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ABSTRACT The consequences of cardiac excitation-contraction coupling by calcium-induced calcium release were studied theoretically,
using a series of idealized models solved by analytic and numerical methods. "Common-pool" models, those in which the trigger
calcium and released calcium pass through a common cytosolic pool, gave nearly all-or-none regenerative calcium releases (in disagree-
ment with experiment), unless their loop gain was made sufficiently low that it provided little amplification of the calcium entering through
the sarcolemma. In the linear (small trigger) limit, it was proven rigorously that no common-pool model can give graded high amplification
unless it is operated on the verge of spontaneous oscillation. To circumvent this problem, we considered two types of "local-control"
models. In the first type, the local calcium from a sarcolemmal L-type calcium channel directly stimulates a single, immediately opposed
SR calcium release channel. This permits high amplification without regeneration, but requires high conductance of the SR channel. This
problem is avoided in the second type of local control model, in which one L-type channel triggers a regenerative cluster of several SR
channels. Statistical recruitment of clusters results in graded response with high amplification. In either type of local-control model, the
voltage dependence of SR calcium release is not exactly the same as that of the macroscopic sarcolemmal calcium current, even though
calcium is the only trigger for SR release. This results from the existence of correlations between the stochastic openings of individual
sarcolemmal and SR channels. Propagation of regenerative calcium-release waves (under conditions of calcium overload) was analyzed
using analytically soluble models in which SR calcium release was treated phenomenalogically. The range of wave velocities observed
experimentally is easily explained; however, the observed degree of refractoriness to wave propagation requires either a strong depen-
dence of SR calcium release on the rate of rise of cytosolic calcium or localization of SR release sites to one point in the sarcomere. We
conclude that the macroscopic behavior of calcium-induced calcium release depends critically on the spatial relationships among
sarcolemmal and SR calcium channels, as well as on their kinetics.

INTRODUCTION
The cardiac contraction is coordinated by an electrical
action potential propagated throughout the cardiac syn-
cytium. Despite many years ofresearch, the exact mecha-
nism by which this electrical signal is transduced into
contraction of the myofilaments is not understood. The
broad outlines of the process are known: depolarization
ofthe sarcolemma causes influx ofcalcium through volt-
age-dependent channels; a larger amount of stored cal-
cium is then released from the sarcoplasmic reticulum
(SR). The released calcium, together with the calcium
entering through the sarcolemma, binds to troponin-C
and activates the myofilaments. In the past few years,
calcium channels, which are believed to mediate cal-
cium release from the SR, have been isolated from the
sarcoplasmic reticulum.
The exact nature of the trigger signal which activates

these SR calcium channels is not known. In skeletal
muscle, a large body of evidence indicates that charge
movements induced by depolarization of the sarco-
lemma are communicated directly to the SR channel. In
cardiac muscle, on the other hand, the preponderance of
the evidence indicates that the depolarization of the sar-
colemma plays no direct role in the control of SR cal-
cium release; release of SR calcium is triggered by the
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calcium that enters the cell via the voltage-controlled
calcium channels in the sarcolemma. This hypothesis,
known as "calcium-induced calcium release", is the
basis of the theoretical analysis presented here.
The experimental evidence in favor of calcium-in-

duced calcium release will be reviewed only briefly here;
a more detailed review has been given by Fabiato
(1989). In intact cardiac myocytes, the cardiac calcium
transient is abolished ifextracellular calcium is removed,
even during a single beat (Nabauer et al., 1989). A simi-
lar suppression of calcium release is found if the inward
calcium current is blocked by dihydropyridines (Wier
and Yue, 1985) or by depolarizing the voltage-clamped
sarcolemma to the calcium reversal potential (Cannell et
al., 1987; Barcenas-Ruiz and Wier, 1987). Intracellular
liberation of free calcium by photolysis ofcaged calcium
triggers release of SR calcium in a manner independent
ofmembrane potential (Niggli and Lederer, 1990). Cal-
cium entering through sarcolemmal calcium channel
tail currents can trigger release of calcium after the cell
has been repolarized to the resting potential. All these
facts imply that it is the trans-sarcolemmal calcium flux,
rather than the depolarization ofthe sarcolemma, per se,

that triggers SR calcium release.
In order to study the details of CICR, Fabiato (1983,

1985a, b, c) carried out an ingenious series of experi-
ments in which mechanically skinned cardiac myocytes
were superfused with solutions containing various con-

centrations of free calcium, in a system permitting solu-
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tion change within 1 ms; released calcium was measured
either with aequorin bound to the myofilaments, or by
calibration of myofilament tension. Rapid increase of
bathing [Ca2"] to levels above 100-150 nM (depending
on species) provoked release ofSR calcium. The amount
of calcium released increased with trigger [Ca2 ] in a
smoothly graded manner up to an optimum trigger level
(560 nM in the rat myocyte, 3 ,uM in the dog Purkinje
cell). Higher triggers produced less release; above a trig-
ger [Ca2"] of 10,uM release was almost completely pre-
vented, so that the peak [Ca2"] produced at the myofila-
ments was much less than that of the trigger solution
itself. The magnitude of triggered release was very sensi-
tive to the rate of rise of trigger [Ca2"]; a rapid rise
caused release, whereas a slow rise caused uptake into
the SR. Application of high [Ca2"] could partially in-
hibit a release which was already in progress, if it was
applied early enough, but sustained application of an
inhibiting [Ca2"] resulted, after a delay, in the appear-
ance of repetitive "spontaneous" calcium releases.
These results make it clear that there is a sensitive cal-

cium-induced calcium release process, as well as some
kind of calcium-dependent inactivation of release. A
quantitative, mechanistic interpretation of these experi-
ments is not simple, because calcium in the myofilament
space is not clamped (else it would not be possible to
observe the release), and, even at the outer face of the
SR, the surrounding solution provides sufficient diffu-
sion resistance to permit the development of calcium
gradients during the period when the injected droplet
remains unstirred. Efforts to make these observations
the basis of a quantitative theory of calcium release in
the intact cell have so far been unsatisfactory, as de-
scribed below.

There have been a number of published efforts to
model cardiac calcium-induced calcium release over the
past several years (Hilgemann and Noble, 1987; Wong et
al., 1987; Wong, 1981; Adler, et al., 1985; Kauffmann et
al., 1974) and other extensive efforts that have not been
published in full (Stem et al., 1984; Schouten et al.,
1988; M. Cannell, personal communication). This work
has aimed at quantitative simulation of the detailed be-
havior of skinned or intact cells under particular sets of
experimental conditions. These models have required
departures from pure calcium-induced calcium release,
or other ad-hoc features in order to fit details of particu-
lar experiments, and have generally required major revi-

sion to cope with new experimental findings. The two
most highly developed modeling efforts are those of Hil-
gemann and Noble (1987), and ofWong et al. (1987).
The Hilgemann model is an extension of the action-

potential model of DiFrancesco and Noble (1985), in-
corporating more detailed modeling of intracellular cal-
cium handling. In this model, calcium release is con-

trolled by a nonlinear function of a state variable which
is in turn controlled by a system of three differential
equations, with activation and inactivation by calcium,

as well as direct activation by an exponential function of
sarcolemmal membrane potential. This complicated
scheme was arrived at after extensive trials of 20 differ-
ent calcium-induced calcium release mechanisms. It was
found to be impossible to simulate the experimental re-
sults of Fabiato by any of these schemes, and the inclu-
sion of direct voltage-dependent activation (which is in-
creasingly in conflict with the experimental evidence)
was needed in order to reproduce the presence of
smoothly graded SR calcium release over a wide range of
sarcolemmal calcium current. It should be noted that the
models considered in this search were all of the class
which we refer to as "common-pool" models (see be-
low), meaning that the trigger calcium reaches the SR
via the same cytosolic calcium pool into which SR cal-
cium is released.
The Wong model was designed expressly for the pur-

pose ofreproducing the results ofFabiato's experiments.
In this model, an "appositional space" is assumed to
communicate freely with the outer surface of the SR
(and with the bathing medium, in the case of a skinned
cell). The myofilaments, in contrast, are in a "sarcoplas-
mic space" that receives calcium only from the "release
terminal", a compartment that receives calcium either
by active (pump) reuptake from the sarcoplasmic space,
via the longitudinal SR, or from the body of the SR by
passive diffusion. The most notable feature ofthis model
is that release from the release terminal is controlled by a
product of activation and inactivation factors which are
functions of both appositional and sarcoplasmic cal-
cium. Because ofthe control ofrelease by trigger calcium
in a compartment different from that into which release
occurs, the model is not a common-pool model, in the
sense used in this article. The physical mechanism for
this "action at a distance," by means ofwhich the release
channel is controlled by calcium in a different compart-
ment, is not specified; presumably a second messenger
within the SR would be required. In view ofthe difficulty
that many investigators have experienced in finding sim-
ple or physically plausible mechanisms that could repro-
duce the experimental data, we believe that the construc-
tion of a global model capable of simulating a cell in
quantitative detail is premature. We have taken a differ-
ent philosophical approach in this work, studying a num-
ber of partial models designed to show, in a qualitative
but mathematically well defined way, how the micro-
scopic properties of calcium-induced calcium release
translate into macroscopic physiologic phenomena,
which is often not intuitively obvious. Modeling is there-
fore used as an aid to understanding of alternative hy-
potheses, rather than an attempt to simulate the behav-
ior of the cell in full detail.

COMMON-POOL MODELS
In modeling calcium-induced calcium release, it has
usually been assumed that there is one cytosolic pool of
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calcium, whose concentration controls the release ofcal-
cium from the SR, and into which the calcium from both
the SR and the sarcolemmal calcium current enter (Fig.
1; note that there could be other calcium pools not
shown, so long as the release of calcium from the SR is
controlled by [Ca2"] in the cytosolic pool into which SR
calcium is released). Such an arrangement has obvious
positive feedback, suggesting that it might produce an

"all-or-none" response; SR calcium release, once trig-
gered by calcium crossing the sarcolemma, would escape
from sarcolemmal control and evolve autonomously.

