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To investigate morphological and genomic differences between cutting and racing lines
of Quarter Horses, 120 racing and 68 cutting animals of both sexes, registered at the
Brazilian Association of Quarter Horse Breeders, were used. Blood samples were
collected, and the following physical traits were measured: weight; height at withers;
body length; length of the shank, pastern, rump, head, and neck; and chest, shank, and
hoof circumference. For analysis of genomic differences, 54,602 single-nucleotide poly-
morphisms (SNPs) were genotyped using the Equine SNP50 BeadChip, and the quality of
individual and SNP genotype data were evaluated. The fixation index, FST, was used to
identify genome regions that were altered in the lines by selection. The results showed
significant differences between the lines in all physical traits. Quality control led to the
exclusion of four cutting animals with a call rate of <0.95. After filtering, 12,544, 13,815,
and 13,370 SNPs were excluded for the whole population (n ¼ 184), the 120 racing
animals, and the 64 cutting animals, respectively. The number of informative poly-
morphisms detected in each line and in the whole population indicated that the Equine
SNP50 BeadChip can be used in genetic studies of Quarter Horses. The fixation index, FST,
identified 2,558 genome regions that may have been modified by divergent selection.

� 2013 Elsevier Inc. Open access under the Elsevier OA license.
1. Introduction

As a breed of global importance, corresponding to 52%
of all horses, Quarter Horses are important because of their
great versatility in different equestrian events [1]. Quarter
Horses were developed in North America in the 17th
century from Arabian and Turkish horses brought by
European settlers. The major development of this breed
occurred during westward expansion when pioneers
needed robust and versatile horses, fit for the saddle and
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for traction, in viewof the difficulty to keep a varied stock of
animals to satisfy diverse necessities [1].

The Quarter Horse breed is subdivided into different
lines according to skills resulting from distinct selection
objectives, including cutting and racing horses. The cutting
line is destined for functional tests, exploring skills such
as agility and obedience, which are important for cattle
management in the field. The racing line is characterized
by great sprinting speed over short distances on straight
tracks. The cutting type is shorter and more compact and
hasmuscular hindquarters, whereas the racing type is taller
and has longer legs and a less prominent musculature.

The simultaneous study of thousands of DNA poly-
morphisms spread across the genome, known as genome-
wide association analysis, has permitted the study of
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different populations of various domestic animal species
[2-4], as well as the estimation of genetic divergencewithin
and between populations [5]. During the process of
domestication and breed formation, domestic animals
were subjected to natural and artificial selection. These
selection pressures led to an increase in the frequency of
some mutations in specific regions of the genome, which
generated more adapted animals or provided them with
favorable characteristics tomeet human needs. At the same
time, the frequency of other polymorphisms decreased or
they were completely eliminated [6]. In this respect, the
comparison of allele frequencies between selected and
unselected populations or between populations selected
for different objectives provides insights into the regions of
the genome that have been modified by selection.

According to Chowdhary and Raudsepp [7], one of the
highlights from the analysis of the horse genome is its
complete sequencing from a Thoroughbred animal (Equ-
Cab2.0) and, from this, the identification of 1,162,753
single-nucleotide polymorphisms (SNPs) in different
breeds [8]. Designed to identify SNPs and genes that
contribute to traits of interest in the major horse breeds
raised today in the world, the Equine SNP50 BeadChip
developed by Illumina, Inc., (San Diego, California, USA)
represents a powerful platform for genetic studies of this
species, permitting researchers to perform a variety of
experiments that require the genotyping of DNA
polymorphisms.

In view of these considerations, the aims of the present
study were to investigate the genomic differences, using
the Equine SNP50 BeadChip, andmorphological differences
between cutting and racing lines of Quarter Horses as
a result of selection for different objectives.

2. Materials and Methods

2.1. Animals and Phenotypic Data

One hundred eighty-eight Quarter Horses of both sexes
born between 1985 and 2009, including 120 racing horses
and 68 cutting horses, registered at the Brazilian Associa-
tion of Quarter Horse Breeders, were studied. All experi-
mental procedures were conducted in accordance with the
Brazilian legislation on animal welfare.

