of course, when engineering structures are considered, such as tall buildings, bridges or dams, it is very important to

predict the evolution of their mechanical damage because it affects the mechanical integrity, functioning, life-span, safety,
and indirectly the warranty, of most engineering systems. There exists very large engineering literature dealing with the
many approaches and facets of material damage (see, e.g., [3,27–31,33,34]).
The novel idea of modelling material damage by the introduction of the damage field originated in the works of

Frémond [15–17] and was motivated by the evolution of damage in concrete structures. These ideas have been extended
recently in [1,2,5–7,11,14,18,20,26]. Additional results and references can be found in the recent monograph [32]. In this
approach the damage field ζ varies between one and zero at each point in the body. When ζ = 1 the material is damage-
free, when ζ = 0 the material is completely damaged, and for 0 < ζ < 1 it is partially damaged. The evolution of the
damage field is described here by a parabolic partial differential equation.
In this work, since the contact is assumed frictionless and with a rigid body, the classical Signorini contact conditions

are employed to model the process (see [23]). Therefore, the variational formulation of this problem is written as a coupled
system which consists of a first-kind variational inequality for the displacement field and a linear parabolic variational
equation for the evolution of the damage field. The existence of a unique weak solution to the problem is obtained using
similar arguments to those employed in [8,24] for elastic-viscoplastic materials and assuming contact with a deformable
obstacle. In this paper, we continue the investigation reported in [9], where the contact was not considered, and we notice
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Fig. 1. A frictionless contact problem between an elastic body and a rigid obstacle.

that the novelty of thiswork is the numerical algorithm, its error estimates, and its implementationswhich lead to numerical
simulations of the model.
The rest of the paper is structured as follows. Themechanical model and its weak formulation are presented in Section 2.

The assumptions on the problem data and the statement of the existence and uniqueness of the weak solution, Theorem 2,
are also given. In Section 3, a fully discrete scheme is introduced based on the finite element method to approximate the
spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are provided in Theorem 6, from
which, under suitable regularity conditions, the linear convergence of the fully discrete approximation is deduced. Finally,
two-dimensional numerical examples are described in Section 4 in order to demonstrate the performance of the algorithm
and the behaviour of the solution.

2. Mechanical problem and variational formulation

Let Sd, d = 1, 2, 3, be the space of symmetric d× dmatrices with the usual notation of inner product.
We consider an elastic body which occupies a domain Ω ⊂ Rd with outer surface ∂Ω = Γ = ΓD ∪ ΓN ∪ ΓC which is

assumed to be sufficiently smooth. Also the boundary parts ΓD, ΓN and ΓC are disjoint subsets and ΓD and ΓC have positive
surface measures. For each x ∈ Γ , let ν(x) denote the unit normal outward vector to Γ . Volume forces of density fB act in
Ω × (0, T ), for a final time T > 0, and tractions of density fN act on ΓN . Finally, the body may come into contact with a
rigid obstacle over the boundary part ΓC . A gap g exists between the potential contact surface ΓC and the obstacle, and it is
measured along ν (see Fig. 1).
We denote by u the displacement field, σ the stress tensor, and ε(u) the linearized strain tensor given by

ε(u) = (εij(u))di,j=1, εij(u) =
1
2

(
∂ui
∂xj
+
∂uj
∂xi

)
.

We let ζ denote the damage field, which is defined in Ω × (0, T ) and measures the fractional decrease in the strength of
the material. The material is assumed elastic satisfying the following constitutive law (see, e.g., [13,32]),

σ = ζAε(u),

where A = (aijkl)di,j,k,l=1 is a prescribed fourth-order tensor, and we notice that the classical linear elasticity theory is
obtained when ζ = 1.
Let us present briefly the contact model. The classical frictionless Signorini conditions are written as follows (see [23]),

στ = 0, uν − g ≤ 0, σν ≤ 0, σν(uν − g) = 0 on ΓC × (0, T ),

where uν = u · ν denotes the normal displacements, and σν = σν · ν and στ = σν − σνν are the normal and tangential
stresses, respectively.
We now describe the damage process. As a result of the tensile or compressive stresses in the body, micro-cracks and

micro-cavities open and grow and this causes the load bearing capacity of the material to decrease. This reduction in the
strength of an isotropic material is modelled by introducing the damage field ζ = ζ (x, t) as the ratio

ζ = ζ (x, t) =
Eeff
E
,

between the effective modulus of elasticity Eeff and that of the damage-free material E. It follows from this definition that
the damage field is constrained to the values 0 ≤ ζ ≤ 1.
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Following the derivationpresented in [15,16] (see [17] for full details), the evolution of themicroscopic cracks and cavities
responsible for the damage is described by the following parabolic partial differential equation,

ζ ′ − κ∆ζ = φ(ε(u), ζ ) inΩ × (0, T ).