It has been known for many years (New and Traut-
wein, 1972) that contraction amplitude is a smoothly
graded function of membrane potential during voltage
clamp depolarizations. The development of calcium
sensitive intracellular fluorescent probes has made it pos-
sible to map the relationship between membrane poten-
tial and cytosolic calcium in detail. There is now abun-
dant evidence (Cleemann and Morad, 1991; Talo, 1990;
Beucklemann and Wier, 1988; Cannell et al., 1987) that
normal SR calcium release is smoothly graded as a func-
tion of the calcium trigger provided by the slow inward
current. Ifthe magnitude ofthe calcium transient is plot-
ted as a function of membrane potential during a step
depolarization of constant duration, a bell-shaped curve
is obtained which resembles the curve of peak or inte-
grated sarcolemmal calcium current measured from the
same cell. On the other hand, if the inward calcium
current is terminated early, either by repolarizing the cell
to the holding potential, or by depolarizing further to the
calcium reversal potential, calcium release from the SR
is also terminated. There is therefore no experimental
evidence that SR calcium release becomes autonomous
under these conditions.
On the other hand, when cells are "calcium loaded"

they produce spontaneous calcium oscillations due to

[Ca2 + cytosolic

Isi Na/Cang
Exchange

FIGURE 1 Schematic of common-pool calcium models. All calcium
entering or leaving the cell or organelles passes through a common
cytosolic free-calcium pool. The concentration of free calcium in this
pool controls the release of calcium from the SR calcium-induced cal-
cium release channels.

release of calcium from the SR, and these "spontane-
ous" calcium releases can propagate throughout the cell
as a wave of calcium release. These are phenomena that
might be expected from a regenerative calcium-induced
calcium release mechanism, and, indeed, they are sup-
pressed by ryanodine, which blocks the SR calcium re-

lease channel in a partially open state and depletes the
SR ofcalcium (Rousseau et al., 1987). Fabiato ( 1985d)
has argued that spontaneous calcium release is not the
same phenomenon as calcium-induced calcium release.
In particular, in a "normally" calcium loaded skinned
myocyte, calcium-induced calcium release requires a
rapid rise of applied [Ca2"]; a gradual rise will cause

loading of the SR rather than release. Rapid application
of high concentrations of calcium will suppress a cal-
cium release that is in progress, whereas sustained appli-
cation of high calcium results in spontaneous release,
after a delay to permit loading ofthe SR. Further, sponta-
neous releases appears to originate at the nadir of cyto-
solic calcium concentration. However, both processes
appear to involve the same SR calcium pool and release
channel, asjudged by the response to caffeine, ryanodine
and ruthenium red, and spontaneous release, once initi-
ated at one point in the cell, propagates as a wave, indi-
cating that some aspect ofthe "spontaneous" release pro-
cess is capable of triggering release from adjacent SR. All
published models of calcium-induced release (as well as

unpublished ones that are known to the author) display
spontaneous oscillation under conditions of high cal-
cium loading. We will therefore assume in this study that
calcium oscillations and propagated waves of calcium
release are manifestations of regeneration of a calcium-
induced calcium release mechanism, although, in the
present state ofthe evidence, this is a somewhat arbitrary
choice.
To date, no common-pool model capable ofreproduc-

ing the graded calcium release (in response to depolariza-
tion) observed experimentally has been put forward. Ex-
tensive efforts to accomplish this were unavailing (Hilge-
mann and Noble, 1987; D. Hilgemann, personal
communication). The author's experience over ten
years ofmodeling has been similar. While space does not
permit the explicit display of numerous common pool
models that do not work, the experience with such mod-
els can be qualitatively summarized. Models with a high
"loop gain", i.e., a calcium release mechanism highly
sensitive to cytosolic calcium, produce all-or-none cal-
cium transients that evolve autonomously once cyto-
solic calcium has been raised above a threshold by a cal-
cium trigger. Models with low loop gain produce only
modest augmentation and prolongation of the calcium
transient over that which would be produced by the trig-
ger calcium alone. Ifthe loop gain is adjusted critically, it
is possible to get significant graded amplification of the
transient, but such gradation is generally quite nonlin-
ear, and is associated with prolongation and shape
change ofthe transient as the trigger size is varied. Com-
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mon pool models tend to "latch-up" in a state where SR
release is continuous, unless a mechanism is provided to
interrupt release. Either calcium- and time-dependent
inactivation of the release channel, or depletion of a

slowly replenished release store can prevent this prob-
lem. In order to simulate the observed stable resting
state, combined with the possibility of triggering a large
increase in cytosolic calcium by means of a small trigger
(i.e., one which would not, by itself, raise cytosolic cal-
cium by an amount large compared to resting calcium),
it is necessary to use a release mechanism that has a non-
linearity ofat least second degree; this is also necessary to
produce a system that displays spontaneous oscillations
when resting calcium is raised. The present, limited data
on control of the SR calcium release channel indicate
that the steady-state open probability has a linear or sub-
linear dependence on cytosolic calcium (Meissner and
Henderson, 1987; Rousseau and Meissner, 1989; Ashley
and Williams, 1990).

It is not possible to prove that no common-pool model
can fit the observations, because there is an unlimited
variety of possible common-pool models that could be
devised. However, the experimental evidence suggests
that SR calcium release is a smoothly graded function of
the trigger amplitude down to arbitrarily small triggers. If
this is so, SR calcium release can be studied in the linear
regime in which the trigger is made sufficiently small
that the cell remains near its equilibrium point and be-
haves in a linear manner. Because all linear systems can
be classified systematically, it is possible to make rigor-
ous statements relating the magnitude of amplification
by SR calcium release to the stability of the cell against
spontaneous oscillations. The power of this analysis is
that it applies to any common-pool model whatever; no
specification of the details of release or uptake mecha-
nisms are required.

Linear stability theory of common-pool
models

Assume that the cell rests in a stable equilibrium configu-
ration with a cytosolic calcium [Ca2+ ]equ, and that it is
perturbed within a range over which its behavior is linear
(ifthe equilibrium is stable, this should be possible). The
departure of cytosolic calcium from equilibrium will be
described by the variable X [Ca2]cy - [Ca2+]qu. In
the most general possible common-pool model, there are
three contributions to the rate of change of X: entry of
trigger calcium at a rate I(t), release of calcium into the
cytosol at a rate R { x(t) }, and uptake of calcium from
the cytosol at a rate U{x(t) }. The release and uptake
functionals R { } and U{ } are "black boxes" that
determine the release and uptake calcium fluxes as a

function ofthe past history ofthe cytosolic calcium x(t).
All that will be assumed about these black boxes is that
they are stable and physically realizable, and that they

are time-stationary, i.e., they have no external clock or
permanent memory.

It is well known from linear systems theory that the
most general (linear) time-stationary response func-
tional (i.e., "black box" response) is obtained by convo-
luting the input with a kernel function that describes the
weighting ofthe contributions ofpast values ofthe input
to the output. This follows from linearity because the
output can be obtained by adding up the "impulse re-
sponses" ofthe system to all past inputs; because oftime
stationarity, the impulse response is the same regardless
of the time ofthe input. Therefore, the linearized evolu-
tion of(the departure from equilibrium of) cytosolic cal-
cium in the most general possible common-pool model
can be described by the following equation:

dX 1V-=- U(t - t')X(t') dt'dt
rt

+ JR(t- t')X(t') dt' + I(t), ( 1)

where Vis the effective volume ofthe cytosolic pool, and
R(t) and U(t) are the kernels (impulse response func-
tions) of the release and uptake "black boxes".
The strategy of the analysis will now be as follows.

Imagine a thought experiment in which a cell is triggered
to produce a cytosolic calcium transient, giving curve A
in Fig. 2. The experiment is then repeated with the re-

lease machinery "turned off" (for example by use of
ryanodine) giving the much smaller transient in curve B.
Qualitatively, curve A represents the total cytosolic cal-
cium obtained when the release machinery sees curve A
as the net trigger, while curve B represents the contribu-

A

I100% mrIhm

-_

TIME

FIGURE 2 Hypothetical results of a thought-experiment in which a
calcium transient is measured under normal conditions (A) and after
turning off SR calcium release (B), with the same trigger calcium.
Under linear conditions, a common-pool model can only give such a
result (showing a dominant contribution ofSR calcium release) if the
cell is on the verge of spontaneous oscillation (see text). Horizontal
axis is time, vertical axis is [Ca2"], units arbitrary.
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tion of the inward current to this total. The difference
A - B is the contribution of SR calcium to the total,
self-consistent trigger. IfA is much larger than B (i.e., ifa
large amplification is obtained from SR release), then
A - B will be almost as large as A, i.e., the release is
almost large enough to serve as its own trigger, which
would permit it to be self-sustaining. Then, a slight in-
crease in the gain of the release process would make it
self-sustaining, i.e., the cell must be on the verge ofspon-
taneous oscillation. This argument is made mathemati-
cally rigorous by solving Eq. 1 formally by Laplace trans-
form methods to calculate the largest factor by which the
gain ofthe release process could be increased before insta-
bility would set in (safety margin for stability).

Recall the definition of the Laplace transform of a
function of time:

x(s) = X(t)e-st dt, (2)

which expresses the function in the "frequency domain"
as a function of the complex frequency variable s. Tak-
ing the Laplace transform of Eq. 1, we obtain:

sx(s) U(S)x(S) + R(s)x(s) + () (3)

which is a purely algebraic equation. This may be solved
for the Laplace transform of the cytosolic calcium tran-
sient:

x(s) = i(s)
sV+u(s) -R(s)~

Alternatively, we may assume that x(t) is known from
experiment (curveA in Fig. 2), and solve Eq. 3 for R(s),
the Laplace transform of the release functional:

R(s) = SX(s)V+ U(S)X(S) - i(s) (5)
x(s)(5

Next, we determine what new calcium transient XN

would result if the release process were modulated by
multiplying it by the constant r. This is obtained by mul-
tiplying Eq. 5 by r, and inserting the result into Eq. 4 in
place of R:

XN(S) = i(s)
-r(x(s)(sV + u(s)) - i(S))/X(S) + SV + u(s)

,

One particular case of "modulation" would be to turn

release off entirely, by setting r = 0, giving the Laplace
transform x0 of curve B in Fig. 2:

xo(s) = (s) . (7s)
sV+ u(s),

Since curve B is known from "experiment", we can solve
this equation to find the unknown trigger i(s):

i(s) = XO(S)(SV + u(s)). (8)

Now suppose, instead, that the "modulation" consists
of increasing the gain of the release process above nor-
mal by using r > 1. Eventually this will lead to spontane-
ous instability due to regeneration. The general criterion
for stability of a system in the complex frequency do-
main is that its response should have no poles with posi-
tive real parts (which correspond to modes which in-
crease exponentially with time). The poles of the right
hand side of Eq. 6 are simply the values of s at which its
denominator is zero, which (substituting from Eq. 8 for
i(s)) are determined by:

x(s)(1 - r) + rxo(s) = 0. (9)

Under normal conditions (r = 1) these poles all have
negative real parts, because the cell is postulated to be
stable at rest. These poles may be pictured as points in
the left halfofthe complex plane. As r is increased above
1, the poles will move rightward. When one of them
crosses the imaginary axis into the right half-plane, then
instability sets in. In particular, if a pole on the real axis
crosses into the right half-plane, it will pass through the
point s = 0. Therefore, if r is increased until s = 0 be-
comes a solution of Eq. 9, the cell will certainly have
become unstable; in fact, in the presence of a pole at s =

0, it will be statically unstable, able to self-sustain an
arbitrary constant displacement of cytosolic calcium
from equilibrium. By inserting s = 0 into Eq. 9 and solv-
ing for r, we find the maximum factor by which release
could be increased before (static) instability must result
(instability due to some other pole could occur at even
smaller values of r):

(10)
I _ xo(0)-

x(O)

By the definition ofthe Laplace transform, Eq. 2, x(0)
and x0(0) are simply the areas under curves A and B in
Fig. 2. Eq. 10 gives the maximum "safety factor" by
which we might be able to increase the gain of release
before incurring instability, as a function of the ratio of
these two areas. A numerical example illustrates the
point. If curve A has 10 times the area of curve B, then
r,ri, = 11.I . If the gain of release were increased by only
11% (e.g., by increasing SR calcium loading), then the
cell would oscillate.
While it is conceivable that cells somehow self-regu-

late their release gain in order to remain on the border of
instability, this is not a robust mechanism, because small
variations of parameters will easily lead to instability. It
would be surprising if nature required the fine tuning of
a barely stable positive feedback loop in order to control
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SR calcium release in a graded manner. It seems more

likely that common-pool models ofcalcium-induced cal-
cium release cannot explain cardiac excitation-contrac-
tion coupling. In order to rule out all common-pool mod-
els experimentally, it would be necessary to study cells in
a clearly linear regime (e.g., where the magnitude of the
calcium transient is small compared with resting cal-
cium), and to show that high amplification was present
over a wide range of release gain (e.g., wide variation of
SR loading).

