Automorphism groups of 2-groups

Bettina Eick

Institute of Computational Mathematics, Technische Universität Braunschweig, Braunschweig, Germany

Received 9 November 2005
Available online 24 February 2006
Communicated by Eamonn O'Brien

Dedicated to Charles Leedham-Green on the occasion of his 65th birthday

Abstract

A well-known conjecture on \(p \)-groups states that every non-abelian \(p \)-group \(G \) has the property that \(|G|\) divides \(|\text{Aut}(G)|\). We exhibit periodic patterns in the automorphism group orders of the 2-groups of fixed coclass and we use this to show that for every positive integer \(r \) there are at most finitely many counterexamples to the conjecture among the 2-groups of coclass \(r \).

© 2006 Elsevier Inc. All rights reserved.

Keywords: 2-Groups; Automorphism groups; Coclass theory

1. Introduction

It is conjectured that \(|G|\) divides \(|\text{Aut}(G)|\) for every non-abelian \(p \)-group \(G \). This conjecture is still open despite various attempts to prove it or to find counterexamples for it. More generally, Mann [12] has asked how big is \(\text{Aut}(G) \) for a \(p \)-group \(G \)? In this paper we consider this question for 2-groups.

The divisibility conjecture has been proved for various special classes of \(p \)-groups. Gaschütz [8] proved that \(p \mid [\text{Aut}(G) : \text{Inn}(G)] \) for a non-abelian \(p \)-group \(G \). It follows that the conjecture holds for \(p \)-groups with centre of order \(p \). Otto [15] proved the divisibility conjecture for \(p \)-groups of maximal class, Faudree [6] for \(p \)-groups of class 2,
Davitt [2] for \(p \)-groups with centre of index at most \(p^4 \), Gavioli [9] for \(p \)-groups of order dividing \(p^7 \) and Flynn, MacHale and O’Brien [7] for 2-groups of order dividing \(2^9 \).

For a group \(G \) of order \(p^n \) and class \(cl(G) \) the coclass is defined as \(cc(G) = n - cl(G) \). Leedham-Green and Newman [11] suggested to classify \(p \)-groups by coclass. This proposal initiated a major research project and has resulted in deep insights into \(p \)-groups, see the book of Leedham-Green and McKay [10] for details. The recent result [4] in this area yields that the (infinitely many) 2-groups of fixed coclass satisfy certain periodic patterns so that they can be described by a finite set of data.

We show here that the orders of the automorphism groups of the 2-groups of fixed coclass satisfy certain periodic patterns corresponding to those of the underlying groups. With every repetition of a pattern, the orders of the involved 2-groups grow by a constant factor. We prove that the orders of the corresponding automorphism groups also grow by a constant, but larger factor (see Section 3). This yields the following (see Theorem 2).

Theorem. For every \(s \in \mathbb{N} \) there exists \(o(r, s) \in \mathbb{N} \) such that \(2^s|G| | |Aut(G)| \) for all 2-groups \(G \) of coclass \(r \) and order at least \(o(r, s) \).

Corollary. Almost all 2-groups of coclass \(r \) satisfy the divisibility conjecture.

Thus for every coclass there are at most finitely many counterexamples to the divisibility conjecture among the 2-groups of that coclass. We investigated the 2-groups of coclass at most 3 using computational methods and found no counterexamples (see Section 4).

2. The coclass graphs \(\mathcal{G}(p, r) \)

In this section we provide a brief introduction to coclass theory. For background and further information we refer to [10].

The finite \(p \)-groups of coclass \(r \) can be visualised by a graph \(\mathcal{G}(p, r) \): the vertices are identified with the isomorphism types of \(p \)-groups with coclass \(r \) and there is an edge between the vertices for \(G \) and \(H \) if there exists \(N \trianglelefteq G \) with \(|N| = p \) and \(G/N \cong H \). As \(cc(G) = cc(H) \) and \(|G| = |H|/p \), it follows that \(N \) is the last term of the lower central series of \(G \). Thus \(H \) is the unique ancestor for \(G \) in \(\mathcal{G}(p, r) \) and \(\mathcal{G}(p, r) \) is a forest.