The following physical traits were measured according
to Torres and Jardim [9]: weight; height at withers; body
length; length of the shank, pastern, rump, head, and neck;
and chest, shank, and hoof circumference. The measure-
ments were performed by the same person using a tape
measure andmeasuring stick, always on the right side of the
animal, with the horse standing with front and rear legs
perpendicular to the ground. For genotyping, a 5-mL sample
of whole bloodwas collected from each animal by puncture
of the left jugular vein in the neck region into vacuum tubes
containing 7.5 mg ethylenediaminetetraacetic acid.

The animals of the racing line (18 male and 102 female
horses), born to 48 stallions and 107 mares, belonged to
five farms in the countryside of the State of São Paulo,
Brazil. The animals of the cutting line (26 male and
42 female horses), born to 44 stallions and 64 mares,
belonged to three other farms in the countryside of the
State of São Paulo. In both lines, full sibs were avoided.
2.2. Genotyping of SNPs

Genomic DNA was extracted from the blood samples of
Quarter Horses using the Illustra Blood Genomicprep Mini
Spin kit (GE Healthcare, Little Chalfont, Buckinghamshire,
UK) according to manufacturer instructions. DNA integrity
was analyzed using 0.8% agarose gel electrophoresis, and
DNA was quantified using a NanoDrop ND-2000 spectro-
photometer (Thermo Fisher Scientific, Waltham, Massa-
chusetts, USA). The DNA concentration in the samples was
adjusted to 40-60 ng/mL.

SNPs were genotyped on the HiScan system (Illumina
Inc.) using the Illumina Equine SNP50 BeadChip at the
Faculty of Agricultural and Veterinary Sciences, UNESP,
Jaboticabal, São Paulo, Brazil. The chip contains 54,602
SNPs uniformly distributed across the entire genome of 15
horse breeds. The SNPs are distributed across the 31 auto-
somes and X chromosome. The mean interval between
SNPs is 43,200 bp. This content is derived from the Equ-
Cab2.0 SNP Collection compiled by the Broad Institute’s
Equine Genome Sequencing Project, which identified
>940,000 SNPs in Arabian, Andaluz, Akhal-Teke, Islandesa,
Standardbred, Thoroughbred, and Quarter Horses.

2.3. Analysis of Morphological Differences and Differences
in Inbreeding between Cutting and Racing Lines

Morphological differences between the two Quarter
Horse lines (cutting and racing) were evaluated using
a model that included the effects of sex and line, and age at
recording as covariate. The general linear model (GLM)
procedure of the Statistical Analysis System v.9.1 program
(SAS Institute Inc., Cary, North Carolina, USA) [10] was used
for statistical analysis, andmeans were compared using the
Tukey test at a level of significance of 5%.

The inbreeding coefficient was calculated for each
animal of the two lines based on pedigree records using the
Relax2 program (MTT Agrifood Research Finland, Biomet-
rical Genetics, Jokioinen, Finland) [11]. The relationship
matrix contained 762 animals, with a depth of ancestry of
four generations. The average inbreeding of consanguin-
eous animals and of all animals of each line was estimated
using the coefficients of inbreeding.

2.4. Quality of Genotype Data

The quality of individual and SNP genotype data was
investigated using the Genome Studio program, version
2011.1 (Illumina Inc.). For individuals, call rate, heterozy-
gosity, and gender estimation were determined. Animals
with a call rate <0.95, heterozygosity of �3 standard
deviations from the mean, and errors in gender estimation
were excluded from the sample. In addition, agreement
between four replicates and parentage concordance (allele
sharing) between four stallion/progeny and three stallion/
mare/progeny pairs were evaluated.

With respect to the quality of SNP genotypes in the
whole population and in each line, SNPs located on the X
chromosome were excluded (filtered). SNPs with low gen-
otyping quality (cluster separation <0.3), a call frequency
<0.9, aminor allele frequency (MAF)<0.05 (including fixed
alleles), and aHardyeWeinberg P< .001were also excluded.
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2.5. Analysis of Genomic Differences between Cutting
and Racing Lines

The fixation index, FST, was used to identify genome
regions in the cutting and racing lines that have been
modified by selection [12-14]. The w ¼ FST parameter was
estimated for all SNPs that passed quality control (consid-
ering all individuals) using the Bayesian method proposed
by Gianola et al. [15]. This method is a two-step procedure
that eventually leads to clusters of w values. The first step
uses a simple Bayesian structure for removing samples
from the posterior distribution of w parameters without
constructing Markov chains. This step assigns a weakly
informative prior of allele frequencies and does not make
any assumptions about evolutionary models. The second
step considers samples from this posterior distribution as
“data” and fits a sequence of finite mixture models to
identify clusters of w-statistics.