LOCAL CONTROL MODELS
In order to resolve the paradox of graded calcium-in-
duced calcium release, what is needed is a mechanism
which will break the positive feedback loop by separating
the calcium released by the SR from the calcium that
acts as the trigger controlling the SR release channel.
One way ofdoing this is suggested by the ultrastructural
architecture ofthe SR calcium release terminals. In skele-
tal muscle, it is well established that the SR release chan-
nels are in direct apposition to dihydropyridine (DHP)
receptors in the sarcolemma ofthe t-tubule, which act as
voltage sensors and at least some of which are function-
ing L-type calcium channels (Block et al., 1988).
Whereas the exact ultrastructural relation between the
sarcolemmal and SR calcium channels in cardiac muscle
has not been demonstrated, it is known that the DHP
and ryanodine receptors co-purify in a junctional mem-
brane fraction (Wibo, 1991 ), and it is generally believed
that there is a close relationship. This would give the
calcium passing through the L-type calcium channel a

L-type
Calcium Channel

Sarcolemma

Bulk Cytosolic Space

privileged access to the calcium-sensing site on the SR
channel. The calcium sensitivity of this site could then
be much less than the ambient cytosolic calcium level,
preventing regenerative calcium release. A simple model
embodying these ideas is the "calcium-synapse" model
shown schematically in Fig. 3.

It might appear that this model would only transfer
the regeneration problem to a smaller space. Since the
SR channel would have low calcium sensitivity, bulk re-

generation of cytosolic calcium would not occur, but
each SR channel could still sense the calcium which it,
itself, released. Since the SR release channel is only 34
nm in diameter (Lai et al., 1988), the calcium feedback
would again be as large or larger than the local trigger
from the sarcolemmal channel. The SR channel, once

open, would "latch up" in response to its own calcium
release and remain open, independent of further control
by the sarcolemma. This does not occur because the all-
or-none nature of single channel openings, combined
with the short diffusion times in the small space around
the channels, prevents regeneration, as explained below.

Calcium gradients in the
neighborhood of a channel

We first calculate the calcium concentration in the
neighborhood of a single calcium channel (either sarco-

lemmal or SR) lying in a (locally) planar lipid mem-
brane. We will initially ignore calcium buffering, be-
cause most ofthe cytosolic buffer sites are fixed on myo-
filaments or other membranes or organelles that will
probably not be present in the small region around the
sarcolemmal and SR channel molecules. We treat the
channel pore as a point source from which calcium is-
sues at a flux rate s (mol/ s). The calcium concentration
C in the region around the channel is governed by the
diffusion equation:

ac \a2C 02C a2C
=D +

at -8Z2T Oy X2

Local
aCa2+

Gradient

SR Release
Terminal

Calcium Release
Channel

(11)

When the channel has been open for some time, the
free calcium distribution in the neighborhood of the
channel will be given by the steady-state solution of Eq.
11 for a point source, which is well known to be:

s s
c =

2rDr
=

2rD(z2 + y2 + X2)'12 (12)

The factor 2 (rather than 4) in the denominator ac-

counts for the fact that all the calcium issuing from the
pore goes to the cytosolic side of the membrane, unlike a

true isotropic point source. Supposing that the channel
closes at time t = 0, the calcium distribution around the
channel will be the solution of the source-free diffusion
Eq. 1 1, with Eq. 12 as an initial condition. This solution
is found by spatially convoluting the initial concentra-
tion (of Eq. 12) with the Green's function for Eq. 1 1,
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FIGURE 3 Schematic of the "calcium-synapse" model, in which each
SR release channel is immediately opposite a sarcolemmal L-type cal-
cium channel, and is directly controlled by the local calcium released
from that channel.
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which is the Gaussian solution of Eq. 11I describing the

diffusion of calcium initially localized at a point. The
result is:

Serf 2(Dt)1/2

C =-

2-rDr (13)

for the concentration of free calcium at a distance r from
the channel pore, at time t after the channel closure.

Eq. 15 is plotted in Fig. 4. Panel B shows [Ca" as a

function of distance from a channel passing 2 picoam-
peres of calcium current at times of 0.01, 0.1, 1, 10, and
100 us after the channel closes. Panel A shows the same
data as a function oftime at distances of 10, 30, and 100
nm from the pore. The significant point is that there is a
large local excess concentration of calcium above am-

bient cytosolic levels when the channel is open, and this
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FIGURE 4 Free calcium concentration in the neighborhood ofa chan-
nel pore immediately after the channel closes. The channel was con-
ducting a calcium current of 2 picoamperes until time t = 0, at which
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excess dissipates within a fraction of a millisecond after
the channel closes.

Analysis of the "calcium-synapse"
model
Consider, now, the model in Fig. 3. Depolarization of
the sarcolemma will cause the L-type channel to open,
resulting, within microseconds, in a steady high concen-
tration of calcium at the calcium sensing site of the SR
channel, which is presumed to be closed. This will cause
the SR channel to open, resulting in an even higher local
concentration of calcium. There are now two possibili-
ties. Ifthe open state ofthe channel is calcium insensitive
(as suggested by the data of Ashley and Williams [1990 ]
from single SR sheep purkinje SR channels in lipid bi-
layers), then the SR channel will close at random. Pro-
vided this closure lasts longer than a fraction ofa millisec-
ond, the local calcium gradient will dissipate, and the SR
channel will remain closed for a prolonged period unless
the L-type channel is still delivering trigger calcium. If,
on the other hand, the open state lifetime ofthe SR chan-
nel is calcium dependent (as indicated by the data of
Rousseau and Meissner [1989] from dog ventricular
channels), the open channel, which sees a very high cal-
cium, will close at a slower, but still finite rate. Once it
has closed, the self-calcium gradient will dissipate, and
the channel will, again, remain closed unless stimulated
by calcium from the L-type channel. In either case, the
stochastic closings ofthe single channel will interrupt the
positive feedback loop, so that the probability of the SR
channel being open will be closely coupled to the open
probability of the sarcolemmal L-type channel, giving
graded calcium release from the SR. The only difference
between the two cases is that, in the case of the calcium-
sensitive open state, the open lifetime will depend on
[Ca"] at the SR channel. Since the major contribution
to local [Ca"] is the calcium issuing from the open SR
channel itself, the variation of the open lifetime due to
the calcium from the sarcolemmal channel (let alone the
ambient cytosolic calcium) will be a secondary effect.
For purposes of qualitative modeling, then, we may as-

sume that the open state is calcium insensitive. An addi-
tional detail is the possibility that, even if the open state
of the SR channel is calcium insensitive, the calcium
binding site may be available for occupancy. In that case,
the rate limiting step in breaking the positive feedback
loop may be the time required for calcium to dissociate
from this site, rather than the diffusion times shown in
Fig. 4. If the calcium binding site has an on-rate that is
diffusion limited, and an affinity that is comparable to
the local concentration of calcium reached when the
channels are open, then this dissociation time will be
comparable to the diffusion times, and the argument re-

mains essentially the same.

In order to analyze the "calcium-synapse" model
quantitatively, it is necessary to take into account that
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the openings of both the sarcolemmal and SR calcium
channels are stochastic processes, which will be corre-
lated because of their interaction. It is therefore neces-

sary to analyze the model as though the pair ofchannels
were a single channel, i.e., to consider all possible simul-
taneous states of the two channels, and the processes by
which transitions may occur among them. The simplest
possible calcium-synapse model is obtained by assuming
that the SR channel has two states, open and closed, with
the opening rate of the closed channel proportional to
local [Ca2"] and the closing rate of the open channel
independent ofcalcium. The sarcolemmal channel is as-
sumed to have an activation gate and an inactivation
gate, each obeying first order voltage-dependent kinetics
(for computational purposes we assumed the model of
DiFrancesco and Noble [ 1985 ] without the calcium-de-
pendent inactivation). To make computation tractable,
we assumed that the diffusional calcium changes (e.g.,
Fig. 4) are essentially instantaneous, so that the local
excess [Ca2"] is determined by Eq. 12 when the chan-
nel(s) are open and zero otherwise. The unitary current
of the SR channel was assumed to be a constant (i.e.,
effects ofSR depletion, etc., were not included), whereas
the unitary calcium current of the sarcolemmal channel
had the usual voltage dependence, taken from the model
of DiFrancesco and Noble. Uptake of calcium from the
cytosol was modeled by a simple first order process.

Evaluation of the possible state-pair transitions leads
to the following set of differential equations governing
cytosolic calcium:

dF aF(l-F)-fOFF
dt

dDdD= afD( I - D) - ADD ( 14a)
dI~~~~d

dIt Ir(rc + CAko) - AiuiurkoNPoo
+ ADFiuiurkoN + CAiurkoN

dt°o=-Poo rc + Aiuko + CAko + #FDF D
dt

+aD(1 -D)F+ aFD(I -F)\
+

1-DF

+ (aD(1 -D)F + aFD(1 -F))Ir
(+1-DF)iurN

+DF(Aiu+CA)k,
dCA
dt

(DOFO- DF)iuN- (CAo- CA)K + Iro- I
B

where D( t) and F(t) are open probabilities ofthe activa-
tion and inactivation gates of the sarcolemmal channel,
CA(t) is (bulk) cytosolic [Ca2+], Ir(t) is the (ensemble
averaged) rate ofcalcium release from the SR and P. (t)
is the probability that both sarcolemmal and SR chan-
nels are simultaneously open (this variable carries the

information about correlation between the openings of
the two channels). In these equations, aD, fD, aF, and F

are the voltage dependent rate constants ofthe activation
and inactivation gates of the sarcolemmal channel, and
iu is the unitary current of the sarcolemmal channel,
given by (DiFrancesco and Noble, 1985):

(E - 50.0)(CAe100 0/Eo - CA0e-2-O(E-50O0)/EO)P
iu =1 e-2.0(E-50-0)/Eo04

30.0(E + 24.0) 12.0(E + 24.0
aD -D1.0 e-0.25(E+24.0) D eO.l(E+24.0) - 1.0

6.25(E+ 34.0) 50.0
aF -eO.25(E+34.0) O1.0 cF-eO.25(E+34-0) + 1.0

The constants iur, r, kI, andNare the unitary current
ofthe SR channel (note that, in this simple version ofthe
model, the unitary current is a constant, i.e., we do not
consider its possible variation with SR membrane poten-
tial or SR calcium concentration), the SR channel clo-
sure rate, the SR channel opening rate coefficient (i.e., k0
is multiplied by the local calcium concentration to ob-
tain the opening rate), and the density of channel pairs,
respectively. The constant A is the coefficient which con-
verts unitary calcium currents to local calcium concen-
tration at the sensing site of the SR channel. A is of the
order of magnitude of 1 /(2wrDf,,d) where Dfr, is the
diffusion coefficient of free calcium and d is the distance
between the sarcolemmal channel pore and the SR chan-
nel sensing site (see Eq. 12; the exact value ofA depends
on the geometry ofthe confined space between the chan-
nels). The constant K is a relaxation rate which repre-
sents the effect ofSR and sarcolemmal pumps (and Na/
Ca exchange), B is the relative effective volume of the
cytosolic calcium space (i.e., it represents the effect of
calcium buffering, considered as a fast, linear process),
and CAO and CAo are the extracellular and intracellular
resting (at the holding potential) free calcium concentra-
tions.
The differential equations ( 14a) are subject to the fol-

lowing equilibrium initial conditions evaluated at the
holding potential:

IrO = (((AD2Fo- ADOFO)iu + CAODOFO

- CAo)iurkoNrc + (((ACAoDoFo

-ACo i +CA2DOF CA2 )iurkoACAO)iu + D0 F0

+ (((A(OF + OD + aF + aD)DJO
- AaDDO)FO + (A(-1F - #D)DO

- AaFDIo)FO)iU + ((fF + O3D + aF

+ aD)CAODO - aDCAO)FO - aFCAODO

+ (U-OF - OD) CAO) iurko)N)/

((DoFo-1 )r2 + (((ADOFO A)iu
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+ 2CAoDoFo- 2CAo)ko

+ ((0F + OD+ aF+ aD)DO aD)FO

aFDO -F D)rc

+ ((ACAoDoFo - ACAo)i,

+ CADoF0 - CA2)ko
+ (((A (aF + aD)DO - AaD)FO

- AaFDO)1u + ((13F + OD
+ aF + aD)CAODO- aDCAO)FO

- aFCAODO + (-F -,OD) CAo)k0) (14c)

Pooo= (((AD2Fo - ADOFO)iu + CAOD2FO - CAD0F0)korc

+ ((ACAODJ2F2- ACAoDoFo)iu + CA Do2F2

-CAgDoFO)ko + (((A (aF + aD)Do-0ADDo)Fo
- AaFJOFO)1U ((aF aD)CAODO aDCAO)FO

- aFCAoDO)kO)/((DoFo - 1)rc
+ (((ADOFO- A)iu + 2CAoDOFO - 2CAo)ko

+ ((F + AD + aF + aD)DO aD)FO

aFDO OF OD)rc

+ ((ACAODOFO - ACAO)iU + CADOFO- CA0)k

+ (((A (aF + aD) - AaD)FO AaFDo) iu

+ ((3F + AD + aF + aD)CAoDo - aDCAO)Fo
-aFCAODO - (OF + /D)CAO)ko)

=aD

AD + aD

F0 = aF+
OF + aF

CA(0) = CAo.

Together, Eq. 14 form a complete system which can be
integrated to determine the bulk cytosolic [Ca2 ] during
a depolarization of the sarcolemma. The equations de-
pend separately upon the unitary current of the sarco-
lemmal channel, and upon the open and closed probabil-
ities of the sarcolemmal channel gates. This dependence
cannot be reduced to a dependence on the product ofthe
unitary current with the open-probability of the sarco-
lemmal channel, which is what determines the macro-

scopic inward calcium current Ij. This demonstrates a
phenomenon which is common to all "local control"
models of calcium-induced calcium release: because of
the statistical correlation between the states ofindividual
sarcolemmal and SR calcium channels, bulk SR calcium
release is not a unique function of macroscopic Ij, even
though microscopic Ij, is the only mediator of SR cal-
cium release. Therefore, failure ofSR calcium release to
show a voltage dependence identical to that of I,i does
not imply the existence ofa direct effect ofvoltage on the
release process.

Eq. 14 leads to calcium transients which display large
amplification by SR calcium release, and are neverthe-
less graded as a function of the size and duration of the
trigger depolarization. Fig. 5 shows a family of calcium
transients produced by depolarization from a holding
potential of -60 mV to a step potential of 0 mV, for
durations of 2-50 ms. On the right-hand side of the fig-
ure are shown the corresponding transients obtained
when SR release is disabled (SR channel conductance set
to zero), so that the only source ofcalcium is the inward
current Ij. It can be seen that a large amplification factor
(nearly 10) is obtained by calcium-induced calcium re-
lease, with smooth gradation of the transient as a func-
tion of the duration of depolarization. The model is far
from being unstable; in fact, because the calcium ki-
netics of the SR channel are first order, this model can-
not produce spontaneous oscillations for physically real-
izable initial conditions.

This calcium synapse model also displays gradedness
as a function of the magnitude of depolarization. The
cytosolic [Ca2+] at 50 ms after the onset of depolariza-
tion is plotted as a function ofthe step potential in Fig. 6
A. The usual bell-shaped curve is obtained in the absence
ofSR calcium release, representing the integrated contri-
bution of macroscopic Ij, diminished slightly by the ef-
fect of ongoing calcium uptake. In the presence of SR
release, the smooth bell-shaped gradation with potential
is preserved, but with a large amplification by calcium-
induced calcium release. In panel B of this figure, the
separate contributions of Ihi (dashed curve) and SR cal-
cium release (smooth curve), have been plotted, normal-
ized to their respective peaks. Superimposing the two
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contributions in this way reveals that SR release and (cu-
mulated) Ij, do not have exactly the same voltage depen-
dence, as was predicted above from the structure of Eq.
14. The difference in their voltage dependences (at least
for the values ofthe parameters chosen for this example)
is small enough that it would probably not be recogniz-
able in currently available experimental data, so that the
observed similarity between Ij and [Ca2 ]cyto cannot be
taken as evidence favoring common-pool over local con-
trol models.

"Cluster bomb" models
In local-control models of the "calcium-synapse" type,
each sarcolemmal calcium channel is paired with a sin-
gle SR calcium release channel. The maximum amplifi-
cation obtainable from SR calcium release is therefore
related, in a fundamental way, to the ratio between the
unitary currents ofthe SR and sarcolemmal channels. In

order to obtain high amplification, it is necessary to as-
sume unrealistically large conductances for the SR chan-
nel. One way to avoid this problem is to assume that a
single sarcolemmal channel controls more than one SR
channel. Because ofthe limited range ofthe calcium dif-
fusion gradient around the sarcolemmal channel pore,
the SR channels must be very close to one another, so
that they must respond to each other's released calcium.
In fact, given the large size ofthe SR channel protein, the
only way that many such channels could be simulta-
neously controlled by one sarcolemmal channel would
be for the signal to be passed from one SR channel to
another in "daisy chain" fashion. This leads to the pic-
ture of a cluster of SR channels, mutually coupled by
their own calcium release, and coupled to one "trigger"
sarcolemmal channel. There is ultrastructural evidence
that calcium release channels are clustered on the surface
of SR release terminals (Ferguson et al., 1984), and di-
hydropyridine receptors in adult rat ventricle are located
predominantly in junctional complexes containing
ryanodine receptors (SR release channels) in a stoichi-
ometry of 1:9 (Wibo et al., 1991).
Such a cluster would be locally regenerative, since the

closed channels in a cluster are capable of sensing the
calcium released from the open channels, being triggered
thereby to open in turn. In order to preserve the stability
and gradedness of the local-control model, individual
clusters must regenerate locally, but be sufficiently sepa-
rated from one another that no collective ("common-
pool") regeneration takes place. We refer to such a
model as a "cluster bomb" model.
The simplest cluster bomb model combines the two-

gate, four-state (DiFrancesco and Noble) sarcolemmal
channel used in the calcium-synapse model with a clus-
ter of two-state SR channels. In order to minimize the
probability of the cluster regenerating spontaneously at
resting cytosolic calcium concentrations, it is necessary
to assume second order (or higher) kinetics for the cal-
cium control of SR channel opening.
As in the calcium-synapse model above, the operation

ofthe cluster-bomb model involves complicated correla-
tions among the stochastic openings ofthe various chan-
nels in the cluster. It is possible, in principle, to write
differential equations for the cluster-bomb model by con-
sidering all possible "states" of the entire cluster, and
determining the transition rates among these states due
to the opening or closing of single channels. For a cluster
containing 5 SR channels, there are 128 states, whereas
for 10 SR channels, the cluster has 4,096 states, making
this approach difficult. A somewhat easier approach is
Monte-Carlo simulation, in which stochastic transitions
are simulated numerically under the control of pseudo-
random numbers. The Monte-Carlo algorithm operates
as follows. (a) Each channel (or gate) in the cluster is
assigned a state (0 or 1 ) describing whether it is open or
closed. (b) At the beginning ofeach time step, the proba-
bility of opening or closing ofthe voltage-dependent sar-
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colemmal channel gates is computed from the mem-
brane potential. The calcium concentration at each of
the closed SR channels is computed by adding the local
calcium gradients of all the open channels in the cluster
to the background cytosolic calcium. The probability of
opening of each SR channel is computed from its local
calcium concentration. (c) A random number between
zero and one is generated for each channel or gate in the
cluster. Ifthis number is less than the calculated probabil-
ity for the channel to open (if closed) or close (if open),
then the state of the channel is changed. (d) The above
steps are carried out for a large ensemble (say 1,000) of
independent clusters. The total calcium flux from the
ensemble of clusters is used to determine the increment
in global cytosolic calcium during the time step, and cyto-
solic calcium is updated accordingly (including the ef-
fect ofa relaxation term which steadily removes calcium
from the cytosol by a first-order process). (e) The se-
quence of operations above is repeated for a series of
small time steps (0.1 or 1 ms), in order to calculate the
cytosolic calcium transient as a function of time.

This procedure is straightforward for clusters of any
size, but is very intensive computationally. However, the
number of computations is roughly proportional to the
number of channels in the cluster (summing the local
calcium contributions requires a number of steps pro-
portional to the square of the cluster size, but is a small
part of the calculation for moderate cluster sizes),
whereas the number of variables in the analytical differ-
ential equations increases exponentially with the size of
the cluster. The Monte-Carlo simulation is therefore eas-
ier to implement for realistic cluster models.

In the calcium-synapse model, local regeneration was
prevented by the fact that a single SR channel must be
either open or closed and so cannot be controlled by its
own released calcium. In the cluster-bomb model, on the
other hand, collective regeneration of the channels
within a cluster does occur. It is therefore necessary to
provide a mechanism to "extinguish" the activity of a

cluster, once it has been "ignited" by the trigger from the
sarcolemmal channel.
There are three mechanisms that can extinguish an

active cluster; two of these are exactly analogous to the
processes which can terminate regenerative calcium re-

lease in a common-pool model, whereas the third is
uniquely dependent on the stochastic nature of calcium
release by a small cluster of channels.

(a) Calcium-dependent inactivation. A time-depen-
dent inactivation process, initiated either by the opening
of the channel or by the binding of released calcium to a
second control site, could terminate release from an ac-

tive cluster. There is evidence for such a process from the
skinned-cell experiments of Fabiato, as discussed above,
as well as from studies of calcium release from isolated
SR vesicles (Chamberlain, et al., 1984; Meissner and
Henderson, 1987). While the early studies of single SR
release channels did not demonstrate calcium inactiva-

tion, it has recently been observed in bovine cardiac SR
channels, using Cs' as a charge carrier (Kawano and
Coronado, 1991 ). In studies of isolated SR vesicles or
channels, millimolar [Ca"] was required to strongly in-
activate the channel; the presence ofphysiologic levels of
ATP and [Mg2+] was found to shift the [Ca2+] depen-
dence of the release rate markedly to the right, moving
the descending limb of the curve (if any) to values very
much higher than those observed in Fabiato's experi-
ments, though not necessarily higher than concentra-
tions reached near the pore ofthe channel itself. All stud-
ies ofisolated systems have been done in the steady-state,
so that the possible activation and inactivation kinetics
of the channel in response to rapidly changing [Ca2+]
remain unexplored. Simulation of an inactivation pro-
cess requires including additional states ofeach SR chan-
nel, increasing the computational burden substantially.