The classification or investigation of \(p \)-groups now translates into an understanding of the coclass graphs \(\mathcal{G}(p, r) \). We outline some of the known features of these graphs in the remainder of this section.

2.1. Coclass trees

Let \(L \) be an infinite pro-\(p \)-group of coclass \(r \) and denote its lower central series with \(L = \gamma_1(L) > \gamma_2(L) > \cdots \). Let \(t \in \mathbb{N} \) be minimal such that \(L/\gamma_t(L) \) has coclass \(r \) and \(L/\gamma_t(L) \) does not arise as quotient of an infinite pro-\(p \)-group of coclass \(r \) not isomorphic to \(L \). Then the full subtree \(T = T(L) \) of \(\mathcal{G}(p, r) \) consisting of all descendants of \(L/\gamma_t(L) \) is called a **maximal coclass tree** in \(\mathcal{G}(p, r) \).

By construction, the sequence of groups \(L/\gamma_t(L), L/\gamma_{t+1}(L), \ldots \) contains every infinite path of \(T(L) \). It is also called its *main line*. The groups on the main line are also denoted with \(G_0, G_1, \ldots \) so that \(G_i = L/\gamma_{t+i}(L) \).
The group L can be reconstructed from the maximal coclass tree $T(L)$ as the inverse limit of the groups on the main line of $T(L)$. Hence the maximal coclass trees in $\mathcal{G}(p, r)$ correspond 1–1 to the isomorphism types of infinite pro-p-groups of coclass r.

2.2. The coclass theorems

Leedham-Green and Newman [11] proposed five conjectures on the structure of $\mathcal{G}(p, r)$. These coclass-conjectures have been proved in several steps and hence they are now theorems; see [10] for an overview and references.

The coclass theorems yield that there are only finitely many isomorphism types of infinite pro-p-groups of coclass r and hence there are only finitely many maximal coclass trees in $\mathcal{G}(p, r)$. It is not difficult to show that all but finitely many p-groups of coclass r are contained in a maximal coclass tree of $\mathcal{G}(p, r)$.

Thus the proof of the main theorem of this paper reduces to proving that a maximal coclass tree T in $\mathcal{G}(p, r)$ can contain only finitely many counterexamples to the divisibility conjecture.

2.3. Periodicity of $\mathcal{G}(2, r)$

Let T be a maximal coclass tree in $\mathcal{G}(2, r)$ and let G_0, G_1, \ldots denote its main line. For $i \in \mathbb{N}_0$ let the branch T_i be the subgraph of T containing all descendants of G_i which are not descendants of G_{i+1}. As T contains only one main line, it follows that T_i is a finite subtree of T.

Recall that the infinite pro-p-group L corresponding to the tree T is an extension of an infinite group $T \cong \mathbb{Z}_2^d$ (called translation subgroup) by a finite 2-group P (called point group). The dimension d of T is also called the rank of T.

The main result of [4] can now be summarised as follows (see [4, Theorem 7]).

Theorem 1. Let T be a maximal coclass tree in $\mathcal{G}(2, r)$ of rank d. Then T is virtually periodic with periodicity d; that is, there exists $f \in \mathbb{N}$ such that for every $i \geq f$ there is an isomorphism

$$\pi_i : T_i \mapsto T_{i+d} : G \mapsto G^{\pi_i}$$

and $|G^{\pi_i}| = |G|2^d$ for all $G \in T_i$.

The main line group G_f is called a periodicity root of T and the full subtree of T with root G_f is the corresponding periodic part of T. Whenever there is no ambiguity we write π for π_i and we assume that $i \geq f$ if π is used.