3. Results and Discussion

Selecting Quarter Horses for different objectives (racing
or cutting) promoted significant changes in the physical
traits of the animals. Table 1 compares the fitted means of
the characteristics analyzed between the two lines. A
significant effect of line (P < .0001) was observed for all
traits. As expected, racing animals presented higher weight,
height, body length, and body circumference than cutting
animals. Thus, the phenotypic differences observed
between the two lines have a possible genetic background.
However, it is necessary to consider that phenotypes are
also influenced by several environmental factors, such as
feeding, training, and others. Although there are no other
morphological studies characterizing Quarter Horse lines,
the present investigation is important because it demon-
strated a close relationship between physical characteris-
tics and the function for which the animal is used. The
different abilities of the breed, such as running, jumping,
reining, and barrel racing, have resulted in an appropriate
biotype for each modality, and differences in performance
exist owing to morphological adequacy or inadequacy.

Among the 188 animals studied, 12 racing animals and
one cutting animal were consanguineous. The mean coef-
ficient of inbreeding (F) was 0.0028 or 0.28% for the whole
population. In contrast, the mean coefficient of inbreeding
Table 1
Least-square means and standard errors of physical traits in racing and
cutting Quarter Horses

Traits Racing Line Cutting Line

Body length (m) 1.8081 � 0.0057a 1.6343 � 0.0087b

Shank length (cm) 27.065 � 0.0014a 24.478 � 0.0014b

Pastern length (cm) 13.382 � 0.0009a 12.231 � 0.0009b

Rump length (cm) 62.032 � 0.0032a 55.173 � 0.0028b

Head length (cm) 62.170 � 0.0020a 56.057 � 0.0021b

Neck length (cm) 79.772 � 0.0034a 73.333 � 0.0049b

Weight (kg) 538.97 � 3.7671a 450.69 � 5.6902b

Height at withers (m) 1.5592 � 0.0040a 1.4660 � 0.0045b

Chest circumference (m) 1.9669 � 0.0127a 1.8020 � 0.0094b

Shank circumference (cm) 20.521 � 0.0008a 18.812 � 0.0009b

Hoof circumference (cm) 43.013 � 0.0018a 39.751 � 0.0027b

a,bMeans in the same row followed by different superscript letters
differ significantly at the 5% level (Tukey test).
was 0.0364 or 3.64% (0%-7.81%) for the 12 inbred animals of
the racing line and 0.0036 (or 0.36%) for all racing animals.
These coefficients were higher than those obtained for the
only inbred animal of the cutting line (0.0078 or 0.78%) and
for all cutting animals (0.0001 or 0.01%), suggesting
a higher frequency of inbreeding in the racing line. Coeffi-
cients of 0.8% [16] to 1% [17] have been reported for Thor-
oughbreds, and of 10.3% for a population of Lipizzan mares
[18]. In this research, as well as in the study by McCue et al.
[19], the coefficients of inbreeding of Quarter Horses were
found to be low when compared with other breeds, indi-
cating that Quarter Horse breeders tend to avoid mating
between closely related animals.

Quality control of individual genotype data led to the
exclusion of four cutting animals from the sample
because of a call rate <0.95 (95%). The remaining 184
animals (120 racing and 64 cutting animals) presented
a mean call rate of 0.9929 � 0.0054 (range: 0.9503-
0.9979). Mean heterozygosity estimated for all individ-
uals was 0.3468 � 0.0148 (range: 0.3049-0.3788). The
samples genotyped in duplicate showed �99.8% agree-
ment (0.9979-0.9990). Similarly, parentage concordance
between stallion/progeny and stallion/mare/progeny
pairs was very high (0.9985-0.9995). Although some
individuals were excluded because of a low genotyping
rate, taken together, the present results indicate the lack
of DNA contamination between samples and a generally
successful hybridization between DNA and the chip.

