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$ extending work on relative polynomial time computability from computa- 
tions relative to sets of natural numbers to camp utations relative to arbitrary functions of natural 
numbers is discussed. The principal techniques used to prove that tale honest subrecursive classes 
are a lattice 2-e then used to+zonstruct a minimal pair c f polynomial degrees with subexponential 
complexity; that is two sets computable by Turing machines in subexponential time but not in 
polynomial time are constructed such that any set computable from both in polynomial time can 
be computed directly in polynomial time. 

The preponderence of the work on relative computational complexity, particularly 
that on relative polynomial time computability, deals with computations relative to 
sets. There are significant conceptual and technical difficulties in trying to extend 
this work to computations relative to arbitrary functions. Pt might be ho 
results and techniques fro subfecursive classes (e.g., the eltimentary 
would extend to elative polynomial time tability, an some work in this 
direction has bee begun by Constable [1] a hlhorn [5]. espite the fact that 
this work on proposed notions of relative polynomial time computation for 
arbitrary functions is as yet 
srjbrecursive classes can be u 
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by Ladner [33 using quite different techniques and yielding much higher bounds on 
the complexity of the sets constructed. Because of the extremely low !~~~nds on the 
complexity of minimal pairs constructed with the methods of this payer, it is highly 
likely that there are minimal pairs of polynomial degrees computable in nondeter- 
ministic polynomial time (assuming of tours: that 9# JVY ; i.e., that there is a set 
computable in nondeterministic polynomia~l time which is not colnputabIe in 
deterministic polynomial time). Thus there would be totally “independent” prob- 
lems solvable in nondeterministic but not in deterministic polynomial time. 

‘We restrict our goals to the construction of minimal pairs, which enables us to 
efinitions and notation and to utilize previous work. The natural numbers 

are represented in binary, ;lnd for x E N, Ix 1 denotes the length of (the 
representation of) X. We deal with co:llputable functions from N to Pu; ff4) stands for 
the n-fold composition of f with itself”, while f” stands for the function whose value 
at 2 is (f(X))n; we use x2, etc. to stand for the function whose value at x is x2, etc.; 
and subsets of, N are identified with their characteristic functions. We define 

f(n)= max{If(x)l: IX I = n). 

All computations are by muhi-tape Turing machines (with oracles if approp- 
riate),*and the time of a computation is the number of basic machine steps executed 
(including oracle interr*ogations). T e time of a computation is always measured as 
a function of the length of th.9 input. Camp(g)< f means that there is a Turing 
machine wirich computes g wSch on any input of length n takes time less than 
f(n). Finally, let 9 = {f: Camp(f) < x n + m for some n, m E 

For any function f we define .4(f) to be the smallest set of fu ons containing f 
and x2 + 1 whi::h is closed under composition; g < ~2 (f) means that g is bounded by 
some member of A (f). Paralleling Constable [ 1] and Mehlhorn [S]., we define Z(f) 
to be the set of all functions computable from f in time bounded by some member 
of A(f) by an oracle Turing machine with separate input and output tapes for the 
oracle. The separate input and output tapes for the oracle insure that a’computation 
is “charged” for the length of every oracle output which is useId. We nee 

rple facts about these definitions: 
1 

implies Z(A) is the set of functions computable from ,4 in polyno- 

(2: g E A?(J) amd 7 nondecreasing imply Y(g) c 5?(f); 

uring machine computing h from g in time. < 
in time .< A (7). If we replace the g-oracle on rh by 
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standard argument which replaces an f+oracle by a Turing machine which computes 
f, remembering that f cannot be computed in time less than f;: 

ssume that f and g are nondecreasing functio 
ne F == max(x*+ 1, f) and 

s which cannot b,e computed in 
= max(x* + 1, g)? and assume 

= min(F, 6) is bounded by a polynomial and that Camp(f) < F(“) 
r some n and Camp(g)< G (N for some IE (we miglrt term this last property 
honesty). We can now make some observations about functions with the 

r f ancl g. From (2) we know that *P e: x(j) r1 Z(g), and we 
in fact 9 = 5?(f) n Z(g). 

If h E 9(f) n Z(g) then (3) and (4) together with the p-honesty of f and g yield 
that Camp(h) < F(“) for some n and Camp(h) < G(“) for some n. Thus for some 0, 
Camp(h) < min(F(“), G(“)) by the “almost-parallel” computation property of Tu;- 
ing machine time: A Turinp machine can simulate two Turing machine computa- 
tions of the same value in parallel and obtain the value in time not much greater 
than the faster of the two computations. To conclude that Camp(h) is bounded by a 
polynomial, we apply the following lemma. This lemma was brought to the author’s 
attention by Rcbert Solovay, and it also provides a considerable simplification of 
the proof that the elementary honest classes are a lattice by providing a nearly 
trivial proof of Lemma 3.3 in [4] for the case where the reducibility is “elementary 
in”. 

Lemma. Let F, G 2 x be nondecreasing functions, and let h+4 = min(F, G). 7%en for 
any n 2 I, min(F(“‘, (I?‘)) s A#*“-‘). 

Proof. In computing M c2n-*)(x), either F is used at least II times or G is used at 
least n times. The lemma follows by the properties assumed for F and G. Cl 

Now assume that A E .5?‘(f) and B E Z(g) such th;mt A, BE 9 (such sets will 
exist if f and g e infinitely often large enough to allow diagonalization 
Since .9(f) n 9(g) = 9, by (1) and (2) we have that if C E S?(A) f7 9 
C E i!P. Thus A and B will give us a minimal pair of polynomial degrees. 

We now const:uct specific functions f and g which satisfy oar assumptions. Let 
h (0) = 0 and h (x + 1) = 2”@). If h(2y)sx ch(2y + ) for some y, let f(x) = x and 

= 2h(2y) If k (2y + 1) s x < h (2y + 2) for some 
te tha; f and 

let f(x) = 2h(2y+1) and g(x) = 
g are nondecreasing, bounded by 2’, and each equals 2” for 
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polynomials, kherefore 9 is contained in the complexity class determined by 21”“; 
since Camp(f), Com.p(g) > 2 f infinitely often we have 

and thus the complexity classes determined by Comply) and Camp(g) contain sets 
not in P.] Since Comp(A 3 < F2 we have A E %‘cf) (A is computable from f in time 
bounded by 4(f) without even consulting the oracle), and since Comp( 
have B E 3?(g). We have proved 

There are sets A, 
that if C’is a set computable fret 

such that Ccmp(A ), Comp( ) < 22” a& such 
bcth A . ..d B in polynomial time then C E 9. 

Ht is now straightforward to use the methods presented above to construct 
minimal pairs of polynomial degrees with even lower bounds on their complexity; 
for example, we could get a minimal pair with complexity bounded by 21”1’“. Details 
are omitted out of compassion for the tvnesetter. 
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