3. Periodicity of automorphism groups

Let T be a maximal coclass tree in $\mathcal{G}(2, r)$ with rank d and periodicity root G_f. In this section we consider the automorphism groups of the groups in the periodic part of T and we prove the following theorem.
Theorem 2. Let T be a maximal coclass tree in $G(2, r)$ with rank d and with periodicity root G_f. Let L be the infinite pro-2-group corresponding to T and let P be a point group for L with translation subgroup T. Denote $i = \dim \text{End}_P(T)$. Then for every group $G \in T_i$ with $i \geq f$ it follows that

$$|\text{Aut}(G^\pi)| = |\text{Aut}(G)|2^{d+l}.$$

Theorems 1 and 2 imply that

$$\frac{|\text{Aut}(G^\pi)|}{|G^\pi|} = \frac{|\text{Aut}(G)|2^{d+l}}{|G|2^d} = \frac{|\text{Aut}(G)|2^l}{|G|}.$$

Note that $l > 0$. Hence the automorphism group orders grow with each application of the periodicity map π and they grow faster than the orders of the underlying groups. By the coclass theorems, the graph $G(2, r)$ consists of finitely many maximal coclass trees and only finitely many groups are not contained in a maximal coclass tree. Thus the main theorem of this paper and its corollary follow from Theorem 2.

3.1. The groups in $G(2, r)$ as extensions

As a first step in the proof of Theorem 2, we recall the relation of G and G^π from [4] in more detail. For this purpose let L be the infinite pro-2-group of coclass r associated with the maximal coclass tree T. Note that we can choose the translations T of L as a subgroup in the lower central series $T = \gamma_k(L)$ for all large enough $k \in \mathbb{N}$. We define $T_0 := T$ and $T_{i+1} := [T_i, L]$ for $i \in \mathbb{N}_0$.

Theorem 3. (See [4, Theorem 5].) Let $T = \gamma_k(L)$ and $P = L/T$. If k is chosen large enough, then every group G in the periodic part of T can be written as an extension of T/T_j by P where j is determined by $|G| = |P|2^j$.

Every extension of T/T_j by P is defined by an element of $H^2(P, T/T_j)$. The structure of this cohomology group is investigated in [4] and we recall the main results here briefly. Let $\mu : H^3(P, T_j) \to H^3(P, T_{j+d})$ be the isomorphism induced from $T_j \to T_{j+d} : t \mapsto 2t$.

Theorem 4. (See [4, Theorem 6].) If j is chosen large enough, then

(a) there exists a canonical isomorphism $H^2(P, T/T_j) \cong H^2(P, T) \oplus H^3(P, T_j)$, and
(b) the map $(\text{id} \oplus \mu) : H^2(P, T/T_j) \to H^2(P, T/T_{j+d})$ mapping the element $(\alpha, \beta) \in H^2(P, T) \oplus H^3(P, T_j)$ to $(\alpha, \mu(\beta)) \in H^2(P, T) \oplus H^3(P, T_{j+d})$ is an isomorphism.

Suppose that G is a group in the periodic part of T. By Theorem 3, the group G is an extension of T/T_j by P for suitable j. Let $\gamma_G \in H^2(P, T/T_j)$ be a cocycle defining G. The following result of [4] gives an explicit construction for the periodicity map.
Theorem 5. (See [4, Theorem 7].) Let G be a group in the periodic part of T. Then G^π is an extension of T/T_{j+d} by P defined by the cocycle $(id \oplus \mu)(\gamma_G)$.

3.2. The automorphism group of an extension

We recall the well-known relation between automorphism groups and group extensions in the following. For this purpose let M be a P-module and let $P \to Aut(M) : g \mapsto \bar{g}$ denote the corresponding action of P on M. Then the group of compatible pairs of M and P is defined as

$$Comp(P, M) = \{ (\beta, \delta) \in Aut(P) \times Aut(M) \mid g^\beta = g^\delta \text{ for all } g \in P \}.$$

This group acts on $Z^2(P, M)$ via $\gamma^{(\beta, \delta)}(g, h) = \gamma(g^{\beta^{-1}}, h^{\beta^{-1}})\delta$ for $\gamma \in Z^2(P, M)$. The coboundaries $B^2(P, M)$ are setwise invariant under this action and thus we obtain an induced action of $Comp(P, M)$ on $H^2(P, M)$. This setup is used in the following theorem to determine the automorphism group of an extension. We refer to [16] for a proof.

