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Abstract. The goa' >f extending work on relative polynomial time computability from computa-
tions relative to sets of natural numbers to compatations relative to arbitrary functions of natural
numbers is discussed. The principal techniques used to prove that t"ie honest subrecarsive classes
are a lattice 2-e then used to-construct a minimal pair ¢{ polynomial degrees with subexponential
complexity; that is two sets computable by Turing machines in subexponential time but not in
polynomial time are constructed such that any set computable from both in polynomial time can
be computed directly in polynomial time.

1. Introduction

The preponderence of the work on relative computationzal complexity, particularly
that on relative polynomial time computability, deals with computations relative to
sets. There are significant conceptual and technical difficulties in trying to extend
this work to computaticns relative to arbitrary functions. It might be hoped that
results and techniques from subiecursive classes {e.g., the elcmentary classes)
would extend to relative polynomial time computability, and some work in this
direction has been begun by Constable [1] and Mehlhorn [5]. Despite the fact that
this work on propesed notions of relative polynomial time computation for
arbitrary functiors is as yet incomplete, the techniques used to study the honest
snbrecursive classes can be used to obtain results about polynomial time computa-
bility relative to sets.

In this paper tke principal techniques used to prove that the honest subrecursive
classes are » latiice (Machtev [4]) will be used to construct a minimal pair of
polynomial degrees with subexponential complexity. That is, two sets A and B will
be constructed such that both A and B can be computed in subexponential time
but not in polynomial time and such that if C is any set computable from both A
and B in polyromia! time then C can be computed directly in poixncmial time. A
construction of & minimal pair of polynomial degrees was obtained independently
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by Ladner [3] using quite different techniques and yielding much higher bounds on
the complexity of the sets constructed. Because of the extremely low bounds on the
complexity of minimal pairs constructed with the methods of this paper, it is highly
likely that there are minimal pairs of polynomial degrees computable in nondeter-
ministic polynomial time (assuming of course that ? # NP i.e., that there is a set
computable in nondeterministic polynomial time which is not comnputable in
deterministic polynomial time). Thus there would be totally “independent’ prob-
lems soivable in nondeterministic but not in deterministic polynomial time.

2. Resuits

‘We restrict our goals to the construction of minimal pairs, which enables us to
sinplify definitions and notation and to utilize previous work. The natural numbers
‘N are represented in binary, and for x €N, |x| denotes the length of (the
representation of) x. We deal with computable functions trom N to N; f® stands for
the n-fold composition of f with itself. while f" stands for the function whose value
at x is (f(x))"; we use x?, etc. to stand for the function whose value at x is x?, etc.;
and subsets of N are identified with their characteristic functions. We define

f(n)=max{|f(x)|: |x|=r}.

All computations are by multi-tape Turing machines (with oracles if approp-
- riate),"and the time of a compntation is the number of basic machine steps executed
(including oracle interrogations). The time of a computation is always measured as
a function of the length of the input. Comp(g) < f means that there is a Turing
machine which computes g which on any input of length n takes time less than
f(n). Finally, let ? ={f: Comp(f) < x" + m for some n, m €N}.

For any funciion f we define /£ (f) to be the smallest set of functions containing f
and x* + 1 which is closed under composition; g < 4 (f) means that g is bounded by
some member of ./ (f). Paralleling Constable [1] and Mehlhorn [5], we define £(f)
to be the set of all functions computable from f in time bounded by some member
of #(f) by an oracle Turing machine with separate input and output tapes for the
oracle The separate input and output tapes for the oracle insure that a computation

‘“charged” for the length of every oracle output which is used. We need the
followmg simple facts about these definitions:

(1) A CNimplies £(A) is the set of functions computable from A in polyno-
mial time;

(2: g € (1) and f nondecreasing imply ¥(g)C £(f);

3 g€ ﬁf(f) Comp(f) <t and ¢t nondecreasing imply Comp(g) < .#(t);

(4) h=x*+1, h nondecreasing, and g < J((h) imply g < h™ for some .
The first and fourth facts are clear. To establish the second fact let h € £(g), T. be
a Turing machine computing h from g in time.- < #(g), and T, be a Turing
machine computing g from f in time < J((f). If we replace the g-cracle on T, by
Ty we get a “machine™ which computes h from f in time <.{(f) (note that
g < M{f}). /. Turing machine which simulates this “machine” introduces at most a
polynomial loss of time: for the simalation. The thirc fact is established by a similar
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standard argument which replaces an f-oracle by a Turing machine which computes
f, remembering that f cannot be comnputed in time less than f.