(b) Local depletion ofreleasable calcium. There is evi-
dence, both physiological and ultrastructural, that SR
calcium release sites are located on "release terminals"
in the junctional and corbular SR, whereas the calcium
uptake pump is located throughout the SR, particularly
in the longitudinal SR (Franzini-Armstrong et al., 1985;
Jorgensen et al., 1988; Wendt-Gallitelli, 1990), with a
significant diffusion resistance to calcium translocation
between the uptake and release "compartments" of the
SR (Wussling and Szymanski, 1986). Ifwe hypothesize
that each cluster draws upon calcium stores in its own
release terminal, which are only slowly replenished from
the "uptake pool", then "firing" of a cluster will cause
local depletion of its releasable calcium. This will reduce
the local feedback gain that sustains the activity of the
cluster, permitting the channels to close.

(c) Stochastic attrition. Once activated, a cluster is
self-sustaining (in the absence of mechanisms (a) and
(b) above) because the calcium released from open
channels is sufficient to promote the opening of closed
channels as rapidly as the open channels close. However,
this is only true on the average. In a small or moderate
sized cluster, there is always a probability that enough
channels will close simultaneously to reduce the calcium
flux below the self-sustaining level. Once this occurs, the
remaining channels will rapidly close, leaving the cluster
inactive until it is again triggered. Therefore, active clus-
ters will steadily "die off" spontaneously even in the
absence of any extinguishing mechanism, a process we
refer to as "stochastic attrition".
The importance of stochastic attrition depends on the

size ofthe cluster and the magnitude ofthe positive feed-
back gain sustaining it. For large clusters with high gain,
the probability that enough channels will close at once to
extinguish the channel becomes very small, leading to
essentially macroscopic behavior of the cluster. At the
other extreme, ifthere is only one SR channel, stochastic
attrition will completely interrupt the positive feedback
process, which is what happens in the calcium-synapse
model. For intermediate cluster sizes, stochastic attrition
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will make a significant contribution to terminating clus-
ter activity, whether or not extinguishing mechanisms
(a) and (b) are present.

Fig. 7 shows the open-probability ofSR calcium chan-
nels in clusters of several sizes, starting from a state in
which all channels are open, under conditions in which
stochastic attrition is the only mechanism affecting clus-
ter activity. The cluster was simulated in the absence of
any external trigger or ambient calcium, assuming a sin-
gle-channel open-state lifetime of 10 ms, an opening rate
controlled by calcium according to second order Hill ki-
netics with a maximum opening rate of 500 s-5, and a

Ca50 ([Ca>] producing 50% of the maximal opening
rate) equal to twice the [Ca" ] produced by calcium dif-
fusion from one open nearest-neighbor channel. No in-
activation or calcium depletion was assumed. For clus-
ters of 10 channels, the rate of stochastic attrition is very
small, leading to nearly macroscopic (i.e., latched-up)
behavior on the time scale shown. For smaller clusters,
stochastic attrition quickly extinguishes all active clus-
ters (in the absence of an external trigger calcium
source). For larger or smaller unitary channel currents
(relative to the Ca50 ofthe calcium control site), the criti-
cal cluster size for stochastic attrition becomes smaller or
larger, respectively.

In order to obtain large amplification using SR release
channels of modest conductance, it is necessary for the
number of channels per cluster to be high enough that
stochastic attrition alone is too slow to terminate release
by a cluster. In addition, the rate of stochastic attrition is
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FIGURE 7 Decay ofactive clusters by stochastic attrition. An ensemble
of independent clusters of 3, 5, or 10 channels was modeled in the
absence of any background cytosolic calcium or trigger calcium. All
channels were started in the open state at t = 0. There is an initial rapid
decay of the channel-open probability to a quasi-equilibrium value at
which the mean calcium released from open channels is sufficient to
sustain the average number ofopen channels. The channel-open proba-
bility then continues to fall due to stochastic attrition as entire clusters
are extinguished by random fluctuations. The rate of stochastic attri-
tion is very sensitive to the number of channels in a cluster.

highly sensitive to the exact conditions, which is undesir-
able. We therefore included local depletion of release
terminal calcium stores (mechanism b above) in the
model simulations, which requires less computation
than does channel inactivation.
For the simulations shown, the kinetics of the sarco-

lemmal channel were the same as in the calcium-synapse
model. The SR release channels were assumed to open at
a calcium-dependent rate:

= rmCA 2/(CA 2 + CA2 ), ( 15)

where rmx =-100 s'- and CA50 = 20 ,uM, and to close at a
constant rate rc1ose = 20 s-'. A cluster consisted of a lin-
ear array of 5 SR channels separated by 100 nm; the first
channel ofthe array was separated from the sarcolemmal
calcium channel by a gap of 6.25 nm. Each open SR
channel released calcium at a rate that contributed a lo-
cal [Ca>2] = RR* 10I,uM at adistance of 100 nm (nearest
neighbor distance), where RR is a factor to account for
local depletion of release terminal calcium stores. The
factor RR was updated at each 1-ms time step according
to

RR' = 0.999RR( 1- 0.0 lnopen) + 0.001, (16)

where nopen is the number ofopen release channels in the
cluster; this corresponds to a "restitution" time constant
of 1 s. Because of the ill-conditioned numbers involved
in representing this process by Eq. 16, computations
were done in double-precision. The density of clusters
was 1014 liter-'. Global cytosolic calcium was controlled
by the entry of calcium through the various channels in
the clusters, with an effective cytosolic volume of 30
times physical volume, to account for buffering. In addi-
tion, cytosolic [Ca> ] was subject to a continuous relax-
ation process with a time constant of 200 ms towards a
"resting" (i.e., all channels closed) value of 100 nM, rep-
resenting the effects ofNa/Ca exchange and SR uptake.
The actual steady-state [Ca>2]cyO differs only slightly
from the resting value, because most channels are closed
at the holding potential; because the steady-state value
cannot be calculated analytically, the model was started
from the resting value and "run in" at the holding poten-
tial prior to the step depolarization.

Fig. 8 A shows examples of cytosolic calcium tran-
sients computed for a cluster model containing 5 SR
channels per cluster, during step depolarizations from
-60 mV to -15 mV of duration 2, 5, 10,20, and 50 ms.
The choice of-15 mV was made to limit the rapidity of
opening of L-type channels, so that a time-step of 1 ms
could be used, reducing the computational burden.
Panel B ofthis figure shows the corresponding transients
in the absence of SR calcium release, i.e., including the
direct contribution ofthe inward calcium current alone.
It can be seen that nearly 10-fold amplification by cal-
cium-induced calcium release is achieved, with release
graded as a function of the duration of depolarization.
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ter-bomb" model for step depolarizations from -60 to -15 mV for 2,
5, 10, 20, or 50 ms. The curves in A were generated with SR calcium
release present, while those in B had the unitary current of the SR
channel set to zero to display the contribution of the inward calcium
current alone. The step potential of- 15 mV (rather than 0 as in Fig. 9)
was chosen because the slower rate of activation of the L-type channel
activation gate permitted larger time steps, reducing the computational
burden. Qualitative features are the same at other step potentials.

This was accomplished with an assumed SR channel uni-
tary current only 2.5 times the maximum unitary
current of the sarcolemmal calcium channel, as com-

pared with the example shown in Fig. 5 for the calcium-
synapse model, which used an SR channel 23 times
larger than the sarcolemmal channel. Note, by compar-
ing the two panels of Fig. 8, that the variation of the SR
release component of the calcium transient with the du-
ration of depolarization is not the same as that of the
inward current component, even though the system is
not globally regenerative. This cannot be considered
"nonlinearity", because, as discussed above, in local-
control models the SR calcium release is not directly a

function of the macroscopic inward calcium current.
This point is further emphasized by the voltage depen-

dence of the calcium transient, which is compared, in
Fig. 9, with that ofthe inward current component alone,
both being normalized to their respective maxima. Al-
though the curves are somewhat noisy, it is clear that SR
release deviates from the inward current trigger at high
step potentials. Interestingly, for the parameters used
here, the deviation is in the opposite direction from that
seen in the calcium-synapse model (Fig. 6 B). The re-
sults of the Monte-Carlo simulation can be made arbi-
trarily smooth by averaging sufficiently many iterations.
However, the noise decreases only as the inverse square

root ofthe number ofiterations, and Fig. 9 already repre-

sents 2 x 101 computer instructions.
The classic bell-shaped curve of the inward calcium

current represents a trade-offbetween the number ofsar-
colemmal calcium channels activated, which increases
with the step potential, and the unitary current of these

channels, which falls towards zero as the step potential
increases towards the calcium reversal potential. Despite
the similarity between the voltage dependences of SR
calcium release and the inward current, the discrepancy
between these two curves is actually a clue to the fact that
the number of sarcolemmal channels activated, on the
one hand, and the magnitude oftheir unitary current, on
the other, play fundamentally different roles in control-
ling calcium release in the cluster-bomb model.
To understand this, it is useful to visualize how cal-

cium release is graded in the cluster-bomb model. Once
a cluster is activated, it will regenerate more-or-less au-
tonomously. The gradation of calcium release is there-
fore largely a reflection of the recruitment of varying
numbers of active clusters. When the sarcolemma is de-
polarized, the rate of recruitment of clusters will be con-
trolled by a rate-limiting stochastic event, which may be
either the first opening of the sarcolemmal trigger chan-
nel or the opening of a critical number of SR cluster
channels after they have been exposed to trigger calcium.
The rate of first-opening of the sarcolemmal channel is
an increasing function of membrane potential, whereas
the rate of opening of the SR channels depends on the
magnitude of the trigger calcium, i.e., on the unitary
current ofthe triggering sarcolemmal channel, which is a
decreasing function of potential. As the step potential is
made more positive, the rate limiting step in recruitment
crosses over from the sarcolemma to the SR. The exact
voltage at which this crossover occurs would be expected
to depend on the distance between the sarcolemmal
channel and the SR channels, the regenerative gain of
the cluster, and the rates of activation and deactivation
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FIGURE 9 Normalized contributions of SR calcium release and I,, to
the cytosolic calcium increase at the end ofa 50-ms step depolarization
from a holding potential of-60 mV in the "cluster bomb" model, as a
function of the step potential. Both Ij and SR calcium release have a
bell-shaped variation with membrane potential, but their voltage de-
pendence is not the same, even though microscopic I,, is the triggering
stimulus for SR calcium release. Calculation was by the Monte-Carlo
algorithm, using a time-step of 100 ,s.
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ofthe SR channels as a function oflocal [Ca2" ]. Most of
this parameter space remains to be explored, because of
the large amount of computation required. In general,
however, the position of the ascending and descending
limbs ofSR calcium release as a function ofvoltage need
not be same as those ofthe macroscopic inward current,
even though the microscopic inward current is the only
signal triggering SR calcium release.