Here, the prime denotes the time derivative,4 is the Laplace operator, κ > 0 is the damage diffusion constant and φ is the
damage source function whose properties will be described below.
We assume that there is no damage influx throughout the boundary Γ and therefore, ∂ζ/∂ν = 0 there. It is

straightforward to extend the results presented below to more general situations.
For technical reasons associated with the loss of coercivity in the elastic equation, and possible singularities in φ as

ζ → 0, we introduce the truncation operator η∗ : R→ R. This is a nondecreasing C(Ω)-function which satisfies, for fixed
ζ∗ > 0,

η∗ (ζ ) =

{1 if ζ > 1,
ζ if ζ∗ ≤ ζ ≤ 1,
ζ∗ if ζ < ζ∗.

We note that as long as ζ ∈ [ζ∗, 1] it makes no difference whether we use ζ or η∗ (ζ ). The purpose of using η∗ is to allow us
to obtain global regular solutions (see [25]).

Remark 1. We note that when the damage function is close to zero, i.e., the damage is substantial, the material is dense
with micro-cracks (it is likely to develop a crack) andmodelling it as an elastic material ceases to make sense. Therefore, we
postulate the existence of such a lower limit for the damage, denoted by ζ∗ > 0. Moreover, this condition is also required
for the numerical analysis of the problem since it guarantees that the stiffness matrix is positive definite.

Thus, the mechanical form of the quasistatic contact problem between an elastic body and a rigid obstacle, including the
damage of the material, is the following.

Problem P . Find a displacement field u : Ω × (0, T ) → Rd, a stress field σ : Ω × (0, T ) → Sd, and a damage field
ζ : Ω × (0, T )→ R such that,

−Div σ = fB inΩ × (0, T ), (1)
σ = η∗ (ζ )Aε (u) inΩ × (0, T ), (2)

ζ ′ − κ∆ζ = φ (ε (u) , η∗ (ζ )) inΩ × (0, T ), (3)

∂ζ

∂ν
= 0 on Γ × (0, T ) , (4)

u = 0 on ΓD × (0, T ) , (5)
σν = fN on ΓN × (0, T ) , (6)
στ = 0 on ΓC × (0, T ), (7)
uν − g ≤ 0, σν ≤ 0, σν(uν − g) = 0 on ΓC × (0, T ), (8)
ζ (0) = ζ0 inΩ. (9)

We now present the variational formulation of the problem. To that end we introduce the following spaces and notation.
Let Y = L2(Ω), E = H1(Ω), H = [L2(Ω)]d, and denote by Q the space of second order symmetric tensor functions,

Q =
{
τ ∈ [L2(Ω)]d×d; τij = τji

}
.

Let V be defined by

V = {v ∈ [H1(Ω)]d; v = 0 on ΓD},

and define the admissible displacement convex set U as,

U = {v ∈ V ; vν = v · ν ≤ g on ΓC }.

We now describe the assumptions on the problem data.
The fourth-order elasticity tensorA = (aijkl)di,j,k,l=1 : Ω × Sd → Sd satisfies:

aijkl(x) = aklij(x) = ajikl(x) for i, j, k, l = 1, . . . , d. (10)

A (x) τ · τ ≥ mA |τ|
2
Sd , for all τ ∈ Sd. (11)

The mapping x→ A (x) is measurable and bounded. (12)
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The damage source function φ : Ω × Sd × R→ R is Lipschitz and verifies:
|φ (x, ε1, η∗ (ζ1))− φ (x, ε2, η∗ (ζ2))| ≤ Lφ (|ε1 − ε2| + |η∗ (ζ1)− η∗ (ζ2)|)

for all ε1, ε2 ∈ Sd, ζ1, ζ2 ∈ R, a.e. x ∈ Ω. (13)
The function x→ φ (x, ε, ζ ) is measurable. (14)
The mapping x→ φ (x, 0, 0) belongs to Y . (15)
φ (x, ε, η∗ (ζ )) is bounded. (16)
φ (x, ε, ζ ) ≤ 0 if ζ ≥ 1, φ (x, ε, ζ ) ≥ 0 if ζ ≤ ζ∗. (17)

Below, and in the rest of this work, we do not show the dependence of these functions on x in order to simplify the writing.
The density of body forces and the tractions are assumed to satisfy

fB ∈ C ([0, T ] ;H) , fN ∈ C
(
[0, T ] ; [L2 (ΓN)]d

)
, (18)

and we define the element f ∈ C([0, T ]; V ) by
(f (t),w)V = (fB(t),w)H + (fN(t),w)[L2(ΓN )]d ∀w ∈ V .