Theorem 6. Let E be an extension of M by P where M embeds as a characteristic subgroup in the extension E. Let $\nu: Aut(E) \to Aut(P) \times Aut(M) : \alpha \mapsto (\alpha_{E/M}, \alpha_M)$ be the natural homomorphism.

(a) $\ker(\nu) \cong Z^1(P, M)$.
(b) $\text{Im}(\nu) = \text{Stab}_{Comp(P, M)}(\gamma)$, where $\gamma \in H^2(P, M)$ is a cocycle defining E.

Thus $|Aut(E)| = |Z^1(P, M)||\text{Stab}_{Comp(P, M)}(\gamma)|$ follows.

Theorem 6 yields the following for groups G and $H = G^\pi$ in the periodic part of T, where G is written as an extension of T/T_j by P defined by γ_G and the cocycle $\gamma_H = (id \oplus \mu)(\gamma_G)$ as in Theorem 5:

- $|Aut(G)| = |Z^1(P, T/T_j)||\text{Stab}_{Comp(P, T/T_j)}(\gamma_G)|$, and
- $|Aut(H)| = |Z^1(P, T/T_{j+d})||\text{Stab}_{Comp(P, T/T_{j+d})}(\gamma_H)|$.

In order to prove Theorem 2, it remains to relate the orders of the 1-cocycles and the stabilisers in the compatible pairs. This is pursued in the following subsections.

3.3. The group of one-cocycles

The following theorem determines the relation between

$$|Z^1(P, T/T_j)| \quad \text{and} \quad |Z^1(P, T/T_{j+d})|$$

for $d = \text{rank}(T)$.

Theorem 7. If j is large enough, then $|Z^1(P, T/T_{j+d})| = 2^d|Z^1(P, T/T_j)|$.

Proof. As a first step, we show that $|B^1(P, T/T_j)| = 2^{j-1}$ for $j \in \mathbb{N}$. By definition, the group $B^1(P, T/T_j)$ is the image of the homomorphism $\varphi: T/T_j \to C^1(P, T/T_j)$:
\[m \mapsto \delta_m \text{ with } \delta_m(g) = m^g - m. \] The kernel of \(\varphi \) are the fixed points in \(T/T_j \) under the action of \(P \). As \(P \) acts uniserially on \(T/T_j \), we obtain that \(|\text{Fix}_P(T/T_j)| = 2 \) and thus \(|B^1(P, T/T_j)| = |T/T_j|/2 = 2^{j-1} \).

As a next step, we show that \(|H^1(P, T/T_j)| = |H^1(P, T/T_{j+d})| \). For this purpose we consider the exact sequence of cohomology groups as in [1, Proposition 6.1]:

\[
H^1(P, T) \xrightarrow{\alpha} H^1(P, T/T_j) \xrightarrow{\beta_j} H^2(P, T_j).
\]

Let \(\exp(H^1(P, T)) = 2^e \). Then \(Z^1(P, T_{de}) = Z^1(P, 2^e T) \leq 2^e Z^1(P, T) \leq B^1(P, T) \).

Thus \(\alpha \) is injective if \(j \geq ed \). Next, we consider \(\beta_j \).

As a next step, we consider \(\beta_j \) for all integers \(j \geq 1 \). Let \(k = j \mod d \). Then \(T_j \cong P T_k \) and \(H^2(P, T_j) \cong H^2(P, T_k) \). Thus \(\text{Im}(\beta_j) \) embeds as a subgroup \(I_j \) into \(H^2(P, T_k) \).