THEORY OF THE PROPAGATED
CALCIUM WAVE

It is well known that so-called "calcium overload" of
myocytes causes periodic spontaneous release ofcalcium
from the sarcoplasmic reticulum, and that this release
propagates as a "calcium wave" traveling at a velocity of
the order of 100 ,um/ s (see Stern et al. [1988] for a review
of this phenomenon). It is reasonable to assume that the
occurrence of these calcium oscillations, or at least their
propagation, is due to regeneration of the calcium-in-
duced calcium release machinery of the SR, although
this is by no means proven, as discussed above. If this
machinery involves local control by the sarcolemmal cal-
cium channel, then when it regenerates in response to
global cytosolic calcium it is not operating as "intended"
by its designer. Nevertheless, at constant membrane po-
tential (particularly at the resting potential), the local
coupling of sarcolemmal calcium channels to the SR
channels will have no effect, and the cell should behave
as a common-pool system. This is manifested experimen-
tally by the lack of an effect of L-type channel blockers
on spontaneous calcium waves in resting hearts or myo-
cytes, (Stern et al., 1989).

In keeping with our use of modeling as an aid to un-
derstanding rather than an attempt to simulate the de-
tailed behavior of the cell, we will analyze the principles
behind the regenerative propagation ofcalcium-induced
calcium release using several highly idealized models of
the wave that can be solved analytically. The aim will be
to understand how the qualitative features ofSR calcium
release determine the relationship between wave ampli-
tude and velocity, the shape of a calcium wave and, par-
ticularly, the conditions under which such a wave may
fail to propagate.

Observed properties of propagated
calcium waves
Quantitative experimental data on the propagated wave
are still rather sparse. The calcium profile ofthe wave has
been imaged (Takamatsu and Wier, 1990; Berlin et al.,
1989), but quantum noise limits the precision with
which the leading edge of the wave can be resolved.
Wave velocities have been measured in papillary mus-
cles and single myocytes (Kort et al., 1985; Takamatsu
and Wier, 1990); they tend to fall within a rather narrow
range of 80-120 ,um/s. Macroscopic waves have been
observed to propagate for millimeters at velocities of up

to 15 mm/s in intact trabeculae immediately after rapid
stimulation under conditions of marked calcium load-
ing; these have been modeled as due to calcium-induced
calcium release (Backx et al., 1989) but this required
extreme assumptions about parameters, including dia-
stolic calcium high enough to saturate calcium buffers,
and it is not clear that these propagated aftercontractions
represent the same phenomenon as the waves in single
myocytes. Wave velocity in myocytes increases with the
product of extracellular calcium and inter-wave interval
(M. Capogrossi, personal communication) which is a
surrogate for SR calcium content. One might think,
therefore, that the narrow range ofwave velocities is ac-
counted for by the fact that most observed waves are
initiated by spontaneous calcium release, and therefore
tend to occur at about the same critical level of SR cal-
cium loading. To study wave propagation over a wider
range of SR calcium loads, one would like to initiate
waves externally in cells that are not spontaneously oscil-
lating. This can be done by means of subthreshold field
stimulation, local application of caffeine, or localized
photo-release of caged calcium, (M. Capogrossi, per-
sonal communication; O'Neill et al., 1990). When this is
attempted, however, the waves commonly fail to propa-
gate or die out after a short distance. Indeed, even waves
that are spontaneously initiated at one end ofa calcium-
loaded cell are often observed to die out before traversing
the entire length of the cell. It appears, therefore, that
cells which can generate a robust twitch, and even cells
displaying spontaneous SR calcium release, are nonethe-
less rather refractory to the propagation of calcium
waves. This is the principal paradox which we seek to
understand theoretically.
The details ofthe construction of analytical models of

wave propagation lie somewhat outside the field of exci-
tation-contraction coupling per se, and are presented in
the Appendix. The principal conclusions are as follows.

(a) If it is assumed that SR calcium release sites are
effectively homogeneously distributed, the wave may be
modeled as a continuum process, with cytosolic [Ca2"]
governed by the diffusion equation, supplemented by a
source term representing the flux of calcium exchanged
locally with the SR and other organelles. By assuming a
solution in the form of a wave propagating steadily in
one dimension, an integral equation is derived which
determines the wave velocity and shape. This equation
can be solved numerically, given a model for the SR
calcium release dynamics. By representing SR calcium
release at a more phenomenalogical level by a "Max-
well's demon" who watches [Ca2"J,0 and decides when
to trigger SR release, it is possible to solve for the wave
analytically, and study the effect ofdifferent types oftrig-
gering algorithms on wave propagation. In general, there
exists a minimum rate of SR Ca2l release required to
sustain propagation of the wave, and a corresponding
nonzero minimum propagation velocity. For a variety of
models of threshold triggering, this refractory condition
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is only reached for waves whose amplitude is compara-
ble to the threshold for triggering release, i.e., much
smaller than the systolic [Ca"] transient. However, if
the triggering ofSR release is made highly sensitive to the
rate of rise of [Ca" lc],., then a high degree of refractori-
ness can be obtained, consistent with the observations.
In this case, the primitive Maxwell's demon model suc-

cessfully predicts the observed range of wave velocities,
without adjustable parameters.

(b) If release terminals are distributed inhomo-
geneously within the sarcomere, computation of the
wave is much more complex. It is possible to idealize the
situation by placing a threshold-triggered SR release site
exactly at each Z-line, obtaining an analytically soluble
model. This model shows that sarcomeric localization
itself can produce a high degree of refractoriness, due to
the loss of [Ca" ]cy,. (by uptake and extrusion) as it dif-
fuses across the "firebreak" of inexcitable SR between
release regions. In this model, the degree ofrefractoriness
is quite sensitive to sarcomere length, which should be
testable experimentally.

DISCUSSION
The analyses presented above demonstrate that it would
not be a simple matter to explain the macroscopic fea-
tures of cardiac excitation-contraction coupling, even if
the properties of the calcium release channel were fully
known. None ofthe models presented above, complex as
they are, purports to be a realistic model, i.e., one that
could be used to simulate experiments quantitatively.
Yet each of them embodies features which seem to be
required in order to explain observed properties of car-
diac E-C coupling. To recapitulate briefly, experiments
demonstrate that the cardiac calcium transient is tightly
coupled to the inward calcium current, yet other experi-
ments show that, under conditions not too far removed
from physiological, spontaneous and propagated cal-
cium release occur as all-or-none phenomena. We have
demonstrated that it is improbable that this state of af-
fairs can be explained by a homogeneous model, i.e., one
in which a common cytosolic pool of calcium provides
the pathway for all calcium transactions among the sar-
coplasmic reticulum, the sarcolemma and the myofila-
ments. At present, this demonstration falls somewhat
short ofa proof. In the linear case, we have proven that a
large amplification (defined in terms of the area of the
calcium transient) by means of calcium-induced cal-
cium release is incompatible with robust stability of the
equilibrium state. In order to rule out common pool
models entirely, it would be necessary to show experi-
mentally that a large amplification is present under con-
ditions in which the trigger is small enough that the sys-
tem behaves linearly, and that the resting state of such a
cell can be perturbed in the direction of increased cal-
cium release without leading to oscillations.
Avoiding common pool models means, by definition,

subdividing the calcium pool architecture of the cell in
some way. We have chosen to analyze models in which
this is done by placing the sarcolemmal calcium channel
in close proximity to SR calcium release channels, be-
cause there is ultrastructural evidence for such an ar-
rangement in mammals, as well as recent physiologic
evidence that calcium from the sarcolemmal channel is
more effective in releasing calcium from the SR than
calcium entering by Na/Ca exchange (Sham et al.,
1992). Our analysis shows that coupling by local [Ca>2 ]
diffusion gradients can give rise to high amplification of
the inward calcium current without requiring so much
positive feedback as to lose the graded character of SR
release. Interestingly, avian myocytes lack t-tubules but
have extensive SR release terminals, the majority of
which do not make junctional couplings with the sarco-
lemma (Sommer, 1991 ). These cells show gradation of
SR release in skinned-cell experiments (Fabiato, 1982),
but it is not known whether intact avian myocytes show
graded release in response to a wide range of depolariza-
tion conditions, as do mammalian cells.

There are a great variety oflocal control models possi-
ble, depending on the kinetics of the SR and sarcolem-
mal channels and the geometry of their relationship to
one another. We have analyzed only the simplest models
oftwo classes (single channel and cluster), over a limited
range of parameters, and have left out many important
phenomena, such as calcium inactivation of the sarco-
lemmal and SR channels and realistic kinetics ofthe SR
calcium uptake pump. More detailed and realistic analy-
sis oflocal control models, and fitting oftheir parameters
to experimental data, will require extensive computa-
tional resources. In order to limit the range of possibili-
ties, it will be necessary to have good data about the
kinetics of individual SR channels in isolation. Single
channel studies done so far show that there are several
open and closed states of the channel, indicating that
more complex channel models will be needed. These
studies also show that the sensitivity ofthe SR channel to
calcium varies over several orders of magnitude as a
function of the cytosolic concentrations of magnesium
and ATP. It is critically important that detailed channel
gating statistics be studied at physiological concentra-
tions of these ligands, which has not yet been done (in-
deed, it is not entirely certain what the physiologic level
of Mg2> is).

In principle, if the channel is Markovian, knowledge
of the transition rates among all of its states in the pres-
ence of steady levels of cytosolic calcium would make it
possible to calculate its behavior in the presence oftime-
varying calcium concentrations. In practice, if there are
many closed states, this may be difficult to do, because
there may be rapid transitions among multiple closed
states which are difficult to detect in the steady-state but
are important under dynamic conditions. It would there-
fore be very desirable to measure channel statistics in
response to step changes of calcium. For example, the
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experiments of Fabiato ( 1 985b), as well as the theoreti-
cal analysis of the propagated wave above, indicate that
macroscopic SR calcium release depends on the rate of
rise of trigger calcium. The physical implementation of
this "rate detection" probably involves a fast competi-
tion between activation and inactivation. It is possible
that the very low sensitivity of the SR channel to steady
levels of calcium in the presence of physiologic concen-

trations of magnesium is actually a reflection of rapid
passage through an open state to an inactivated state, so
that much smaller concentrations of calcium would suf-
fice to open the channel if applied rapidly. Alternatively,
this low sensitivity may be physiologic if the channel
normally functions in a local-control configuration in
which it is exposed to high local concentrations oftrigger
calcium.
A further gap in our knowledge ofSR channel kinetics

concerns the lifetime ofthe open state(s) as a function of
calcium. As indicated above, there is disagreement in the
literature as to whether the closure rate is influenced by
ambient calcium. Actually, none ofthe published results
may be relied upon, because the studies were done using
EGTA in submillimolar concentrations as a calcium
buffer. The calcium off-rate k-z for EGTA is only 1 s-1,
and its affinity K is 0o-6 M. The average time for a

calcium ion released from the channel pore to bind to
EGTA is given by K/IkI[EGTA]) which is - I10 ms at
an EGTA concentration of 100 ,tM. The time required
for the ion to diffuse 34 nm (the diameter of the SR
channel) is given by r2/D, where r = 34 nm, which gives
- 1.1 ,us. Therefore, the chance that calcium released
from the SR channel pore interacts with EGTA before
reaching the calcium sensing site on the channel is negli-
gible, and the local free calcium gradient is essentially
unbuffered. In order to measure the open state lifetime
without interference from feedback calcium, much
faster diffusible calcium buffers must be used in milli-
molar concentrations; even in this case buffering will be
marginal (Stern, 1992).