In addition, we assume that the gap function and the initial condition satisfy,

g ∈ L2(ΓC ), g(x) ≥ 0 for a.e. x ∈ ΓC ,
ζ0 ∈ E, ζ0 (x) ∈ (ζ∗, 1] for a.e. x ∈ Ω.

(19)

To describe the variational form of the problem we need the bilinear form a : E × E → R given by

a(ξ , η) = κ
∫
Ω

∇ξ · ∇ηdx ∀ξ, η ∈ E.

Therefore, using a Green’s formula, the variational formulation of the mechanical problem P is the following.
Problem VP . Find a displacement field u : [0, T ] → U and a damage field ζ : [0, T ] → E such that ζ (0) = ζ0 and for a.e.
t ∈ [0, T ],

(η∗(ζ (t))Aε(u(t)), ε(v − u(t)))Q ≥ (f (t), v − u(t))V ∀v ∈ U, (20)

(ζ ′(t), ξ)Y + a(ζ (t), ξ) = (φ(ε(u(t)), ζ (t)), ξ)Y ∀ξ ∈ E. (21)
The following theorem, which states the existence of a unique solution to Problem VP , is obtained by using similar

arguments to those employed in [24,25].

Theorem 2. Assume that (10)–(19) hold. Then, there exists a unique solution to Problem VP such that

ζ ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ; Y ),
ζ (x, t) ∈ [ζ∗, 1] for a.e. (x, t) ∈ Ω × (0, T ),
u ∈ L∞(0, T ;U).

The proof of the theorem was based on the regularization of the variational problem and a priori estimates.

3. Fully discrete approximations: Error estimates

In this section we introduce a finite element algorithm for the solution to Problem VP and we obtain an error estimate
on the approximate solutions.
The discretization of Problem VP will be done in two steps. First, we consider two finite-dimensional spaces V h ⊂ V and

Eh ⊂ E which approximate the spaces V and E, respectively. Here, h > 0 denotes the spatial discretization parameter. The
discrete admissible displacement convex set is then defined as Uh = U ∩ V h.

Remark 3. In the numerical simulations described in the following section, V h and Eh consist of continuous and piecewise
affine functions; that is,

V h = {vh ∈ [C(Ω)]d; vh
|Tr
∈ [P1(Tr)]d ∀Tr ∈ T h, vh = 0 on ΓD}, (22)

Eh = {ξ h ∈ C(Ω); ξ h
|Tr
∈ P1(Tr) ∀Tr ∈ T h}, (23)

where Ω is assumed to be a polygonal domain, T h denotes a finite element triangulation of Ω and P1(Tr) represents the
space of polynomial functions of global degree less than or equal to 1 in Tr . Therefore, we notice that the discrete convex
set Uh is defined as,

Uh = {vh ∈ V h; vhν = vh · ν ≤ g on ΓC }. (24)
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To discretize the time derivatives, we consider a uniform partition of the time interval [0, T ], denoted by 0 = t0 < t1 <
· · · < tN = T and let k be the time step size, k = T/N . For a continuous function f (t), let fn = f (tn) and for a sequence
{wn}

N
n=0 we let δwn = (wn − wn−1)/k be its corresponding divided differences.
The fully discrete approximation of Problem VP , based on a hybrid combination of the backward and the forward Euler

schemes, is as follows.
Problem VPhk. Find a discrete displacement field uhk = {uhkn }

N
n=0 ⊂ U

h and a discrete damage field ζ hk = {ζ hkn }
N
n=0 ⊂ E

h

such that ζ hk0 = ζ
h
0 and for all ξ

h
∈ Eh, vh ∈ Uh and n = 1, 2, . . . ,N ,

(δζ hkn , ξ
h)Y + a(ζ hkn , ξ

h) = (φ(ε(uhkn−1), ζ
hk
n−1), ξ

h)Y , (25)

(η∗(ζ
hk
n )Aε(u

hk
n ), ε(v

h
− uhkn ))Q ≥ (fn, v

h
− uhkn )V , (26)

where ζ h0 is an appropriate approximation of the initial condition ζ0, and uhk0 ∈ U
h is the unique solution to the following

problem,

(η∗(ζ
h
0 )Aε(u

hk
0 ), ε(v

h
− uhk0 ))Q ≥ (f0, v

h
− uhk0 )V ∀v

h
∈ Uh. (27)

Using standard arguments for variational inequalities (see [19]), we deduce the existence and uniqueness of the solution
to Problem VPhk, which we state as follows.