It is straightforward to observe that \(I_k \leq I_{k+d} \leq \cdots \). As \(H^2(P, T_k) \) is a finite group, there exists \(w \in \mathbb{N} \) such that \(I_{w+d} = \cdots \). Choosing \(j \geq \max\{w, ed\} \) we obtain that \(|H^1(P, T/T_j)| = |H^1(P, T)||I_w| = |H^1(P, T/T_{j+d})| \).

The desired result now follows from the first two steps as

\[
|Z^1(P, T/T_{j+d})| = |H^1(P, T/T_{j+d})||B^1(P, T/T_{j+d})| = |H^1(P, T/T_j)|2^{j+d-1} = 2^d|H^1(P, T/T_j)||B^1(P, T/T_j)| = 2^d|Z^1(P, T/T_j)|.
\]

This completes the proof. \(\square \)

3.4. The group of compatible pairs

The aim in this section is to prove the following theorem which exhibits the relation between \(|\text{Comp}(P, T/T_j)| \) and \(|\text{Comp}(P, T/T_{j+d})| \).

Theorem 8. If \(j \) is large enough, then \(|\text{Comp}(P, T/T_{j+d})| = 2^l|\text{Comp}(P, T/T_j)| \) where \(l = \dim \text{End}_P(T) \).

As a first step, we introduce some maps between groups of compatible pairs. If \(k \leq j \), then \(T/T_k \cong_P (T/T_j)/(T_k/T_j) \) and thus there is a natural projection \(T/T_j \to T/T_k \) which is compatible with the action of \(P \). Similarly, there is a natural projection \(T \to T/T_k \).

These projections induce the following maps:

\[
\pi_{j,k} : \text{Comp}(P, T/T_j) \to \text{Comp}(P, T/T_k) : (\beta, \delta) \mapsto (\beta, \delta T/T_k),
\]

\[
\pi_k : \text{Comp}(P, T) \to \text{Comp}(P, T/T_k) : (\beta, \delta) \mapsto (\beta, \delta T/T_k).
\]

Lemma 9. The maps \(\pi_{j,k} \) and \(\pi_k \) are well defined for \(k \in \mathbb{N} \) and \(j \geq k \).

Proof. Let \((\beta, \delta) \in \text{Comp}(P, T/T_j) \). We show that \(\delta \) leaves \(T_k/T_j \) invariant and thus induces an automorphism \(\delta T/T_k \in \text{Aut}(T/T_k) \) such that \((\beta, \delta T/T_k) \in \text{Comp}(P, T/T_k) \). For this purpose note that the definition of compatible pairs implies that \(\delta \in \mathcal{N}_{\text{Aut}(T/T_j)}(\overline{P}) \).

Thus \(\delta \) permutes the \(P \)-invariant subgroups of \(T/T_j \). As \(P \) acts uniserially on \(T/T_j \),
with unique maximal P-invariant series $T/T_j > T_{j+1}/T_j > \cdots > T_j/T_j$, it follows that the subgroups T_k/T_j are invariant under δ. Thus $\delta_{T/T_k} \in \text{Aut}(T/T_k)$ and $(\beta, \delta_{T/T_k}) \in \text{Comp}(P, T/T_k)$ follows directly. Hence $\pi_{j,k}$ is well defined. The proof that π_k is well defined follows similarly. □

Next we observe that the induced projections are compatible with each other. The proof of the following is straightforward.

Lemma 10. For $j \geq k \geq l$ it follows that $\pi_{j,k} \circ \pi_{k,l} = \pi_{j,l}$ and $\pi_k \circ \pi_{k,l} = \pi_l$.

Our ultimate aim is to investigate kernel and image of the map $\pi_{j+d,j}$ to obtain a proof for Theorem 8. The kernels of the projections $\pi_{j,k}$ are considered in the following theorem. If $(\beta, \delta) \in \text{Ker}(\pi_{j,k})$, then $\beta = \text{id}$ and $\delta : T/T_j \mapsto T/T_j : t \mapsto t + e_t$ for certain $e_t \in T_k/T_j$. We denote $e_\delta : T/T_j \mapsto T_k/T_j : t \mapsto e_t$.