Considering the whole population (n ¼ 184) that passed
quality control, 12,544 SNPs were excluded by the filtering
process and 42,058 remained for further analysis. With
respect to the 120 racing and 64 cutting animals, after
filtering, 40,787 (13,815 excluded) and 41,232 (13,370
excluded) SNPs remained for analysis, respectively. Table 2
shows the number of excluded SNPs and the reason for
exclusion for the whole population and for animals of the
racing and cutting lines.

According to Wiggans et al. [20] and Ziegler [21],
inconsistently genotyped SNPs or those that do not
contribute to the accuracy of genetic evaluations should be
excluded to reduce computational effort and the number of
false results, as well as to improve precision of the esti-
mates of the remaining polymorphisms. The numbers of
excluded SNPs owing to an MAF <0.05 were similar in the
racing line (8,925), cutting line (7,958), and whole
Table 2
Number of SNPs excluded by quality control of genotype data considering
the whole population, racing line, and cutting line of Quarter Horses and
reason for exclusion

Category/Reason for Exclusion Whole
Population
n

Racing
Line
n

Cutting
Line
n

Genotyped SNPs 54,602 54,602 54,602
Located on the X chromosome 2,539 2,539 2,539
Cluster separation <0.3 1,972 1,972 1,972
Call frequency <0.9 148 143 227
Fixed or with minor allele

frequency <0.05
7,587 8,925 7,958

HardyeWeinberg
equilibriumdP < .001

298 236 674

SNPs selected for genetic analysis 42,058 40,787 41,232
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population (7,587). Schröder et al. [22] reported a similar
number in a study of Quantitative Trait Loci (QTL) for show
jumping in Hanoverian Warmblood horses (7,875 excluded
SNPs). In contrast, Lykkjen et al. [23] excluded 13,265 SNPs
with an MAF <0.05 in a study identifying QTLs associated
with osteochondrosis in Norwegian Standardbred trotters.
In the present study, the number of informative SNPs in the
two lines (racing animals: 40,787; cutting animals: 41,232)
and in the whole population (42,058) were lower than the
47,699 SNPs found in Quarter Horses by McCue et al. [19].
This divergence of results is probably due to different
criteria adopted in the filtering process of the genotyped
SNPs used in their research, particularly the exclusion of
polymorphismswith anMAF<0.01. In contrast, the present
results were similar to those reported in studies that
investigated other horse breeds using the Equine SNP50
BeadChip, such as Thoroughbreds (40,977) [24], Standard-
breds (41,170) [23], Hanoverian horses (43,441) [22], and
French trotters (41,249) [25]. Despite the difference in the
number of informative SNPs between the racing and
cutting lines, autosomal coverage, although higher in the
latter, did not vary considerably.

Comparison of the mean MAF of the genotyped SNPs
revealed no significant difference between the racing
(0.2267� 0.1543) and cutting lines (0.2256� 0.1496; F test,
P > .05). Similar values have been reported by Corbin et al.
[26] and McCue et al. [19], who studied linkage disequi-
librium (LD) in Thoroughbred (0.30 � 0.12) and Quarter
horses (0.232), respectively. However, the frequency of
polymorphisms with an MAF <0.05 was higher in racing
horses (17.87%) than in cutting horses (15.96%). Among
these, the frequency of fixed (monomorphic) poly-
morphisms and those with rare alleles were 6.79% and
11.08% in racing animals and 5.11% and 10.85% in cutting
animals, respectively. In addition, the number of informa-
tive SNPs (MAF �0.05) was higher in the cutting line
(84.04%) than in the racing line (82.13%). Table 3 shows the
number of SNPs according to MAF class. The higher
frequency of polymorphisms with an MAF <0.05 in racing
Quarter Horses might be explained by the more common
practice of consanguineous mating and higher selection
intensity in this line. Polymorphic SNPs that are associated
with one population but not with the other, which were
more frequent in the cutting line, might be used as infor-
mative SNPs for a line in particular. In contrast, highly
informative SNPs (MAF ¼ 0.4-0.5), which were more
frequent in the racing line, are useful for individual iden-
tification by DNA testing (paternity and forensic tests).