Theorem 4. Let the assumptions of Theorem 2 hold. Then, there exists a unique solution to Problem VPhk such that uhk ⊂ Uh
and ζ hk ⊂ Eh.

Remark 5. We notice that the above discrete problem is a decoupled system composed of a linear variational equation
for the discrete damage field and a first-kind variational inequality for the discrete displacements. First, the discrete initial
displacements are obtained solving the discrete variational inequality (27). A penalty-duality algorithm, introduced in [4]
and already applied in other contact problems, is used for its numerical resolution.
Then, we rewrite (25) in the form

ζ hkn ∈ E
h, (ζ hkn , ξ

h)Y + ka(ζ hkn , ξ
h) = k(φ(ε(uhkn−1), ζ

hk
n−1), ξ

h)Y + (ζ
hk
n−1, ξ

h)Y ∀ξ
h
∈ Eh. (28)

Eq. (28) is a linear system that is solved using Cholesky’s method.
Once ζ hkn is calculated, it is introduced into (26). In practice, ζ

hk
n > ζ∗ (since the program stops when the value ζ∗ is

reached) and therefore, Eq. (26) leads to a first-kind variational inequality which is again solved by using the above penalty-
duality algorithm.

Our interest here lies in estimating the numerical errors ‖un − uhkn ‖V and ‖ζn − ζ
hk
n ‖Y . Thus, let us assume the following

regularity conditions on the continuous solution,

u ∈ C([0, T ]; V ),

ε(u) ∈ L∞(0, T ; [L∞(Ω)]d×d),

ζ ∈ C([0, T ]; E) ∩ C1([0, T ]; Y ).

(29)

First, we take variational inequality (20) at time t = tn for v = uhkn ∈ U
h
⊂ U to obtain,

(η∗(ζn)Aε(un), ε(uhkn − un))Q ≥ (fn, uhkn − un)V .

Then, we rewrite the discrete variational inequality (26) in the following form,

(η∗(ζ
hk
n )Aε(u

hk
n ), ε(un − uhkn ))Q ≥ (fn, v

h
− uhkn )V + (η∗(ζ

hk
n )Aε(u

hk
n ), ε(un − vh))Q ∀vh ∈ Uh,

and adding the above two inequalities we find that

(η∗(ζn)Aε(un)− η∗(ζ hkn )Aε(u
hk
n ), ε(un − uhkn ))Q ≤ (fn, un − vh)V + (η∗(ζ hkn )Aε(u

hk
n ), ε(v

h
− un))Q ∀vh ∈ Uh.

Let us bound the left-hand side of the above inequality. Writing it as follows,

(η∗(ζn)Aε(un)− η∗(ζ hkn )Aε(u
hk
n ), ε(un − uhkn ))Q = (η∗(ζ

hk
n )Aε(un − uhkn ), ε(un − uhkn ))Q

+ ((η∗(ζn)− η∗(ζ
hk
n ))Aε(un), ε(un − uhkn ))Q ,

keeping in mind that

(η∗(ζ
hk
n )Aε(u

hk
n ), ε(v

h
− un))Q = (η∗(ζ hkn )Aε(un), ε(v

h
− un))Q + (η∗(ζ hkn )Aε(u

hk
n − un), ε(vh − un))Q ,

applying several times the inequality

ab ≤ εa2 +
1
4ε
b2, a, b, ε ∈ R, ε > 0, (30)



M. Campo et al. / Journal of Computational and Applied Mathematics 224 (2009) 646–657 651

and using the regularity ε(u) ∈ L∞(0, T ; [L∞(Ω)]d×d) and the properties η∗(ζn), η∗(ζ hkn ) > η∗, η∗(ζn), η∗(ζ hkn ) ≤ 1, we find
that

‖un − uhkn ‖
2
V ≤ c(‖ζn − ζ

hk
n ‖

2
Y + ‖un − vh‖V + ‖un − vh‖2V ) ∀v

h
∈ Uh. (31)