Theorem 11. Let $k \in \mathbb{N}$ and $j \geq k$.

(a) $\sigma_{j,k} : \text{Ker}(\pi_{j,k}) \to \text{Hom}_P(T/T_j, T_k/T_j) : (1, \delta) \mapsto e_\delta$ is a bijection.

(b) $\sigma_k : \text{Ker}(\pi_k) \to \text{Hom}_P(T, T_k) : (1, \delta) \mapsto e_\delta$ is a bijection.

(c) $\sigma_{j,k}$ is a homomorphism of abelian groups if $2k \geq j$.

Proof.

(a) First we observe that $\sigma_{j,k}$ is well defined. As $\delta \in \text{Aut}(T/T_j)$, it follows directly that $e_\delta \in \text{Hom}(T/T_j, T_k/T_j)$. As $(1, \delta) \in \text{Comp}(P, T/T_j)$, we find that $e_{t^g} = (e_t)^g$ for every $g \in P$ and $t \in T/T_j$. Thus e_δ is compatible with the action of P. This yields that $\sigma_{j,k}$ is well defined. Next, it is obvious that $\sigma_{j,k}$ is injective. The surjectivity of $\sigma_{j,k}$ follows by similar arguments.

(b) This follows by similar arguments as (a).

(c) Let $(1, \delta_i) \in \text{Ker}(\pi_{j,k})$ for $i = 1, 2$ and denote $e_i = e_{\delta_i}$. Then $t^{\delta_1 \delta_2} = t + e_{1,t} + e_{2,t} + e_{e_1 e_2}$. Thus $\sigma_{j,k}$ is a homomorphism if and only if $T_k/T_j \subseteq \text{Ker}(\delta)$ for all $\delta \in \text{Ker}(\pi_{j,k})$. As $\delta : T_i/T_j \mapsto T_{k+i}/T_j$ for all i, this yields the desired result. □

From now on we assume that $j \geq d$. We define the group of central automorphisms by

$$\text{Cent}(P, T/T_j) = \{ \delta \in \text{Aut}(T/T_j) \mid (1, \delta) \in \text{Ker}(\pi_{j,d}) \}.$$

$$\text{Cent}(P, T) = \{ \delta \in \text{Aut}(T) \mid (1, \delta) \in \text{Ker}(\pi_d) \}.$$

This definition is used in the following theorem.

Theorem 12. If j is large enough, then $|\text{Cent}(P, T/T_{j+d})| = 2^l |\text{Cent}(P, T/T_j)|$.
Proof. The compatibility of the maps $\pi_{j,k}$ and π_k induces a commutative diagram

$$
\cdots \rightarrow \text{id} \rightarrow \text{Cent}(P,T) \rightarrow \text{id} \rightarrow \text{Cent}(P,T) \rightarrow \text{id} \rightarrow \cdots
$$

$$
\cdots \rightarrow \pi_{j,k} \rightarrow \pi_k \rightarrow \pi_{j,k} \rightarrow \cdots
$$

Theorem 11 implies that the groups of central automorphisms are in bijection to their corresponding groups of homomorphisms. This induces an equivalent commutative diagram

$$
\cdots \rightarrow \text{id} \rightarrow \text{Hom}_P(T,T) \rightarrow \text{id} \rightarrow \text{Hom}_P(T,T) \rightarrow \text{id} \rightarrow \cdots
$$

$$
\cdots \rightarrow \tilde{\pi}_{j,k} \rightarrow \tilde{\pi}_k \rightarrow \tilde{\pi}_{j,k} \rightarrow \cdots
$$