Table 4 shows the distribution and density of informa-
tive SNPs (MAF �0.05) across the 31 autosomes in the
sample of Quarter Horses studied. Considering the whole
population, the largest number of informative SNPs was
Table 3
Number and percentage of SNPs divided into four classes of minor allele frequen
whole population

Line Minor Allele Frequency

<0.05 0.05-0.5

Racing 8,925 (17.87%) 41,023 (82
Cutting 7,958 (15.96%) 41,906 (84
Whole population 7,587 (15.19%) 42,356 (84
detected on chromosome 1 (3,502), and the smallest
number, on chromosome 31 (492). With respect to genome
coverage, the density of SNPs was 18.72 SNPs/million base
pairs (Mb) or one SNP at an interval of 53,419 bp. This
density varied between chromosomes, ranging from 16.82
SNPs/Mb (ECA12: average of one SNP at an interval of
59,453 bp) to 19.91 SNPs/Mb (ECA16: average of one SNP at
an interval of 52,356 bp). In the racing line, chromosome
1 contained the largest (3,381) and chromosome 31 con-
tained the smallest number of informative SNPs (486). The
density was 18.15 SNPs/Mb or one SNP at an interval of
55,096 bp, ranging from 16.09 SNPs/Mb (ECA12: average of
one SNP at an interval of 62,150 bp) to 19.44 SNPs/Mb
(ECA31: average of one SNP at an interval of 51,440 bp). In
the cutting line, ECA1 contained the largest (3,433) and
ECA31 contained the smallest number of informative SNPs
(496). The lowest SNP density was observed for chromo-
some 12, with 16.67 SNPs/Mb (average of one SNP at an
interval of 59,988 bp), and the highest density was
observed for chromosome 31, with 19.84 SNPs/Mb (average
of one SNP at an interval of 50,403 bp), corresponding to
a mean interval of 54,496 bp between SNPs distributed
across the entire autosomal genome or to a density of 18.35
SNPs/Mb.

Equine chromosomes differ significantly in length, with
the longest chromosome (ECA1) containing 186Mb and the
shortest chromosome (ECA31) containing 25 Mb [27].
Therefore, the higher frequency of informative poly-
morphisms on larger chromosomes and the lower
frequency on smaller chromosomes observed in the two
lines and in the whole Quarter Horse population indicate
that the filtering process did not affect the uniformity of
distribution of SNPs across the genome.

The FST mean estimated for the 42,058 SNPs in the two
lines was 0.0342 � 0.0403, with w ranging from 0.0025 to
0.3556. This value was substantially lower than that re-
ported by Gu et al. [28], who used microsatellite markers to
identify genome regions that distinguish Thoroughbreds
from non-Thoroughbred breeds and found an overall mean
FST of 0.12. The low FST value found in the present study was
expected, as fixation indices tend to be lower when lines
instead of breeds are studied because of a theoretically
lower genetic distance. Qanbari et al. [29], using FST to
quantify genetic differentiation in Bos taurus cattle, found
lower values within milk-producing (Holstein and Brown
Swiss; 0.057 � 0.076) and meat-producing breeds (Angus
and Piedmontese; 0.022 � 0.041) than between these
breeds (mean of 0.278 � 0.324).

The distribution of posterior means of the w values (FST)
in the two lines permitted classification of the 42,058 SNPs
(loci) into seven clusters. According to Gianola et al. [15],
the expectation is that these clusters are representative of
cy obtained for the racing and cutting lines of Quarter Horses and for the

0.05-0.4 0.4-0.5

.13%) 31,580 (63.22%) 9,443 (18.91%)

.04%) 33,084 (66.35%) 8,822 (17.69%)

.81%) 32,985 (66.05%) 9,371 (18.76%)



Table 4
Distribution and density of informative SNPs (minor allele frequency �0.05) across the autosomes of racing and cutting Quarter Horses and of the whole
population

Chromosomee
Chromosome Size (Mb)

Informative SNPs Density

Racing Line Cutting Line Whole Population Racing Line
(SNPs/Mb)

Cutting Line
(SNP/Mb)

Whole Population
(SNP/Mb)