Here and below, c is a constant which depends on the problem data and the continuous solution, but it is independent of k
or h.
We turn now to obtain an error estimate for the damage field. It was already done in [9] and we refer the reader there

for further details. We sketch below the proof.
Let us denote by φn = φ(ε(un), ζn) and φhkn−1 = φ(ε(u

hk
n−1), ζ

hk
n−1). Writing Eq. (21) at time t = tn for all ξ = ξ

h
∈ Eh and

subtracting it from Eq. (25), it follows that

(ζ ′n − δζ
hk
n , ζn − ζ

hk
n )Y + a(ζn − ζ

hk
n , ζn − ζ

hk
n )− (φn − φ

hk
n−1, ζn − ζ

hk
n )Y

= (ζ ′n − δζ
hk
n , ζn − ξ

h)Y + a(ζn − ζ hkn , ζn − ξ
h)− (φn − φ

hk
n−1, ζn − ξ

h)Y ,

for all ξ h ∈ Eh. Then, after some manipulations, we get

(δζn − δζ
hk
n , ζn − ζ

hk
n )Y + c‖∇(ζn − ζ

hk
n )‖

2
H ≤ c(‖un − uhkn−1‖V + ‖ζn − ζ

hk
n−1‖Y )‖ζn − ζ

hk
n ‖Y

+‖ζ ′n − δζn‖Y (‖ζn − ζ
hk
n ‖Y + ‖ζn − ξ

h
‖Y )+ ‖∇(ζn − ζ

hk
n )‖H‖ζn − ξ

h
‖E

+ c(‖un − uhkn−1‖V + ‖ζn − ζ
hk
n−1‖Y )‖ζn − ξ

h
‖Y + (δζn − δζ

hk
n , ζn − ξ

h)Y ,

where δζn = (ζn − ζn−1)/k. Since

(δζn − δζ
hk
n , ζn − ζ

hk
n )Y ≥

1
2k

[
‖ζn − ζ

hk
n ‖

2
Y − ‖ζn−1 − ζ

hk
n−1‖

2
Y

]
,

using inequality (30) several times, by induction it leads to the following estimate,

‖ζn − ζ
hk
n ‖

2
Y + k

n∑
j=1

‖∇(ζj − ζ
hk
j )‖

2
H ≤ ck

n∑
j=1

(
‖uj−1 − uhkj−1‖

2
V + ‖ζj−1 − ζ

hk
j−1‖

2
Y

+‖ζ ′j − δζj‖
2
Y + ‖uj − uj−1‖2V + ‖ζj − ζj−1‖

2
Y + ‖ζj − ξ

h
j ‖
2
E

)
+ c

n∑
j=1

(ζj − ζ
hk
j − (ζj−1 − ζ

hk
j−1), ζj − ξ

h
j )Y + ‖ζ0 − ζ

h
0 ‖
2
Y ,

for all ξ h = {ξ hj }
n
j=0 ⊂ E

h. Taking into account that

n∑
j=1

(ζj − ζ
hk
j − (ζj−1 − ζ

hk
j−1), ζj − ξ

h
j )Y ≤ ε‖ζn − ζ

hk
n ‖

2
Y + c‖ζn − ξ

h
n ‖
2
Y + c‖ζ0 − ζ

h
0 ‖
2
Y + c‖ζ1 − ξ

h
1 ‖
2
Y

+ k
n−1∑
j=1

‖ζj − ζ
hk
j ‖

2
Y +

1
k

n−1∑
j=1

‖ζj − ξ
h
j − (ζj+1 − ξ

h
j+1)‖

2
Y ,

where ε > 0 is assumed sufficiently small, we have the following error estimate, for all ξ h = {ξ hj }
N
j=1 ⊂ E

h,

‖ζn − ζ
hk
n ‖

2
Y + k

n∑
j=1

‖∇(ζj − ζ
hk
j )‖

2
H

≤ c

(
k
n∑
j=1

{
‖uj−1 − uhkj−1‖

2
V + ‖ζj−1 − ζ

hk
j−1‖

2
Y + ‖ζ

′

j − δζj‖
2
Y + ‖uj − uj−1‖2V + ‖ζj − ζj−1‖

2
Y

+‖ζj − ξ
h
j ‖
2
E

}
+ ‖ζn − ξ

h
n ‖
2
Y + ‖ζ0 − ζ

h
0 ‖
2
Y + ‖ζ1 − ξ

h
1 ‖
2
Y +

1
k

n−1∑
j=1

‖ζj − ξ
h
j − (ζj+1 − ξ

h
j+1)‖

2
Y

)
. (32)

Combining (31) and (32) and using a discrete version of Gronwall’s inequality (see [21]), it leads to the following.