As $\text{Hom}_P(T/T_{j+k}, T_{d+j}/T_{d+k}) \cong \text{Hom}_P(T/T_j, T/T_j) = \text{End}_P(T/T_j)$ for all j, it follows that the above commutative diagram is equivalent to

$$
\cdots \rightarrow \text{id} \rightarrow \text{End}_P(T) \rightarrow \text{id} \rightarrow \text{End}_P(T) \rightarrow \text{id} \rightarrow \cdots
$$

$$
\cdots \rightarrow \tilde{\pi}_{j,k} \rightarrow \tilde{\pi}_k \rightarrow \tilde{\pi}_{j,k} \rightarrow \cdots
$$

where all maps in the diagram are natural projections. As $T \cong \mathbb{Z}_2^d$, it follows that $\text{End}(T) \cong T \otimes T \cong \mathbb{Z}_2^{d^2}$. Let $P \rightarrow \text{GL}(d^2, \mathbb{Z}_2) : g \mapsto M_g$ denote the action of P on $\text{End}(T)$. Then $\text{End}_P(T) = \text{Fix}_{\text{End}(T)}(P)$ can be determined as the kernel of the matrix

$$
M := \left(\begin{array}{cccc}
M_{g_1} - I \\
& \ddots \\
& & M_{g_m} - I
\end{array} \right) \in \mathbb{Z}^{md^2 \times d^2},
$$

where $P = \{g_1, \ldots, g_m\}$. Similarly, the group $\text{End}_P(T/T_j)$ corresponds to the kernel of M in T/T_j. Let $M = PDQ$ for a diagonal matrix D and invertible matrices P and Q. Then for $v \in \text{End}(T)$ we find that

$$
v + T_j \otimes T_j \in \text{End}_P(T/T_j) \iff Mv \equiv 0 \mod T_j \otimes T_j
$$

$$
\iff PDQv = w \in T_j \otimes T_j
$$

$$
\iff D(Qv) = P^{-1}w \in P^{-1}(T_j \otimes T_j)
$$

$$
\iff Dv' \equiv 0 \mod P^{-1}(T_j \otimes T_j)
$$
and

\[v \in \text{End}_P(T) \iff Mv = 0 \iff Dv' = 0. \]

Let \(d_1, \ldots, d_s, e_1, \ldots, e_l \) be the elementary divisors of \(D \) sorted such that \(d_i > 0 \) and \(e_j = 0 \) for all \(i, j \). Then \(\dim \text{End}_P(T) \) corresponds to the number of elementary divisors \(0 \) in \(D \). Suppose that \(j \) is large enough, so that \(\exp(T/T_j) \geq d_i \) for all \(i \). Then

\[\text{End}_P(T/T_j) \cong C_{d_1} \times \cdots \times C_{d_s} \times \text{Im}(\tilde{\pi}_{j+d}). \]

As \(T_{j+d} = 2T_j \), it follows that \(P^{-1}(T_j \otimes T_j) = 2P^{-1}(T_{j-d} \otimes T_{j-d}) \) and hence

\[|\text{Im}(\tilde{\pi}_{j+d})| = 2^l|\text{Im}(\tilde{\pi}_j)|. \]

Thus \(|\text{End}_P(T/T_j)| = 2^l|\text{End}_P(T/T_{j-d})| \) and the result follows.

Now we can summarise all the results of this section to obtain a proof for Theorem 8.

Proof. (For Theorem 8.) Let \(I_j = \text{Im}(\pi_{j,d}) \leq \text{Comp}(P, T/T_d) \). Then by Lemma 10 it follows that \(\cdots \geq I_{j-d} \geq I_j \geq I_{j+d} \geq \cdots \). As \(\text{Comp}(P, T/T_d) \) is a finite group independent of \(j \), we deduce that there exists \(k \) such that \(I_j = I_{j+d} \) for all \(j \geq k \).

By construction, we have that \(\text{Cent}(P, T/T_j) \cong \text{Ker}(\pi_{j,d}) \). By Theorem 12, we know that \(|\text{Cent}(P, T/T_{j+d})| = 2^l|\text{Cent}(P, T/T_j)| \) provided that \(j \) is large enough. Thus in this case we find that

\[
|\text{Comp}(P, T/T_{j+d})| = |I_{j+d}| |\text{Cent}(P, T/T_{j+d})| = 2^l |I_j| |\text{Cent}(P, T/T_j)|
= 2^l |\text{Comp}(P, T/T_j)|
\]

and this completes the proof.