1e186 3,381 3,433 3,502 18.18 18.46 18.83
2e121 2,238 2,197 2,289 18.50 18.16 18.92
3e119 2,213 2,213 2,261 18.60 18.60 19.00
4e109 1,980 2,053 2,059 18.17 18.83 18.89
5e100 1,773 1,794 1,826 17.73 17.94 18.26
6e85 1,474 1,451 1,510 17.34 17.07 17.76
7e99 1,792 1,782 1,834 18.10 18.00 18.53
8e94 1,720 1,722 1,767 18.30 18.32 18.80
9e84 1,529 1,555 1,578 18.20 18.51 18.79

10e84 1,478 1,484 1,527 17.60 17.67 18.18
11e61 1,102 1,128 1,134 18.07 18.49 18.59
12e33 531 550 555 16.09 16.67 16.82
13e43 739 754 776 17.19 17.53 18.05
14e94 1,703 1,777 1,764 18.12 18.90 18.77
15e92 1,759 1,703 1,767 19.12 18.51 19.21
16e87 1,675 1,676 1,732 19.25 19.26 19.91
17e81 1,492 1,511 1,546 18.42 18.65 19.09
18e83 1,405 1,462 1,455 16.93 17.61 17.53
19e60 1,151 1,144 1,166 19.18 19.07 19.43
20e64 1,184 1,208 1,225 18.50 18.88 19.14
21e58 1,044 1,052 1,087 18.00 18.14 18.74
22e50 904 969 953 18.08 19.38 19.06
23e56 975 986 1,016 17.41 17.61 18.14
24e47 885 882 908 18.83 18.77 19.32
25e40 703 740 738 17.58 18.50 18.45
26e42 765 765 792 18.21 18.21 18.86
27e40 676 719 721 16.90 17.98 18.03
28e46 860 847 885 18.70 18.41 19.24
29e34 599 616 614 17.62 18.12 18.06
30e30 571 563 579 19.03 18.77 19.30
31e25 486 496 492 19.44 19.84 19.68
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different processes that occur in the populations, such as
balancing, directional selection, and neutrality. Cluster 4,
which consisted of 2,558 loci, presented the highest values
of w. The conditional probability of membership to this
cluster was one for 271 loci. Fifteen of these loci, mapped to
chromosomes 1, 2, 4, 5, 8, 9, 10, 16, 21, and 30, presented the
highest values of w (0.3013-0.3556), indicating genome
regions that were more likely to have been subjected to
divergent selection between lines.

Recently, genomic studies in the Quarter Horse got
prominent. In the first sequencing of a horse genome by
next-generation sequencing and the first genomic
sequence of an individual Quarter Horse mare, Doan et al.
[30] identified 3.1 milion SNPs, 193,000 insertion/deletion
polymorphisms (InDels), and 282 copy-number variants in
relation to the reference Thoroughbred genome. Addi-
tionally, these researches genotyped this Quarter Horse for
gene mutations of known diseases and for gene variants
associated with economically important traits, including
racing performance. The four genes related to racing
performance in Thoroughbred horses, MSTN (myostatin)
[24,31-33], PDK4 (piruvate dehydrogenase kinase, isozyme
4) [28,34], CKM (creatine kinase, muscle), and COX4I2
(cytochrome c oxidase, subunit 4, isoform 2) [35], are
located in equine chromosomes 18, 4, 10, and 22, respec-
tively. These chromosomes are shown in this research as
having 77 of 271 genomic regions (with conditional prob-
ability equal to one) selected divergently between racing
and cutting lines. However, considering that the LD
decrease in the Quarter Horse occurs between loci that are
located at distances longer than 50-100 kb [19], none of the
77 regions close enough (in LD) to the gene polymorphisms
associated with racing performance. Considering that
speed is also a desirable trait in cutting animals, these
results suggest the possibility that the same alleles of these
gene polymorphisms have been selected in both lines of
Quarter Horse.

4. Conclusions

Divergent selection of cutting and racing Quarter Horses
promoted significant changes in the physical and genomic
characteristics of these lines. The number of informative
SNPs and SNP density found in the genome of cutting and
racing Quarter Horses suggest that the Equine SNP50
BeadChip can be used for different purposes in the breed,
such as genetic structure analysis, estimation of genetic
divergence within and between populations, and identifi-
cation of QTL and genome regions subjected to selection.
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