Assume that f and g are nondecreasing functions which cannot bs computed in
polvnomial time. Define F =max(x>+1, f) and G = max(x*>+ 1, g). and assume
turther that M = min(F, G) is bounded by a polynomial and that Comp(f) < F*™
:cr some #n and Comp(g)< G™ for some n (we might term this last property
p honesty). We can now make some observations about functions with the
properties assumed for f and g. From (2) we know that ? C 2 (f) N £(g), and we
want to conclude that in fact ? = L(f)N L(g).

If h € Z(f) N £L(g) then (3) and (4) together with the p-honesty of f and g yield
that Comp(h) < F*™ for some n and Comp(h) < G™ for some n. Thus for some ,
Comap(h) < min(F*™, G™) by the *“almost-parallel”” computation property of Tu.-
ing machine time: A Turing machine can simulate two Turing machine computa-
tions of the same value in parallel and obtain the value in time not much greater
than the faster of the two computations. To conclude that Comp(h) is bounded by 2
polynomial, we apply the following lemma. This lemma was brought to the author’s
attention by Rebert Soiovay, and it also provides a considerable simplification of
the proof that the elementary honest classes are a lattice by providing a nearly
trivial proof of Lemma 3.3 in [4] for the case where the reducibility is “‘clementary

1y ??

m. '

Lemma. Let F, G = x be nondecreasing functions, and let M = min(F, G). Then for
any n =1, min(F(")’ (,.7'"))$ M@,

Proof. In computing M?"""(x), either F is used at least n times or G is used at
least n times. The lemma follows by the properties assumed for F and G. []

Now assume that A € ¥(f) and B € £(g) such that A, BZ 2 (such sets will
exist if f and g are infinitely often large enough to allow diagonalization over ?).
Since Z(f)N £L(g)= P, by (1) and (2) we have that if C € L(A)N £(B) then
C € ?. Thus A and B will give us a minimal pair of polynomial degrees.

We now const:uct specific functions f and g which satisfy cur assumptions. Let
h(0)=0and h(x +1)=2"*.If h2Qy)<x < h(2y + 1) for some y, let f(x) = x and
g(x)=2"® 1f kQQy + 1)< x < h(2y +2) for some y, let f(x)=2"®*Y and g(x) =
x. Note that f and g are nondecreasing, bcunded by 2%, and each equals 2* for
infinitely many arguments; moreover, min(f, g) = x. If we define F and G as above,
then F and G are also non-decreasing, bounded by 2*, ar:d each equals 2* infinitely
often; moreover, min(F, G)=x?>-+1. Furtherinore, f and g are p-honest:
Comp(f) << IF* and Comp(g) < G* In fact, if we use the straightforward computa-
tional methods of first locating x between successive values of h and then app'ying
the appropriate case, we get running tuses for f and g which are less thar f | f|* and
g | g%, respectively.

Finally, by standard compression techniques there are sets A, BZ ? such that
Comp(A) < Comp(f) < F*<2” and such that Comp(B) < Comp(g)< G*<2*.
[For example see Hartmanis and Stearns [2]: 2"" is hcnest and majorizes ihe
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polynomials, ikerefore 9 is contained in the complexity class determined by 2",
since Comp(f), Comp(g)=2" infinitely often we have

. 1x2y2 ) d - 2|:¢|2 2 0

" Comp ™" L Comp(e)
and thus the complexity classes determined by Comp{(f) and Comp(g) contain sets
not in ?.] Since Comp(A < F?> we have A € Z(f) (A is computable from f in time
bounded by 4 (f) without even consulting the oracle), and since Comp(B) < G* we
have B € £(g). We have proved

Theorem. There are sets A, B& P such that Comp(A), Comp(B) <2* and such
that if C is a set computable from both A ..nd B in polynomial time then C € 2.

It is now straigh:forward to use the methods presented above to construct
minimal pairs of polynomizal degrees with even lower bounds on their complexity;
for example, we couid gt a minimal pair with complexity bounded by 2™, Details
are omitted out of compassion for the tvnesetter.
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