Theorem 6. Let the assumptions of Theorem 2 and the regularity conditions (29) hold. There exists a constant c > 0, independent
of h and k, such that for all {ζ hj }

N
j=1 ⊂ E

h and {vhj }
N
j=1 ⊂ U

h,

max
0≤n≤N

{‖un − uhkn ‖
2
V + ‖ζn − ζ

hk
n ‖

2
Y } + k

N∑
j=1

‖∇(ζj − ζ
hk
j )‖

2
H
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≤ c

(
k
N∑
j=1

{
‖ζ ′j − δζj‖

2
Y + ‖uj − uj−1‖2V + ‖ζj − ζj−1‖

2
Y + ‖ζj − ξ

h
j ‖
2
E

}
+ max
0≤n≤N

[
‖ζn − ξ

h
n ‖
2
Y + ‖un − vhn‖V + ‖un − vhn‖

2
V

]
+ ‖ζ0 − ζ

h
0 ‖
2
Y

+‖u0 − uhk0 ‖
2
V +

1
k

N−1∑
j=1

‖ζj − ξ
h
j − (ζj+1 − ξ

h
j+1)‖

2
Y

)
.

These error estimates are the basis for the analysis of the convergence rate of the algorithm.
As an example, letΩ be a polyhedral domain and denote by T h a regular triangulation ofΩ compatiblewith the partition

of the boundary Γ = ∂Ω into ΓD, ΓN and ΓC . Let the finite element spaces V h and Eh and the discrete convex set Uh be
defined by (22), (23) and (24), respectively, and assume that the discrete initial condition ζ h0 is obtained by ζ

h
0 = πhζ0,

where πh : C(Ω) → Eh is the standard finite element interpolation operator (see, e.g., [12]). Moreover, we recall that the
discrete initial displacements uhk0 are the unique solution to the discrete variational inequality (27).
The following error estimates establish some convergence orders of the algorithm, with respect to the discretization

parameters h and k, under suitable regularity conditions.

Corollary 7. Let the assumptions of Theorem 6 hold. Under the following regularity conditions

u ∈ C([0, T ]; [H2(Ω)]d) ∩ C1([0, T ]; V ),
ζ ∈ C([0, T ];H2(Ω)) ∩ H2(0, T ; Y ) ∩ H1(0, T ; E),

there exists c > 0, independent of h and k, such that,

max
0≤n≤N

{‖un − uhkn ‖V + ‖ζn − ζ
hk
n ‖Y } ≤ c(h

1/2
+ k). (33)

Moreover, if we also assume that

σν ∈ C([0, T ]; L2(ΓC )), uν ∈ C([0, T ];H2(ΓC )), (34)

the numerical algorithm introduced in Problem VPhk is linearly convergent; that is, there exists c > 0, independent of h and k,
such that,

max
0≤n≤N

{‖un − uhkn ‖V + ‖ζn − ζ
hk
n ‖Y } ≤ c(h+ k). (35)

Proof. First, we need to estimate the errors provided by the approximation of the finite element spaces V h and Eh. Since
u ∈ C([0, T ]; [H2(Ω)]d) and ζ ∈ C([0, T ];H2(Ω)), we have (see [12]),

max
1≤n≤N

inf
vhn∈Vh
‖un − vhn‖V ≤ ch‖u‖C([0,T ];[H2(Ω)]d),

max
0≤n≤N

inf
ξhn∈Eh
‖ζn − ξ

h
n ‖E ≤ ch‖ζ‖C([0,T ];H2(Ω)),

and, from (31) and the definition of the operator πh we immediately obtain (see again [12]),

‖u0 − uhk0 ‖
2
V ≤ c(h

2
‖ζ0‖

2
H2(Ω) + h

2
‖u0‖2[H2(Ω)]d + h‖u0‖[H2(Ω)]d),

‖ζ0 − ζ
h
0 ‖Y ≤ ch

2
‖ζ0‖H2(Ω).