3.5. The stabilizer of a cocycle

Finally, we show that the relation between the orders of the compatible pairs yields the same relation between the stabilisers of cocycles as used in Theorem 6.

Theorem 13. Let \(G \in T_i \) with \(H = G^\sigma \). Let \(j \in \mathbb{N} \) such that \(G \) is an extension of \(T/T_j \) by \(P \). If \(j \) is large enough, then

\[|\text{Stab}_{\text{Comp}}(P, T/T_{j+d})(\gamma_H)| = 2^l |\text{Stab}_{\text{Comp}}(P, T/T_j)(\gamma_G)|. \]

Proof. By Theorem 8, it is known that \(|\text{Comp}(P, T/T_{j+d})| = 2^l |\text{Comp}(P, T/T_j)| \). Thus it remains to show that the orbits of \(\gamma_G \) and \(\gamma_H \) under their respective acting groups have equal lengths. This was proved in [4, Theorems 17 and 24].
3.6. The proof of Theorem 2

The proof of the main theorem can now be read off. Let \(G \) be a group in the periodic part of a maximal coclass tree \(T \). Let \(\gamma_G \) be a cocycle defining \(G \) as extension of \(T/T_j \) by \(P \). Let \(H = G^\pi \) and let \(\gamma_H = (id \oplus \mu)(\gamma_G) \) as in Theorem 5.

Then Theorems 7 and 13 yield for large enough \(j \) that

\[
|Aut(H)| = |Z^1(P, T/T_{j+d})| |Stab_{Comp}(P, T/T_{j+d})(\gamma_H)|
\]

\[
= 2^d |Z^1(P, T/T_j)| 2^l |Stab_{Comp}(P, T/T_j)(\gamma_G)|
\]

\[
= 2^{d+l} |Aut(G)|.
\]

4. Groups of coclass at most 3

In this section we consider \(G(2, r) \) for \(r \leq 3 \). We use computational tools to investigate these graphs and observe experimentally that the divisibility conjecture holds for the groups in these graphs.

The groups of 2-coclass at most 3 have been investigated in detail in \cite{13}. As part of this investigation the infinite pro-2-groups of coclass at most 3 have been determined. Thus it is known that:

- there is 1 infinite pro-2-group of coclass 1;
- there are 5 infinite pro-2-groups of coclass 2;
- there are 54 infinite pro-2-groups of coclass 3.

We constructed the 60 infinite pro-2-groups of coclass at most 3 using the information in \cite{13} and the algorithm in \cite{3}. The \(p \)-group generation algorithm \cite{14} was employed to construct all groups in a branch \(T_i \) of a maximal coclass tree \(T \) described by its corresponding infinite pro-2-group. The method of \cite{5} was used to determine automorphism groups of \(p \)-groups.

Using these tools, we determined experimentally a periodicity root \(G_f \) for a maximal coclass tree corresponding to a infinite pro-2-group of coclass at most 3. We found periodicity roots \(G_f \) of order at most \(2^{13} \). Then for the 60 maximal coclass trees \(T \) we checked the divisibility conjecture for all the groups in the branches \(T_{f+1}, \ldots, T_{f+d} \) of \(T \). Finally, we constructed the 8173 non-abelian groups of \(G(2, r) \) which are not contained in the periodic part of a maximal coclass tree and we checked that they satisfy the divisibility conjecture.

This computation was performed using GAP \cite{17}. It took about 2 days to complete.

Acknowledgments

The author completed this work during a visit to the University of Auckland. This visit was supported by a Feodor Lynen Fellowship from the Alexander von Humboldt Founda-
tion and by the Marsden Fund of New Zealand via grant UOA412. The author thanks Mike Newman for comments on an earlier draft of this paper.

References