If the propagated calcium wave is interpreted as a
manifestation of the calcium-induced calcium release
machinery, it provides another constraint on whatever
model is finally chosen. Wave propagation requires suf-
ficient common-pool gain (under conditions of "cal-
cium overload") and convex dependence of release rate
on [Ca2+]. The common-pool properties of the SR
would best be measured by doing calcium-step or cal-
cium-clamp experiments while measuring cytosolic cal-
cium. Recent improvements in caged-calcium com-

pounds, together with the development ofcalcium-sens-
ing dyes that are optically compatible with them, offers
hope that this will soon be possible. It is quite possible, of
course, that the SR release sites are heterogeneous, some
being low affinity sites closely coupled to sarcolemmal
calcium channels, whereas others are free standing, high
affinity sites. Such a composite model would provide a
great many free parameters to help in papering over the

apparent conflicts presented by different classes ofphysi-
ological experiments. In order to convincingly validate
such a model, much more experimental evidence on the
ultrastructural localization of calcium release will be
needed.
Although calcium-induced calcium release has been

shown convincingly to be the mechanism of cardiac ex-
citation-contraction coupling, further understanding of
complex spatial relationships among calcium transport
and release sites is essential before the operation of this
mechanism can be said to be understood.

APPENDIX

Models of propagation of the
calcium wave

Continuum models of calcium waves
We assume that the calcium wave propagates by diffusion of calcium
from the wave front, which triggers calcium-induced calcium release
from the SR ahead of the wave. As an idealized model, we consider a
wave propagating steadily in one dimension along a cell of infinite
length (in fact, longitudinal waves in cardiac myocytes do quickly de-
velop a plane front and propagate at constant velocity). We will as-
sume that the sites of calcium release and uptake are continuously
distributed throughout the cytosol, and that calcium buffering can be
represented as linear and instantaneous, increasing the effective vol-
ume of distribution of cytosolic calcium by a factor B. The magnitude
ofB can be estimated to be - 30 (over the range of [Ca2"] from 0 to 1
,uM) by adding up the various known calcium buffers in the cell (Fa-
biato, 1983). Calcium uptake from the cytosol will be assumed to be a
first order process with rate constant kB, i.e., k ( s'- ) is the rate constant
for relaxation of cytosolic free calcium. Under these assumptions, the
deviation of cytosolic [Ca2"] from equilibrium, which we call x(t, z),
is governed by a diffusion equation with added terms for uptake and
release of calcium:

Bx = 2X
B-=D _-kBx +R{fx(t, z)}1,

O9t Oz2
(17)

where z is the longitudinal spatial coordinate along the length ofthe cell
and D is the diffusion coefficient of free calcium in the cytosol.
The release term R {x(t, z) } depends on x(t, z) and the history of

x(t, z) according to some dynamical model governed by differential
equations that could be written if we knew the kinetics of the release
channel and the dynamics ofSR calcium compartments. Since we are

looking for a solution that has the form of a wave propagating at con-

stant velocity without change of shape, we specify that the solution has
the form x = x(t - zl v), where v is the (as yet unknown) velocity ofthe
wave. Putting this into Eq. 17, and setting z = 0, gives:

(DlBv2) dx-- - kx + R(t)/B = 0, (18)

which is an ordinary differential equation for x(t), the (departure from
equilibrium of) [Ca2"] as a function oftime at one point in space as the
wave goes by.

If we pretend that the release term R(t) is known, then Eq. 18 is a
second order linear differential equation with constant coefficients and
a source term. This equation can be solved by Laplace transform meth-
ods, and if we specify that the solution must vanish for large positive
and negative times, i.e., before the wave arrives and after it has passed,
we obtain the following equation:
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2D ~~~~~~(19c)

where the exponential rate constants X+ and X_ are positive and nega-
tive, respectively.

For large negative and positive times, where R(t) vanishes, x(t) will
in fact fall to zero at these exponential rates. In order to be sure ofthis,
R(t) must vanish faster than the exponentials, i.e., faster than x(t) on
which it actually depends. This can be insured by requiring thatR(t) be
the nonlinear part of the release. In other words, we assume that any
part of the release term which is linear in x(t) has already been taken
out of R and included in the linear uptake term, giving an effective
uptake coefficient k. Since we assume that the equilibrium state before
the arrival ofthe wave is stable, the effective k must be positive. Fig. 10

shows schematically the extraction of the nonlinear part of release for
the case of a release rate that is controlled instantaneously by cytosolic
[Ca2+ ] according to first or second order kinetics. Note that for the case
of first order kinetics, the nonlinear part of "release" is actually nega-
tive. Examining Eq. 19, all the terms other than R are positive. There-
fore, in order to sustain a steadily propagated wave, the dependence of
SR release on trigger calcium must be second order or higher.

In order to obtain analytically soluble models, we now assume that
the control of SR release can be described phenomenalogically by
various "Maxwell's demon" devices. For example, we may assume that
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FIGURE 10 Schematic example of the extraction of the nonlinear part
of calcium release, as required in the analysis of the propagating cal-
cium wave. The upper panels show calcium release (smooth curve) and
uptake (straight line) as a function of cytosolic calcium for SR chan-
nels instantaneously controlled by [Ca2+". On the left side, SR calcium
release is a second order Hill function of [Ca2"]; in the right side it is
first order. The equilibrium point is where the two curves intersect in
each panel; the difference between the curves is net calcium release. In
the lower two panels, the linear part of release (i.e., a straight line
tangent to the release curve at the equilibrium point) has been sub-
tracted from the release curve, giving nonlinear release, and from the
linear uptake curve, giving an effective uptake rate. The horizontal
lines are at zero, showing that the nonlinear part of release is positive
for second (and higher) order release, but always negative for first order
release.

the Maxwell's demon controlling the SR waits until it is exposed to a
threshold level of calcium x0, and then initiates a release ofcalcium at
an initial rate r, decaying exponentially, i.e., R(t) = r exp(-t/rr). Of
course, the "threshold" and time course imposed by the Maxwell de-
mon are actually determined by the dynamics ofthe SR channels inter-
acting with the local calcium concentration, but, for purposes of this
schematic model, we will treat them as though they are known "after
the fact," in order to obtain analytical models that reveal the roles that
these parameters play in controlling propagation velocity and refrac-
toriness. Since the wave could arrive at any arbitrary time, we are at
liberty to assume that t =0 is the time at which threshold is reached and
release begins. Inserting this form for R(t) into Eq. 19, and requiring
that x(t) = xo at t = 0, we obtain the following equation determining
the release rate r in terms of the threshold trigger calcium x0 and the
exponential rate constant X+ of the "toe" of the approaching wave,
which is defined by Eq. 19b to be a positive, increasing function ofwave
velocity v:

B(X, + 2k)(X+Tr+ l)XO
A+Tr (20)

This equation may be regarded as implicitly determining the wave
velocity (which is a unique function of XA, found by inverting Eq. 19b)
when the SR release rate and trigger threshold have been specified. The
release rate r has a minimum value rm as a function ofXA, which may be
found by differentiating Eq. 20:

r = B I (2T)r }1( 2k){(
rr

} (21)
Tr

Therefore, there is a minimum calcium release rate below which no
steady wave propagation is possible, i.e., the cell is refractory to calcium
waves (note that this has nothing to do with refractoriness to electrical
conduction of the action potential at the sarcolemma). For calcium
release rates greater than rm there are two possible values of X+ (and
therefore of velocity v) that satisfy Eq. 20. One of these lies on the
ascending limb on which r is an increasing function of v, and represents
a physically possible solution. The other lies on the limb where velocity
decreases as the calcium release rate increases, and represents an unsta-
ble, nonphysical situation. The physical solutions therefore lie on the
ascending limb ofEq. 20, so that for any release rate above rm there will
be a steady wave traveling at a velocity greater than vm, the velocity of
the limiting wave at release rate rm. There is, therefore, a nonzero mini-
mum velocity of propagated waves, given by:

I2r 2Dk/B 1/2

((Tr) }

(22)

The failure of a wave to propagate when the SR calcium release rate
is too low can be described in terms of the notion of safety factor. The
[Ca2"] at the peak of a wave must be sufficient to diffuse forward,
losing some calcium to uptake, and still reach threshold to trigger re-
lease from the adjacent SR. The ratio ofthe peak [Ca2 ] ofthe wave to
the threshold is the safety factor for sustained propagation ofthe wave;
it must exceed some minimum value greater than 1 for the wave to be
sustained. To determine safety factor, it is useful to plot wave velocity
against peak calcium xp rather than release rate r as the independent
variable. We determine xp as follows: the time dependence of calcium
in the wave, x(t), is determined from Eq. 19 after substituting the
values ofR(t) and v and performing the integrals. By setting the deriva-
tive ofx(t) to zero, we can solve for the time at which the wave peaks,
and substitute this time in x(t) to find the peak calcium, xp as a func-
tion of r. Solving for r in terms ofxp and substituting back into Eq. 20,
an expression is found relating wave velocity v to wave amplitude xp,
parameters that are experimentally accessible. This equation, which is
very complicated, will not be reproduced here.
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FIGURE 11 (A) Velocity of the continuum-model calcium wave as a
function of wave amplitude (i.e., peak [Ca2+]). The left-hand curve
shows the model in which SR calcium release is triggered when cyto-
solic [Ca2 ] reaches 0.1 ,uM, and decays exponentially with a time
constant of 10 ms. In the right-hand curve, the triggering condition is
that [Ca2+] has increased by 0.1MM over the value 5 ms previously. No
propagated waves exist with lower amplitudes or velocities than the
leftmost points of the curves. (B and C) The time course of cytosolic

This relationship between wave amplitude and velocity is plotted as
the left-hand curve in Fig. 11 A. The threshold xo was taken to be 0.1
,uM, based on the studies of Fabiato (1983, 1985) in which a calcium
step was rapidly applied to skinned myocyte fragments to trigger cal-
cium release. The diffusion coefficient D was taken to be IO-' cm2/s,
the value for calcium ion free in solution. Note that D is the free cal-
cium diffusion coefficient, and should not be affected by the presence
of calcium buffers.
As the curve shows, there exist a minimum amplitude and velocity

for wave propagation; however, both appear to be rather small com-
pared with what is observed experimentally. Based on the theory, the
occurrence of refractoriness for waves of the same order of magnitude
as the systolic twitch (- 1 ,M) would not be expected. The minimum
safety factor xp/xo for propagation is only modestly greater than 1. In
Fig. 11 B, the smallest propagating wave is displayed. It has a peak
amplitude only a little over threshold, and a slow rise. The timing of
[Ca2"] in relation to SR calcium release is somewhat counterintuitive.
Most ofthe rise in calcium occurs by passive diffusion from the oncom-
ing wavefront. SR release begins only as the wave is about to go by, and
most of the released calcium goes to feed the forward propagation of
the wave, rather than to increase local calcium.