Since u ∈ C1([0, T ]; V ) and ζ ∈ H2(0, T ; Y ), it is easy to check that

ζ ′j − δζj =
1
k

∫ tj

tj−1

∫ t

tj
ζ (s)dsdt,

uj − uj−1 = ku′(t) t ∈ [tj−1, tj],
ζj − ζj−1 = kζ ′(t) t ∈ [tj−1, tj],

and therefore,

k
N∑
j=1

[
‖ζ ′j − δζj‖

2
Y + ‖uj − uj−1‖2V + ‖ζj − ζj−1‖

2
Y

]
≤ ck2(‖u‖2C1([0,T ];V ) + ‖ζ‖

2
H2(0,T ;Y )).
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Fig. 2. Example I: Physical setting and mesh for n = 8.

Finally, in [20] the following estimate was obtained,

1
k

N−1∑
j=1

‖ζj − ζ
hk
j − (ζj+1 − ζ

hk
j+1)‖

2
Y ≤ ch

2
‖ζ‖2H1(0,T ;E),

which concludes the proof of (33).
The linear convergence (35) is now obtained proceeding as in [21], integrating by parts the equilibrium equation

(1), using regularity conditions (34) and the following error estimate (see again [12]),

max
1≤n≤N

inf
vhn∈Vh
‖(un − vhn) · ν‖L2(ΓC ) ≤ ch

2
‖uν‖C([0,T ];H2(ΓC )). �

4. Numerical results

To exhibit the performance of the numerical scheme we present some numerical results of its implementation.
In all the examplesAε(u)was chosen as the two-dimensional plane-stress elasticity tensor,

(Aτ)αβ =
Er
1− r2

(τ11 + τ22)δαβ +
E
1+ r

ταβ ,

where α, β = 1, 2, E and r are Young’s modulus and Poisson’s ratio, respectively, and δαβ denotes the Kronecker symbol.
The finite element spaces V h and Eh and the discrete convex set Uh given by (22), (23) and (24), respectively, were

employed and we also considered the damage source function φ defined as,

φ(ε(u), ζ ) = −
(
λD

(
1− ζ
ζ

)
+
1
2
λUΨq∗(ε(u))− λW

)
+

,

where λD, λU and λW are process parameters and the truncation function Ψ : Sd → R is given by

Ψq∗(τ) =

{
|τ|2Sd if |τ|2Sd ≤ q

∗,

q∗ otherwise,

and |τ|2Sd =
∑d
i,j=1 τ

2
ij for all τ = (τij)

d
i,j=1 ∈ Sd. Value q∗ = 1000 was employed in the simulations.

4.1. Example I: Numerical convergence

In order to verify the asymptotic behaviour of the numerical method presented in the previous section, a sequence of
numerical solutions was computed following the physical setting described in Fig. 2. Uniform partitions were considered of
both the time interval and the spatial domain (each side of the square [0, 1]× [0, 1]was divided into n equal parts), and the
corresponding solutions were compared with the ‘‘exact solution’’ obtained with k = 0.0001 and n = 256. The boundary
ΓD = {0}×[0, 1]was supposed to be fixed, ΓC = [0, 1]×{0}was in frictionless contact with a rigid foundation and ΓN was
divided into two parts: {1}×[0, 1], onwhich a density of surface tractions fN acted, and [0, 1]×{1}, whichwas traction-free.
No volume forces were supposed to act on the body.
The following data were used in this example:

T = 1 s, g = 0 m, fB = 0 N/m3, fN = (−10,−10) N/m2,
E = 80 N/m2, r = 0.3, λD = 0.1, λU = 100, λW = 0,
ζ∗ = 0.01, κ = 0.01, ζ0 = 1.
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Table 1
Example I: Numerical errors obtained with different n and k

k
n 0.02 0.01 0.005 0.002 0.001

4 0.03027 0.02931 0.02884 0.02856 0.02856
8 0.01934 0.01803 0.01739 0.01701 0.01688
16 0.01594 0.01167 0.01003 0.009247 0.008794
32 0.007324 0.005391 0.004471 0.003956 0.003794
64 0.005254 0.003095 0.002029 0.001441 0.001269

Fig. 3. Example I: Evolution of the numerical error with respect to k+ h.

Fig. 4. Example II: Contact problem of an L-shaped domain.

The numerical errors given by

max
0≤n≤N

{
‖un − uhkn ‖V + ‖ζn − ζ

hk
n ‖Y

}
are shown in Table 1 (here, h =

√
2
n and un and ζn denote, as previously noticed, the discrete solutions obtained with

parameters h =
√
2/256 and k = 10−4). As can be seen, the numerical convergence of the algorithm is obtained. Moreover,

its linear convergence with respect to h+ k, stated in Corollary 7, is almost observed in Fig. 3.