This highly schematic Maxwell demon model captures the phenome-
non of wave propagation by diffusion-triggered calcium-induced cal-
cium release, and even produces wave velocities ofthe correct order of
magnitude without adjustment of parameters. However, it does not
display the high degree of refractoriness seen experimentally. In order
to explain this paradox, the first consideration is whether we have cho-
sen our threshold correctly. The value ofxo was based on the studies of
Fabiato in skinned cells, but it is much lower than the trigger calcium
concentrations which would be present at the SR release channel in a
local-control model. We must consider the possibility that the safety
factor ofthe waves which are observed, experimentally, to die out may
not actually be high.
We need, first, to understand the meaning of "threshold" in the

phenomenalogical model. Since, in our interpretation, the sarcolem-
mal calcium channel plays no role in wave propagation, the local cal-
cium balance during wave propagation in a resting cell will be con-
trolled in the same manner as in a common-pool model. In the resting
cell, before wave initiation, cytosolic calcium will lie at a stable equilib-
rium value at which (slight) release is balanced by SR uptake. If this
value is increased beyond a critical value, a local regenerative release
will ensue; the amount of calcium which must be added to reach this
critical point corresponds to the "threshold" in the Maxwell-Demon
model. As cell calcium loading is raised, a point will be reached at
which the resting equilibrium point itself becomes unstable; this coin-
cides with the onset of spontaneous oscillations. As this degree of cal-
cium loading is approached, the increment in cytosolic calcium re-
quired to move from the (barely stable) equilibrium point to an unsta-
ble state will approach zero. Therefore, when the cell is calcium-loaded
nearly to the point of oscillation, the threshold for triggering regenera-
tive release will be very small. This argument applies regardless of the
actual calcium affinity of the SR channel. Even if the channel is very
insensitive (having been designed for local control), when the SR is
loaded sufficiently the apparent threshold for triggering bulk calcium
release will be small. This is because, under these conditions, only a
small fraction of SR channels needs to be opened to trigger regenera-
tion.
The above considerations help to rationalize the observation of Fa-

biato that bulk SR calcium release can be triggered by a 0.1-MM cal-
cium increment with the possibility that the SR channel actually has a

[Ca2"] (at one point in space) for the smallest possible propagated
wave. B is for threshold-triggered release, corresponding to the leftmost
point of the left-hand curve in A. Cis for rate-sensitive triggering (left-
most point of the right-hand curve in A). The upper curves are [Ca2J ]
(note the difference in scale between B and C), whereas the lower
curves show normalized SR calcium release rate.
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low affinity for calcium, which would be expected in a local-control
model (and is observed in single channel studies in the presence of
physiological levels of free magnesium). This further emphasizes the
paradoxical nature of the failure ofspontaneous waves to propagate. If
the cell is calcium loaded to the point where actual oscillation is initi-
ated at one end of the cell, then the effective threshold for triggering
release from adjacent areas, which must be loaded nearly to the point of
oscillation, ought to be very low, and the safety factor for propagation
should be very high (for example, ifthe peak [Ca2"] ofthe wave is 1 OM
and the threshold is 0.1 ,uM, the safety factor is 10). Yet spontaneous
waves are often observed to die out.
One possibility that we considered was to introduce a delay or "la-

tency" between the sensing of threshold calcium and the initiation of
release, to simulate the time dependence of channel kinetics. In the
presence oflatency, release would only begin after the wave was already
passing by, and would have to be larger in order to "catch up". Without
presenting the details here, it suffices to say that the inclusion oflatency
reduces the calculated velocities (particularly for large waves) and in-
creases refractoriness rather modestly. So long as the time constant for
relaxation is long compared with the latency time and to the duration
of SR calcium release, the critical safety factor for propagation is not
increased much above 1.
Another possibility is that release is actually triggered from within

the SR, by calcium which has been taken up from the approaching
wavefront. This would increase the SR calcium concentration to a criti-
cal threshold at which the SR spontaneously releases calcium, thereby
passing the wave along to adjacent SR. Analysis of this scheme, by
methods similar to those above, shows that there is a minimum total
amount of released SR calcium required for propagation to occur. This
minimum release size is equal to twice the difference between the rest-
ing SR content and the threshold for spontaneous release (the factor of
two arises because the released calcium diffuses equally in both forward
and backward directions). There is, however, no minimum wave veloc-
ity. The wave velocity goes to infinity as the resting SR load approaches
the threshold for spontaneous release. It does so sufficiently slowly,
however, that achieving velocities higher than those observed in myo-
cytes would require the resting SR to be loaded to over 99.9% of the
threshold for spontaneous release. In that condition it would be very
difficult to distinguish rapid propagation from multifocal spontaneous
release. Once again, this model provides no mechanism by which a cell
on the verge ofspontaneous calcium release could be refractory to wave
propagation.
To exclude the possibility that the lack of refractoriness is due to the

oversimplified nature of the Maxwell-Demon mechanism, we solved
numerically for propagation velocity when SR release was represented
by a detailed channel-kinetics scheme. The diffusion Eq. 18 was aug-
mented by providing a set of differential equations governing the state
variables (SR calcium stores and channel states) controlling the release
term R. These equations were solved with trial values of the velocity,
which was adjusted iteratively to satisfy Eq. 19. Fig. 12 shows wave
velocities calculated from such a model, as a function of the resting
cytosolic [Ca2+] at which the cell is equilibrated. The SR model used
was a rather complicated four-state model, including calcium-depen-
dent inactivation and latency in channel opening, which was designed
to reproduce the calcium inactivation experiments of Fabiato. This
model will not be discussed in detail here, because many of its features
have probably been rendered obsolete by the isolation ofthe SR release
channel. The significant point is that such a detailed model gives wave
velocity-calcium relationships qualitatively similar to those produced
by the Maxwell demon model, and shows no evidence of refractoriness
until calcium loading is reduced far below the level of at which sponta-
neous oscillation occurs.
We have found only one mechanism in a continuum model that can

produce the kind of refractoriness observed. This is the inclusion of a

strong dependence of SR triggering on the rate of rise of cytosolic cal-
cium. This can be modeled by assuming that the condition for trigger-
ing the Maxwell demon is that the rise in calcium during the immedi-
ately preceding time interval At is equal to the threshold, i.e., x(t) -

0

0

.E

0

>
z
0

a.

37.5 75

AMBIENT Ca2+, nanomolar

FIGURE 12 Wave velocity versus resting cytosolic calcium for a "realis-
tic" continuum model based on a four-state SR release channel with
calcium-dependent activation and inactivation, designed to mimic the
skinned cell experiments ofFabiato ( 1983, 1985a, b, c). The rightmost
point corresponds to the resting cytosolic calcium at which "spontane-
ous" calcium oscillations set in. The leftmost point gives the minimum
wave which is capable of propagating. Refractoriness appears only at
calcium loads well below the point of spontaneous release.

x(I - At) = xo. With this condition, xo is still the threshold that would
be observed in an experiment such as that of Fabiato, in which cyto-
solic calcium was increased suddenly by micro-injection around
the SR.

This model can be analyzed in a manner exactly analogous to Eqs.
20-22. The degree of refractoriness is found to increase as the "sensing
time" At is made shorter. The right-hand curve in Fig. 11 A shows the
relationship between wave amplitude and velocity for At = 5 ms, with
all other parameters the same as for the left-hand curve. The wave
velocity for large waves is similar to that found in the absence of rate-
sensing, but the minimum wave amplitude and velocity for propaga-
tion are much higher. The critical wave which just manages to propa-
gate is shown in Fig. 11 C; it is larger and has a steeper front than was
seen in the absence ofrate-dependent triggering. It should be noted that
the range of velocities found agrees very well with the range observed in
isolated myocytes, even though no effort was made to adjust the param-
eters to fit these velocities. The significance of this agreement should
not be overstated, because the proper values for the free-calcium diffu-
sion coefficient D and the cytosolic calcium buffering B are not known
with precision, and the time dependence of buffering has not been
taken into account.

Spatially discrete models of the calcium wave
The preceding analysis of the propagated wave assumed that SR cal-
cium release and uptake sites are continuously distributed throughout
the cytosolic space. Actually, ultrastructural evidence suggests that re-
lease sites are concentrated near the Z-line ofthe sarcomere. Such local-
ization could strongly influence the propagation of a calcium wave,
because released calcium must diffuse across a "firebreak" of passive
cytosol in order to reach and trigger the release sites in the adjacent
sarcomere.
The salient effects oflocalization ofrelease sites can be demonstrated

by a relatively simple, idealized model that can be solved analytically.
In this model, SR release sites are located exactly at the Z-line. When
cytosolic calcium at a Z-line reaches the threshold xo, a fixed amount of
calcium BLXm_, is instantaneously released at the Z-line, and begins
diffusing away, subject to instantaneous buffering and first order up-
take as in previous models. In this formulation, L is the sarcomere
length and xmv,, is the peak cytosolic calcium that would be reached if
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FIGURE 13 Propagated calcium wave in a model with discrete localiza-
tion of SR release sites at the Z-line of the sarcomere. (A) Velocity of
the wave as a function ofreleased calcium (expressed as equivalent free
calcium when distributed uniformly over the sarcomere), for three
different values of the calcium relaxation (reuptake) time constant
I/k. (B) The minimum safety factor required for propagation as a
function of the "dimensionless uptake rate" kL2/D, where L is sarco-
mere length and D is the free calcium diffusion coefficient.

the released calcium were instantly distributed uniformly throughout
the sarcomere.
The concentration, at location z and time t, of a unit amount of

calcium released at z = zo, t = to is found by solving the diffusion
equation with a linear uptake term:

| BD(t- l)11/2 e-[B(z-zo)2/4D(t-to)1-k(t-to)
X= 7rD(t -to)J (23)

2
We assume that a wave is traveling from left to right at velocity v, so

that the release site at z = 0 reaches threshold xo at time t = 0. The nth
release site to the left of z = 0 will then be located at z = -nL, and will
have released its calcium at t = -nL/v. Summing the diffusing calcium
fronts (each given by Eq. 23) from all these release sites, and requiring
that the resulting calcium equal the threshold xo at z = 0, t = 0, we
obtain:

Xmax = f B11/2 w e-Ln(BV2+,Dk)14Dv (24)

which is an equation (implicitly) determining the velocity v as a func-
tion of xm,. Using this equation, the wave velocity is plotted against
"wave amplitude" XmaX in Fig. 13 A, assuming a sarcomere length of2.2
Am, for several values of the uptake time constant 1/k. The value of
xm,, is a surrogate for wave amplitude, which is not well defined be-
cause the actual time course of calcium during the passage of a wave
will be different at each point in the sarcomere. As seen in this figure,
there is substantial refractoriness compared with the continuum model
without rate sensing. This occurs because a wave will fail to propagate if
the time required for calcium to diffuse from one sarcomere to the next
is sufficient for a large fraction ofthat calcium to be taken up from the
cytosol. In Fig. 13 B, the minimum safety factor for propagation, Xm,./
xo, is plotted as a function ofthe "dimensionless uptake rate" kL2/D .
This "simple" model shows that localization of the SR release sites

within the sarcomere could explain the high degree of refractoriness of
calcium waves seen experimentally. Since the "dimensionless uptake
rate" is proportional to the square of sarcomere length, the degree of
refractoriness should increase rather sensitively as sarcomere length is
increased. This might provide an experimental test of the importance
ofrelease site localization. To our knowledge, there is no data regarding
this possibility in cardiac myocytes, which are usually studied at slack
length (L 1.9 Mm). However, calcium waves are routinely observed
in unstimulated rat papillary muscles stretched to the length for maxi-
mum force production (Kort et al., 1985).

Receivedfor publication 27 September 1991 and in finalform
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