4.2. Example II: Damage in an L-shaped body

As the second example, we consider an L-shaped body which is subjected to the action of traction forces on its upper
horizontal boundary. The body is clamped on its lower horizontal boundary and an obstacle is assumed to be in contact,
i.e. g = 0, on the boundary part ΓC (see Fig. 4).
The following data have been used in the simulations:

T = 1 s, fB = 0 N/m3, fN(x1, x2, t) = (0,−80t) N/m2,
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Fig. 5. Example II: Deformed mesh (amplified by 10) and initial configuration.

Fig. 6. Example II: Von Mises stress norm (left) and damage field (right) at final time.

κ = 1, E = 105 N/m2, r = 0.3, ζ∗ = 0.01,
λD = 5× 0.05, λU = 103, λW = 0, ζ0 = 1.

The deformed mesh (amplified by 10) at final time and the initial configuration are plotted in Fig. 5. As we expected, the
body bends because of the obstacle and we also observe that no penetration has been produced. Moreover, in Fig. 6 the von
Mises stress norm (left-hand side) and the damage field (right-hand side) are depicted at final time. As can be seen, themost
damaged areas coincide with the highest stressed ones, which are located near the contact areas.

4.3. Example III: Damage in a U-shaped domain

As the third example, our aim is the simulation of a simplified masonry bridge (see, for instance, [22]). Here, we use our
model to obtain the most damaged areas which we identify with the possible breaking zones. Therefore, we consider the
physical setting described in Fig. 7. A vertical force fN(x1, x2, t) = (0,−80t)N/m2 is acting on a part of the upper horizontal
boundary, while the lower horizontal ones are assumed to be in contact with a rigid obstacle (again, g = 0 m).
The following data have been employed in the simulations:

T = 1 s, fB = 0 N/m3, fN(x1, x2, t) = (0,−80t) N/m2,
κ = 1, E = 106 N/m2, r = 0.3, ζ∗ = 0.01,
λD = 5× 0.05, λU = 103, λW = 0, ζ0 = 1.

The deformed mesh (amplified by 10) at final time and the initial configuration are plotted in Fig. 8. As we expected, the
body bends because of the applied forces. We also observe that no penetration has been produced and there was a sliding
effect on the contact areas. Moreover, in Fig. 9 the von Mises stress norm (left-hand side) and the damage field (right-hand
side) are depicted at final time. As can be seen, themost damaged areas coincide againwith the highest stressed ones, which
are located near the contact areas and where the body bends.

5. Conclusions

The paper dealt with the numerical analysis and simulations of a contact problem between an elastic body and a rigid
obstacle. The evolution of the material damage, which led to the development and growth of micro-cracks, was also taken
into account. A numerical algorithm for the model, based on finite elements and a hybrid combination of the backward
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Fig. 7. Example III: Simulation of a U-shaped domain.

Fig. 8. Example III: Deformed mesh (amplified by 10) and initial configuration.

Fig. 9. Example III: Von Mises stress norm (left) and damage field (right) at final time.

and the forward Euler schemes, was proposed and error estimates on its solutions were obtained, from which the linear
convergence, with respect to the discretization parameters, was derived.
We must notice that the error estimates provided in Corollary 7, which states the linear convergence of the algorithm

for the case of continuous piecewise affine functions, were derived under an additional assumption on the regularity of
the solution which was not proved. However, since for the case of contact with a deformable obstacle this regularity was
improved (see [8]), we hope to address it in the near future.
The algorithm was implemented and three examples were computed. In the first one, the setting was chosen in such a

way as to show the numerical convergence of the algorithm. As can be seen in Fig. 3, the linear convergence of the algorithm
was achieved. In the second example, the aim was to study the location of the most damaged areas in an L-shaped body
subjected to the action of surface forces. Finally, in the third example, a U-shaped body, representing a simplified masonry
bridge, was simulated. In these last two examples, we observed that the most damaged areas coincided with the highest
stressed ones.
Finally, we notice that the results presented in this paper could be easily extended to other contact problems including,

for instance, friction, by using similar arguments to those employed in [10] in the case of viscoelastic materials. Moreover,
although the computer implementation could be done in a similar way, the dynamical version of this problem (i.e, including
the full dynamical mass term) will have additional mathematical issues such as the existence and uniqueness of weak
solutions or developing useful error estimates that cannot be considered yet.
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